大学物理课后习题答案
大学物理课后习题1第一章答案
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理教程课后习题答案
物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或 1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小231r =+=(3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dv dt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理课后习题答案(高教版共三册)
⼤学物理课后习题答案(⾼教版共三册)第⼆章动量及其守恒定律1、⼀质点的运动轨迹如图所⽰,已知质点的质量为20g ,在A 、B ⼆位置处的速率都为20m/s ,A v与 x 轴成045⾓,B v垂直于 y 轴,求质点由A 点到B 点这段时间内,作⽤在质点上外⼒的总冲量?解:由动量定理知质点所受外⼒的总冲量I =12v v v m m m )(由A →B A B Ax Bx x m m m m I v v v v cos45°=-0.683 kg·m·s 1 1分I y =0m v Ay = m v A sin45°= 0.283 kg·m·s 1I =s N 739.022y x I I 3分⽅向: 11/tg x y I I 202.5° ( 1为与x 轴正向夹⾓) 1分2、质量为m 的物体,以初速0v 从地⾯抛出,抛射⾓030 ,如忽略空⽓阻⼒,则从抛出到刚要接触地⾯的过程中,物体动量增量的⼤⼩为多少?物体动量增量的⽅向如何?解:由斜⾯运动可知,落地速度⼤⼩与抛出速度⼤⼩相等,⽅向斜向下,与X 轴正向夹⾓为300,所以,动量增量⼤⼩:0030sin 2mv mv mv动量增量的⽅向竖直向下3、设作⽤在质量为1kg 的物体上的⼒F =6t +3(SI ).如果物体在这⼀⼒的作⽤下,由静⽌开始沿直线运动,在0到2.0 s 的时间间隔内,这个⼒作⽤在物体上的冲量⼤⼩为多少? 解:I=Fdt =.20)36(dt t =(3t 2+3t)0.20=3 2.02+3 2.0=18(S N )A vxyOBA4、⼀个质量为m 的质点,沿x 轴作直线运动,受到的作⽤⼒为i F Ft cos 0 (SI),0t 时刻,质点的位置坐标为0x ,初速度00 v,求质点的位置坐标和时间的关系式?解:由⽜顿第⼆定律tm F dt dx v tdtm F dv dtdv mt F dt v d m a m F t vsin cos cos 00000 ⼜有故tdt m F dx txx sin 000则: t m Fx xcos 1005、电动列车⾏驶时每千克质量所受的阻⼒N v F 2210)5.05.2( ,式中,v 为列车速度,以s m /计。
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理,课后习题,答案
第十八章 波 动1、一横波沿绳子传播,其波的表达式为 x)2- t 100050ππcos(.y = (SI) 求: (1) 波的振幅、波速、频率和波长。
(2) 绳子上各质点的最大振动速度和最大振动加速度。
(3) 在m .x 201=处和m .x 702=处二质点振动的位相差。
解:(1))0.02 (100cos 05.0) 2 100cos(05.0x t x t y -=-=πππ m A 05.0=∴,υππω 2 100 ==502/100==⇒ππυ(HZ) )(501-⋅=s m u , )(15050m u===υλ(2) ) 2 100sin(10005.0πππ-⨯-==∂∂t v tY, )(7.15510005.01max -⋅==⨯=s m v ππ) 2 100cos()100(05.02 22x t a t Yπππ-⨯-==∂∂∴ 8.4934500)100(05.022m ax ==⨯=ππa )(2-⋅s m(3)ππλπϕ=-=-=∆12.07.022 12x x2、一平面简谐波沿x轴正向传播,波的振幅cm A 10=,波的圆频率-1s rad 7 ⋅=πω,当s .t 01=时,cm x 10=处的a 质点正通过其平衡位置向y轴负方向运动,而cm x 20=处的b质点正通过cm y 5=点向y轴正方向运动。
设该波波长10c m>λ,求该平面波的表达式。
解:设波动方程为:)2 7cos(1.0πϕπλ⋅-+=xt Yt=1(s)时, 05.0)2 7cos(1.0 ,0)2 7cos(1.02.01.0=⋅-+==⋅-+=πϕππϕπλλ b a Y Y∵0<a v ⇒ ππϕππλk 22 721.0+=⋅-+ ① ∵ 0>b v , ⇒ ππϕππλk 22 732.0+-=⋅-+ ② 且m 1.0 >λ,故b a ,两质点的位相差π2<①-②得:5λ=1.2, 即 λ=0.24(m ) 代入①得:πϕ317-= 所以 波动方程为:) 7cos(1.031325πππ+-=x t Y 3、图示一平面简谐波在0=t 时刻的波形图,求: (1)该波的波动方程; (2)P处质点的振动方程。
大学物理教材课后习题参考答案
1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。
