北京市第四中2017年中考数学冲刺复习专题训练圆讲弧长扇形圆柱圆锥(无答案).

合集下载

北京市第四中2017年中考数学冲刺复习专题训创新、开放与探究型问题(无答案)

北京市第四中2017年中考数学冲刺复习专题训创新、开放与探究型问题(无答案)

创新、开放与探究型问题
例1.如图,飞机沿水平方向(A,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN 的步骤.
例2.数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M,交边AB 的延长线于N.当CP=6时,EM 与EN 的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC,AB 分别于F,G,如图2,则可得:DF DE FC EP
=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理
由.M。

北京市第四中2017届中考数学冲刺复习数据的收集、整理与描述01统计图(无答案)

北京市第四中2017届中考数学冲刺复习数据的收集、整理与描述01统计图(无答案)

统计图本节内容和要求:1、 继续学习数据处理的基本过程,感觉一下统计在生活中的作用,建立统计的观念.2、 进一步认识条形图、 、扇形图,熟练掌握它们各自的特点,并能根据实际问题的需要,选择不同的统计图来解决问题.(),,,:,⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎩明确调查问题收集数据选择调查方法展开调查设计简洁清晰的数据整理表格数据处理的基本过程整理数据用划记法记录数据统计表描述数据条形图折线图扇形图分析数据小组讨论交流得出分析的结论一、条形统计图1、 概念:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,再把这些直条按照一定的顺序排列起来,这样的统计图叫做 .2、 画图注意:①画条形统计图时,直条的宽窄必须相同,纵轴的起点一般应从0开始; ②取一个单位长度表示数量的多少要根据具体情况而确定;③条形图可以横置或纵置,纵置时也称柱形图;④复合条形图有几种不同的形式,图中表示不同项目的直条,要用不同的线纹或颜色区别开,并注明图例说明.3、 条形图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.二、扇形统计图1. 概念:扇形图也称圆形图或饼图,是利用圆和扇形来表示 和 的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中的 .这样的统计图就叫做扇形图.2.扇形统计图的特点:①用扇形面积表示部分在总体中所占的百分比;②易于显示每组数据相对于总数的大小.3. 绘制扇形统计图的步骤大致如下:(1) 计算各部分占总体的百分比;(2) 计算表示各部分数量的扇形的圆心角度数,公式为:圆心角=360某部分占总体的百分比;(3) 取适当的半径画一个圆,利用半圆仪,根据刚才计算所得的圆心角,画出各个扇形,并标注项目及百分比;(4) 有时应对标注图例加以必要的说明.4.注意:(1) 计算百分比,四舍五入后,相加不得100%怎么办?(2) 画扇形时,不必考虑各个扇形的相对位置;(3) 扇形图显示的是每一组数据的相对大小,因此从图中我们不能判断每一组的具体数据.三、折线统计图1.概念:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连结起来,所得的统计图叫做 .2.画图注意:(1) 时间一般绘在横轴上,时间序列数据绘在纵轴上;(2) 图形的长宽比例要适当,一般应绘成横轴略大于纵轴的长方形,其长宽比例大致为10:7;(3) 一般情况下,纵轴数据下端应从0开始,以便于比较.如果数据与0间距过大,可以采用折断的符号将纵轴折断,对于横轴可作类似的处理.(4) 若实际需要,可以在一个坐标系中画两条或两条以上的折线,来表示不同组的数据变化趋势,但也应注明图例说明.3.折线图的特点:易于显示数据的变化趋势.四.例题例1.如图是某校七年级学生跳绳成绩的条形统计图(共三等), 则下面回答正确的是( )(A) C等人最少, 只有40人 (B) 该校七年级共有120人(C) A等人占总人数的30% (D) B等人最多,占总人数的例2.2001年中国人民银行统计司就城镇居民对物价水平满意程度进行了抽样调查, 结果如图. 据此, 可估计2001年城镇居民对物价水平表示认可的占_______%例3.如图所示, 左图是光华学校为西部贫困儿童献爱心, 资源捐款活动学生捐款情况制成的条形图, 右图是该中学学生人数比例分布图, 该校共有学生1450人,(1) 初三学生共捐款多少元?(2) 该校学生平均每人捐款多少元?例4.近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( )(A) 1995~1999年国内生产总值增长率逐年减少(B) 2000年国内生产总值的年增长率开始回升(C) 这7年中, 每年的国内生产总值不断增长(D) 这7年中, 每年的国内生产总值有增有减。

北京市第四中2017年中考数学冲刺复习专题训几何综合问题(无答案

北京市第四中2017年中考数学冲刺复习专题训几何综合问题(无答案

几何综合问题以几何为主的综合题常研究以下几个方面的问题: ① 证明线段、角的数量关系(包括相等、和、差、倍、分关系及比例关系等);② 证明图形的位置关系(如点与线、线与线、线与圆、圆与圆等);③ 几何计算问题;④ 动态几何问题.在解几何综合题时,常常需要画图并分解其中的基本图形,挖掘其中隐含的等量关系.另外,也要注意使用数形结合、方程、分类讨论、转化等数学思想方法来解决问题.有时借助变换的观点也能帮助我们更有效地找到解决问题的思路.例1.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .例2.已知:在如图1所示的锐角三角形ABC 中,CH⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A,直线DE 交直线CH 于点F .(1) 求证:BF ∥AC ;(2) 若AC 边的中点为M ,求证:2DF EM ; (3) 当AB=BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图 1图2例3.已知:如图,N、M是以O为圆心,1为半径的圆上的两点,B是MN上一动点(B不与点M、N重合),∠MON=90°,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)四边形EPGQ (填“是”或者“不是”)平行四边形;(2)若四边形EPG Q是矩形,求OA的值.。

