2019-2020年湖北省黄冈英山县九年级期中考试 数学(人教版)(含答案)

合集下载

2019-2020湖北省黄冈中学数学中考试卷(带答案)

2019-2020湖北省黄冈中学数学中考试卷(带答案)

2019-2020湖北省黄冈中学数学中考试卷(带答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm 3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 4.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .126.实数,,a b c 在数轴上的对应点的位置如图所示,若a b ,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <7.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D . 8.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=010.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 11.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 12.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(5)米二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.分解因式:x3﹣4xy2=_____.15.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?22.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.23.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO=12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比例函数y=k x的图象经过点C ,求k 的值; (3)在(2)条件下,点M 是DO 中点,点N ,P ,Q 在直线BD 或y 轴上,是否存在点P ,使四边形MNPQ 是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.4.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.5.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P (x ,0),∴PA=12-x ,∴⊙P 的半径PM=12PA=6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.6.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.8.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .9.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.10.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得12.A解析:A【解析】试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22=8米,则BC=BD-CD=8-3=5米.AB AD考点:直角三角形的勾股定理二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.18.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可2【解析】【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P ∴(大于3)3162==; 故答案为12. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 19.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形3【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.无23.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件, 根据题意得:1201004x x =-, 解得:x=24, 经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.。

初中数学湖北省黄冈市英才学校九年级(上)期中数学考试卷及答案

初中数学湖北省黄冈市英才学校九年级(上)期中数学考试卷及答案

xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:关于x的一元二次方程(a﹣1)x2+ax+a2﹣1=0的一个根是0,则a值为()A. 1 B. 0 C.﹣1 D.±1试题2:下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.菱形 C.等腰梯形 D.平行四边形试题3:若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y1<y3<y2试题4:如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()A.<2>和<3> B.<1>和<2> C.<2>和<4> D.<1>和<4>评卷人得分试题5:已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3试题6:在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.试题7:对于任意的非零实数m,关于x的方程x2﹣4x﹣m2=0根的情况是()A.有两个正实数根 B.有两个负实数根C.有一个正实数根,一个负实数根 D.没有实数根试题8:某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A. 50(1+x)2=60 B. 50(1+x)2=120C. 50+50(1+x)+50(1+x)2=120 D. 50(1+x)+50(1+x)2=120试题9:二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B. 3 C.﹣6 D. 9试题10:如图是一张边被裁直的白纸,把一边折叠后,BC、BD为折痕,A′、E′、B在同一直线上,则∠CBD的度数()A.不能确定 B.大于90° C.小于90° D.等于90°试题11:已知关于x的一元二次方程有解,求k的取值范围试题12:若抛物线y=(m﹣1)x2+2mx+3m﹣2的顶点在坐标轴上,则m的值为0或0.5或2 .考点:二次函数的性质;二次函数的定义.分析:由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.解答:解:①当抛物线y=(m﹣1)2x2+2mx+3m﹣2的顶点在x轴上时,△=0,m﹣1≠0,△=(2m)2﹣4×(m﹣1)×(3m﹣2)=0,整理,得2m2﹣5m+2=0,解得m=0.5或2;②当抛物线y=(m﹣1)2x2+2mx+3m﹣2的顶点在y轴上时,x=﹣=﹣=0,解得m=0.故答案为:0或0.5或2.点评:本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.试题13:x1=﹣5,x2=7 .试题14:y═(x﹣2)2+3 .试题15:四.试题16:(﹣1,0).试题17:2 .试题18:如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.试题19:抛物线y=x2+bx+c过点(2,﹣2)和(﹣1,10),与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式.(2)求△ABC的面积.试题20:如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?试题21:如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、C(﹣1,0).(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.试题22:如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O 的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.试题23:如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)∠APB的度数.试题24:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?试题25:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.试题1答案:C.试题2答案:B.试题3答案:B.试题4答案:B.试题5答案:C.点评:本题考查了二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律.D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.D.试题7答案:C.试题8答案:D.试题9答案:B.点评:本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.试题10答案:D.0≤k≤且k≠1 .试题12答案:方程(x+5)(x﹣6)=x+5的解是试题13答案:将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为试题14答案:已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在第象限.试题15答案:已知抛物线y=x2﹣2x﹣3,若点P(3,0)与点Q关于该抛物线的对称轴对称,则点Q的坐标是试题16答案:如果方程x2﹣3x+c=0有一个根为1,该方程的另一个根为试题17答案:2.点评:此题考查了一元二次方程根与系数的关系.此题比较简单,解题的关键是掌握:若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q的性质的应用.试题18答案:(36,0).试题19答案:解:(1)将点(2,﹣2)和(﹣1,10),代入y=x2+bx+c得:,解得:,∴抛物线的解析式为:y=x2﹣5x+4;(2)当y=0,则x2﹣5x+4=0,解得:x1=1,x2=4,∴AB=4﹣1=3,当x=0,则y=4,∴CO=4,∴△ABC的面积为:×3×4=6.试题20答案:解:(1)设所围矩形ABCD的长AB为x米,则宽AD为(80﹣x)米(1分).(说明:AD的表达式不写不扣分).依题意,得x•(80﹣x)=750(2分).即,x2﹣80x+1500=0,解此方程,得x1=30,x2=50.∵墙的长度不超过45m,∴x2=50不合题意,应舍去(4分).当x=30时,(80﹣x)=×(80﹣30)=25,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2(5分).(2)不能.因为由x•(80﹣x)=810得x2﹣80x+1620=0(6分).又∵b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,∴上述方程没有实数根(7分).因此,不能使所围矩形场地的面积为810m2(8分).说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.试题21答案:解:(1)B1(2,﹣3);(2)△A′B′C′如图所示,A′(0,﹣6);(3)D′(3,﹣5).试题22答案:解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x﹣6)2+h过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.试题23答案:解:(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,∠PAC=∠P′AB,而∠PAC+∠BAP=60°,所以∠PAP′=60度.故△APP′为等边三角形,所以PP′=AP=AP′=6;(2)利用勾股定理的逆定理可知:PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°可求∠APB=90°+60°=150°.点评:本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.试题24答案:解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.试题25答案:解:(1)∵抛物线y=(x+1)2+k与y轴交于点C(0,﹣3),∴﹣3=1+k,∴k=﹣4,∴抛物线的解析式为:y=(x+1)2﹣4,∴抛物线的对称轴为:直线x=﹣1;(2)存在.连接AC交抛物线的对称轴于点P,则PA+PC的值最小,当y=0时,(x+1)2﹣4=0,解得:x=﹣3或x=1,∵A在B的左侧,∴A(﹣3,0),B(1,0),设直线AC的解析式为:y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,当x=﹣1时,y=﹣(﹣1)﹣3=﹣2,∴点P的坐标为:(﹣1,﹣2);(3)点M是抛物线上的一动点,且在第三象限,∴﹣3<x<0;①设点M的坐标为:(x,(x+1)2﹣4),∵AB=4,∴S△AMB=×4×|(x+1)2﹣4|=2|(x+1)2﹣4|,∵点M在第三象限,∴S△AMB=8﹣2(x+1)2,∴当x=﹣1时,即点M的坐标为(﹣1,﹣4)时,△AMB的面积最大,最大值为8;②设点M的坐标为:(x,(x+1)2﹣4),过点M作MD⊥AB于D,S四边形ABCM=S△OBC+S△ADM+S梯形OCMD=×3×1+×(3+x)×[4﹣(x+1)2]+×(﹣x)×[3+4﹣(x+1)2] =﹣(x2+3x﹣4)=﹣(x+)2+,∴当x=﹣时,y=(﹣+1)2﹣4=﹣,即当点M的坐标为(﹣,﹣)时,四边形AMCB的面积最大,最大值为.。

2019-2020年第一学期九年级期中数学考试试卷含答案

2019-2020年第一学期九年级期中数学考试试卷含答案

2019-2020年第一学期九年级期中数学考试试卷一、精心选一选(本大题有10小题,每小题4分,共40分) 1. 已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm2.若37a b =,则b aa -等于( ) A .43 B.34 C. 37 D. 733.抛物线y =x 2-2x +3的对称轴为( )A .直线x =1B .直线x =-1C .直线x =2D .直线x =-24. 如图,在⊙O 中,点M 是︵AB 的中点,连结MO 并延长,交⊙O 于点N ,连结BN .若∠AOB =140°,则∠N 的度数为( )A .70°B .40°C .35°D .20°第4题 第6题 第8题5.在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是( ) A .12B .38C .13D .146. 如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA =OB =OC =2,则这朵三叶花的面积为( ) A .33-πB .63-πC .36-πD .66-π7. 已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC•BCB .BC 2=AC•BC C .AC=BC D .BC=AC8. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA 交于点F ,则BF EF的值为( ) A.41 B.422- C.221- D.212- O N MBA9. 如图,抛物线y =x 2+b x +c 与直线y=x 交于(1,1)和(3,3)两点,以下结论:①b 2﹣4c >0;②3b+c+6=0;③当x 2+b x +c >时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( ) A .①②④B .②③④C .②④D .③④10. 若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-2mx +m -1(m >0)与 x 轴交于 A 、 B 两点,若该抛物线在 A 、B 之间的部分与线段 A B 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( ) A .18≤ m ≤ 14 B .19< m ≤ 14 C .19 ≤ m < 12 D .19 < m < 14二、细心填一填(本大题有6小题,每小题5分,共30分)11.已知线段c 是线段a 、b 的比例中项,且a =4,b =9,则线段c 的长度为 . 12.小颖在二次函数y=2x 2+4x+5的图象上找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为___________.(用 < 号连接)13. 如图水库堤坝的横断面是梯形,BC 长为30m ,CD 长为20m ,斜坡AB 的坡比为1:3,斜坡CD 的坡比为1:2,则坝底的宽AD 为 m 。