解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。
解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。
1.11 一质点沿半径R=1m 的圆周运动。
t=0时,质点位于A 点,如图。
然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理课后习题答案(高教版 共三册)
第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。
解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。
解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。
大学物理课后答案第1章质点运动学习题解答
,解得
(2) , ,
1-13质点M作平面曲线运动,自O点出发经图示轨迹运动到C点。图中,OA段为直线,AB、BC段分别为不同半径的两个1/4圆周。设 时,M在 点,已知运动方程为 (SI),求 s时刻,质点M的切向加速度和法向加速度的大小。
解: 时 此时质点在大圆上
…
时
1-14一质点沿半径为 的圆周按 的规律运动,其中 和 都是常数。求:(1)质点在 时刻的加速度;(2) 为何值时,加速度在数值上等于 ;(3)当加速度大小为 时质点已沿圆周运行了几圈
解:
,
&
1-8一艘正在沿直线行驶的快艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即 ,式中 为正常数。试证明快艇在关闭发动机后又行驶 距离时的速度为 ,式中 是发动机关闭瞬时的速度。
解:
,
1-9一飞轮的转速在5s内由900rev/min均匀地减到800rev/min。求:(1)飞轮的角加速度;(2)在此5s内飞轮的总转数;(3)再经几秒飞轮将停止转动。
解: ,即
~
1-5一质点在 平面内运动,运动方程为 (SI)。(1)求质点运动的轨道方程并画出运动轨道;(2)计算1s末和2s末质点的瞬时速度和瞬时加速度;(3)在什么时刻质点的位置矢量与其速度矢量恰好垂直这时,它们的 、 分量各为多少(4)在什么时刻质点离原点最近算出这一距离。
解: , ,
(1) ,
消t,得轨道方程: ,
其曲线为开口向下的抛物线,如右图。
(2) ,
,
(3) ,
*
解得: ,
时, , , ,
时, , , ,
以上物理量均为国际单位。
(4)
令 ,解得
1-6一物体沿 轴运动,其加速度和位置的关系满足 (SI)。物体在 处的速度为10 m/s,求物体的速度和位置的关系。
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
大学物理学课后习题参考答案
习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理课后习题答案(高教版 共三册)
由 得则
7、在xy平面内有一运动质点,其运动学方程为:(SI) 则t时刻其速度为多少?其切向加速度的大小为多少?该质点运动的轨 迹是什么? 解:(1)
(2)速率: (3)两式平方后相加,, 轨迹为一半径为10m的圆。
8、一条河在某一段直线岸边有A、B两个码头,相距 1km ,甲、乙两人 需要从码头A到码头B,再立即由B返回。甲划船前去,船相对河水的速 度 4km/h,而乙沿岸步行,步行速度也为 4km/h ,如河水流速为 2km/h ,方向从A到B,试推算甲比乙晚多少分钟回到码头A? 解:由A到B船对地的速度大小:
2、质点在一直线上运动,其坐标与时间有如下关系: (SI) (A 为常 数),则在任意时刻 t 质点的加速度为多少?什么时刻质点的速度为零? 解:(1)
(SI) (2)令
有 得 (SBiblioteka ) (K=0,1,2……)3、一质点沿X 方向运动,其加速度随时间变化关系为:a=3+2t (SI), 如果初始时质点的速度 为 5m/s ,则当 t 为 3s 时,质点的速度为多少? 解:由
由B到A船对地的速度大小: 甲由A到B再回到A所需时间: 乙由A到B再回到A所需时间:
所以甲比乙晚十分钟回到码头A 。
9、轮船在水上以相对于水的速度航行,水流速度为,人相对于甲板以 速度行走。如人相对于岸静止,则、和的关系是怎样的? 解:
即 的关系为:
第一章 运动学
1、质点的运动方程为 (SI),则在t 由 0 至 4s 的时间间隔内,质点的位 移大小为多少?在 t 由0 到 4s 的时间间隔内质点走过的路程为多少? 解:本题质点在x方向作直线运动
(1) t1=0时,=0 t2=4(s) 时, =(m) ∴位移大小(m) (2 ) 令 得t=3 (s ) 即t=3 (s )时,质点拐弯沿x轴负向运动,则0~4(s)内质点走过 的路程:
大学物理课后习题答案
第二十章 光的衍射1、 某种单色平行光垂直入射在单缝上,单缝宽mm 15.0=a 。
缝后放一个焦距mm 400=f 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为mm 0.8,求入射光的波长。