北京市第四中2017年中考数学冲刺复习专题训练圆讲圆的基本概念、性质及其关系(无答案

北京市第四中2017年中考数学冲刺复习专题训练圆讲圆的基本概念、性质及其关系(无答案

第一讲:圆的基本概念、性质及其关系知识精解一、概念、性质的要点回顾1. 圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.平面内到定点O的距离等于定长R的点所组成的图形叫做圆,记作⊙O.2. 等弧:在同圆或等圆中,能够互相________的弧叫做等弧.问题:长度相等的两条弧是等弧吗?为什么?3. 圆周角定义的两个基本特征:(1)顶点在_______上;(2)两边都和圆相交。

二、关于确定圆的条件剖析定理:过____________________上的三个点确定一个圆.1)“确定”的含义:过不在一直线上的三点能作圆,并且只能作一个圆(存在性唯一性).2)由于任意一个三角形的三个顶点都不在同一直线上,所以由定理可知,经过三角形三个顶点可以作且只能作一个圆.(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的____________,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形_________圆的圆心叫做这个三角形的外心.三角形的外心是三角形三边中垂线的交点.(3)如图:⊙O称为△ABC的外接圆,△ABC称为⊙O的内接三角形,O为三角形A BC的外心。

三、重要的等量关系在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

四、圆周角定理(1)圆周角的度数等于它所对的弧(或圆心角)的度数的_______.(2)半圆(或直径)所对的圆周角是_______,90°的圆周角所对的弦是_____.(3)如果三角形一边上的中线等于这边的一半,那么这边所对的内角等于_______°.。

北京市第四中学2017年中考数学冲刺复习 专题训练 7 数形结合问题(无答案)

北京市第四中学2017年中考数学冲刺复习 专题训练 7 数形结合问题(无答案)

数形结合问题 数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.例1. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A, 顶点为B, 且对称轴与x 轴交于点C.(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.例2.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M,直线2 2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.。

北京市第四中2017年中考数学冲刺复习专题训练相似第1讲图形的相似

北京市第四中2017年中考数学冲刺复习专题训练相似第1讲图形的相似

图形的相似一、预备知识1.线段的比:如果选用同一长度单位量得两条线段a 、b 长度分别是m 、n ,那么 就说这两条线段的比是a :b=m :n ,或写成a m b n=. 2.成比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另 两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称 比例线段.3.比例的基本性质:(1)若a :b =c :d ,则ad=bc ;(2)若a :b=b :c ,则b 2=ac (b 称为a 、c 的比例中项).练习.已知四条线段 a =0.5m ,b =25cm ,c =0.2m ,d =10cm ,试判断四条线段是否 成比例?已知线段a 、b 、c 、d ,满足a c b d = ,求证:a c a b d b+=+.二、图形的相似1.相似形的概念:我们把形状相同的图形叫做相似形.2.相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等, 我们就说它们是相似多边形.(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3.说明:(1)任何(边数相等的)正多边形都相似.(2)全等与相似的关系:全等就是相似比为1的相似(3)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A’B’C’中,如果∠A =∠A’, ∠B =∠B’, ∠C =∠C’, ''''''AB BC CA k A B B C C A ===即对应角相等,对应边的比相等,我们就说 △ABC 与△A’B’C’相似,记作△ABC ∽ △A’B’C’.△ABC 与△A’B’C’的 相似比为k .三、例题分析例1.下列图形中,必是相似形的是().A.都有一个角是40°的两个等腰三角形B.都有一个角为50°的两个等腰梯形C.都有一个角是30°的两个菱形D.邻边之比为2:3的两个平行四边形例2.如图,将一张矩形纸片沿较长边的中点对折,如果得到地两个矩形都和原来的矩形相似,那么原来矩形的长宽比是多少?例3.分别根据下列条件,说出各组相似三角形的对应边的比例式和相等的对应角.(1)△ABC与△ADE相似,其中DE//BC .如果AD=4,BD=2,DE=3你能求出哪条线段的长?(2)△ABO与△A’B’O相似,其中OB:OB’=OA:OA’ .如果A′B′=2,A′O=1.5,AB=5你能求出哪条线段的长?三角形相似是我们研究的重点,如何判定三角形相似更加简捷?。

中考试题北京市第四中学总复习:《圆》全章复习与巩固—巩固练习(提高)

中考试题北京市第四中学总复习:《圆》全章复习与巩固—巩固练习(提高)