2020学年九年级上期中数学试卷(含答案解析) 新教材 新大纲 练习 测试 模拟 复习 考试 期中 期末 中考.doc

2020学年九年级上期中数学试卷(含答案解析) 新教材 新大纲 练习 测试 模拟 复习 考试 期中 期末 中考.doc

2020学年湖北省黄石市九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠03.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3 4.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一6.下面对于二次三项式﹣x2+4x﹣5的值的判断正确的是()A.恒大于0B.恒小于0C.不小于0D.可能为07.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.8.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为()A.4B.C.5D.9.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0B.1C.﹣1D.±110.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC二、填空题(本大题共6小题,每小题3分,共18分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数y=2(x+1)2+1,当x时,y随x的增大而减小.12.已知关于x的方程x2+3x+k2=0的一个根是﹣1,则k=.13.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为.14.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程.15.如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=.16.已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为.三、解答题(本大题共9小题,共72分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列一元二次方程(1)x2﹣8x+1=0;(2)2x2+1=3x.18.(7分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?19.(7分)已知抛物线的顶点为(4,﹣8),并且经过点(6,﹣4),试确定此抛物线的解析式.并写出对称轴方程.20.(7分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.21.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.22.(8分)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度度;(2)连接CD,试判断△CBD的形状;.(3)求∠BDC的度数.度.23.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y 箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?24.(9分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.25.(10分)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.2018-2019学年湖北省黄石市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选:B.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.2.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠0【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根【分析】结合平方根和算术平方根的定义可做选择.【解答】解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.【点评】本题主要考查了平方根和算术平方根的定义,熟记定义是解答此题的关键.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为根号a.5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一【分析】根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.【解答】解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.6.下面对于二次三项式﹣x2+4x﹣5的值的判断正确的是()A.恒大于0B.恒小于0C.不小于0D.可能为0【分析】根据式子中含有x2和4x还有一个常数,因此我们易想到凑成完全平方公式,因此我们先提一个负号,凑成﹣[(x﹣2)2+1],这时候我们就容易观察到中括号里面恒大于零,因此总体上就恒小于零.【解答】解:∵﹣x2+4x﹣5=﹣(x2﹣4x+5)=﹣[(x﹣2)2+1]<0,∴原式恒小于0.故选:B.【点评】这道题比较灵活,需要分解常数来凑完全平方公式再去判断大小,同时我们需要在分解常数时候需要注意到前面的负号.7.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.【解答】解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.8.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为()A.4B.C.5D.【分析】如图,,作EF⊥AE,且EF=DE,连接AF、DF;然后根据三角形全等的判定方法,判断出△ADF≌△BDE,所以BE=AF;最后在直角三角形AEF中,根据勾股定理,求出AF的长度,即可求出BE的长为多少.【解答】解:如图,,作EF⊥AE,且EF=DE,连接AF、DF,因为∠AEF=90°,所以∠DEF=90﹣30=60°,DE=EF,所以△DEF是等边三角形,所以∠EDF=60°,∠ADF=∠BDE,因为AD=BD,DE=EF,∠ADF=∠BDE,所以△BDE≌△ADF,所以BE=AF=.故选:B.【点评】此题主要考查了全等三角形的判断方法和性质,以及等边三角形的特征、勾股定理的应用,要熟练掌握,解答此题的关键是判断出:△BDE≌△ADF,进而判断出BE的长等于AF的长.9.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0B.1C.﹣1D.±1【分析】把原点坐标代入抛物线y=x2﹣mx﹣m2+1,即可求出.【解答】解:根据题意得:﹣m2+1=0,所以m=±1.故选:D.【点评】此题考查了点与函数的关系,点在图象上,将点代入函数解析式即可求得.10.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC【分析】观察图2,确定x为何值取得最小值即可一一判断.【解答】解:A错误,观察图2可知PD在x=取得最小值.B、错误.观察图2可知PB在x=取得最小值.C、正确.观察图2可知PE在x=取得最小值.D、错误.观察图2可知PC在x=m取得最小值为0.故选:C.【点评】本题主要考查了动点问题的函数图象,灵活应用所学知识是解题的关键,学会利用函数的最值解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数y=2(x+1)2+1,当x≤﹣1时,y随x的增大而减小.【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【解答】解:∵函数的对称轴为x=﹣1,又∵二次函数开口向上,∴在对称轴的左侧y随x的增大而减小,∵x≤﹣1时,y随x的增大而减小,故答案为:x≤﹣1.【点评】本题考查了二次函数的性质,能根据解析式推知函数图象是解题的关键,另外要能准确判断出函数的对称轴.12.已知关于x的方程x2+3x+k2=0的一个根是﹣1,则k=±.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.把x=﹣1代入原方程即可得k的值.【解答】解:把x=﹣1代入方程x2+3x+k2=0可得1﹣3+k2=0,解得k2=2,∴k=±.故本题答案为k=±.【点评】本题考查的是一元二次方程的根即方程的解的定义.此题要注意,k2=2,k=±,漏掉一个k的值是易错点.13.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为45°.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:连接OA,如图,∵∠ACO=45°,OA=OC,∴∠ACO=∠CAO=45°,∴∠AOC=90°,∴∠B=45°.故答案为:45°【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.14.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程25(1﹣x)2=16.【分析】由两次降价的百分率都为x结合原价及两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设两次降价的百分率都为x,根据题意,得25(1﹣x)2=16.故答案为:25(1﹣x)2=16.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l ∥BC,则∠1=30°.【分析】首先根据直角的性质求出∠B=60°,利用旋转的性质求出△ABM是等边三角形,进而求出∠NMC=60°,再利用平行线的性质得到∠1+∠ANM=∠NMC,结合∠ANM=∠C=30°,即可求出∠1的度数.【解答】解:∵△BAC中,∠BAC=90°,∠C=30°,∴∠B=90°﹣30°=60°,∵△ABC绕着点A逆时针旋转,得到△AMN,∴AB=AM,∴△ABM是等边三角形,∴∠AMB=60°,∵∠AMN=60°,∴∠CMN=180°﹣60°﹣60°=60°,∵l∥BC,∴∠1+∠ANM=∠NMC,∵∠ANM=∠C=30°,∴∠1+30°=60°,∴∠1=30°.故答案为:30°【点评】本题主要考查了旋转的性质的知识,解答本题的关键是求出∠NMC=60°,利用平行线的性质即可解题,此题难度不大.16.已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为7.【分析】当点P与B重合时,AM=AQ′=3﹣3,DM=DQ″=10﹣3,易知点Q 的运动路径是Q′→M→Q″,△AMQ′,△MDQ″都是等腰直角三角形,由此即可解决问题.【解答】解:当点P与B重合时,AM=AQ′=3﹣3,DM=DQ″=10﹣3,易知点Q的运动路径是Q′→M→Q″,△AMQ′,△MDQ″都是等腰直角三角形,∵Q′M+MQ″=(3﹣3)+(10﹣3)=7∴点Q的运动路径长=点P的运动路径长7,故答案为7.【点评】本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.三、解答题(本大题共9小题,共72分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列一元二次方程(1)x2﹣8x+1=0;(2)2x2+1=3x.【分析】(1)利用配方法得到(x﹣4)2=15,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)x2﹣8x=﹣1,x2﹣8x+16=15,(x﹣4)2=15,x﹣4=±,所以x1=4+,x2=4﹣;(2)2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0或x﹣1=0,所以x1=,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(7分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?【分析】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据题意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).答:九(2)班有40个同学.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(7分)已知抛物线的顶点为(4,﹣8),并且经过点(6,﹣4),试确定此抛物线的解析式.并写出对称轴方程.【分析】根据题意可以设出该抛物线的顶点式,然后根据该抛物线过点(6,﹣4),即可求得a的值,本题得以解决.【解答】解:∵抛物线的顶点为(4,﹣8),∴可设抛物线解析式为y=a(x﹣4)2﹣8,将点(6,﹣4)代入,得:4a﹣8=﹣4,解得:a=1,则此抛物线的解析式为y=(x﹣4)2﹣8=x2﹣8x+8,其对称轴方程为x=4.【点评】本题考查待定系数法求二次函数解析式,解答本题的关键是明确题意,设出相应的函数解析式.20.(7分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【解答】解:连接OD,如图所示:∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又CD=16,∴CE=DE=CD=8,又OD=AB=10,∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE==6,则OE的长度为6.【点评】此题考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.21.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.22.(8分)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度150度;(2)连接CD,试判断△CBD的形状;等腰三角形.(3)求∠BDC的度数.15度.【分析】根据等腰三角形的定义判断.根据30°的直角三角形的性质及∠CBE=180°,通过角的和差关系进行计算.【解答】解:(1)∵三角尺旋转的度数即为一条边旋转后与原边组成的角,∴三角尺的斜边AB旋转到EB后AB与BE所组成的角∠ABE=180°﹣∠ABC=180°﹣30°=150°.(2)∵图形旋转前后两图形全等,∴CB=DB,故△CBD为等腰三角形.(3)∵三角形CBD中∠DBE为∠CBA旋转以后的角,∴∠DBE=∠CBA=30°,故∠DBC=180°﹣∠DBE=180°﹣30°=150°,又∵BC=BD,∴∠BDC=∠BCD==15°.【点评】此题根据等腰三角形的性质,即图形旋转后与原图形全等解答.23.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y 箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∵a<0∴函数开口向下,有最大值,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点评】本题主要考查二次函数的应用,由利润=(售价﹣成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.24.(9分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.【分析】(1)根据题中给出的定义,由于∠DAB和∠DCB不是直角,因此AC就是损矩形的直径.(2)根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.(3)本题可用面积法来求解,具体思路是用四边形ABCD面积的不同表示方法来求解,四边形ABCD的面积=三角形ABD的面积+三角形BCD的面积=三角形ABC的面积+三角形ADC的面积;三角形ABD的面积已知了AB的长,那么可过D作AB边的高,那么这个高就应该是BD•sin45°,以此可得出三角形ABD的面积;三角形BDC的面积也可用同样的方法求解,只不过AB的长,换成了BC;再看三角形ABC 的面积,已知了AB的长,可用含BC的式子表示出ABC的面积;而三角形ACD的面积,可用正方形面积的四分之一来表示;而正方形的边长可在直角三角形ABC中,用勾股定理求出.因此可得出关于BC的方程,求解即可得出BC的值.【解答】解:(1)只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;(2)作图如图:∵点P 为AC 中点,∴PA =PC =AC . ∵∠ABC =∠ADC =90°,∴BP =DP =AC , ∴PA =PB =PC =PD ,∴点A 、B 、C 、D 在以P 为圆心, AC 为半径的同一个圆上;(3)∵菱形ACEF ,∴∠ADC =90°,AE =2AD ,CF =2CD , ∴四边形ABCD 为损矩形,∴由(2)可知,点A 、B 、C 、D 在同一个圆上. ∵BD 平分∠ABC , ∴∠ABD =∠CBD =45°,∴,∴AD =CD ,∴四边形ACEF 为正方形.∵BD 平分∠ABC ,BD =,∴点D 到AB 、BC 的距离h 为4,∴S △ABD =AB ×h =2AB =6,S △ABC =AB ×BC =BC ,S △BDC =BC ×h =2BC ,S △ACD =S 正方形ACEF =AC 2=(BC 2+9), ∵S 四边形ABCD =S △ABC +S △ADC =S △ABD +S △BCD∴BC+(BC2+9)=6+2BC∴BC=5或BC=﹣3(舍去),∴BC=5.【点评】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.(3)中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.25.(10分)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.【分析】(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标;(2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得b=∴抛物线的解析式为y=x2﹣x﹣2.y=x2﹣x﹣2=(x2﹣3x﹣4 )=(x﹣)2﹣,∴顶点D的坐标为(,﹣).(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,∴x1=﹣1,x2=4,∴B(4,0)∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y=kx+n,则,解得:.∴.∴当y=0时,,.∴.【点评】本题着重考查了待定系数法求二次函数解析式、直角三角形的性质及判定、轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.。

人教版九年级上册数学期中试卷【含答案】

人教版九年级上册数学期中试卷【含答案】

人教版九年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。

A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。

A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的平均数是()。

A. 4B. 2C. 0D. 无法确定5. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()。

A. 16B. 26C. 28D. 36二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 在直角坐标系中,所有第一象限的点的坐标都是正数。

()3. 一个等边三角形的三个角都是60度。

()4. 任何两个负数相乘的结果都是正数。

()5. 一个数的立方根只有一个。

()三、填空题(每题1分,共5分)1. 一个正方形的边长为5,则它的面积是______。

2. 若一组数据的平均数为10,则这组数据的总和是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是______。

5. 2³的值是______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述勾股定理的内容。

3. 请简述因式分解的定义。

4. 请简述概率的定义。

5. 请简述直角坐标系中,点的坐标表示的意义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,求这个长方形的面积和周长。

2. 已知一组数据的平均数为15,数据个数为5,求这组数据的总和。

3. 在直角坐标系中,点A(2, 3)和点B(5, 7)之间的距离是多少?4. 若一个等腰三角形的底边长为12,腰长为13,求这个三角形的面积。

人教版2019-2020九年级数学上册期中考试试题含答案

人教版2019-2020九年级数学上册期中考试试题含答案

2019-2020九年级期中考试数学试题一、选择题(每小题3分,共18分)1.下列图形中既是中心对称图形又是轴对称图形的是()A B C D2.关于x的一元二次方程(m-3)x2+2x-1=0有实数根,则m的取值范围是()A m≥2B m>2C m≥2且m≠3D m>2且m≠33.在同一平面直角坐标系中,函数y=mx2+nx与y=nx+m的图象可能是()A B C D4.二次函数y=2(x-3)2+5的开口方向、对称轴、顶点坐标分别是()A 向上、直线x=3,(3,5)B 向上、直线x=3,(-3,5)C 向下、直线x=3,(3,5)D 向下、直线x=3,(-3,5)5.在平面直角坐标系中,把点P(-2,3)向右平移5个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是()A (3, -3)B (-3,3)C (3,3)或(-3, -3)D (3, -3)或(-3,3)6.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A B C D二、填空题(每小题3分,共24分)7.若点P(x, -3)与点Q(4,y)关于原点对称,则(x+y)2016= 。

8.若一元二次方程ax2-bx-2016=0有一根为x=-1,则a+b= 。

9.把二次函数y=2x2的图象向右平移3个单位长度,再向下平移4个单位长度,平移后抛物线的解析式为。

10.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=6cm,则BE=cm。

11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-4,8),B(2,2),则关于x的方程ax2-bx-c=0的解为。

