《固体物理·黄昆》第三章

合集下载

固体物理学答案 黄昆原著 韩汝琦改编

固体物理学答案 黄昆原著 韩汝琦改编

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1。

1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的.它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1。

2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理学答案_黄昆原著_韩汝琦改编

固体物理学答案_黄昆原著_韩汝琦改编

2U N r m n 1 [( m 1 n 1 ) ] 2 V 2 V r r r 3NAr 2
2U V 2 N 1 m 2 n 2 m n [ m n m n ] 2 9V02 r0 r0 r0 r0
V V0
由平衡条件
2U V 2 2U V 2
d 2 a 2 (h 2 k 2 l 2 ) , 1.6、 对于简单立方晶格, 证明密勒指数为 (h, k , l ) 的晶面系, 面间距 d 满足:
其中 a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。 解:简单立方晶格: a1 a2 a3 , a1 ai , a2 aj , a3 ak 由倒格子基矢的定义: b1 2 倒格子基矢: b1
b2
2 (i j k ) a 同理可得: 即面心立方的倒格子基矢与体心立方的正格基矢相同。 2 b3 (i j k ) a
所以,面心立方的倒格子是体心立方。
a a1 2 (i j k ) a (2)体心立方的正格子基矢(固体物理学原胞基矢) : a2 ( i j k ) 2 a a3 2 (i j k )
a , 2 0, a , 2
a i, 2 3 a a a , a2 a3 , 2 4 2 a 0 , 2
j, 0, a , 2
k a a2 ( i j k ) 2 4 0
b1 2
4 a2 2 ( i j k ) ( i j k ) 3 a 4 a
1 m n nm W (1 )( ) m 2 n m
(3)体弹性模量 K (
2U )V V0 V 2 0
晶体的体积 V NAr 3 ,A 为常数,N 为原胞数目 晶体内能 U (r )

固体物理学_答案(黄昆 原著 韩汝琦改编)

固体物理学_答案(黄昆 原著  韩汝琦改编)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理学课后答案解析答案 (3)

黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
当 当
k = k x ,且 k y = 0 时的 ω − k 图,和 kx = k y
时的 ω − k 图,如右图所示。
3.5 已知 Nacl 晶体平均每对离子的相互作用能为 U (r ) = −
马德隆常数 α =1.75,n=9,平均离子间距 r0 = 2.82 Å 。 (1)试求离子在平衡位置附近的振动频率
(b)根据题意,
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
) = c[( μl +1,m + μl −1,m − 2μl ,m ) 的解, dt 2 + ( μl ,m +1 + μl ,m −1 − 2μl ,m )] M(
因为
d 2 μl , m
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
代回到运动方程得到
若 A、B 有非零的解,系数行列式满足:
w
两种不同的格波的色散关系:
w
. e h c 3 . w
-2-
m o c
——第一布里渊区
解答(初稿)作者 季正华

黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)、第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= ;n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 /74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理+黄昆答案 第三章

固体物理+黄昆答案 第三章



co
当 K=0 时,
当 K= π / a 时
2 ω+ = 20C / M , 2 ω− = 2C / M ,
m
2 ω+ = 22C / M ,
课后答案网
黄昆 固体物理 习题解答
系。
2π (c)证明独立解存在的 k 空间区域是一个边长为 a 的正方形,这就
是平方格子的第一布里渊区,构出 k = k x ,而
d 2 μl , m
(b)设解的形式为
μl ,m = μ (0) exp[i(lk x a + mk y a − ωt )]
子间距, 证明运动方程是可以满足的, 如果
ω 2 M = 2c[2 − cos(k x a) − cos(k y a)]
这就是色散关
w.
记第 l 行,第 m 列 ,这里 a 是最近邻原
ω − k 图。
ky = 0
时,和
kx = k y
时的
(d)对于 ka << 1 ,证明
ω=(
ca 2 1/ 2 2 2 1/ 2 ) (k x + k y ) = (ca 2 / M )1/ 2 k M
证 明 :(a) 左 方 原 子 与 它 的 相 对 位 移 为 μl ,m − μl ,m −1 , 右 方 原 子 与 它 的 相 对 位 移 为
其中 L 是原子链的长度, ρ 使质量密度, T0 为周期。
w.
所以 Tnj =
1 1 2 ρ w2 KT j La j = 4 2
kh
2
1 Tnj = T0