《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC =78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸第5题图 第6题图 第8题图6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( ) A.1条 B.2条 C.3条 D.4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交; 【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】2个;【解析】直线与圆的位置关系:相离、相切、相交.判定方法有两种:一是看它们的公共点的个数;二是比较圆心到直线的距离与圆的半径的大小.实际上这两种方法是等价的,由题意可知,圆的半径为6.5cm ,而圆心到直线的距离6cm<6.5cm ,所以直线与圆相交,有2个公共点.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°, ∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC = ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】(1)在BF 上取点P ,连AP 交⊙O 于点D ,过D 作⊙O 切线,交OF 于E ,如图即为所求. (2)∠EDP=∠DPE ,或ED=EP 或△PDE 是等腰三角形. (3)根据题意,得△PDE 是等腰三角形, ∴ ∠EDP=∠DPE , ∴,在Rt △OAP 中,,∴,自变量x 的取值范围是且.19.【答案与解析】解:∵公共弦AB =120 ∴==a R 46120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=∠====O a R AB o1446012022602,, ()∴=-⎛⎝ ⎫⎭⎪=-==r R a O o 442422222602606090,∠S S S R a r AmB AO B AO B弓形扇形=-=-=-229036012180036004244∆ππS S S R a r AnB AO B AO B弓形扇形=-=-=-1160360122400360036266∆ππ()∴=+=-+S S S AmB AnB 阴影弓形弓形4200360013πH()[]∴-+两圆相交弧间阴影部分的面积为42003600132πcm .20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =(2)180n n-°时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .灿若寒星制作。

中考试题北京市第四中学总复习:《圆》全章复习与巩固—知识讲解(基础).docx

中考试题北京市第四中学总复习:《圆》全章复习与巩固—知识讲解(基础).docx

《圆》全章复习与巩固—知识讲解(基础)撰稿:张晓新审稿:杜少波【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系. 2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为.【答案】13;【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ 112EF OE ==,∴ 223OF OE EF -= 在Rt △DFO 中,OF 3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26.【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .【答案】65°.【解析】连结OD,则∠DOB = 40°,设圆交y轴负半轴于E,得∠DOE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°【答案】本题可先求出∠BAC的度数,∠BAC所对的弧是优弧,则该弧所对的圆心角度数为360°-120°=240°,所以,因此,.故选B.类型三、与圆有关的位置关系【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图所示,已知正方形的边长为a,求阴影部分的面积.【答案与解析】(几何方法)∵ 正方形边长为a , ∴ 2S a =正方形,2221112228a S R a πππ⎛⎫=== ⎪⎝⎭半圆.∵ 22S S S -=正方形半圆个空白处,∴ 2222211284S a a a a ππ=-⨯=-个空白处. ∴ 22421222S S a a π==-个空白处个空白处. ∴ 22222411222S S S a a a a a ππ⎛⎫=-=--=- ⎪⎝⎭阴影正方形个空白处. ∴ 阴影部分的总面积为2212a a π-.(代数解法)观察图形,可知2个“叶瓣”与1个空白组成1个半圆;4个“叶瓣”与4个空白组成一个正方形.设每个“叶瓣”面积为x ,每个空白面积为y ,则2222,244,a x y x y a π⎧⎛⎫⎪⎪⎪⎝⎭+=⎨⎪⎪+=⎩①②由①×4-②,得22142x a a π=-,即为阴影部分的总面积. 【总结升华】比较以上两种方法,代数解法更加简捷,在运用此法时,不需把两个未知数求出来,只要求出表示阴影部分面积的代数式的值即可.叶形的总面积可看做四个半圆面积减去正方形面积,则22221144222a S S S a a a ππ⎛⎫=-=⨯-=- ⎪⎝⎭阴影正方形半圆.也可以用正方形面积减去四个空白处面积.以上均为几何方法,还可以设每个“叶瓣”面积为x ,每个空白面积为y ,列方程组解答.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,»AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交»AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是»AB 的中点, ∴ 1232AE AB ==,EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)(23)R R =-+.解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°. ∴ »AB 的长为120481803ππ⨯=(m).∴ 帆布的面积为8601603ππ⨯=(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以»AB 为底面的圆柱的侧面积.根据题意,应先求出»AB 所对的圆心角度数以及所在圆的半径,才能求»AB 的长. 举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB ,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm. 初中数学试卷。

北京市第四中2017届中考数学冲刺复习第4章图形的认识初步03角(无答案)

北京市第四中2017届中考数学冲刺复习第4章图形的认识初步03角(无答案)

角1.角的概念:(1)有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边.问:如右图,能把∠α记作∠O吗?为什么?能把∠AOC记作∠1吗?为什么?角的表示(1)大写字母表示角:规定用三个大写字母表示角;这三个大写字母应分别写在顶点、两条边上的任意的点;三个字母的顺序也有规定,顶点的字母必须写在中间。

(2)用一个大写字母表示角,但要注意的是当两个或两个以上的角有同一个顶点时,不能用一个大写字母。

(3)用一个希腊字母表示角:方法是,在角的内部靠近角的顶点处画一弧线,写上一个希腊字母,如α,β,γ等,记作∠α,读作角α.(4)用一个数字表示角: 方法是,在角的内部靠近角的顶点处画一弧线,写上一个数字如1,2,3等,记作∠1,读作角1.在一个顶点的角较多的情况下,可以这样表示。