12.已知函数()()⎪⎩⎪⎨⎧≥--<+-=)2(,24)2(,1122xxxxy,若使y=k成立的x的值恰好有三个,则k的值为。

人教版初中数学九年级下册期中试卷(2019-2020学年湖北省黄冈市十校联考

人教版初中数学九年级下册期中试卷(2019-2020学年湖北省黄冈市十校联考

2019-2020学年湖北省黄冈市十校联考九年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在实数﹣3,0,5,3中,最小的实数是()A.﹣3B.0C.5D.32.(3分)下列运算正确的是()A.a3•a=a3B.(﹣2a2)3=﹣6a5C.a5+a5=a10D.8a5b2÷2a3b=4a2b3.(3分)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.(3分)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°5.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°6.(3分)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒.A.200B.150C.100D.80二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)根据中央“精准扶贫”规划,每年要减贫约11 700 000人,将数据11 700 000用科学记数法表示为.8.(3分)因式分解:﹣y2﹣4y﹣4=.9.(3分)计算:+6(2016﹣π)0﹣()﹣1+|﹣2|﹣cos30°=.10.(3分)若关于x的分式方程=2的解为负数,则k的取值范围为.11.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.12.(3分)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为.13.(3分)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.14.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(本大题共10小题,共78分)15.(5分)解不等式组,并写出它的所有整数解.16.(6分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.17.(5分)列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.18.(6分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.19.(8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.(8分)如图,直角坐标系中,直线y=x与反比例函数y=的图象交于A、B两点.已知A点的纵坐标为2.(1)求反比例函数的解析式;(2)将直线y=x沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段P A与线段PC之差达到最大时,求点P的坐标.21.(8分)AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.①求证:DC为⊙O切线;②若AD•OC=8,求⊙O半径r.22.(8分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,求大楼AB的高度是多少?(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)23.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24.(14分)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)CD=,AD=;(2)若EF⊥AB,当点E在线段AB上移动时;①求y与x的函数关系式;(写出自变量x的取值范围);②当x取何值时,y有最大值?并求其最大值.(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.2019-2020学年湖北省黄冈市十校联考九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在实数﹣3,0,5,3中,最小的实数是()A.﹣3B.0C.5D.3【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)下列运算正确的是()A.a3•a=a3B.(﹣2a2)3=﹣6a5C.a5+a5=a10D.8a5b2÷2a3b=4a2b【分析】根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可.【解答】解:a3•a=a4,A错误;(﹣2a2)3=﹣8a6,B错误;a5+a5=2a5,C错误;8a5b2÷2a3b=4a2b,D正确,故选:D.【点评】本题考查的是同底数幂的乘法、积的乘方、合并同类项以及多项式的除法,掌握相关的法则是解题的关键.3.(3分)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图,可得答案.【解答】解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.4.(3分)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF =50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.【点评】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题时注意:两直线平行,同位角相等.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.6.(3分)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒.A.200B.150C.100D.80【分析】首先求得C点对用的横坐标,即a的值,则CD段的路程可以求得,时间是560﹣500=60秒,则乙跑步的速度即可求得;【解答】解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C.【点评】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)根据中央“精准扶贫”规划,每年要减贫约11 700 000人,将数据11 700 000用科学记数法表示为 1.17×107.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:11700000=1.17×107.故答案为:1.17×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(3分)因式分解:﹣y2﹣4y﹣4=﹣(y+2)2.【分析】原式提取﹣1,再利用完全平方公式分解即可.【解答】解:原式=﹣(y2+4y+4)=﹣(y+2)2.故答案为:﹣(y+2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.(3分)计算:+6(2016﹣π)0﹣()﹣1+|﹣2|﹣cos30°=5+.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+6﹣3+2﹣=5+.故答案为:5+【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.(3分)若关于x的分式方程=2的解为负数,则k的取值范围为k<3且k≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为负数确定出k 的范围即可.【解答】解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k<3且k≠1【点评】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.11.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10cm.【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10【点评】此题考查了切线的性质及垂径定理,建立数学模型是关键.12.(3分)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为3.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=3.故小圆锥的底面半径为3;故答案为:3.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.13.(3分)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=2cm.【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案为:2.【点评】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.14.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(本大题共10小题,共78分)15.(5分)解不等式组,并写出它的所有整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.【解答】解:由①得,x<﹣2;由②得,x≥﹣5,所以,不等式组的解集是﹣5≤x<﹣2,所以,原不等式的所有整数解为:﹣5,﹣4,﹣3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(6分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点评】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.17.(5分)列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.【分析】设新馆的展厅总面积为x万平方米,原两馆大楼的展览面积为y万平方米.根据“原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米”列出方程组并解答.【解答】解:设新馆的展厅总面积为x万平方米,原两馆大楼的展览面积为y万平方米,根据题意列方程得:,解得:.答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.18.(6分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=16+4m2>0,由此可证出该方程有两个不等的实根;(2)根据根与系数的关系可得x1+x2=4①、x1•x2=﹣m2②,结合x1+2x2=9③,可求出x1、x2的值,将其代入②中即可求出m的值.【解答】(1)证明:∵在方程x2﹣4x﹣m2=0中,△=(﹣4)2﹣4×1×(﹣m2)=16+4m2>0,∴该方程有两个不等的实根;(2)解:∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1•x2=﹣m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=﹣1,x2=5,∴x1•x2=﹣5=﹣m2,解得:m=±.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)联立x1+x2=4①、x1+2x2=9③,求出x1、x2的值.19.(8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【分析】(1)根据A类的人数是3,所占的百分比是15%,据此即可求得总人数;(2)根据百分比的意义求得C、D两类的人数,进而求得C类女生及D类男生的人数;(3)利用列举法表示出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)调查的总人数是:(1+2)÷15%=20(人);(2)C类学生的人数是:20×25%=5(人),则C类女生人数是:5﹣3=2(人);D类的人数是:20×(1﹣50%﹣25%﹣15%)=2(人),则D类男生的人数是:2﹣1=1(人);如图所示:;(3)如图所示:则恰好是一位男同学和一位女同学的概率是:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)如图,直角坐标系中,直线y=x与反比例函数y=的图象交于A、B两点.已知A点的纵坐标为2.(1)求反比例函数的解析式;(2)将直线y=x沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段P A与线段PC之差达到最大时,求点P的坐标.【分析】(1)将y=2代入y=﹣x,求出x的值,得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)连接AC,由P A﹣PC≤AC可得当A、C、P共线时,P A﹣PC取得最大值,此时P 为直线AC与y轴的交点.根据左加右减的平移规律得出将直线y=﹣x沿x轴向右平移6个单位后的直线为y=﹣(x﹣6),即y=﹣x+3,那么该直线与x轴的交点F的坐标为(6,0).解方程﹣x+3=﹣,求出C(﹣2,4).利用待定系数法求出直线AC 的表达式,即可求出P点坐标.【解答】解:(1)∵y=﹣x,∴y=2时,﹣x=2,解得:x=﹣4,即点A的坐标为(﹣4,2).∵点A(﹣4,2)在反比例函数y=的图象上,∴k=﹣4×2=﹣8,∴反比例函数的表达式为y=﹣;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,P A﹣PC<AC;当A、C、P共线时,P A﹣PC=AC;因此,当点P在直线AC与y轴的交点时,P A﹣PC取得最大值.将直线y=﹣x沿x轴向右平移6个单位后,得到直线y=﹣(x﹣6),即y=﹣x+3,设它与x轴的交点为F,则F(6,0).令﹣x+3=﹣,解得:x1=8(舍去),x2=﹣2,∴C(﹣2,4).∵A、C两点坐标分别为A(﹣4,2)、C(﹣2,4),∴直线AC的表达式为y=x+6,此时,P点坐标为P(0,6).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了用待定系数法求函数的解析式,函数图象上点的坐标特征,一次函数图象与几何变换,三角形的三边关系.21.(8分)AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.①求证:DC为⊙O切线;②若AD•OC=8,求⊙O半径r.【分析】①连接OD,要证明DC是⊙O的切线,只要证明∠ODC=90°即可.根据题意,可证△OCD≌△OCB,即可得∠CDO=∠CBO=90°,由此可证DC是⊙O的切线;②连接BD,OD.先根据两角对应相等的两三角形相似证明△ADB∽△ODC,再根据相似三角形对应边成比例即可得到r的值.【解答】①证明:连接OD.∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD,∴∠BOC=∠COD.∵在△OBC与△ODC中,,∴△OBC≌△ODC(SAS),∴∠OBC=∠ODC,又∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴DC是⊙O的切线;②解:连接BD.∵在△ADB与△ODC中,,∴△ADB∽△ODC,∴AD:OD=AB:OC,∴AD•OC=OD•AB=r•2r=2r2,即2r2=8,故r=2.【点评】本题考查了切线的判定与性质,全等三角形的判定与性质,相似三角形的判定和性质,勾股定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(8分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,求大楼AB的高度是多少?(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH =x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大楼AB的高度.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),∴AB=AG+BG=6+20+9≈39.4(米).故大楼AB的高度大约是39.4米.【点评】本题考查了解直角三角形的应用﹣坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.23.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.24.(14分)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)CD=,AD=;(2)若EF⊥AB,当点E在线段AB上移动时;①求y与x的函数关系式;(写出自变量x的取值范围);②当x取何值时,y有最大值?并求其最大值.(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.【分析】(1)根据勾股定理求出AB,根据三角形的面积公式求出CD,根据勾股定理求出AD;(2)①分点E在线段AC、点E在线段BC上两种情况,根据相似三角形的性质用x表示出EF,根据三角形的面积公式计算;②根据二次函数的性质求出函数最大值,得到答案;(3)根据EF平分周长用x表示出AF,根据相似三角形的性质用x表示出EF,根据三角形的面积公式列出方程,解方程得到答案.【解答】解:(1)由勾股定理得,AB===5,S△ABC=×AC×BC=×AB×CD,即×3×4=×5×CD,解得,CD=,∴AD==,故答案为:;;(2)①当点E在线段AC上,即0<x≤时,∵EF⊥AB,CD⊥AB,∴EF∥CD,∴Rt△AEF∽Rt△ACB,∴=,即=,解得,EF=x,△AEF的面积为y=×x×x=x2;当点E在线段BC上,即<x≤5时,∵EF⊥AB,CD⊥AB,∴EF∥CD,∴Rt△BEF∽Rt△BDC,。

