简便运算十五种类型
简便运算方法
简便运算方法简便运算方法简便运算方法1、运用加法交换律或加法结合律先把两个能凑成整十整百……的数相加,和不变。
用字母表示:(a+b)+c= a+(b+c) 。
如:28+31+72=(28+72)+31 。
2、运用乘法交换律或乘法结合律先把两个能凑成整十整百……的数相乘,积不变。
用字母表示:(a×b) ×c= a×(b×c) 。
如:15×8×125×2=(15×2)×(8×125)。
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相加。
用字母表示:(a+b) ×c= a ×c+ b×c。
如:(125+9)×8=125×8+9×8 。
36×15+64×15=(36+64)×15 。
4、两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相减。
用字母表示:(a - b) ×c= a ×c - b×c。
如:(125-9)×8=125×8-9×8 。
123×26-23×26=(123-23)×26 。
5、两个数的和除以一个数,可以先把它们与这个数分别相除,再把所得的商相加。
用字母表示:(a+b) ÷ c= a÷c+ b÷c。
如:(147+98)÷49=147÷49+98÷49 。
32÷6+28÷6=(32+28)÷6 。
6、两个数的差除以一个数,可以先把它们与这个数分别相除,再把所得的商相减。
用字母表示:(a-b) ÷ c= a÷c-b÷c。
如:(147-98)÷49=147÷49-98÷49 。
简便计算公式大全
简便计算公式大全在日常生活和工作中,我们经常会遇到各种各样的计算问题,有时候需要用到复杂的公式,有时候则只需要简单的计算。
本文将为大家整理一些常见的简便计算公式,希望能够帮助大家更快更准确地进行各种计算。
一、基本运算。
1. 加法,a + b = c。
2. 减法,a b = c。
3. 乘法,a × b = c。
4. 除法,a ÷ b = c。
二、百分数计算。
1. 百分数转化为小数,百分数÷ 100 = 小数。
2. 小数转化为百分数,小数× 100% = 百分数。
3. 计算百分数,已知部分÷总数× 100% = 百分数。
三、平均数计算。
1. 平均数计算公式,(数1 + 数2 + … + 数n) ÷ n = 平均数。
四、面积和体积计算。
1. 长方形面积计算,长×宽 = 面积。
2. 正方形面积计算,边长×边长 = 面积。
3. 圆形面积计算,π×半径×半径 = 面积。
4. 三角形面积计算,底×高÷ 2 = 面积。
5. 立方体体积计算,长×宽×高 = 体积。
6. 圆柱体积计算,π×半径×半径×高 = 体积。
7. 圆锥体积计算,π×半径×半径×高÷ 3 = 体积。
五、利息计算。
1. 简单利息计算,本金×利率×时间 = 利息。
2. 复利计算,复利 = 本金× (1 + 利率) ^ 年数本金。
六、代数式计算。
1. 一元一次方程,ax + b = c。
2. 二元一次方程组,{ax + by = c {dx + ey = f。
3. 一元二次方程,ax^2 + bx + c = 0。
七、三角函数计算。
1. 正弦函数计算,sinθ = 对边÷斜边。
2. 余弦函数计算,cosθ = 邻边÷斜边。
小学数学简便运算方法归类
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b;a×b×c=a×c×b, a÷b÷c=a÷c÷b, a×b÷c=a÷c×b, a÷b×c=a×c÷b二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c), a÷b×c=a÷(b÷c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
简便运算大全以及答案
简便运算大全以及答案人们在日常生活中经常需要进行各种运算,包括加减乘除、百分数、幂次方等等,而这些运算涉及到的数学知识难度各不相同。
为了让大家能够轻松地进行各种数学运算,本文将介绍一些简便的计算方法和答案。
1. 快速计算乘法对于两个整数的乘法,人们常常采用竖式计算方法,但是这种方法有时不够快捷,因此我们可以采用以下方法进行快速计算。
(1) 末位对齐相乘法:将需要乘的两个数的个位数相乘得到个位数的部分,然后将需要乘的两个数的十位数相乘得到十位数的部分,最后将两部分相加即为答案。