(2)角还可以这样定义:把一条射线绕着它的端点旋转而形成的图形叫做角.如图,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,形成什么角?继续旋转,OB和OA重合时,又形成什么角?角的分类:射线OA绕O点旋转,当始边OA与终边OB互为反向延长线时,称为平角.(1)直角:平角的一半叫做直角;(2)锐角:小于直角的角叫做锐角;(3)钝角:大于直角且小于平角的角叫做钝角.3.角的度量:目前角的度量采用角度制,即把一个周角分成_________,每______ 叫做1度的角,记作,并且,1'=______''.在这种度量下,1周角=______,1平角=______,1直角=_______.4.角的比较与计算(1)用量角器量;(2)把它们叠合在一起比较大小.问:如图,图中有几个角?它们之间有什么关系?5.角的平分线把一个角分成两个相等的角的射线叫做角的平符号语言6.相关的角(1)余角:如果两个角的和是直角,这两个角叫做互为余角.角与互为余角(2)补角:如果两个角的和是一个平角,这两个角叫做互为补角.角与互为补角问:若∠1+∠,∠3+∠,且∠1=∠3,那么∠2与∠4相等吗?为什么?补角的性质:余角的性质:例1、已知角的余角比角的补角的13还少,求角的余角.例2、如图,O是直线AB上一点,,,求:(1)图中共有多少个角?(2)图中共有多少对互补的角?例3、已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠,求:∠MON.。

北京市第四中2017年中考数学冲刺复习专题训练圆讲正多边形与圆

北京市第四中2017年中考数学冲刺复习专题训练圆讲正多边形与圆

正多边形与圆知识精解回顾重要公式:1. 正多边形的的内角和与外角和①多边形的内角和为____________.②正多边形的每个内角都等于_____________.③多边形的外角和是___________°.④正多边形的每个外角是________.2.正n 多边形的中心角、外接圆半径、边长、边心距、周长、面积分别 是n α,R ,n a ,n r ,n P 及n S 之间的数量关系.(1) (2) (3) (4) (5) (6)自主学习1.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形, BC ∥QR ,则∠AOQ=( )A .60°B .65°C .72°D .75°2.正n 边形内切圆与外接圆面积之比是( ) A.2180sin n ︒ B.2180cos n ︒ C.2180tan n ︒ D.2180cot n ︒PDRC Q BOA 360n n α︒=1802sin n a R n ︒=180cos n r R n ︒=22214n n R r a =+n n P na =1122n n n n n S n ra r P =⋅⋅=3.同一个圆的内接正六边形和外切正六边形的周长的比是()A.3:42C.2:D.1:2 4.同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.5. 如图所示,圆内接正六边形ABCDEF 中,AC 、BF 交于点M ,则S △ABM :S △AFM=____。

6. 下图是对称中心为点O 的正六边形.如果用一个含30°角的直角三角 板的角,借助点O (使角的顶点落在点O 处),把这个正六边形的面积 n 等分,那么n 的所有可能的值是___________________.7.如图,两个相同的正六边形,其中一个正多边形的顶点在另一个正多边 形外接圆圆心O 处.求重叠部分面积与阴影部分面积之比.8. 已知:正十边形的半径是R ,求证:它的边长 1011)2a R =..。

北京市第四中学2017届中考数学冲刺复习第1章有理数07有理数复习与提高无答案201708092178

北京市第四中学2017届中考数学冲刺复习第1章有理数07有理数复习与提高无答案201708092178

有理数的复习与提高一、知识结构二、复习要点:1. 有理数的概念2. 数轴定义,数轴上的点与有理数的关系3. 相反数的定义,互为相反数的两个数的特征4. 一个数的绝对值的定义及求法,有理数的绝对值的性质5. 比较两个有理数的大小的方法6. 有理数的加法、减法、乘法、除法的运算法则7. 乘方的意义和运算法则8. 正确进行有理数的混合运算(分笔算和用计算器算)9. 近似数和有效数字的概念, 用科学记数法表示数10. 有理数在实际应用中的实例11.有理数集有哪些性质?三、复习例题:例1.下列说法是否正确?并将不正确的说法修改为正确的说法(1)正数、负数和零都是有理数(2)任何一个有理数都有相反数和倒数.(3)任何一个有理数的平方都是正数.(4)若x2=25, 则x=5.(5)若|x|<5,则x<5.(6)-a表示负数.例2.选择题(1)已知四种说法:①|a|=a时,a>0; |a|=-a时,a<0.②|a|就是a与-a中较大的数.③|a|就是数轴上表示a的点到原点的距离.④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是()A、1B、2C、3D、4(2)有四个说法:①有最小的有理数②有绝对值最小的有理数③有最小的正有理数④没有最大的负有理数上述说法正确的是( )A 、①②B 、③④C 、②④D 、①②(3)已知(-ab)3>0,则( )A 、ab<0B 、ab>0C 、D 、(4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( )A 、120B 、-15C 、0D 、-120(5)下列各对算式中,结果相等的是( )A 、-a6与(-a)6B 、-a3与|-a|3C 、[(-a)2]3与(-a3)2D 、(ab)3与ab3例3.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:|3a-c|+|2a+b|-|c-b|例4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。

北京四中届中考数学专练总复习圆(基础)

北京四中届中考数学专练总复习圆(基础)