湖北省黄冈市蕲春县2019-2020学年人教版九年级(上)期中数学试卷 含解析

湖北省黄冈市蕲春县2019-2020学年人教版九年级(上)期中数学试卷  含解析

2019-2020学年九年级(上)期中数学试卷一.选择题(共8小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=02.若x2+x﹣m=0的一个解是x=1,则m的值为()A.2B.﹣2C.1D.﹣13.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)4.若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5B.5C.﹣4D.45.下列各点关于原点对称的是()A.(2,﹣2)→(2,2)B.(0,2)→(﹣2,0)C.(a,﹣b)→(﹣a,b)D.(a,b)→(﹣a,b)6.如图,将△ABC绕点A逆时针旋转60°得到△AB′C′,则下列说法中,不正确的是()A.AB=AB'B.∠BAB'=∠CAC'C.△ABC≌△AB'C'D.∠CAB'=60°7.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m8.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二.填空题(共8小题)9.方程x(x﹣5)=0化成一般形式后,它的常数项是.10.方程x2+mx﹣1=0的根的判别式的值为20,则m的值是.11.若二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=.12.图形:①线段,②等边三角形,③平行四边形,④矩形,⑤梯形,⑥圆.其中既是轴对称图形又是中心对称图形的序号是.13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,那么这个增长率是.14.已知抛物线y=x2+4x上有两点P1(,y1),P2(﹣,y2),则y1与y2的大小关系为.15.如图,AB是⊙O的直径,C、D是的三等分点,∠AOE=60°,则∠COE=.16.如图,AB⊙O的直径,CD为⊙O的弦,若AB⊥CD于E,下列结论:①CE=DE,②=.③=,④AC=AD.其中正确的有(填序号).三.解答题(共9小题)17.解下列方程(1)x2﹣2x﹣3=0(2)(2x﹣1)2=(3﹣x)2.18.如图,点A、B、C是⊙O上的三点,=.求证:OB平分∠ABC.19.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.20.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DF A重合.(1)旋转中心是哪一点?旋转了多少度?(2)若AE=5cm,求四边形ABCD的面积.21.如图,用长为30米的篱笆围成一个一边靠墙的矩形养鸡场ABCD,已知墙长14m,设边AD的长为x(m),矩形ABCD的面积为y(m2).(1)求y与x之间的函数关系式及自变量x的取值范围;(2)当y=108时,求x的值.22.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?23.如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从A沿AC边向C点以1cm/s 的速度移动,在C点停止,点Q从C点开始沿CB边向点B以2cm/s的速度移动,在B 点停止.(1)如果点P,Q分别从A、C同时出发,经过几秒钟,使S△QPC=8cm2?(2)如果点P从点A先出发2s,点Q再从点C出发,经过几秒钟后S△QPC=4cm2?(3)如果点P、Q分别从A、C同时出发,经过几秒钟后PQ=BQ?24.为了给同学们创造更好的学习环境,某校要对校园进行改造,现将改造工程承包给某公司,该公司甲、乙两个工程队合做这项工作需4个月完工,若先由甲队单独做3个月后,剩下的部分由乙队单独做还需6个月完工.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队工作一个月需费用3万元,乙队工作一个月需1万元,要使整个工程费不超过14万元,则乙队至少工作几个月?25.综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D 是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x2+=2,含有分式,不合题意;B、x2﹣5x﹣1=0,是一元二次方程,符合题意;C、x2﹣2x﹣3,是二次三项式,不是方程;D、2x﹣y=0,是二元一次方程,不合题意.故选:B.2.若x2+x﹣m=0的一个解是x=1,则m的值为()A.2B.﹣2C.1D.﹣1【分析】把x=1代入方程x2+x﹣m=0得到一个关于m的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程x2+x﹣m=0,得:1+1﹣m=0,解得:m=2.故选:A.3.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(﹣3,5),故选:B.4.若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5B.5C.﹣4D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.5.下列各点关于原点对称的是()A.(2,﹣2)→(2,2)B.(0,2)→(﹣2,0)C.(a,﹣b)→(﹣a,b)D.(a,b)→(﹣a,b)【分析】根据两个点关于原点对称时,它们的坐标符号相反,进而判断得出答案.【解答】解:根据两个点关于原点对称,则点(a,﹣b)关于原点对称的点的坐标是(﹣a,b).故选:C.6.如图,将△ABC绕点A逆时针旋转60°得到△AB′C′,则下列说法中,不正确的是()A.AB=AB'B.∠BAB'=∠CAC'C.△ABC≌△AB'C'D.∠CAB'=60°【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可求解.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:D.7.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.8.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出,y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本结论正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本结论错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本结论错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本结论正确.故选:D.二.填空题(共8小题)9.方程x(x﹣5)=0化成一般形式后,它的常数项是0.【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x﹣5)=0,∴x2﹣5x=0,∴方程x(x﹣5)=0化成一般形式后,它的常数项是0,故答案为:0.10.方程x2+mx﹣1=0的根的判别式的值为20,则m的值是±4.【分析】根据根的判别式即可求出m的值.【解答】解:由题意可知:△=m2+4=20,∴m=±4,故答案为:±411.若二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=﹣1.【分析】根据二次函数的图象与x轴的交点关于对称轴对称,直接求出x2的值.【解答】解:由图可知,对称轴为x=1,根据二次函数的图象的对称性,=1,解得,x2=﹣1.故答案为:﹣1.12.图形:①线段,②等边三角形,③平行四边形,④矩形,⑤梯形,⑥圆.其中既是轴对称图形又是中心对称图形的序号是①④⑥.【分析】中心对称图形是绕一点旋转180°能重合的图形,轴对称图形是沿对称轴折叠后能重合的图形.【解答】解:①既是轴对称图形又是中心对称图形;②是轴对称图形;③是中心对称图形;④既是轴对称图形又是中心对称图形;⑤是轴对称图形;⑥既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形的序号是①④⑥.13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,那么这个增长率是20%.【分析】设每年绿化面积的增长率为x,根据该小区2019年及2021年的绿化面积,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每年绿化面积的增长率为x,依题意,得:3000(1+x)2=4320,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.14.已知抛物线y=x2+4x上有两点P1(,y1),P2(﹣,y2),则y1与y2的大小关系为y1>y2.【分析】先根据抛物线的解析式得出抛物线的开口向上,抛物线的对称轴x=﹣2,再由二次函数的性质即可得出结论.【解答】解:∵抛物线y=x2+4x中a=1>0,∴此抛物线开口向上,对称轴x=﹣=﹣2,∵点P1(,y1)到对称轴的距离大于P2(﹣,y2)到对称轴的距离,∴y1>y2.故答案为:y1>y2.15.如图,AB是⊙O的直径,C、D是的三等分点,∠AOE=60°,则∠COE=40°.【分析】根据邻补角的概念求出∠BOE,根据圆心角、弧、弦的关系解答.【解答】解:∠BOE=180°﹣∠AOE=120°,∵C、D是的三等分点,∴==,∴∠COE=∠COD=∠BOD=120°×=40°,故答案为:40°.16.如图,AB⊙O的直径,CD为⊙O的弦,若AB⊥CD于E,下列结论:①CE=DE,②=.③=,④AC=AD.其中正确的有①②③④(填序号).【分析】根据垂径定理得到CE=DE,=,=,根据圆心角、弧、弦的关系定理得到AC=AD,得到答案.【解答】解:∵AB⊙O的直径,CD为⊙O的弦,AB⊥CD,∴CE=DE,=,=,①②③正确,∵=,∴AC=AD,④正确,故答案为:①②③④.三.解答题(共9小题)17.解下列方程(1)x2﹣2x﹣3=0(2)(2x﹣1)2=(3﹣x)2.【分析】(1)首先把方程左边因式分解得到(x﹣3)(x+1)=0,然后解两个一元一次方程即可;(2)首先利用平方差公式分解因式得到(2x﹣1+3﹣x)(2x﹣1﹣3+x)=0,然后整理方程,解两个一元一次方程即可.【解答】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x1=3,x2=﹣1;(2)∵(2x﹣1)2=(3﹣x)2,∴(2x﹣1+3﹣x)(2x﹣1﹣3+x)=0,∴(x+2)(3x﹣4)=0,∴x1=﹣2 x2=.18.如图,点A、B、C是⊙O上的三点,=.求证:OB平分∠ABC.【分析】连接OA,OC,再根据=即可得出结论.【解答】证明:连接OA,OC,∵=.∴∠AOB=∠BOC,∵OA=OB,OB=OC,∴∠ABO=∠CBO,即OB平分∠ABC.19.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.【分析】(1)根据一元二次方程x2﹣2x+m﹣1=0有两个实数根,可得△≥0,据此求出m的取值范围;(2)根据根与系数的关系求出x1+x2,x1•x2的值,代入x12+x22=6x1x2求解即可.【解答】解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m﹣1)≥0,整理得:4﹣4m+4≥0,解得:m≤2;(2)∵x1+x2=2,x1•x2=m﹣1,x12+x22=6x1x2,∴(x1+x2)2﹣2x1•x2=6x1•x2,即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.20.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DF A重合.(1)旋转中心是哪一点?旋转了多少度?(2)若AE=5cm,求四边形ABCD的面积.【分析】(1)根据旋转的定义即可得到旋转中心为点A,根据旋转的性质可得旋转角为90°;(2)由AE⊥BC得到∠AEB=90°,再根据旋转的性质得∠EAF=∠BAD=90°,AE=AF,△ABE≌△ADF,易得四边形AECF为正方形,然后根据四边形ABCD的面积=S正求解.方形AECF【解答】解:(1)∵△DBA旋转一定角度后能与△DF A重合,∴旋转中心为点A,旋转角等于∠BAD,即旋转角为90°;(2)∵AE⊥BC,∴∠AEB=90°,∵△BEA绕点A逆时针旋转90°得△DF A,∴∠EAF=∠BAD=90°,AE=AF,△ABE≌△ADF,而∠C=90°,∴四边形AECF为正方形,∴四边形ABCD的面积=S正方形AECF=52=25(cm2).21.如图,用长为30米的篱笆围成一个一边靠墙的矩形养鸡场ABCD,已知墙长14m,设边AD的长为x(m),矩形ABCD的面积为y(m2).(1)求y与x之间的函数关系式及自变量x的取值范围;(2)当y=108时,求x的值.【分析】(1)设养鸡场宽为x,则长为30﹣2x,由面积公式写出y与x的函数关系式即可;(2)把y=108代入函数关系式解答即可.【解答】解:(1)设养鸡场宽为x,则长为30﹣2x,根据题意,y=x(30﹣2x)=﹣2x2+30x(8≤x≤15)(2)当y=108时,∴﹣2x2+30x=108∴x1=6,x2=9∵8≤x≤15∴x=9.22.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【分析】关系式为:每件服装的盈利×(原来的销售量+增加的销售量)=1600,为了减少库存,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(20+5x)=1600解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.23.如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从A沿AC边向C点以1cm/s 的速度移动,在C点停止,点Q从C点开始沿CB边向点B以2cm/s的速度移动,在B 点停止.(1)如果点P,Q分别从A、C同时出发,经过几秒钟,使S△QPC=8cm2?(2)如果点P从点A先出发2s,点Q再从点C出发,经过几秒钟后S△QPC=4cm2?(3)如果点P、Q分别从A、C同时出发,经过几秒钟后PQ=BQ?【分析】本题可设P出发xs后,S△QPC符合已知条件:在(1)中,AP=xm,PC=(6﹣x)m,QC=2xm;在(2)中,AP=xm,PC=(6﹣x)m,QC=2(x﹣2)m,进而可列出方程,求出答案;在(3)中,PC=(6﹣x)m,QC=2xm,BQ=8﹣2x,利用勾股定理和PQ=BQ列出方程,求出答案.【解答】解:(1)P、Q同时出发,经过x秒钟,S△QPC=8cm2,由题意得,(6﹣x)•2x=8,∴x2﹣6x+8=0,解得:x1=2,x2=4.经2秒点P到离A点1×2=2cm处,点Q离C点2×2=4cm处,经4s点P到离A点1×4=4cm处,点Q点C点2×4=8cm处,经验证,它们都符合要求.答:P、Q同时出发,经过2s或4s,S△QPC=8cm2.(2)设P出发ts时S△QPC=4cm2,则Q运动的时间为(t﹣2)秒,由题意得:(6﹣t)•2(t﹣2)=4,∴t2﹣8t+16=0,解得:t1=t2=4因此经4秒点P离A点1×4=4cm,点Q离C点2×(4﹣2)=4cm,符合题意.答:P先出发2s,Q再从C出发2s后,S△QPC=4cm2.(3)设经过x秒钟后PQ=BQ,则PC=(6﹣x)m,QC=2xm,BQ=8﹣2x,(6﹣x)2+(2x)2=(8﹣2x)2,解得x1=﹣10+8,x2=﹣10﹣8(不合题意,舍去)答:经过﹣10+8秒钟后PQ=BQ.24.为了给同学们创造更好的学习环境,某校要对校园进行改造,现将改造工程承包给某公司,该公司甲、乙两个工程队合做这项工作需4个月完工,若先由甲队单独做3个月后,剩下的部分由乙队单独做还需6个月完工.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队工作一个月需费用3万元,乙队工作一个月需1万元,要使整个工程费不超过14万元,则乙队至少工作几个月?【分析】(1)由甲队1个月完成的工作乙队需2个月才能完成,可设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要2x个月,根据甲、乙两个工程队合做这项工作需4个月完工,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设乙队工作了y个月,则甲队工作了=天,根据总费用=每个月所需费用×工作时间(月数)结合整个工程费不超过14万元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要2x个月,依题意,得:+=1,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴2x=12.答:甲队单独完成这项工程需要6个月,乙队单独完成这项工程需要12个月.(2)设乙队工作了y个月,则甲队工作了=天,依题意,得:3×+1×y≤14,解得:y≥8.答:乙队至少工作8个月.25.综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由抛物线交点式表达,即可求解;(2)利用S△BDC=HD×OB,即可求解;(3)分BD是平行四边形的一条边、BD是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)由抛物线交点式表达式得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2﹣2ax﹣8a,即﹣8a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+6;(2)点C(0,6),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+6,如图所示,过点D作y轴的平行线交直线BC与点H,设点D(m,﹣m2+m+6),则点H(m,﹣m+6)S△BDC=HD×OB=2(﹣m2+m+6+m﹣6)=2(﹣m2+3m),S△ACO=××6×2=,即:2(﹣m2+3m)=,解得:m=1或3(舍去1),故m=3;(3)当m=3时,点D(3,),①当BD是平行四边形的一条边时,如图所示:M、N分别有三个点,设点N(n,﹣n2+n+6)则点N的纵坐标为绝对值为,即|﹣n2+n+6|=,解得:n=﹣1或3(舍去)或1,故点N(N′、N″)的坐标为(﹣1,)或(1,﹣)或(1﹣,﹣),当点N(﹣1,)时,由图象可得:点M(0,0),当N′的坐标为(1,﹣),由中点坐标公式得:点M′(,0),同理可得:点M″坐标为(﹣,0),故点M坐标为:(0,0)或(,0)或(﹣,0);②当BD是平行四边形的对角线时,点B、D的坐标分别为(4,0)、(3,)设点M(m,0),点N(s,t),由中点坐标公式得:,而t=﹣s2+s+6,解得:t=,s=﹣1,m=8,故点M坐标为(8,0);故点M的坐标为:(0,0)或(,0)或(﹣,0)或(8,0).。

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上21~24章。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。

A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。

A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。

A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。

若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。

湖北省黄冈市十校联考2019-2020学年第二学期九年级期中检测数学试题(含答案)

湖北省黄冈市十校联考2019-2020学年第二学期九年级期中检测数学试题(含答案)