例如:23 × 17 = 391(2) 交叉乘法:将两个数的各个位数依次相乘,然后将结果按位数从右向左排列,最后将相同位数的结果相加即为答案。
例如:23 × 17 = 3912. 快速计算除法对于整数的除法,我们通常采用手算或者借助计算器等工具进行计算,但是以下方法可以在一定程度上简化计算。
(1) 近似商计算法:这种方法适用于计算整数相除的时候,计算过程中只考虑商的整数部分。
例如:75 ÷ 6 ≈ 12(2) 倒数相乘法:这种方法适用于计算两个数相除时,可以将除数的倒数相乘得到答案。
例如:75 ÷ 6 = 75 × 1/6 = 12.53. 百分数计算方法对于百分数的计算,我们通常采用将百分数转化为小数进行计算的方法,以下是转化方法。
(1) 将百分数除以100得到小数。
例如:60% = 0.6(2) 乘以百分数,将数值除以100,得到结果。
例如:60% × 120 = 724. 幂次方计算方法当我们需要求一个数的幂次方时,可以采用以下方法进行计算。
(1) 直接计算:依据幂次方的定义,将底数按照指数进行循环乘法计算即可得到答案。
例如:2³ = 2 × 2 × 2 = 8(2) 快速幂算法:当需要计算的幂次方较大,而底数为整数时,可以利用快速幂算法进行计算,这种方法可以大大减少计算次数。
数学简便方法大全
数学简便方法大全以下是50条关于数学简便方法的大全,不包括真实姓名和引用:1. 乘法口诀表:通过背诵乘法口诀表可以快速计算乘法结果。
2. 四舍五入法:将小数四舍五入到最接近的整数,可以简化计算。
3. 合并同类项:在代数表达式中,将具有相同变量和指数的项合并,可以简化计算。
4. 负数乘法法则:两个负数相乘的结果为正数,一个正数和一个负数相乘的结果为负数。
5. 平方法则:计算一个数的平方可以简化为将该数的各个位上的数字平方后相加。
6. 比例法则:利用比例法则可以快速计算含有比例关系的数值。
7. 乘法的分配律:若a、b、c为任意数,则a*(b+c) = a*b + a*c。
8. 求解方程:利用等式两边对称性,可以将方程转化为更简单的形式进行求解。
9. 十进制化简:将分数化为最简形式时,可以将其转化为十进制表示进行化简计算。
10. 乘法交换律:交换乘法中两个数的位置不影响结果,即a*b = b*a。
11. 异常处理:当进行数学运算时,及时检测并处理异常情况能提高计算效率。
12. 指数法则:在进行指数计算时,利用指数法则可以简化计算过程。
13. 比例尺计算:通过比例尺可以快速计算物体的实际长度。
14. 相对速度计算:利用相对速度的概念,可以简化追及问题的计算。
15. 基本排列组合:掌握基本的排列组合知识可以处理多种数学问题。
16. 减法的分配律:若a、b、c为任意数,则a-(b+c) = a-b-c。
17. 等差数列求和:利用等差数列的求和公式可以快速计算数列的和。
18. 投影计算:在三角形中,计算投影可以简化问题的求解。
19. 四则运算顺序:按照加减乘除的顺序进行计算,可以避免混淆和错误。
20. 数列递推法:对于已知数列的递推关系,可以快速求解后续项。
21. 字母代换法:将字母代换为具体数值进行计算,可以简化复杂的代数运算。
22. 常用三角函数:掌握常用三角函数的数值和性质,可以简化三角问题的计算。
23. 面积比较法:通过比较图形的面积可以判断大小关系而不需要具体计算数值。
简便计算的十四种方法(四年级下册)
简便计算的十四种方法(四年级下册)简便计算的十四种方法班别:姓名:学号:第一种(第1至6种运用乘法分配律)(300+6)×12 25×(4+8) 125×(35+8) 15×(40-8)=300×12+6×12=3600+72=3672第二种163×43+57×163 325×113-325×13 32×16+14×32 78×4+78×3+78×3 =163×(43+57)=163×100=16300第三种84×101 504×25 78×102 25×204 =84×(100+1)=84×100+84×1=8400+84=8484第四种99×64 99×16 125×79 25×39 =(100-1)×64=100×64-1×64=6400-64=6336第五种83+83×99 56+56×99 99×99+99 75×101-75 =83×1+83×99=83×(1+99 )=83×100=8300第六种81+9×9149+7×93 64+92×8 75×5+25 =9×9+9×91=9×(9+91 )=9×100=900第七种(连加:用加法交换律和加法结合律)425+14+186 732+580+268 1034+780+220+166 278+463+22+37第八种(连减:用凑整和去尾方法)1200-624-76 2100-728-772 2.73-0.27-0.73 8.47-5.27-2.47 643-167-133-143 87.3-21.3-17.3-18.7第九种(连乘:用乘法交换律和乘法结合律)125×21×8 25×93×4 25×28 72×125 25×32×125第十种(连除:用被除数除于后两个数的积)3600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5第十一种(去括号:括号前面是减号或除号,去括号后,括号里面的要变号)2.14-(0.86+0.14)787-(87-29)3.65-(0.65+1.18)455-(155+230)第十二种(加括号:括号前面是减号或除号,加括号后,括号里面的要变号)576-285+85 8.25-6.57+0.57 690-177+77 75.5-28.7+8.7第十三种(多减一个,要加回一个)871-299 157-99 363-199 968-599=871-300+1=571+1=572第十四种(加减混合的简便运算:连符号一起移动数字)672+36-72425-38+757.48+3.51-1.48+1.4924.5-20.3+55.5-19.7 0.38+0.62-0.38+0.62。
常用的简便运算方法
1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
、头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=861、11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
简便运算大全
简便运算大全在日常生活和工作中,我们经常需要进行各种简便运算,比如加减乘除、百分比计算、平方根求值等等。
本文将为大家介绍一些常见的简便运算方法,希望能够帮助大家更加便捷地进行数学计算。
一、加减乘除。
1. 加法,加法是最基本的运算之一,例如,3 + 5 = 8。
在进行加法运算时,我们只需要将两个数相加即可得到结果。
2. 减法,减法是加法的逆运算,例如,9 4 = 5。
在进行减法运算时,我们只需要将被减数减去减数即可得到结果。
3. 乘法,乘法是重复加法的简化形式,例如,6 ×7 = 42。
在进行乘法运算时,我们只需要将两个数相乘即可得到结果。
4. 除法,除法是乘法的逆运算,例如,12 ÷ 3 = 4。
在进行除法运算时,我们只需要将被除数除以除数即可得到结果。
二、百分比计算。
百分比是表示数值相对于100的比例关系,常用于表示增长率、减少率、比例等。
例如,75%表示75/100,即0.75。
在进行百分比计算时,我们可以利用以下公式:百分数 = (所求数 / 总数)× 100%。
例如,某班级有60名学生,其中男生占总人数的40%,则男生人数为60 ×40% = 24人。
三、平方根求值。
平方根是一个数的平方等于另一个数时,这两个数互为平方根。
例如,√9 = 3,因为3 × 3 = 9。
在进行平方根求值时,我们可以利用计算器或者手算方法得到结果。
四、小数运算。
小数运算是运用于小数的加减乘除等运算。
在进行小数运算时,我们需要注意小数点的位置,确保运算的准确性。
例如,0.6 + 0.25 = 0.85。
五、分数运算。
分数是表示整体的若干等分之一,分母表示等分数的总份数,分子表示取得的份数。
在进行分数运算时,我们可以通过通分、约分等方法简化计算,确保结果的准确性。
六、整数指数运算。
整数指数运算是指数为整数的幂运算,例如,2^3 = 8。
在进行整数指数运算时,我们可以通过连乘的方式或者计算器进行运算,得到结果。
简便方法大总结