圆(基础)一、选择题1.对于下列命题:①随意一个三角形必定有一个外接圆,而且只有一个外接圆;②随意一个圆必定有一个内接三角形,而且只有一个内接三角形;③随意三角形必定有一个内切圆,而且只有一个内切圆;④随意一个圆必定有一个外切三角形,而且只有一个外切三角形.其中,正确的有().A.1 个B.2 个C.3 个 D . 4个2 .下列命题正确的是().A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确立一个圆D.均分弦的直径垂直于弦3.秋千拉绳长3M,静止时踩板离地面,某小朋友荡秋千时,秋千在最高处踩板离地面2M(左右对称),如下图,则该秋千所荡过的圆弧长为().A.MB.MC.MD.M4.已知两圆的半径分别为2、 5,且圆心距等于 2 ,则两圆地点关系是().A.外离B.外切C.相切D.内含5.如下图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、 F, OE= 8,OF=6,则圆的直径长为().A.12B. 10 C . 4D.15第3题图第5题图第6题图第7题图6.如下图,方格纸上一圆经过(2 , 5) , (-2 ,1) , (2 , -3) , (6 , 1) 四点,则该圆圆心的坐标为().A. (2 , -1)B.(2 ,2)C.(2,1)D. (3, 1)7.如下图, CA 为⊙O的切线,切点为A,点 B 在⊙O 上,若∠ CAB=55°,则∠ AOB 等于().A. 55°B. 90°C. 110° D . 120°8.一个圆锥的侧面积是底面积的 3 倍,这个圆锥的侧面睁开图的圆心角是() .A. 60°B. 90°C. 120° D . 180°二、填空题9.如下图,△ ABC 内接于⊙ O,要使过点 A 的直线 EF 与⊙O 相切于 A 点,则图中的角应满足的条件是________ (只填一个即可).10.已知两圆的圆心距为 3,的半径为 1.的半径为2,则与的位置关系为________.11 .如图所示, DB 切⊙O于点A,∠AOM=66°,则∠DAM=________________.第9题图第11题图第12题图第15题图12 .如下图,⊙O的内接四边形ABCD 中, AB=CD,则图中与∠1相等的角有________________.13.点M 到⊙O 上的最小距离为2cm,最大距离为10 cm ,那么⊙O的半径为________________.14.已知半径为R 的半圆O,过直径AB 上一点C,作CD⊥AB 交半圆于点D,且,则AC的长为_______.15.如下图,⊙O是△ ABC 的外接圆, D 是弧 AB 上一点,连结BD,并延长至E,连接AD,若AB=AC,∠ADE=65°,则∠BOC=________________.16.已知⊙O的直径为 4cm,点 P 是⊙O外一点, PO= 4cm,则过 P 点的⊙O 的切线长为________________cm ,这两条切线的夹角是 ________________ .三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆于点,交于点使.试判断直线与圆的地点关系,并证明你的结论;18 .在直径为20cm 的圆中,有一弦长为16cm,求它所对的弓形的高。

北京市第四中学2017年中考数学冲刺复习 专题训练 1 阅读理解型问题(无答案)

北京市第四中学2017年中考数学冲刺复习 专题训练 1 阅读理解型问题(无答案)

阅读理解型问题例1.问题情境:已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>. 探索研究:(1)我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质.① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.例2.如图①,小慧同学把一个正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片O ABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是222041π?请你解答上述两个问题.例3.阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形2为三角形的“友好矩形”. 如图①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个 .(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.。

《圆》满分冲刺精讲课后训练及详解(15份)-1

《圆》满分冲刺精讲课后训练及详解(15份)-1

学科:数学专题:圆的有关计算主讲教师:黄炜 北京四中数学教师重难点易错点解析圆锥和侧面展开扇形的关系题面:如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则R 与r 之间的关系是( ).A .R =2rB .r R 3C .R =3rD .R =4r金题精讲题一题面:已知:如图,以线段AB 为直径作半圆O 1,以线段AO 1为直径作半圆O 2,半径O 1C 交半圆O 2于D 点.试比较与的长.题二题面:如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC 边相切,交AD 于F 点,连结OF .若将这个扇形OBF 围成一个圆锥,求这个圆锥的底面积S .满分冲刺题一题面:如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点. 求在圆锥的侧面上从B 点到P 点的最短路线的长.题二题面:如图,圆柱底面半径为2cm ,高为9cm ,点A B 、分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为_____cm.题三题面:矩形纸片ABCD 中,AB =10cm ,BC =8cm ,将其按图(1)、图(2)的方法剪开拼成一个扇形,要使扇形面积尽可能大,需按图(3)、图(4)的方法将宽2等分、3等分,…,n 等分,再把每个小矩形按图(1)、图(2)的方法剪开拼成一个大扇形.当n 越来越大时,最后拼成的大扇形的圆心角( )A .小于90°B .等于90°C .大于90°D .无法确定思维拓展题面:已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是 m.(结果用π表示)讲义参考答案重难点易错点解析答案:D金题精讲题一 答案:的长等于的长.题二答案:16πcm 2.满分冲刺题一 答案:.cm 53题二答案:15题三答案:C思维拓展答案:2π+50l。

北京市第四中2017年中考数学冲刺复习专题训练旋转第3讲《旋转》(无答案).

北京市第四中2017年中考数学冲刺复习专题训练旋转第3讲《旋转》(无答案).