L
0
dx ∫
T0
0
⎡ 1 ⎛ d μnj ⎞2 ⎤ ρ wj a2 T0 1 j 2 L∫ a2 ρ w2 ⎢ ρ⎜ ⎟ ⎥ dt = j sin(ω j t + naq j + σ j )dt = j La j 0 2 ⎝ dt ⎠ ⎥ 2T0 4 ⎢ ⎣ ⎦

黄昆版固体物理学课后答案解析答案(1)

黄昆版固体物理学课后答案解析答案(1)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆固体物理习题解答

黄昆固体物理习题解答

π
同理
2π (k + i ) a 2π (i + j) b3 = a b2 =
说明体心立方晶格的 与面心立方晶格基矢对比,正是晶格常数为 4π / a 的面心立方的基矢, 倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式 上的,或者说是倒格子空间中的布拉菲格子。 根据定义,面心立方的倒格子基矢为
α = 2[1 − + − + ]
因为
1 1 1 2 3 4
∵ ln(1 + x ) =
x x 2 x3 x 4 − + − + 1 2 3 4
当 x = 1 时,有
1 12 13 14 ∵ ln(1 + 1) = − + − + 1 2 3 4
α = 2 ln 2 所以 (排斥势看作不变) 2.2 讨论使离子电荷加倍引起的对 NaCl 晶格常数及结合能的影响。 解:按照与书中同样的思路,系统内能为
⎡ ε11 ε12 ε =⎢ ⎢ε 21 ε 22 ⎢ ⎣ε 31 ε 32
如果介电常数张量为
ε13 ⎤ ε 23 ⎥ ⎥ ε 33 ⎥ ⎦
将 Ax −π 代入变换关系,而且该变换为对称变换,得
⎡ ε11 ε12 ⎢ε ⎢ 21 ε 22 ⎢ ⎣ε 31 ε 32
所以
ε13 ⎤ ⎡ ε11 −ε12 −ε13 ⎤ ⎢ ε 23 ⎥ ε 23 ⎥ ⎥ = ⎢ −ε 21 ε 22 ⎥ ⎢ ⎥ ε 33 ⎥ − ε ε ε 32 33 ⎦ ⎦ ⎣ 31
= (2π )3
υc
1.5 证明:倒格子矢量 G = h1b1 + h2b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证明:根据定义,密勒指数为 ( h1h2 h3 ) 的晶面系中距离原点最近的平面 ABC 交于基矢的截 距分别为

固体物理--第三章 晶格振动

固体物理--第三章  晶格振动

三、周期性边界条件 周期性边界条件:
N n n
e
iNaq
1
2 q h Na
q的分布密度:
h =整数, N:晶体链的原胞数
Na L q const. 2 2
{
简约区中q的取值总数 = q
2 N =晶体的原胞数 a 晶格振动的格波总数=2N=晶体的自由度数
2 1
两个色散关系即有两支格波:(+:光学波; -:声学波)

简约区:

a
q

a

π a
π a
对于不在简约区中的波数q’ ,一定可在简约区中 找到唯一一个q,使之满足:
2 q q G a
G 为倒格矢
二、光学波和声学波的物理图象 第n个原胞中P、Q两种原子的位移之比
n m M n q0
离子晶体在某种光波的照射下,光波的电场可以激发这 种晶格振动,因此,我们称这种振动为光学波或光学支。
对于单声子过程(一级近 似),电磁波只与波数相同的格
(q)
=c0q +
+(0)
波相互作用。如果它们具有相同
的形式在整个晶体中传播,称为格波。
q取不同的值,相邻两原子间的振动位相差不同,则 晶格振动状态不同。 2 则 q 与 q描述同一晶格振动状态 若 q q a
1 4a
例:
q1
q2
2
1