湖北省黄冈市十校联考2019-2020学年疫情期九年级期中检测数学试题(附答案)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数﹣3,0,5,3中,最小的实数是( )A.﹣3B.0C.5D.32.下列运算正确的是( )A.a 3•a =a 3B.(﹣2a 2)3=﹣6a 5C.a 5+a 5=a 10D.8a 5b 2÷2a 3b =4a 2b3.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是( )A. B. C. D.4.一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CDE =40°,那么∠BAF 的大小为( )A.40°B.45°C.50°D.10°5.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A.30°B.45°C.50°D.75°6.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x (秒)的函数图象,则乙在途中等候甲用了( )秒A.200B.150C.100D.80二、填空题(本大题共8小题,每小题3分,共24分)7.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为.8.因式分解:-y 2-4y -4=__________.9.计算:12+6(2016﹣π)0﹣(13)﹣1+|﹣2|﹣cos30°= . 第4题图 第5题图 第6题图10.若关于x 的分式方程k -1x +1=2的解为负数,则k 的取值范围为 . 11.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是 cm .12.用半径为12cm ,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为 .13.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB =∠DCE =90°,∠B =30°,AB =8cm ,则CF = cm .14.已知关于x 的二次函数y =ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(本大题共10小题,共78分)15.(5分)解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩…,并写出它的所有整数解.16.(6分)如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:△AEF ≌△DEB ;(2)若∠BAC =90°,求证:四边形ADCF 是菱形.17.(5分)为迎接”抗战胜利70周年纪念展”,中国国家博物馆进行了合并改扩建工程.新馆的展厅总面积与原馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知新馆大楼的总建筑面积比原馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原馆大楼的展览面积.18.(6分)已知关于x 的一元二次方程0422=--m x x .第11题图 第13题图 F E D C B A(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根1x 、2x 满足9221=+x x ,求m 的值.19.(8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,老师一共调查了多少名同学?(2分)(2)求出调查中C 类女生及D 类男生的人数,将条形统计图补充完整;(2分)(3)为了共同进步,老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.(4分)20.(8分)如图,直角坐标系中,直线y =-12x 与反比例函数y =k x的图象交于A 、B 两点.已知A 点的纵坐标为2.(1)求反比例函数的解析式;(2)将直线y =-12x 沿x 轴向右平移6个单位后,与反比例函数在第二象限内交于点C .动点P 在y 轴正半轴上运动,当线段PA 与线段PC 之差达到最大时,求点P 的坐标.21.(8分)AB 为⊙O 直径,BC 为⊙O 切线,切点为B ,CO 平行于弦AD ,作直线DC . (1)求证:DC 为⊙O 切线;(2)若AD•OC=8,求⊙O半径r.22.(8分)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,求大楼AB的高度是多少?(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)23.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.张刚按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(3分)(2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(4分)(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果张刚想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?(3分)24.(14分)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)CD= ,AD= ;(4分)(2)若EF⊥AB,当点E在线段AB上移动时;①求y与x的函数关系式;(写出自变量x的取值范围)(4分)②当x取何值时,y有最大值?并求其最大值.(3分)(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.(3分)数学参考答案1.解:根据实数比较大小的方法,可得:﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.2.解:a3•a=a4,A错误;(﹣2a2)3=﹣6a6,B错误;a5+a5=2a5,C错误;8a5b2÷2a3b=4a2b,D正确,故选:D.3.解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.4.解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.5.解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.6.解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C.7.解:11700000=1.17×107.故答案为:1.17×107.8.解:原式=-(y+2)29.解:原式=2+6﹣3+2﹣=5+.故答案为:5+10.解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k <3且k ≠111.解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB =8cm ,CD =2cm . 连接OC ,交AB 于D 点.连接O A .∵尺的对边平行,光盘与外边缘相切,∴OC ⊥A B .∴AD =4cm .设半径为R cm ,则R 2=42+(R ﹣2)2,解得R =5,∴该光盘的直径是10cm .故答案为:1012.3cm.13.解:∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,∴DC =AC ,∠D =∠CAB ,∴∠D =∠DAC ,∵∠ACB =∠DCE =90°,∠B =30°,∴∠D =∠CAB =60°,∴∠DCA =60°,∴∠ACF =30°,可得∠AFC =90°,∵AB =8cm ,∴AC =4cm ,∴FC =4cos30°=23(cm ).故答案为:23.14.解:∵y =ax 2+(a 2﹣1)x ﹣a =(ax ﹣1)(x +a ),∴当y =0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得:13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2.【少填给1分,填错或不填不给分】15.解:31 3 112 1 23x x x x +<-⎧⎪⎨+++⎪⎩①②…, 由①,得x <-2,……………………………………………………………………………………1分 由②,得x ≥-5,…………………………………………………………………………………… 2分∴此不等式组解集为-5≤x <-2, (4)分则整数解为-5,-4,-3.……………………………………………………………………………5分16.证明:(1)∵E 是AD 的中点,∴AE =DE , ……………………………………………………1分∵AF ∥BC ,∴∠AFE =∠DBE ,………………………………………………………………………2分∵∠AEF =∠DEB ,∴△AEF ≌△DEB ; ……………………………………………………………3分(2)∵△AEF ≌△DEB ,∴AF =DB ,∵AD 是BC 边上的中线,∴DC =DB ,………………………………………………………………4分∴AF =DC ,∵AF ∥DC ,∴四边形ADCF 是平行四边形, ……………………………………………………………………5分∵∠BAC =90°,AD 是BC 边上的中线,∴AD =DC ,∴□ADCF 是菱形. ……………………………………………………………………6分17.解:设新馆的展厅总面积为x 万平方米,原馆大楼的展览面积为y 万平方米,根据题意列方程得:4.2,30.4.x y x y =+=-⎧⎨⎩…………………………………………………………………………………………2分解得: 6.5,2.3.x y ==⎧⎨⎩………………………………………………………………………………………4分答:新馆的展厅总面积为6.5万平方米,原馆大楼的展览面积为2.3万平方米.………………5分18.解:(1)证明:∵在方程x 2﹣4x ﹣m 2=0中,△=(﹣4)2﹣4×1×(﹣m 2)=16+4m 2>0, ∴该方程有两个不等的实根;……………………………………………………………………3分(2)解:∵该方程的两个实数根分别为x 1、x 2,∴x 1+x 2=4①,x 1•x 2=﹣m 2②.∵x 1+2x 2=9③,∴联立①③解之,得:x 1=﹣1,x 2=5,……………………………………………………………5分∴x 1•x 2=﹣5=﹣m 2,解得:m =±5.…………………………………………………………………6分19.解:(1)调查的总人数是:(1+2)÷15%=20(人);…………………………………………2分(2)C 类学生的人数是:20×25%=5(人),则C 类女生人数是:5﹣3=2(人);D 类的人数是:20×(1﹣50%﹣25%﹣15%)=2(人),则D 类男生的人数是:2﹣1=1(人);……3分如图所示:;…………………………4分(3)如图所示: (6)分 则恰好是一位男同学和一位女同学的概率是:=.……………………………………………8分20.解:(1)∵y =-12x , ∴y =2时,-12x =2,解得:x =-4,即点A 的坐标为(-4,2).…………………………………………………………2分∵点A (-4,2)在反比例函数y =k x 的图象上,∴k =-4×2=-8,∴反比例函数的表达式为y =-8x ; (3)分(2)连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,P A -PC <AC ;当A 、C 、P 共线时,P A -PC =AC ;因此,当点P 在直线AC 与y 轴的交点时,P A -PC 取得最大值.将直线y =-12x 沿x 轴向右平移6个单位后,得到直线y =-12(x -6),即y =-12x +3,…………………5分令-12x +3=-8x ,解得:x 1=8(舍去),x 2=-2,∴C (-2,4).………………………………………………………………………………6分 ∵A 、C 两点坐标分别为A (-4,2)、C (-2,4),∴直线AC 的表达式为y =x +6,此时,P 点坐标为P (0,6).………………………………………………………………8分 21.(1)证明:连接O D .∵OA =OD ,∴∠A =∠ADO.∵AD ∥OC ,∴∠A =∠BOC ,∠ADO =∠COD ,∴∠BOC =∠CO D .…………………………………………………………………………2分 ∵在△OBC 与△ODC 中,,∴△OBC ≌△ODC (SAS ),∴∠OBC =∠ODC ,…………………………………………………………………3分又∵BC 是⊙O 的切线, ∴∠OBC =90°,∴∠ODC =90°,∴DC 是⊙O 的切线;………………………………………………………………4分(2)解:连接B D .∵在△ADB 与△ODC 中,,∴△ADB ∽△ODC ,………………………………………………………………6分∴AD :OD =AB :OC ,∴AD •OC =OD •AB =r •2r =2r 2,即2r 2=8,故r =2.…………………………8分22.解:延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH ,………………………………………………………………1分 ∵梯坎坡度i =1:, ∴BH :CH =1:,设BH =x 米,则CH =x 米,在Rt △BCH 中,BC =12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,…………………………………………………………………4分∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=6+20(米),………………………………………………………………6分∴AB=AG+BG=6+20+9≈39.4(米).故大楼AB的高度大约是39.4米.…………………………………………………………8分23.解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,………………………………1分300×(12﹣10)=300×2=600元即政府这个月为他承担的总差价为600元..…………………………………………………3分(2)依题意得,w=(x﹣10)(﹣10x+500)……………………………………………………4分=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000……………………………………………………………………………6分∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.………………………………7分(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.………………………………………8分又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000. (9)分∵k=﹣20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.………………10分24.解:(1)125,95; …………………………………………………………………………4分(2)①由于E 的位置不能确定,故应分两种情况讨论:如图A :当0<x ≤AD ,即0<x ≤95时,∵EF ⊥AB ,∴Rt △AEF ∽Rt △ACB ,即AE AC =EF BC ,∵AC =3,BC =4,AE =x ,∴x 3=EF 4,EF =43x ,S △AEF =y =12AE ·EF =12x ·43x =23x 2.………………………………………………………………6分如图B :当AD <x ≤AB ,即95<x ≤5时,∵EF ⊥AB ,∴Rt △BEF ∽Rt △BCA ,∴EB BC =EF AC ,∵AE =x ,△AEF 的面积为y ,5-x 4=EF 3,∴EF =15-3x4,y =12×AE ×EF =12x ·15-3x4=-38x 2+158x .……………………………………………………………………7分综上所述:222903531595885x x y x x x ⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩.………………………………………………………………8分 ②当如图A :当0<x ≤AD ,即0<x ≤95时,S △AEF =y =12AE ·EF =12x ·43x =23x 2,当x =95时,y 最大=23×⎝⎛⎭⎫952=5425.………………………………9分如图B :当AD <x ≤BD ,即95<x ≤5时,y ==-38x 2+158x =-38⎝⎛⎭⎫x -522+7532,………………………………………………………………10分∴当x =52<5,y 最大=7532,故y 最大=7532.………………………………………………………………11分(3)存在.假设存在,当0<x ≤5时,AF =6-x ,∴0<6-x <3,∴3<x <6,∴3<x ≤5,…………………………………………………………………………12分 作FG ⊥AB 于点G ,由△AFG ∽△ACD ,∴AF AC =FG CD ,∴6-x 3=FG 125,即FG =45(6-x ),∴S △AEF =12x ·45(6-x )=-25x 2+125x ,∴3=-25x 2+125x ,解得:x 1=6+62,x 2=6-62,…………………………………………………………………………13分∵3<x ≤5,∴x 1=6+62(符合题意),x 2=6-62(不合题意,应舍去),故存在x ,直线EF 将△ABC 的周长和面积同时平分,此时x =6+62.……………………14分。

2019-2020年九年级数学期中考试题及答案

2019-2020年九年级数学期中考试题及答案

2019-2020年九年级数学期中考试题及答案一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题卡上)1.已知一元二次方程x2-5x+3=0的两根为x1,x2,则x1x2=()A.5 B.-5 C.3 D.-32.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( ) A.6 B.5 C.4 D.33.已知2是关于x的方程x2-3x+a=0的一个解,则a的值是()A.5 B.4 C.3 D.24.如图,在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10 B.7 C.6 D.55.如图,若要使平行四边形ABCD成为菱形,则可添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 6.关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k≠0 D.k>-1且k≠07.已知ab=cd=ef=4,且a+c+e=8,则b+d+f等于()A.4 B.8 C.32 D.28.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形9.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是()A.12 B.13 C.14 D.1810.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90第2题图第4题图第5题图11x 3.23 3.24 3.253.26ax2+bx+c -0.06 -0.02 0.03 0.09判断方程( ) A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.2612.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.94 B.214C.4 D.613.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A.13 B.14 C.15 D.1814.如图,点C是线段AB的黄金分割点,则下列各式正确的是()A.ACBC=ABAC B.BCAB=ACBC C.ACAB=ABBC D.BCAB=ACAB15.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°,则下列结论正确的个数为()①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD. A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.依次连接矩形各边中点所得到的四边形是。

2019-2020学年九年级数学上学期期中原创卷A卷(湖北)(参考答案)

2019-2020学年九年级数学上学期期中原创卷A卷(湖北)(参考答案)

2
2
∴点 P(3,1),由 N(1,3),
∴PN= (3 1)2 (3 1)2 =2 2 ≠MN,
∴平行四边形 MNPD 不是菱形,
即:不存在点 P,使四边形 MNPD 为菱形.(8 分)
(2)①当∠BDP=90°时,点 P(2,2),则四边形 BOCD 为矩形,
∴D(2,4),又 A(4,0),B(0,4),
6, 7 , 6,8 共 9 种.(5 分)
(1)摸牌的所有可能结果总数为 9,至少有一张是 6 的有 5 种可能,
∴在规划 1 中, P (小黄赢) 5 ;(7 分) 9
红心牌点数是黑桃牌点数的整倍数有 4 种可能,
∴在规划 2 中, P (小黄赢) 4 . 9
∵ 5 4 ,∴小黄要在游戏中获胜,小黄会选择规则 1.(10 分) 99
则 6 月份借阅了名著类书籍的人数为 1100+340=1440(人).(4 分)
(2)设平均增长率为 x.
1000(1+x)2=1440,解得 x=0.2.(6 分)
答:从 4 月份到 6 月份全校借阅名著类书籍的学生人数的平均增长率为 20%.(8 分)
2
20.【解析】(1) .(3 分)
3 2
23.【解析】(1)BC 与⊙O 相切.理由如下:(2 分)
如图,连接 OD.
∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD. 又∵OD=OA,∴∠OAD=∠ODA, ∴∠CAD=∠ODA, ∴OD∥AC, ∴∠ODB=∠C=90°,即 OD⊥BC. 又∵BC 过半径 OD 的外端点 D, ∴BC 与⊙O 相切.(5 分) (2)设 OF=OD=x,则 OB=OF+BF=x+2.