第三讲:《旋转》全章复习与巩固引例:1、如图,C 为BD 上一点,分别以BC 和CD 为边向同侧作等边ABC ECD ∆∆、,AD 和BE 相交于点M .①探究线段BE 和AD 的数量关系和位置关系.在图中你还发现了什么结论?②当ECD ∆绕点C 在平面内顺时针转动到如图所示的位置时,线段BE 和AD 有何关系?在转动的过程中,特别是在一些特殊的位置,你还会发现什么结论?有哪些结论是不随图形位置的变化而改变的呢?③如图,当转动到A 、D 、E 在一条直线上时,若BE=15cm ,AE=6cm ,求CD 的长度及∠AEB 的度数。

思考:在当ECD ∆绕点C 在平面内顺时针转动时,你能求出线段BE 的取值范围吗?当D 在等边△A BC 内部运动时,DA+DB+DC 有无最值?2、如图,D 是等边△ABC 内一点,将△ADC 绕C 点逆时针旋转,使得A 、D 两点的对应点分别为B 、E ,则旋转角为______,图中除△ABC 外,还有等边三角形是_____.3、已知E 为正△ABC 内任意一点.求证:以AE 、BE 、CE为边可以构成一个三角形.若∠BEC=113°,∠AEC=123°,求构成的三角形各角的度数.例1、已知D 是等边△ABC 外一点,∠BDC=120º.求证:AD=BD+DC例2:如图,在四边形ABCD 中,∠ABC=30°,∠ADC=60°,AD=D C .求证:BD 2=AB 2+BC 2.例3、正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上(1)如图连结DF 、BF,试问:当正方形AEFG 绕点A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例。

(2)若将正方形AEFG 绕点A 顺时针方向旋转,连结DG ,在旋转过程中,能否找到一条线段的长度与线段DG 的长度相等,并画图加以说明。

北京市第四中2017年中考数学冲刺复习专题训0代几综合问题(无答案

北京市第四中2017年中考数学冲刺复习专题训0代几综合问题(无答案

代几综合题
例1. 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .
(1)求抛物线的解析式;
(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O C D B ,,,四点为顶点的四边形为平行四边形,求D 点的坐标;
(3)连接OA ,AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得OBP △与OAB △相似?若存在,求出P 点的坐标;若不存在,说明理由.
例2.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.
(1)求k 的值;
(2)当此方程有两个非零的整数根时,将关于x 的二
次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在
x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1(2
y x b b k =+<)与此图象有两个公共点时,b 的取值范围.
例3. 如图,已知抛物线2y ax bx c =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3).
(1)求抛物线的解析式及顶点M 坐标;
(2)在抛物线的对称轴上找到点P ,使得△PAC 的周长最小,并求出点P 的坐标;
(3)若点D 是线段OC 上的一个动点(不与点O 、C 重合).过
点D 作DE ∥PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,1=
9ABMC S S △PDE 四边形.。

北京市第四中学2024届中考冲刺卷数学试题含解析

北京市第四中学2024届中考冲刺卷数学试题含解析

北京市第四中学2024学年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(3,-1)B.(2,﹣1)C.(1,-3)D.(﹣1,3).若不考虑接缝,它是一个半径为12cm,圆心角为60的扇形,2.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm3.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB 的最小值为()A.B.C.10 D.=,4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB2∠=时,AC等于()B60A.2B.2C.6D.225.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)6.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.317.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.88.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.833π-C.8233π-D.843π-9.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.110.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.12.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.13.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.14.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.19.(5分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(10分)化简:(x-1-2x2x1-+)÷2x xx1-+.22.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

北京四中九年级下册数学弧长和扇形面积、圆锥的侧面展开图—巩固练习(提高)

北京四中九年级下册数学弧长和扇形面积、圆锥的侧面展开图—巩固练习(提高)