2 a
5
4
2
2a 5
2a
2
2 q2 q1 a
三、周期性边界条件(Born-Karman边界条件)
N+1

固体物理学答案_黄昆原著_韩汝琦改编

固体物理学答案_黄昆原著_韩汝琦改编

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氢键结合的情况可写成通式:
X-H…Y。 式中 X 、 Y 代表 F 、 O 、 N 等电负 性大而原子半径较小的非金属原 子, X 和 Y 可以是两种相同的元 素,也可以是两种不同的元素。 d F l H F H F
归纳起来,氢键形成的条件是:
A)有与电负性大(X)的原子相结合的氢原子;
B) 有一个电负性也很大,含有孤对电子并带有部分负 电荷的原子(Y); C)X与Y的原子半径都要较小。
氯化钠型 —— NaCl、KCl、AgBr、PbS、MgO (配位数6) 氯化铯型 —— CsCl、 TlBr、 TlI(配位数8)
离子结合成分较大的半导体材料ZnS等(配位数4)
2. 离子晶体结合的性质
1) 系统内能的计算 晶体内能 : 1)所有离子库仑相互作用能(吸引作用)
2) 和重叠排斥能之和(排斥作用)
具体晶体的内聚能(晶格能)参见周期表,有一定的规律性: 惰性气体晶体<碱金属<过渡族金属(共价晶体)
两粒子间的相互作用 相互作用能.
f(r) 和u(r)分别表示相互 作用力和相互作用势 则:
u (r ) f (r ) r
U 排斥 r
f (r )
B rn
u (r )
pij A12= j'
12
12.13188
pij A6= j'
6
14.45392
物理意义:
晶体总的势能:
—— 非极性分子晶体的晶格常数、结合能和体变模量 晶格常数
平衡状态体变模量
晶体的结合能
分子晶体: 常温下是气态的物质如:Cl2,SO2,HCl, H2, O2, He, Ne, Ar, Xe等在低温下依靠范德瓦耳斯力结合成的晶体.
氢键有方向性和饱和性: 氢键的方向性是指 Y 原子与 X - H 形成氢键时,将尽 可能使氢键与 X- H键轴在同一方向,即 X- H…Y三 个原子在同一直线上;
氢键的饱和性是指每一个 X - H 只能与一个 Y 原子形 成氢键。 氢键对物质性质的影响:
氢键通常是物质在液态时形成的,但形成后有时也能继续存
注意:引入新的参量所对应的物理意义:
相互作用势能 1)当r=1.12σ 时,势能最小,且u(r)=-ε
证明: 当r=r0时,u(r)取最小值,则
du r0 0 dr
即:r0=21/6σ=1.12 σ; 2)当r=σ 时,u(r)=0
12 6 4 12 13 6 7 0 r r 0 0
以NaCl晶体为例:体系中包含N个分子(2N离子)
U
tot
NU i
1) 系统内能的计算
最近邻 除最近邻以外
则:
U
tot
N U i N ( z e ( r / )
q
r
2
)
其中:
j'
马德龙常数
p
ij
注意:在这里,为了使晶体能够稳定,则必须使α大于0,因此,在求马
u(r )=4ε(1/4-1/2)=-ε;
晶体总的势能 — N 个原子:
1 U r 2 N (4 ) j' (

pij r
12
) j(
'

pij r
6
)