2019-2020年九年级数学期中考试题及答案

2019-2020年九年级数学期中考试题及答案

2019-2020年九年级数学期中考试题及答案( 时间:120分钟,满分:120分)一、选择题(每小题3分,共30分) 1、下列两个电子数字成中心对称的是2、正方形绕其对角线的交点旋转一定的角度与原图形重合,则这个角至少为( ) A.45° B.90° C.180° D.360°3、计算()22的结果是( )A.-4B.4C. ±4D.24、关于x 的方程0232=+-x ax 是一元二次方程,则( )A. a >0B. a ≠0C. a =1D. a ≥0 5、方程()0452=-x x 的根是( )A. 1x =2,2x =54B. 1x =0,2x =45C. 1x =0,2x =54 D 1x =21,2x =546、已知⊙和⊙的半径分别为和,两圆的圆心距是,则两圆的位置关系是( )A .内含B .外离C .内切D .相交7、化简a a 1-的结果是( )A 、a -B 、-a -C 、aD 、-a8、若a 为方程式(x - )2=100的一根,b 为方程式(y -4)2=17的一根,且a 、b 都是正数,则a -b 之值为何?( )A .5B . 6C .D . 10- 9、在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等, 它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中真命题有( )17831710、如图所示,⊙O 的半径为2,点O 到直线的距离为3,点P 是直线上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( )A.13B.5C.3D.2二、填空题(每小题3分,共24分)11、将200化成最简二次根式的是 . 12、如图所示,一条公路的转弯处是一段圆弧(图中的),点O 是这段弧的圆心,C是弧上一点,,垂足为,则这段弯路的半径是 .13、在中若弦的长等于半径,则弦所对的弧所对的圆周角的度数为 .14、等式x xxx-=-11成立的条件是 .15、方程3732+=x x 的一般形式是 . 16、已知:a<2,则()22-a = .17、已知关于x 的一元二次方程01)1(2=++-x x m 有实数根,则m 的取值范围 . 18、如果025)(40)(162=+-+-y x y x 那么x 与y 的关系是 .三、解答题(共36分) 19、计算:(8分) (1)5455445-2021515÷+⨯+ (2)x x x x 1246932-+第12题图AOC BD20、用指定的方法解方程:(16分)(1)036)1(42=--x (直接开平方法) (2)0322=-+x x (配方法)(3)0)1()1(2=+-+x x x (因式分解法) (4) 4)2)(1(=-+x x (公式法)21、已知:如图所示,的直径和弦相交于点,,, ∠=30°,求弦长.(6分)22、已知关于x 的方程022=-+kx x 的一个解是2.(6分)(1)求k 的值;(2)求方程022=-+kx x 的另一个解. 第21题图C四、解答题(共30分)23.已知:如图所示,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且C B D A ∠=∠.判断直线BD 与的位置关系,并证明你的结论. (7分)24、如图所示,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且,∠°.(8分)(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.第24题图A第23题图25、某商场今年1月份销售额为60万元,2月份销售额下降10%,后改进经营策略,月销售额大幅上升,到4月份销售额已达96万元,求3、4月份平均每月的增长率(精确到0.1%)(7分)26、某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(8分)(1)每千克核桃应降价多少元?(2)在平均每天获得利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?13--14学年九年级数学中段考试题参考答案一、选择题:1—10:A 、B 、D 、B 、C 、D 、B 、B 、A 、B;二、填空题:11、、250m; 13、30°或150°; 14、01x ≤<;15、23730x x --=; 16、2a -; 17、5,14m m ≤≠且; 18、4450x y -+=三、解答题:19、(1) =2原式 (2) 原式20、(1) 124,2x x ==- (2) 121,3x x ==- (3)121,2x x =-= (4)123,2x x ==-21、CD= 22、(1)1k =- (2)21x =-23、证明:BD 是圆O 的切线;理由略;24、(1)证明:略; (2)阴影部分面积为23π; 25、解:3、4月份平均增长率为33.3%; 26、(1)每千克核桃应降价4元或6元;(2)由(1)可知为尽可能让利于顾客,应降价6元;则实际售价为60-6=54元;得:540.960=;所以按原售价的9折出售.。

湖北初三初中数学期中考试带答案解析

湖北初三初中数学期中考试带答案解析

湖北初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.将一元二次方程5x 2-1=4x 化成一般形式后,二次项的系数和一次项系数分别是( )A .5,-1B .5,4C .5,-4D .5,12.方程x 2=25的解为( )A .x=5B .x=-65C .x=±5D .x=±3.下列函数中,当x >0时,y 随x 增大而减小的是( )A .y=x 2B .y=x -1C .y=D .y=-x 24.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )5.关于x 的方程是一元二次方程,则m 的取值是( )A .任意实数B .1C .―1D .±16.抛物线y=(x +2)2-3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,在向上平移3个单位;B .先向左平移2个单位,在向下平移3个单位;C .先向右平移2个单位,在向下平移3个单位;D .先向右平移2个单位,在向上平移3个单位;7.已知x 1,x 2是一元二次方程x 2―6x―5=0的两个根,则x 1·x 2的值为( )A .6B .-6C .5D .-58.如图,△ABC 绕点C 按顺时针旋转15°到△DEC ,若点A 恰好在DE 上,AC ⊥DE ,则∠BAE 的度数为()A .150B .550C .650D .7509.今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投入3640万元,已知2015年已投入1000万元,设投入经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .1000(1+x )2=3640B .1000(x 2+1)=3640C .1000+1000x +1000x 2=3640D .1000(1+x )+1000(1+x )2=264010.已知二次函数y=ax 2+bx +c (a≠0)的图像如图,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m≠1的实数)其中正确的结论个数有( )A .2个B .3个C .4个D .5个二、填空题1.已知x=-1是一元二次方程x 2+mx +1=0的一个根,那么m 的值是_________.2.一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.3.已知点A (2,1),则绕原点O 逆时针旋转1800后对应点的坐标是____________.4.一个二次函数,当自变量x=0时,函数值y=-1,当x=-2与时,y=0,则这个二次函数的解析式是____________.5.已知关于x 的一元二次方程ax 2+bx +c=3的一个根为x=2,且二次函数y=ax 2+bx +c 的对称轴是直线x=2,则抛物线的顶点坐标为______________.6.已知函数y=x 2+2(a +2)x +a 2的图像与x 轴有两个交点,且都在x 轴的负半轴上,则a 的取值范围是_____________.三、解答题1.解方程:x 2+3x -1=02.一个二次函数的图像经过(0,-2),(-1,-1),(1,1)三点,求这个二次函数的解析式3.如果关于x 的一元二次方程x 2+4x +a=0的两个不相等的实数根x 1,x 2满足x 1x 2-2x x -2x 2-5=0,求a 的值4.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,-1),B (-5 ,-4),C (-2 ,-3)(1)作出△ABC 向上平移6个单位,再向右平移7个单位的△A 1B 1C 1(2)作出△ABC 关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标;(3)将△ABC 绕点O 顺时针旋转900后得到△A 3B 3C 3,请你画出旋转后的△A 3B 3C 35.在一块长16m 、宽12m 的矩形荒地上,小明要建造一个花园,并使花园所占的面积为荒地面积的一半,其中花园四周小路的宽度都相等,求小路的宽。

2019-2020学年九年级数学上学期期中原创卷B卷(湖北)(参考答案)

2019-2020学年九年级数学上学期期中原创卷B卷(湖北)(参考答案)

132019-2020 学年上学期期中原创卷B 卷九年级数学·参考答案4 4 11.- 或 012.–13.614. 2 2 15.16.9 5333517.【解析】(1)x 2+3x -2=0,∵a =1,b =3,c =-2,b 2-4ac =32-4×1×(-2)=17,(2 分)∴x =-3 ± 17 = -3 ± 17 ,2 ⨯1 2∴x 1=-3 + 217 ,x 2= -3 - 2 17 .(4 分)(2)2(x -3)2=x 2-9,2(x -3)2-(x -3)(x +3)=0, (x -3)(2x -6-x -3)=0,(6 分)∴x -3=0 或 x -9=0,∴x 1=3,x 2=9.(8 分)18. 【解析】(1)如图,连接 OC .∵CD 是⊙O 的切线,∴∠OCD =90°,∵∠AEC =90°,∴∠OCD =∠AEC ,(2 分)∴AE ∥OC ,∴∠EAC =∠ACO ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠EAC =∠OAC ,∴AC 平分∠DAE .(4 分)(2)如图,作 CF ⊥AB 于 F .⎨ ⎩在 Rt △OCD 中,∵OC =3,OD =5,∴CD =4,(6 分)11 ∵ ·OC ·CD = 2212 · OD ·CF ,∴CF =,5∵AC 平分∠DAE ,CE ⊥AE ,CF ⊥AD ,12∴CE =CF =.(8 分)519. 【解析】(1)∵△DAE 逆时针旋转 90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F 、C 、M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠FDM =90°,∵∠EDF =45°,∴∠FDM =∠EDF =45°,⎧DE = DM在△DEF 和△DMF 中, ⎪∠EDF = ∠MDF ,⎪DF = DF ∴△DEF ≌△DMF ,∴EF =MF .(4 分)(2)设 EF =MF =x ,∵AE =CM =2,且 BC =6,∴BM =BC +CM =6+2=8,∴BF =BM -MF =BM -EF =8-x ,∵EB =AB -AE =6-2=4,(6 分)在 Rt △EBF 中,由勾股定理得 EB 2+BF 2=EF 2, 即 42+(8-x )2=x 2,解得:x =5, 则 EF =5.(8 分)20. 【解析】(1)画树状图为:(2 分)共有16 种等可能的结果数,其中两次取的球标号相同的结果数为4,4 1所以“两次取的球标号相同”的概率= =16 4(2)画树状图为:.(4 分)(6 分)共有12 种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,8 2所以“两次取出的球标号和为奇数”的概率= =12 3.(8 分)21.【解析】(1)y=200+20(110-x)=-20x+2400.(3 分)(2)设每月利润为W 元,W=(x-80)(-20x+2400)=-20(x-100)2+8000,(6 分)∵–20<0,∴x=100 时,W 最大值=8000.∴每件售价定为100 元时,每月的销售利润最大,最大利润8000 元.(8 分)22.【解析】(1)根据题意可列树状图如下:(2 分)从树状图可以看出所有可能结果共有12 种,且每种结果发生的可能性相同,符合条件的结果有8 种,∴P (和为奇数)=2.(5 分)3(2)不公平,理由如下:(7 分)∵小明参赛的概率是P (和为奇数)=2,小丽参赛的概率是P (和为偶数)=1,3 3∵ 2≠1,∴不公平.(10 分)3 323.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.3 (4 3)2 3 3 3 ⎨ ⎩1 ⎩ ∵BC =EC ,∴∠CBE =∠CEB ,∴∠OBC =∠OEC .(2 分)∵BC 为⊙O 的切线,∴∠OEC =∠OBC =90°.∵OE 为半径,∴CD 为⊙O 的切线,∵AD 切⊙O 于点 A ,∴DA =DE .(5 分)(2)如图,连接 OC ,过点 D 作 DF ⊥BC 于点 F ,则四边形 ABFD 是矩形,∴AD =BF ,DF =AB =6,∴DC =BC +AD =4 ,∵CF==2 ,∴BC -AD =2 ,∴BC =3 ,(7 分)在直角△OBC 中,∠BOC =60°.⎧OE = OB在△OEC 与△OBC 中, ⎪OC = OC ,⎪ CE = CB ∴△OEC ≌△OBC ,∴∠BOE =2∠BOC =120°,1 ∴S 阴影部分=S 四边形 BCEO -S 扇形 OBE =2× BC ·OB -2120 ⋅ π ⋅ OB 2=9 360 1-3π.(10 分)24.【解析】(1)把 A (2,0),B (8,6)代入 y = 2⎧ 1⨯ 22 + 2b + c = 0x 2+bx +c 得⎪ 2 ⎨ ⎪ ⨯ 82 + 8b + c = 6 ⎩ 2⎧b = -4 ,解得⎨c = 6 ,1∴抛物线的解析式为 y = 2x 2–4x +6.(4 分) 1(2)∵y = 1 x 2–4x +6= (x –4)2-2,3 ⎪7 7 ∴抛物线的顶点坐标为(4,-2),(6 分)∵抛物线的对称轴为直线 x =4,A (2,0),∴D (6,0).(8 分)(3)存在.(9 分) 1设 P (x , 2x 2–4x +6), 1 ∵S △ADP = 21 S △BCD ,1 1 1 ∴ •(6–2)·| 22x 2–4x +6|= 2 × ×(6–4)×6,2∴x 2–8x +9=0 或 x 2–8x +15=0,解方程 x 2–8x +9=0 得 x 1=4+ ,x 2=4– ,此时 P 点坐标为(4+ 33 , )或(4– 2 33 , ); 2解方程 x 2–8x +15=0 得 x 1=3,x 2=5,此时 P 点坐标为(3,– 2)或(5,– ).23 3 3 3 综上所述,P 点坐标为(4+ , )或(4– 2, )或(3,– )或(5,– ).(12 分)2227 7 7 7。