解:由题意,第三级暗纹到O 点的距离 )mm (428==x 又根据光路图有 fx =θtan 且单缝暗纹公式 λλθ3sin ==k a 取3=k所以 nm 500m m 4003415.033tan 3sin =⨯⨯==≈=f ax a a θθλ2、波长为nm 600的单色光垂直入射到宽度为mm 10.0=a 的单缝上,观察夫琅和费衍射图样,透镜焦距m 0.1=f ,屏在透镜的焦平面处,求:(1)中央衍射明条纹的宽度0x ∆;(2)第二级暗条纹离透镜的焦点的距离2x 。
解:(1)关于中心O 对称的两条第一级暗纹之间的距离为中央明纹宽度 第一级暗纹到中心的距离 111tan θθf f x ≈= ① 又由单缝衍射暗纹公式 λθk a =sin对第一级暗纹丝 1=k 而11sin θθ≈所以 λθ=1a② 由②求出1θ代入① f a x λ=1所以中央明纹宽度 )m m (12)m (1010.01106002223910=⨯⨯⨯⨯===∆--a f x x λ (2)由暗纹公式λθk a =sin 取2=k 且22sin θθ≈所以 a λθ22= )mm (122tan 222==≈=af f f x λθθ3、在某个单缝衍射实验中,光源发出的光有两种波长1λ和2λ,若1λ的第一级衍射极小与2λ的第二级衍射极小相重合,求:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合? 解:(1)由单缝衍射暗纹公式λθk a =sin对1λ:取1=k 1sin λθ=a 对2λ:取2=k 22sin λθ='a由于1λ的第一级衍射极小与2λ的第二级衍射极小重合,所以θθ'= 则 212λλ=(2)对1λ:11sin λθk a = 对2λ: 22sin λθk a ='由于重合,所以θθ'= 即2211λλk k = 121221221k k k k =⇒==λλ 所以有其它极小相重合 当1k 取1、2、3、…、2k 取2、4、6、…、4、在单缝的夫琅和费衍射实验中,若入射光中有两种波长的光,nm 4001=λ,nm 7602=λ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。
因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。
AOP ∆是边长为a 的等边三角形。
已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。
解:如图建立坐标系。
根据题意可知02000cos 60042x Q E a aλπεπε=⇒+=∑ Q a λ⇒=-9.10 如题图9.6所示,一电荷面密度为的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.解:电荷面密度为σ:E =σ / (2ε0)。
以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = σ2πr d r 。
它在距离平面为a 的一点处产生的场强()3/2220d 2ardrE a rσε⋅=+则半径为R 的圆面积内的电荷在该点的场强为()⎰+=Rr arr a E 02/322d 2εσ ⎪⎪⎭⎫⎝⎛+-=22012R a a εσ 由题意,令E =σ / (4ε0),得到R =a 39.11 如题图9.7所示,一均匀带电直导线长为d ,电荷线密度为λ+。
过导线中点O 作一半径为R (2d R >)的球面S ,P 为带电直导线的延长线与球面S 的交点。
求: (1)、通过该球面的电场强度通量E Φ。
(2)、P 处电场强度的大小和方向。
解:(1)利用静电场的高斯定理即可得:intE q dλεεΦ==。
(2)如图建立一维坐标系,坐标原点与圆心重合。
在带电导线上坐标为x 处取长度为dx 的带电元,其所带电荷量为dq dx λ=,dq 在p 点产生的电场强度为:2200ˆˆ4()4()dq dx dE i i R x R x λπεπε==-- 则p 点的电场强度为222222200ˆˆ4()(4)d d d d dxd E dE i iR x R d λλπεπε--===--⎰⎰9.12 题图9.8中,虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx ,E y =0, E z =0。
高斯面边长a =0.1 m ,常量b =1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电常数0ε=8.85×10-12 C 2·N -1·m -2 )解:设闭合面内包含净电荷为Q .因场强只有x 分量不为零,故只是二个垂直于x 轴的平面上电场强度通量不为零.由高斯定理得:1122120,()QE S E S S S S ε-+===则202102103120()()(2)8.8510Q S E E Sb x x a b a a a b Cεεεε-=-=-=-==⨯9.13 体图9.9所示,有一带电球壳,内、外半径分别为a 、b ,电荷体密度为r A =ρ,在球心处有一点电荷Q 。
证明:当)2(2a Q A π=时,球壳区域内电场强度E的大小与半径r无关。