—— 1/2因子: 相互作用能为两个原子共有
—— A12和A6: 与晶格结构有关的求和项: 对面心立方
离子晶体的模型:正、负离子 —— 刚球
离子晶体结合力 —— 库仑吸引力作用 —— 排斥力_靠近到一定程度,由于泡利不相容原理,两个 离子的闭合壳层电子云的交迭产生强大的排斥力 —— 排斥力和吸引力相互平衡时,形成稳定的离子晶体 一种离子的最近邻离子为异性离子
离子晶体的配位数最多只能是8(例如CsCl晶体) 离子晶体结合的稳定性 —— 导电性能差、熔点高、 硬度高和膨胀系数小
在实际例子中,影响范德瓦耳斯力的因素:
影响范德瓦耳斯力的因素很多:分子的大小、分 子的空间构型、分子中的电荷分布情况
范德瓦耳斯力与物质性质的关系
对于分子构成的物质,范德瓦耳斯力影响物质 的熔、沸点、溶解度 例:氧气在水中的溶解度比氮气大,原因是氧分 子与水分子之间的范德华力大
2:离子性结合 I 族碱金属元素 —— Li、Na、K、Rb、Cs
VII 族的卤素元素 —— F、Cl、Br、I 结合为离子晶体 —— NaCl, CsCl等
半导体材料 —— CdS、ZnS 1. 离子晶体结合的特点 CsCl晶体 —— Cs原子失去电子,Cl获得电子,形成离子键
—— 离子为结合单元,电子分布高度局域在离子实的附近, 形成稳定的球对称性的电子壳层结构
—— 原子核的库仑势 当原子相互靠近,波函数交叠,形成共价键 两个电子为两个氢原子所共有.
( H2O)3 …( H2O)n 等缔合分子存在。
升高温度,有利于缔合分子的解离;降低温度,有利 于水分子的缔合,温度降至 0℃,全部水分子结成巨 大的缔合物-冰。
液态水凝固为固态冰,是水 分子高度缔合的结果,但为 何密度反而变小呢?通过对 冰的内部结构研究发现,原 来水分子在冰中的排列虽有 规则但不紧密,水分子之间 的空隙较多,因此它的密度 反而比水小些。
熔点/K 沸点/K 190 292.5
HCl
158.4 188.9 184.5 197
HBr
214.1 238
HI
分子间力随色散力增大
HF的分子间的色散力最小,而熔沸点比其它三个都高, 这说明HF分子间的作用力除色散力外还存在其它 力的作用:氢键。
1 氢键及形成的条件
XH = 2.1,XF = 4,二者间电负性相差较大,当H和F形成共价键时, 共用电子对会明显地偏向F,而使H成为质子,从而使H有多余的正 电苛吸引另一个HF分子中的F原子中的孤对电子,这种力称为氢键。
—透明的绝缘体,熔点特低, 分别为24K、84K、117K和161K
两个惰性原子之间的相互作用势能 —— 两个相距为r的原子,原子中电子是对称分布 —— 偶极矩作用 设原子1的瞬时电偶极矩 在r处产生的电场
原子1的电场
原子2在电场的作用下感应偶极矩 两个电偶极子之间的相互作用能 —— 作用能与p1的平方成正比,对时间的平均值不为零
这样势能最低,结合最稳定.因此,
大多具有fcc与hcp结构。
fcc 面心立方 Cu Ag Au Al
hcp六角密积 Be Mg Zn Cd
bcc体心立方 Li Na K Rb Cs Mo W
金属晶体性质:良好导电本领, 结合能比较低 过
渡金属结合能比较大.
氢键
卤化氢的分子间力及熔沸点的变化规律如下: HF
共价结合
共价结合是靠两个原子各贡献一个电子 —— 形成共价键 IV 族元素C (Z=6)、Si、Ge、Sn (灰锡)等晶体,属金刚石 结构 共价键的现代理论 —— 以氢分子的量子理论为基础
两个氢原子A和B,在自由状态下时,各有一个电子 —— 归一化波函数
单个原子中的电子的波函数
分别满足薛定谔方程
在于某些晶态甚至气态物质中。氢键的存在影响到物质的某些
性质。如使物质熔、沸点升高;在极性溶剂中,如果溶质 分子与溶剂分子之间形成氢键,则溶质的溶解度增大;分子间
有氢键的液体,一般粘度较大;液体分子间如果形成氢键,有
可能发生缔合现象。分子缔合的结果会影响液体的密度。
水分子之间有缔合现象:
常温下液态水除了简单H2O 分子外,还有( H2O)2 ,
0
rm
nm
n m n 1 nn 1B r0 m(m 1) A m 1
晶体的力学 热学性质: 1)体积弹性模量:
K V (
压力P与晶体内能的关系:
U U r P . V r V
2
P ) V
T
可得:
P K V ( ) V
U V (2 ) V
2)抗张强度:晶体所能负荷的最大张力 fmax 3)晶体的熔点与内聚能的关系.
(二)晶体结合的类型
1)范德瓦耳斯结合 2)离子性结合 3)金属性结合 4)共价键结合
5)氢键结合
1)范德瓦耳斯结合
VIII 族元素在低温时结合成的晶体 —— 非极性分子晶体
分子晶体的作用力
—— 惰性元素最外层8个电子,具有球对称的稳定封闭结构 —— 某一瞬时正负电中心不重合使原子呈现出瞬时偶极矩 —— 使其它原子产生感应极矩
德隆常数这个式子里:如果参考离子带负电荷,则对正离子取正号; 而对负离子取负号! 即:同号取负,异号取正.
当晶体达到平衡间距时:
U
tot
N U i N ( z e ( r / )
q
r
2
)
d
则:
N
U
dr
tot
/ dr 0
Nz
dU i
(

exp(r / )
第三章: 固体的结合
(一)内聚能与晶体的力学 热学性质 (二)晶体结合的类型 (三) 各种晶体结合的物理本质
(四)固体结合的基本形式与固体材料的结构、物理和化学
性质的密切联系
(一)内聚能与晶体的力学 热学性质
什么使晶体维系在一起? 晶体的内聚力应该全部归因于电子的负电荷与原子核
的正电荷之间的静电相互作用. 其它力:磁力,万有引力 可以忽略 所谓晶体的内聚能(晶格能):绝对零度下将晶体分解为 相距无限远的,静止的中性自由原子(离子)所需要的能量.
晶体的平衡 —— 依靠库仑作用力和一定的排斥力
排斥来自两个方面:
A) 体积减小,电子云的密度增大,电子的动能将增加
B) 原子实相互接近到一定的距离时,它们的电子云发生
显著的重叠,将产生强烈的排斥作用 —— 金属性结合对原子的排列没有特殊的要求,容易造成
相关文档
最新文档