湖北初三初中数学期中考试带答案解析

湖北初三初中数学期中考试带答案解析

湖北初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.抛物线(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.3.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为()A.10B.6C.5D.44.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=75.下列说法正确的是()A.将抛物线向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是y=(x-4)2-2 B.方程x2+2x+3=0有两个不相等的实数根C.半圆是弧,但弧不一定是半圆.D.平分弦的直径垂直于弦,并且平分这条弦所对的两条弧6.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%8.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)9.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、解答题1.如图,抛物线y 1=(x+1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a=;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2 其中正确结论的个数是( )A. 1个B .2个C .3个D .4个2.根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.①方程x 2-2x +1=0的解为x 1=1,x 2=1;②方程x 2-3x +2=0的解为x 1=1,x 2=2;③方程x 2-4x +3=0的解为x 1=1,x 2=3; …………(1)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x +8=0的解为________________________;②关于x 的方程________________________的解为x 1=1,x 2=n .(2)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.3.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE ,∠C=40°,求∠E 及∠AOC 的度数.4.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,2)请解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出A 1的坐标.(2)画出△ABC 绕点B 逆时针旋转90°后得到的△A 2B 2C 2,并写出A 2的坐标.(3)画出△A 2B 2C 2关于原点O 成中心对称的△A 3B 3C 3,并写出A 3的坐标.5.已知关于x 的一元二次方程x 2-6x+m+4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.6.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r 的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?7.如图,已知抛物线y=﹣x 2+mx+3与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线y=﹣x+3交于C 、D 两点.连接BD 、AD .(1)求m 的值.(2)抛物线上有一点P ,满足S △ABP =4S △ABD ,求点P 的坐标.8.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?9.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转a (),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt △ABO 绕O 点顺时针旋转a (),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;10.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣8,3),B (﹣4,0),C (﹣4,3),∠ABC=α°.抛物线y=x 2+bx+c 经过点C ,且对称轴为x=﹣,并与y 轴交于点G .(1)求抛物线的解析式及点G 的坐标;(2)将Rt △ABC 沿x 轴向右平移m 个单位,使B 点移到点E ,然后将三角形绕点E 顺时针旋转α°得到△DEF .若点F 恰好落在抛物线上.①求m 的值;②连接CG 交x 轴于点H ,连接FG ,过B 作BP ∥FG ,交CG 于点P ,求证:PH=GH .三、填空题1.若点M(3,a-2),N(b,a)关于原点对称,则a+b=______.2.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.3.关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是___4.若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是____________.5.已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为_____.6.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为_____________.湖北初三初中数学期中考试答案及解析一、选择题1.抛物线(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】试题解析:∵y=x2-4x+m2+5=(x-2)2+(m2+1),∴顶点坐标为:(2,m2+1),∵2>0,m2+1>0,∴顶点在第一象限.故选A.2.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【答案】B【解析】试题解析:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,【考点】中心对称图形.3.在⊙O 中,弦AB 的长为6,圆心O 到AB 的距离为4,则⊙O 的半径为( )A .10B .6C .5D .4【答案】C【解析】连结OA ,如图,先根据垂径定理得到AC=AB=3,然后在Rt △OAC 中,根据勾股定理计算出OA=5,即⊙O 的半径为5cm . 故选:C .【考点】垂径定理;勾股定理.4.若二次函数y=x 2+mx 的对称轴是x=3,则关于x 的方程x 2+mx=7的解为( )A .x 1=0,x 2=6B .x 1=1,x 2=7C .x 1=1,x 2=﹣7D .x 1=﹣1,x 2=7【答案】D【解析】先根据二次函数y=x 2+mx 的对称轴是x=3求出m 的值,再把m 的值代入方程x 2+mx=7,求出x 的值即可. ∵二次函数y=x 2+mx 的对称轴是x=3, ∴﹣=3,解得m=﹣6,∴关于x 的方程x 2+mx=7可化为x 2﹣6x ﹣7=0,即(x+1)(x ﹣7)=0,解得x 1=﹣1,x 2=7.【考点】二次函数的性质;解一元二次方程-因式分解法.5.下列说法正确的是( )A .将抛物线向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是y=(x -4)2-2B .方程x 2+2x+3=0有两个不相等的实数根C .半圆是弧,但弧不一定是半圆.D .平分弦的直径垂直于弦,并且平分这条弦所对的两条弧【答案】C【解析】试题解析:A 、将抛物线y=x 2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是y=(x+4)2-2,错误;B 、∵△=4-3×4=-8<0,∴方程x 2+2x+3=0无实数根,此选项错误;C 、半圆是弧,但弧不一定是半圆,正确;D 、平分弦(不是直径)的直径垂直于弦,并且平分这条弦所对的两条弧,此选项错误;故选C .6.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( )A .y=60(300+20x )B .y=(60﹣x )(300+20x )C .y=300(60﹣20x )D .y=(60﹣x )(300﹣20x )【答案】B【解析】每件商品降价x 元后,则每星期的销售量为(300+20x)件,单价为(60-x)元,则y =(60-x)(300+20x),故选B.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A .20%B .25%C .50%D .62.5%【解析】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .【考点】一元二次方程的应用.8.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】=,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8).故选C .【考点】二次函数的性质.9.如图,在Rt △ABC 中,∠ACB=90°,将△ABC 绕顶点C 逆时针旋转得到△A'B'C ,M 是BC 的中点,P 是A'B'的中点,连接PM .若BC=2,∠BAC=30°,则线段PM 的最大值是( )A .4B .3C .2D .1【答案】B【解析】连接PC ,Rt △ABC 中,∠ACB=90°,BC=2,∠BAC=30°,P 是A'B'的中点,则 因为M 是BC 的中点,所以MC=1,在旋转的过程中,当点P 在MC 的延长线上时,PM 最大,为2+1=3.故选B.二、解答题1.如图,抛物线y 1=(x+1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a=;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2 其中正确结论的个数是( )A. 1个B .2个C .3个D .4个【答案】B【解析】试题解析:∵抛物线y 1=(x+1)2+1与y 2=a (x ﹣4)2﹣3交于点A (1,3),∴3=a (1﹣4)2﹣3,解得:a=,故①正确;∵E 是抛物线的顶点, ∴AE=EC , ∴无法得出AC=AE ,故②错误;当y=3时,3=(x+1)2+1,解得:x 1=1,x 2=﹣3,故B (﹣3,3),D (﹣1,1),则AB=4,AD=BD=2,∴AD 2+BD 2=AB 2,∴③△ABD 是等腰直角三角形,正确;∵(x+1)2+1=(x ﹣4)2﹣3时,解得:x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误.故选B .【考点】二次函数的图象与性质.2.根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.①方程x 2-2x +1=0的解为x 1=1,x 2=1;②方程x 2-3x +2=0的解为x 1=1,x 2=2;③方程x 2-4x +3=0的解为x 1=1,x 2=3; …………(1)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x +8=0的解为________________________;②关于x 的方程________________________的解为x 1=1,x 2=n .(2)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.【答案】(1)①x 1=1,x 2=8;②x 2-(1+n )x +n =0.(2)验证见解析【解析】(1)根据以上方程特征及其解的特征,可判定方程x 2-9x+8=0的解为1和8;②关于x 的方程的解为x 1=1,x 2=n ,则此一元二次方程的二次项系数为1,则一次项系数为1和n 的和的相反数,常数项为1和n 的积.(2)利用配方法解方程x 2-9x+8=0可判断猜想结论的正确.试题解析:(1)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x+8=0的解为x 1=1,x 2=8;②关于x 的方程x 2-(1+n )x+n=0的解为x 1=1,x 2=n .(3)x 2-9x=-8,x 2-9x+=-8+, (x-)2=,x-=±, 所以x 1=1,x 2=8;所以猜想正确.3.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB=2DE ,∠C=40°,求∠E 及∠AOC 的度数.【答案】20°;60°..【解析】连接OD ,根据等边对等角可得∠ODC=∠C=40°,再根据AB=2DE ,OD=AB 可得OD=DE ,再根据三角形外角的性质可得∠E 的度数,进而可得∠AOC 的度数. 试题解析:连接OD ,∵OC=OD ,∠C=40°, ∴∠ODC=∠C=40°,∵AB=2DE ,OD=AB ,∴OD=DE , ∵∠ODC 是△DOE 的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC 是△COE 的外角, ∴∠AOC=∠C+∠E=40°+20°=60°.4.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,2)请解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出A 1的坐标.(2)画出△ABC 绕点B 逆时针旋转90°后得到的△A 2B 2C 2,并写出A 2的坐标.(3)画出△A 2B 2C 2关于原点O 成中心对称的△A 3B 3C 3,并写出A 3的坐标.【答案】(1)作图见解析;A 1的坐标为(-2,2);(2)作图见解析;A 2的坐标为(4,0);(3)作图见解析;A 3的坐标为(-4,0).【解析】根据题意画出相应的三角形,确定出所求点坐标即可.解:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,如图所示,此时A 1的坐标为(﹣2,2);(2)画出△ABC 绕点B 逆时针旋转90°后得到的△A 2B 2C 2,如图所示,此时A 2的坐标为(4,0);(3)画出△A 2B 2C 2关于原点O 成中心对称的△A 3B 3C 3,如图所示,此时A 3的坐标为(﹣4,0).点睛:此题了考查了作图﹣旋转变换,轴对称变换,熟练掌握旋转与轴对称的性质是解本题的关键.5.已知关于x 的一元二次方程x 2-6x+m+4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.【答案】(1)m≤5.(2)4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论;(2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.试题解析:(1)∵关于x 的一元二次方程x 2-6x+m+4=0有两个实数根x 1,x 2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m 的取值范围为m≤5.(2)∵关于x 的一元二次方程x 2-6x+m+4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1•x 2=m+4②.∵3x 1=|x 2|+2,当x 2≥0时,有3x 1=x 2+2③,联立①③解得:x 1=2,x 2=4,∴8=m+4,m=4;当x 2<0时,有3x 1=-x 2+2④,联立①④解得:x 1=-2,x 2=8(不合题意,舍去).∴符合条件的m 的值为4.点睛:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.6.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r 的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【答案】(1)r=34;(2)不需要采取紧急措施.【解析】(1)连结OA ,利用r 表示出OD 的长,在Rt △AOD 中根据勾股定理求出r 的值即可;(2)连结OA′,在Rt △A′EO 中,由勾股定理得出A′E 的长,进而可得出A′B′的长,据此可得出结论. 试题解析:(1)连结OA ,由题意得:AD=AB=30,OD=(r-18)在Rt △ADO 中,由勾股定理得:r 2=302+(r-18)2,解得,r=34;(2)连结OA′,∵OE=OP-PE=30, ∴在Rt △A′EO 中,由勾股定理得:A′E 2=A′O 2-OE 2,即:A′E 2=342-302,解得:A′E=16.∴A′B′=32. ∵A′B′=32>30, ∴不需要采取紧急措施.点睛:应用垂径定理时,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此类题的关键.7.如图,已知抛物线y=﹣x 2+mx+3与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线y=﹣x+3交于C 、D 两点.连接BD 、AD .(1)求m 的值.(2)抛物线上有一点P ,满足S △ABP =4S △ABD ,求点P 的坐标.【答案】(1)2;(2)P (1+,-9)或P (1-,-9).【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D 坐标.由面积关系,推出点P 的纵坐标,再利用待定系数法求出点P 的坐标即可. 试题解析:(1)∵抛物线y=-x 2+mx+3过(3,0),∴0=-9+3m+3, ∴m=2(2)由,得,,∴D (,-),∵S △ABP =4S △ABD ,∴AB×|yP|=4×AB×,∴|yP |=9,yP=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,解得:x1=1+,x2=1-,∴P(1+,-9)或P(1-,-9).8.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【答案】(1)作图见解析;裁掉的正方形的边长为2dm,底面积为12dm2;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【考点】1、二次函数的应用;2、一元二次方程的应用9.已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1) 如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2) 将图1中的等腰Rt△ABO绕O点顺时针旋转a(),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转a(),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式;【答案】(1)①=;②AC2+CO2=CD2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=CD.【解析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为:OC﹣AC=CD.【考点】几何变换的综合题10.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.【答案】(1)y=x2+x−,点G(0,-);(2)①;②证明见解析.