简便方法大总结1.运算定律加法交换律:a+b = b+a加法结合律:(a+b)+c = a+(b+c)乘法交换律:a×b×c= a×c×b乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a+b)×c = a×c+b×c(a-b)×c = a×c-b×c2.其它性质a-b-c = a-c-b 可以变化顺序a-b-c = a-(b+c)可以加起来一起减a-(b-c)= a-b+c括号前是减号,去掉后变符号a-b+c = a+c-b =a-(b-c)可以变化顺序a+(b-c)= a+b-c括号前是加号,去掉后不变符号a÷b÷c = a÷c÷b = a÷(b×c)可以乘起来一起除a÷b×c = a×c÷b=a÷(b÷c)可以变化顺序基础算法:常见的加、减、乘、除6+5= 7+4= 8+3= 9+2=6+6= 7+5= 8+4= 9+3=7+6= 8+5= 9+4=7+7= 8+6= 9+5=8+7= 9+6=8+8= 9+7=9+8=9+9= 18-9= 16-8= 14-7= 12-6=17-9= 15-8= 13-7= 11-6=16-9= 14-8= 12-7=15-9= 13-8= 11-7=14-9= 12-8=13-9= 11-8=12-9=11-9=常见的乘法:25×4= 25×8= 12×5= 15×4=14×5= 13×3= 12×15= 13×7=14×4= 125×8= 12×25= 31×3=补充:常见的除法:51÷17= 91÷13= 91÷7= 64÷16=1000÷125= 100÷25= 1000÷25= 93÷31=补充:学生易错误区:(带符号“搬家”)1、17+13-42、17+13 -43、17 - 4+134、17 - 4+133、25+16+45-15-64、25+16+45-15-65、35×22÷76、35×22÷77、64×35×81÷8÷7÷9 8、64×35×81÷8÷7÷9例题1(加法交换律和结合律)凑成整十、百、千数计算(1)65+24+6 (2)32+25+8 (3)89+101+111 练习:用简便算法计算。
简便运算的类型
1、用乘法分配律解决:84x101504x25 78x102 25x204=84x(100+1)=25x(500+4)= 78x(100+2)=25x(200+4)=84x 100+84x1 =25x 500+25 x4 =78x100+78 x2 =25 x 200+25 x4=8400+84 =12500+100 =7800+156 =5000+100=8484 =12600 =7956 =5100观察数字的特点:加粗的这些数都是比整百数大一些的数,把这些数拆分成整百加一位数后,这时就可以用乘法分配律做会更简便。
2、用乘法分配律解决:98x16 638x99=16x(100-2)=638x(100-1)=16x 100-16 x2 =638x 100-638 x1=1600-32 =63800-638=1568 =63162观察数字的特点:加粗的这些数都是比整百数小一些的数,把这些数拆分成整百减一位数后,这时就可以用这种方法做会更简便。
3、用乘法分配律反向运算解决:99X13+1378X4+78X3+78X3 观察这些数字的特点每部分都有相同的因数=99X13+13 X1………………=13X(99+1)=78X(4+3+3)提出相同部分(数字带乘号)后,用小括号=13X100 =78X10 把剩下部分括起来,不改变运算符号。
如果=1300 =780 是三个数也是一样的方法。
4、用乘法分配律反向运算解决:178X101-178 83X102-83X2 35X127-35X16-11X35=178X101-178 X1 =83X(102-2)=35X(127-16-11)=178X(101-1)=83X100 =35X100=178X100 =8300 =3500= 17800第三种情况和第四种情况是用一样的解题方法,不同的是运算符号,即使算式中有加有减,也是一样的。
比如35X12+35X28-10X35这道题就是把35X提出来,把剩下的12+28-10这些用小括号括起来。
数学简便算法
数学简便算法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
研修文档小学数学简便运算方法归类
研修文档小学数学简便运算方法归类一、加法运算方法1.单位增量法:将加数的单位数字顺次逐个增加,逐位相加得和。
2.进位相加法:按位相加时,若和大于9,则向前一位进1(进位),并将和减去10得到该位的和。
3.补数相加法:将被加数变换为补数,即9减去被加数的各位上的数字,然后将补数与加数相加。
4.隔位相加法:逐位相加时,对加数的各位数字,交替相加后再相加得和。
5.半加法:将两个一位数相加,若和大于9,则向前一位进1并将和减去10,得到十位上的数。