弧长和扇形面积、圆锥的侧面展开图—巩固练习(提高)【巩固练习】一、选择题1.一个直角三角形绕它的一边所在直线旋转一周所得到的几何体一定是( ).A.圆锥 B.圆柱 C.圆锥或圆柱 D.以上都不对2.小明要制作一个圆锥形模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需用一块圆形纸板作底面,那么这块圆形纸板的直径为( ).A.15cm B.12cm C.10cm D.9cm3.如图所示,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm,图中阴影部分的面积为( ).A.32B.233π- C.23 D.43第3题图第4题图第5题图4.如图所示,Rt△ABC中,∠BAC是直角,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为( ).A.1 B.2 C.14π+ D.24π-5.如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC 于点F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是( ).A.49π- B.849π- C.489π- D.889π-6.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB=6cm,高OC=8cm,则这个圆锥漏斗的侧面积是( ).A.30cm2 B.30π cm2 C.60π cm2 D.120cm2二、填空题7. 如图,已知矩形纸片ABCD,AD=2,3AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED 剪下围成一个圆锥,则该圆锥的底面半径为.第6题第7题8.圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比为.9.已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积AB CDE为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于________.10.如图所示,有一圆心角为120°、半径长为6 cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是.A BO第10题图第11题图第12题图11.矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右做无滑动地翻滚,当它翻滚到类似于开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是________.12.现有总长为8 m的建筑材料,用这些建筑材料围成一个扇形的花坛(如图12),当这个扇形的半径为 m 时,可以使这个扇形花坛的面积最大?最大面积是 m2.三、解答题13. 如图所示,圆锥的母线长为4,底面圆半径为1,若一小虫P从A点开始绕着圆锥表面爬行一圈到SA的中点C,求小虫爬行的最短距离是多少?14.现有一张边长为20cm的正方形纸片,你能用这张纸片制成一个表面积尽可能大的有底圆锥吗?说明你的做法并计算圆锥的表面积(结果精确到0.1cm,2=1.414).15.如图所示,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC.求:(1)被剪掉阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果用根号表示)16. (1)如图(1),⊙A,⊙B,⊙C两两不相交,且半径都是0.5cm,则图中三个阴影部分面积之和为;(2)若在(1)的条件下,增加一个圆变成图(2).设这四个圆的半径都是r,则这四个圆中阴影部分面积的和为;并说明理由.(3)若在(2)中再增加一个圆变成图(3).设这五个圆的半径都是r,则这五个圆中阴影部分的面积和为.并说明理由.(4)若在题(1)的条件下,有n个这样的半径都是r的圆(如图(4)),那么这n个圆中阴影部分的面积的和又为多少呢?请说明理由.【答案与解析】一、选择题1.【答案】D ;【解析】绕直角边所在直线旋转一周所得到的几何体与绕斜边的不同. 2.【答案】B ; 【解析】∵24092180r ππ⨯=,∴ r =6cm ,2r =12cm .3.【答案】B ;【解析】如图,因为AD ∥BC ,∠ADC =120°,所以∠BCD =60°,因为AC 平分∠BCD ,所以∠BCA =∠DAC =∠DCA =30°,所以∠BAC =90°,BC 为圆的直径,所以AD =DC =AB .设BC 的中点为O ,连接OA 、OD ,由题意可知点A 、D 三等分半圆, 则∠AOD =60°,且OA =OD =AB =AD =CD ,BC =2AD ,所以AB+AD+CD+BC =10,所以半径为2,则233AOD S S S π∆=-=-扇形扇.第3题答案图 第5题答案图4.【答案】A ;【解析】连接AD ,12ABC S S ∆=阴影. 5.【答案】B ;【解析】如图,连接AD ,因为BC 为⊙A 切线、D 为切点,所以AD ⊥BC .又由∠BAC =2∠EPF =2×40°=80°,∴ 280283609EAFS ππ⨯==扇形.∴ 1884299ABC EAF S S S BC AD ππ∆=-=⨯⨯-=-阴影阴影. 6.【答案】C ;【解析】在Rt △COB 中,由CO 2+BO 2=BC 2,得BC =10cm ,所以21261060(cm )2S ππ=⨯⨯⨯=侧.二、填空题7.【答案】13;【解析】在Rt △ABE 中, 2212(3)12BE AE =-==∴∠BAE=30°, ∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.8.【答案】2:1;【解析】设圆锥的底面半径为r ,母线长为l , ∵ 圆锥的侧面展开图是一个半圆, ∴ 此半圆的周长(即侧面展开扇形的弧长)为180180l πg . 又∵ 此半圆的周长等于2πr , ∴1802180l r ππ=,2l r ππ=,2l r =,即21l r =. 即圆锥的母线长与底面半径比为2:1.9.【答案】2:3;【解析】如图所示,当以AC 为轴旋转时,21S r S π=+侧,AB 为底面圆半径,BC 为母线长10,则S 1=36π+60π=96π.当以AB 为轴旋转时,AC 为底面圆半径,BC 为母线长,80S rl ππ==侧, 所以2S S S =+侧底6480144πππ=+=,所以S 1:S 2=96π:144π=2:3.10.【答案】42cm ; 【解析】扇弧长12064cm 180ππ⨯=,而扇形的弧长等于圆锥底面圆的周长,设底面圆半径为r ,∴ 4π=2πr ,∴ r =2cm . 如图所示,AC =2cm ,OA =6cm ,Rt △OAC 中,OC =2242OA AC -=cm .11.【答案】12π;【解析】分析题意,考虑A 所经过的路线可分为三段孤长,如图所示,第一段是以B 为圆心,AB 长为半径,圆心角∠ABE =90°的弧长; 第二段是以F 为圆心,EF 长为半径,圆心角∠EFM =90°的弧长;第三段是以N 为圆心,NA 1长为半径,圆心角∠A 1NM =90°的孤长.EF =10,NA 1=6.则顶点A 所经过的路线长=»¼¼145312AE EM MA ππππ++=++=.12.【答案】2 ; 4 .【解析】设扇形的半径为r ,∠AOB 的度数为n ,扇形花坛面积为S ,则扇形花坛周长为2r +π2n·2πr =8, ① S =π2n πr 2. ② 由①得:rrr r n πππ-=-=42282. ③ 将③代入②得:S =rr π-4·πr 2=4r -r 2=-(r -2)2+4.故当r =2时,S 最大=4,即当扇形半径为2 m 时,花坛面积最大,其最大面积为4 m 2.三、解答题13.【答案与解析】将圆锥的侧面展开如图所示,取SA '的中点C ,连接AC .则AC 是小虫爬行的最短路线.∵ 421180n ππ⨯⨯=, ∴ 90n =°,即90ASA '∠=°.∵ SA =4,SC =2,∴ 224225AC =+=. ∴ 小虫爬行的最短距离为25.14. 【答案与解析】用一张正方形纸片制成一个有底圆锥,方法有多种,但使其表面积尽可能大的只有一种,确定了扇形、圆、正方形三者之间的关系之后;就可通过计算求出扇形及圆的半径,并制成符合条件的圆锥. 具体做法:(1)通过分析、比较确定符合条件的扇形、圆与正方形的位置关系,并画出示意图,如图所示. (2)通过它们的位置关系计算出扇形和圆的半径,并根据计算结果在纸片上画出截剪线. (3)剪下符合条件的扇形与圆,用扇形作侧面,圆作底面粘接成圆锥.其表面积的计算过程是:如上图所示,设扇形的半径为Rcm ,⊙O 的半径为r cm ,M 、N 均为切点, 连接OM 、ON .则有OM ⊥BC ,ON ⊥DC . ∵ OM =ON =r .∴ 四边形OMCN 为正方形.∴ OC =2r .∵ AC =AG+GO+OC ,AC =2AB =202cm ,∴2202R r r ++=. ①∵ »EF的弧长等于⊙O 的周长, ∴1224R r ππ⨯=,即R =4r . ② 由①②得2024.4152r =+≈,∴ 2214S S S R r ππ=+=+侧表底. 222255 3.14 4.41cm 305.3cm r π==⨯⨯≈. 故所做圆锥的表面积约为305.3cm 2.15. 【答案与解析】(1)连接BC .∵ ∠BAC =90°,∴ BC 是⊙O 的直径,∴ BC =1m . ∵ AB =AC ,∴ 2AB AC ==m . ∴ O ABCS S S =-e 阴扇形222221121m m m 2428πππ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭. (2)设圆锥底面圆的半径为r ,∴29022180r ππ=g.∴ 2m 8r =.16. 【答案与解析】(1)∵∠A+∠B+∠C=180°∴,图中的三个扇形面积之和为;(2)由(1)得出:这四个圆中阴影部分面积的和为:=πr2;(3)同理可得:这五个圆中阴影部分的面积和为:=πr2;(4)n个圆中阴影部分的面积的和:=πr2.。