【解析】(1)把点C坐标代入y=x2+bx+c得一方程,用对称轴公式得另一方程,组成方程组求出解析式,并求出G点的坐标;(2)①作辅助线,构建直角△DEF斜边上的高FM,利用直角三角形的面积相等和勾股定理可表示F的坐标,根据点F在抛物线上,列方程求出m的值;②F点和G点坐标已知,可以求出直线FG的方程,那么FG和x轴的交点坐标(设为Q)可以知道,C点坐标已知,CG的方程也可以求出,那么H点坐标可以求出,可以证明△BPH和△QGH全等.试题解析:(1)根据题意得:解得:∴抛物线的解析式为:y=x2+x﹣,点G(0,﹣);(2)①过F作FM⊥y轴,交DE于M,交y轴于N,由题意可知:AC=4,BC=3,则AB=5,FM=,∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,∴E(﹣4+m,0),OE=MN=4﹣m,FN=﹣(4﹣m)=m﹣,在Rt△FME中,由勾股定理得:EM==,∴F(m﹣,),∵F抛物线上,∴=(m﹣)2+(m﹣)﹣,5m2﹣8m﹣36=0,=﹣2(舍),;m1②F(,),∴F(2,),易求得FG的解析式为:y=x﹣,CG解析式为:y=﹣x﹣,∴x﹣=0,x=1,则Q(1,0),﹣x﹣=0,x=﹣1.5,则H(﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH,∵BP∥FG,∴∠PBH=∠GQH,∠BPH=∠QGH,∴△BPH≌△QGH,∴PH=GH.【考点】二次函数综合题.三、填空题1.若点M(3,a-2),N(b,a)关于原点对称,则a+b=______.【答案】-2【解析】试题解析:根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得:b=-3,a-2+a=0,解得a=1,a+b=-3+1=-2.点睛:对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.【答案】45【解析】①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【考点】1.旋转变换;2.平行线的性质3.关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是___【答案】a>-且a≠1【解析】试题解析::∵关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,∴,解得:a>-且a≠1.4.若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时的抛物线位于x轴下方的图象对应x的取值范围是____________.【答案】0<x <2【解析】试题解析:设平移后的抛物线解析式为y=x 2-2x+c+b ,把A (2,0)代入,得0=c+b ,解得c+b=0,则该函数解析式为y=x 2-2x .当y=0时,x 2-2x=0,解得:x 1=0,x 2=2,∴此时的抛物线位于x 轴下方的图象对应x 的取值范围是:0<x <2.点睛:平移的规律:左加右减,上加下减.5.已知⊙O 的半径为10,弦AB ∥CD ,AB=12,CD=16,则AB 和CD 的距离为_____.【答案】14或2【解析】试题解析:分两种情况:①当AB 、CD 在圆心O 的两侧时,如图1,过O 作OE ⊥CD 于E ,延长EO 将AB 于F ,连接OD 、OB ,∵AB ∥CD , ∴EF ⊥AB ,∴ED=CD ,BF=AB ,∵AB=12,CD=16,∴ED=×16=8,BF=×12=6,由勾股定理得:OE===6, OF==8, ∴EF=OE+OF=6+8=14;②当AB 、CD 在圆心O 的同侧时,如图2,同理得:EF=OF-OE=8-6=2,综上所述,AB 和CD 的距离为14或2点睛:本题考查了垂径定理和两平行线的距离,熟练掌握垂径定理,应用了垂直弦的直径平分这条弦,恰当地作辅助线构建半径和弦心距,这是圆中常作的辅助线,要熟练掌握;本题还考查了分类讨论的思想,分别求出弦心距作和与差得出两平行线的距离.6.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为_____________.【答案】(6053,2)【解析】第一次P 1(5,2),第二次P 2(5,1),第三次P 3(7,1),第四次P 4(10,2),第五次P 5(14,2),…发现点P 的位置4次一个循环,∵2017÷4=504余1,P 2017的纵坐标与P 1相同为1,横坐标为5+3×504=1517,∴P 2017(1517,1),故答案为:(1517,1).【考点】坐标与图形变化﹣旋转;规律型:点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年湖北省黄冈英山县九年级期中考试数学(人教版)时间:120分钟总分:120分一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个案是正确的)1.已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A.5B.2C.﹣2D.﹣52.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤13.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+3 4.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=455.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=27.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm第7题图第8题图8.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①abc<0;②a+c<0;③4a+2b+c>0;④a+b>0,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题有8个小题,每小题3分,共24分.) 9.一元二次方程x 2+3x ﹣4=0的两根分别为 .10.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b =0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则a +b 的值是 .11.已知二次函数y =(x ﹣1)2+4,若y 随x 的增大而增大,则x 的取值范围是 . 12.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升 cm .第12题图 第13题图 第14题图13.如图,Rt △OAB 的顶点A (﹣4,8)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 . 14.若点(﹣m ,n +3)与点(2,﹣2m )关于原点对称,则m = ,n = 15.已知抛物线y =2x 2﹣x ﹣7与x 轴的一个交点为(m ,0),则﹣8m 2+4m ﹣7的值为 . 16.如图,已知正方形ABCD 的边长为6,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE =2,则FM 的长为 .三、解答题(本大题共9个小题,计72分.)17.(8分)解方程(1)02632=+-x x (2)(x +3)(x ﹣1)=518.(6分)已知关于x 的一元二次方程x 2﹣6x +(2m +1)=0有实数根. (1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.19.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.20.(6分)某城市居民最低生活保障在2012年是每月240元,经过连续两年的增加,到2014年将提高到每月345.6元,则该城市两年来最低生活保障的平均增长率是多少?21.(6分)如图,有一座抛物线型拱桥,桥下面水位AB宽20米时,此时水面距桥面4米,当水面宽度为10米时就达到警戒线CD,若洪水到来时水位以每小时0.2米的速度上升,问从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O 的)22.(6分)如图,在⊙O中,AB是O的弦,C、D是直线AB上两点,AC=BD.求证:OC=OD.23.(8分)如图,某地有一座圆弧形拱桥,桥下水面宽度AB为7.2m,拱高CD为2.4m.(1)求拱桥的半径;(2)现有一艘宽3m、船舱顶部为长方形并高出水面2m的货船要经过这里,问此货船能顺利通过拱桥吗?24.(12分)贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y=,且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?25.(14分)如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.(4)若点D为抛物线与x轴的另一个交点,点E在抛物线上,点F在抛物线的对称轴上,若以E,F,A,D,为顶点的四边形是平行四边形,请直接写出所有符合条件的点E的坐标参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分.)1.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A.5B.2C.﹣2D.﹣5【解答】解:根据题意,将x=﹣2代入方程x2+3x+a=0,得:4﹣6+a=0,解得:a=2,故选:B.2.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤1【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选:C.3.(3分)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+3【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.4.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【解答】解:由题意可得,x(x﹣1)=45,故选:A.5.(3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选:D.6.(3分)抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.7.(3分)如图,在⊙O中,=,∠AOB=44°,则∠ADC的度数是()A.44°B.34°C.22°D.12°【解答】解:∵在⊙O中,=,∠AOB=44°,∴∠ADC=22°,故选:C.8.(3分)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC 于点M,以下结论正确的是()A.AM⊥FC B.BF⊥CF C.BE=CE D.FM=MC【解答】解:∵△ABE经旋转,可与△CBF重合,∴∠BAE=∠BCF,∠ABE=∠CBF.∴∠BCF+∠BFC=90°.∴∠BFC+∠BAE=90°.∴∠FMA=90°.∴AM⊥FC.故选:A.9.(3分)如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC 与∠BOC互补,则弦BC的长为()A.4B.3C.2D.【解答】解∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°,∵∠BAC=∠BOC,∴∠BOC=120°,过O作OD⊥BC,垂足为D,∴BD=CD,∵OB=OC,∴OB平分∠BOC,∴∠DOC=∠BOC=60°,∴∠OCD=90°﹣60°=30°,在Rt△DOC中,OC=2,∴OD=1,∴DC=,∴BC=2DC=2,故选:C.10.(3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a<0,b <0,故选项A错误;在B中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b<0,故选项B 错误;在C中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b<0,故选项C 错误;在D中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,故选项D 正确;故选:D.二、填空题(本大题有5个小题,每小题3分,共15分.)11.(3分)一元二次方程x2+3x﹣4=0的两根分别为1和﹣4.【解答】解:x2+3x﹣4=0,(x+4)(x﹣1)=0,x+4=0或x﹣1=0,解得:x1=﹣4,x2=1,故答案为:1和﹣4.12.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则a+b的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,∴a=2,b=﹣,∴a+b=2﹣=.故答案为:.13.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而增大,则x的取值范围是x>1.【解答】解:∵y=(x﹣1)2+4,∴抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故答案为:x>1.14.(3分)如图,四边形ABCD内接于⊙O,∠DAB=120°,连接OC,点P是半径OC 上任意一点,连接DP,BP,则∠BPD可能为80度(写出一个即可).【解答】解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=120°,∴∠DCB=180°﹣120°=60°,由圆周角定理得,∠DOB=2∠DCB=120°,∴∠DCB<∠BPD<∠DOB,即60°<∠BPD<120°,∴∠BPD可能为80°,故答案为:80.15.(3分)如图,Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,将Rt△OAB绕点O 顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为(2,4).【解答】解:∵Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,∴8=16a,解得a=,∴抛物线为y=x2,∵点A(﹣4,8),∴B(﹣4,0),∴OB=4,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=4,∴D(0,4),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为4,代入y=x2,得4=x2,解得x=±2,∴P(2,4).故答案为(2,4).16.(3分)如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF =45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=2,则FM的长为5.【解答】解:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=8,∴BF=BM﹣MF=BM﹣EF=8﹣x,∵EB=AB﹣AE=4,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即42+(8﹣x)2=x2,解得:x=5,∴FM=5.故答案为:5.三、解答题(本大题共9个小题,计69分.)17.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+x﹣2=0.【解答】解:原式=•﹣=﹣=解方程x2+x﹣2=0,得x1=1,x2=﹣2(不合题意,舍去),∴原式=.18.(6分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.19.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).20.(6分)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并计划投入资金逐年增加,2016年比2014年多投入资金1600万元,从2014年到2016年该地投入异地安置资金的年平均增长率为多少?【解答】解:设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%.21.(7分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.【解答】解:(1)根据题意得:(30﹣2x)x=72,解得:x=3或x=12,∵30﹣2x≤18,∴x≥6,∴x=12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x=﹣2(x﹣)2+,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米.22.(8分)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFG=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.23.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.24.(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB 于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.【解答】证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB=AC,∵∠EAD=∠BAC,∴∠BAE=∠CAD,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴BE=CD;(2)∵AD⊥BC,∴BD=CD,∴BE=BD=CD,∠BAD=∠CAD,∴∠BAE=∠BAD,在△ABD和△ABE中,,∴△ABD≌△ABE(SAS),∴∠EBF=∠DBF,∵EF∥BC,∴∠DBF=∠EFB,∴∠EBF=∠EFB,∴EB=EF=BD,∴四边形EFDB是平行四边形,∵EF=EB,∴四边形BDFE为菱形.25.(13分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示,抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.【解答】解:(1)过点B作BD⊥x轴,垂足为D.∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,∴BD=OC=1,CD=OA=2,∴点B的坐标为(﹣3,1);(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,解得a=,所以抛物线的解析式为y=x2+x﹣2;(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),③以A为直角顶点的等腰Rt△ACP的顶点P有两种情况.即过点A作直线L⊥AC,在直线L上截取AP=AC时,点P可能在y轴右侧,即现在解答情况②的点P2;点P也可能在y轴左侧,即还有第③种情况的点P3.因此,然后过P3作P3G⊥y轴于G,同理:△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3);经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上,点P3(﹣2,3)不在抛物线上.。

相关文档
最新文档