二、减法运算方法1.计算补数法:将减数通过补数转化为加数,然后用加法运算求差。
2.分项减法法:将减法拆解为多个部分,分别计算再相减得差。
3.颠倒相减法:把被减数和减数颠倒位置,然后按照加法的法则进行计算,得到的和就是差。
4.借位相减法:按位相减时,若不够减,则向前一位借1(借位),并将被减数的该位数加10,然后相减得差。
三、乘法运算方法1.九九乘法表法:通过九九乘法表中的数字相乘得到乘积。
2. 分配律法则:如ab * cd = (a * c * 10 + a * d) + (b * c *10 + b * d)。
3.近似除法法则:将两个乘数近似分解,并进行乘法运算得到近似乘积。
4.倍数加法法则:将乘数分解成加数的倍数,并分别相加得到乘积。
四、除法运算方法1.试除法:用除数的倍数去试除,直到余数小于除数,得到商和余数。
2.乘法逆运算法:用已知的乘法算式来进行逆运算,找出被除数的倍数。
3. 分配律法则:如ab ÷ cd = (a * c * 10 + a * d) + (b * c * 10 + b * d) ÷ (c * 10 + d)。
4.近似乘法法则:将除数和被除数都写成倍数的形式,进行相除得到近似商。
五、简便运算法则1.乘法简便法则:将两个乘数中的一个数取整数倍,计算后再乘以原来不取整数倍的数,得到乘积。
2.使数尽量最大法则:将两个乘数中的大数分解成相对较小的数,计算后再相乘得到乘积。
简便计算方法公式
简便计算方法公式数学是我们日常生活中无处不在的,无论是购物计算、家庭预算还是进行工程设计与科学研究,都需要运用到计算方法。
然而,很多人对繁杂的计算公式毫无头绪,于是我们需要掌握一些简便计算方法,来帮助我们轻松高效地完成日常计算。
一、乘除法简便计算方法1. 乘10、100、1000将一个数乘以10,就是在这个数的末尾加上一个0;将一个数乘以100,是在这个数的末尾加上两个0;将一个数乘以1000,就是在这个数的末尾加上三个0。
例如,154.2 乘以 100,就是 15420。
2. 除以10、100、1000将一个数除以10,就是把这个数的小数点向左移动一位;将一个数除以100,就是把这个数的小数点向左移动2位;将一个数除以1000,就是把这个数的小数点向左移动3位。
例如,5400 除以 100,就是 54。
二、快速乘法1. 两位数乘法将被乘数和乘数的个位和十位分别相乘,得到两个数(个位相乘和十位相乘)。
然后将个位相乘的结果和被乘数的十位和乘数的个位相乘的结果相加,得到中间结果;将十位相乘的结果和被乘数的百位和乘数的十位相乘的结果相加,得到最终结果。
例如,23 × 46,将23的个位和46的个位相乘得到18,23的十位和46的个位相乘得到2,23的个位和46的十位相乘得到6,23的十位和46的十位相乘得到9。
然后将18和6相加得到24,再将2和9相加得到11,最终结果就是1058。
2. 三位数乘以两位数将三位数拆成百位、十位和个位,分别和两位数相乘并得到三个结果。
然后将个位相乘的结果写在一行,十位相乘的结果写在下一行并向右移一位,百位相乘的结果写在下下一行并向右移两位。
最后将三个结果按位相加就是最终结果。
例如,235 × 32,将235拆成 200+30+5。
然后分别和32相乘,得到即①6400、②960、③160。
将三个结果写在一起得到:① 6400②960③160相加得到7520,即235 × 32 = 7520。
简便方法计算方法总结
简便方法计算方法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】(一)“凑整巧算”——运用加法的交换律、结合律进行计算。
要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律定义:两个数交换位置和不变,公式:A+B =B+A,例如:6+18+4=6+4+182、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2)3、引申——凑整例如:1.999+19.99+199.9+1999=2+20+200+2000-0.001-0.01-0.1-1=2222-1.111=2220.889【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。
但是,一定要记住刚才“多加的”要“减掉”。