第四中学中考数学冲刺复习 专题训练 圆 第6讲 弧长 扇形 圆柱 圆锥(无答案)(2021年整理)

第四中学中考数学冲刺复习 专题训练 圆 第6讲 弧长 扇形 圆柱 圆锥(无答案)(2021年整理)

北京市第四中学2017年中考数学冲刺复习专题训练圆第6讲弧长扇形圆柱圆锥(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市第四中学2017年中考数学冲刺复习专题训练圆第6讲弧长扇形圆柱圆锥(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市第四中学2017年中考数学冲刺复习专题训练圆第6讲弧长扇形圆柱圆锥(无答案)的全部内容。

第六讲:弧长、扇形、圆柱、圆锥知识回顾:(一)弧长与扇形面积的相关运算1、在半径为R 的圆中,n °的圆心角所对的弧长为___________;2、由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

在半径为R 的圆中,n °的圆心角所对的扇形的面积是_________.自主学习例1如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)例2如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC相切于点D,交AB 于E ,交AC 于F,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-πB .849-π C .489-π D .889-π例3如图,在正方形ABCD 中,AB=4,0为对角线BD 的中点,分别以OB,OD 为直径作⊙O 1,⊙02.A EB CFP(1)求⊙O1的半径; (2)求图中阴影部分的面积.例4如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦关与小半圆相切,且24AB=.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.例5 一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是.例6 若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是().A.3:2B.3:1C.5:3D.2:1例7 如图,已知矩形纸片ABCD,2AD=,3AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为().A.1 B.12C.13D.14例8 将如右图所示的圆心角为90 的扇形纸片AOB 围成圆锥形纸帽,使 扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥 形纸帽是( ).A B C DA B CDE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲:弧长、扇形、圆柱、圆锥
知识回顾:
(一)弧长与扇形面积的相关运算
1、在半径为R的圆中,n°的圆心角所对的弧长为___________;
2、由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

在半径为R的圆中,n°的圆心角所对的扇形的面积是_________. 自主学习
例1如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)
例2如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC 相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF= 40°,则图中阴影部分的面积是().
A.
4
4
9
-π B.
8
4
9
-πC.
4
8
9
-πD.
8
8
9

例3如图,在正方形ABCD中,AB=4,0为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙02.
(1)求⊙O1的半径; (2)求图中阴影部分的面积.
例4如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦关与小
C
半圆相切,且24AB =.问:能求出阴影部分的面积吗?若能,求出此 面积;若不能,试说明理由.
例5 一个圆柱的侧面展开图是相邻边长分别为10和16的矩
形,则该圆柱的底面圆半径是 .
例6 若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是 ( ).
A .3:2
B .3:1
C .5:3
D .2:1
例7 如图,已知矩形纸片ABCD ,2AD =
,AB A 为圆心,AD 长为半径画弧交BC 于点E ,将扇形AED 剪下围成一个圆锥,则该圆锥的 底面半径为( ).
A .1
B .1
2 C .1
3 D .1
4
例8 将如右图所示的圆心角为90︒的扇形纸片AOB 围成圆锥形纸帽,使 扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥 形纸帽是( ).
A B C D
A B C
D
E。

相关文档
最新文档