“多减的”要“加上”!(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律定义:两个因数交换位置,积不变.公式:A×B=B×A例如:125×12×8=125×8×122、乘法结合律定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),例如:30×25×4=30×(25×4)(三)运用减法的性质进行简算,同时注意逆进行。
1、减法定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】例如:20-8-2=20-(8+2)(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
简便计算公式大全
简便计算公式大全一、数学运算。
1. 加减乘除。
加法,a + b = c。
减法,a b = c。
乘法,a × b = c。
除法,a ÷ b = c。
2. 求平方和平方根。
平方,a² = c。
平方根,√a = c。
3. 百分比计算。
百分数,a% = c。
百分比转化,a% = b。
4. 求解三角函数。
正弦函数,sinA = a/c。
余弦函数,cosA = b/c。
正切函数,tanA = a/b。
二、金融计算。
1. 利息计算。
简单利息,I = PRT。
复利,A = P(1 + r/n)^(nt)。
2. 折现计算。
现值,PV = FV / (1 + r)^n。
未来值,FV = PV × (1 + r)^n。
3. 指数增长率。
年增长率,r = (FV/PV)^(1/n) 1。
三、工程计算。
1. 功率计算。
功率,P = UI。
电阻功率,P = I²R。
功率因数,PF = P/S。
2. 速度和加速度。
速度,v = s/t。
加速度,a = (v u)/t。
3. 体积和密度。
体积,V = lwh。
密度,ρ = m/V。
四、化学计算。
1. 摩尔计算。
摩尔质量,M = m/n。
摩尔浓度,C = n/V。
2. 反应物质量计算。
反应物质量,m = nM。
3. 溶液浓度计算。
溶液浓度,C1V1 = C2V2。
以上便是简便计算公式大全,希朐对大家在日常生活和工作中进行各类计算时有所帮助。
通过掌握这些简便计算公式,我们能够更加高效地完成各类计算任务,提高工作效率,节省时间成本。
希望大家能够善加利用,享受计算带来的乐趣和便利。
简便运算的16种运算方法
简便运算的16种运算方法数学是一门古老的科学,从古至今,它的覆盖范围从基本的加减乘除到复杂的概率统计与抽象猜想,其中非常重要的一部分就是运算,现代的数学运算技术发展的越来越多,让我们更便捷的完成复杂的计算,帮助人类完成更好的分析。
其中最简单的,也是最重要最常用的数学运算就是加减乘除,下面我们就来讲讲这16种简便运算方法。
1.加法:加法是最基本的一种运算,它的运算结果是两个数相加的结果。
例如:3+2=5,用符号表示就是3+2=5,也可以用三个箭头来表示:3→2→52.减法:减法也是一种常用的运算,它的运算结果是两个数相减的结果。
例如:5-2=3,用符号表示就是5-2=3,也可以用四个箭头来表示:5→-2→33.乘法:乘法是一种比较复杂的运算,它的运算结果是两个数相乘的结果。
例如:3×2=6,用符号表示就是3×2=6,也可以用三个符号来表示:32=64.除法:除法是一种比较复杂的运算,它的运算结果是两个数相除的结果。
例如:6÷2=3,用符号表示就是6÷2=3,也可以用三个符号来表示:6÷2=35.开平方:开平方就是求一个数的平方根,也就是说求一个数的乘积等于另一个数的数字,它的运算结果是求一个数的平方根。
例如:√9=3,用符号表示就是√9=3,也可以用两个箭头来表示:9→√36.百分数:百分数表示一个数和总数的比例,它的运算结果是一个数和总数的比例。
例如:50%=0.5,用符号表示就是50%=0.5,也可以用两个箭头来表示:0.5→50%7.方程:一元二次方程就是当有两个未知数的数学式子时,它的运算结果是求出这两个未知数的值。
例如:2x2-2x+1=0,用符号表示就是2x2-2x+1=0,也可以用三个箭头来表示:2x2→-2x→+1=08.指数:指数是指把一个数乘以自身的次数,它的运算结果是把一个数乘以自身的次数。
例如:23=8,用符号表示就是23=8,也可以用两个箭头来表示:23=89.因式分解:因式分解是把一个复合数字分解成几个乘积的基础数字,它的运算结果是把一个复合数字分解成几个乘积的基础数字。