证:用高斯定理求球壳内场强: ()02/d 4d ερ⎰⎰+=π⋅=⋅VSV Q r E S E ,而⎰⎰⎰π=π⋅=r ra v r r A r r r A V 02d 4d 4d ρ()222a r A -π= ()2220202414a r A r r Q E -π⋅π+π=εε202020224rAa A r Q E εεε-+π=要使E的大小与r 无关,则应有 :2420220=-πr Aa r Q εε, 即22a Q A π=9.14 如题图9.10所示,一厚为b 的“无限大”带电平板,其电荷体密度分布为kx =ρ (0≤x ≤b ),式中k 为一正的常量.求:(1) 平板外两侧任一点P 1和P 2处的电场强度大小; (2) 平板内任一点P 处的电场强度;(3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理int0E ds qε⋅=⎰⎰,即:图9.922d d 12εερεkSb x x kSx S SE bb===⎰⎰得到:24kb E ε=, (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有:()022εεkSb xdx kSS E E x==+'⎰得到:⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得 2/b x =9.15 一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如题图9.11所示。
求:(1) 在球形空腔内,球心O '处的电场强度0E;(2) 在球体内P 点处的电场强度E。
设O '、O 、P 三点在同一直径上,且d OP =。
解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的矢量叠加,即:210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小。
231101443E ds E d d ρεπ⋅=⋅π=⋅⎰⎰得:11103O P E E E d ρε===方向分别如图所示。
在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S ' 可求得P 点场强E 2P()232204(2)4()/3s E ds E d r ρε''⋅=⋅π=π-⎰⎰203212dr E Pερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2)求P 点的场强P E.由图(a)、(b)可得⎪⎪⎭⎫⎛-=+=2302143d r d E E E PP P ερ 方向如(d)图所示.9.16 如题图9.12所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?解:设点电荷q 所在处为坐标原点O ,x 轴沿两点电荷的连线.(1) 设0=E的点的坐标为x ',则()04342020=-'π-'π=i dx q i x q E εε 02222=-'+'d x d x解出:()d x 3121+-=' 另有一解()d x 13212-=''不符合题意,舍去.(2) 设坐标x 处U =0,则()x d q x q U -π-π=00434εε()0440=⎥⎦⎤⎢⎣⎡--π=x d x x d qε 图(c)2O’=0图(b)得:4d x =9.17 一均匀静电场,电场强度1)600400-⋅+=m V j i E(,空间有两点)2,3(a 和)0,1(b ,(y x ,以米计)。
求b a ,两点之间的电势差ab U 。
解:空间某点的位矢表示为ˆˆr xiyj =+,则 ˆˆˆˆ(400600)()b bab a b aaU V V E dr i j idx jdy =-=⋅=+⋅+⎰⎰1032(400600)4006002000()b adx dy dx dy V =+=+=-⎰⎰⎰9.18 题图9.13所示,为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为)(ax -=0λρ,0λ为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.解:在任意位置x 处取长度元d x ,其上带有电荷d q =λ0 (x -a )d x 。
它在O 点产生的电势()xxa x U 004d d ελπ-=O 点总电势:⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ9.19 题图9.14所示,电荷q 均匀分布在长为2l 的细杆上。
求 (1)、在杆外延长线上与杆端距离为a 的P 点的电势(设无穷远处为电势零点)。
(2)、杆的中垂线上与杆中心距离为a 的P 点的电势。
(设无穷远处为电势零点).解:(1)设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.PaO 2l x d x细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l xq x a l q U P -+π=-+π=008d 4d d εε整个杆上电荷在P 点产生的电势:()⎰--+π=ll P x a l x lq U d 80ε()l lx a l l q --+π-=ln 80ε⎪⎭⎫ ⎝⎛+π=a l l q 21ln 80ε(2.杆的电荷线密度λ=q / (2l ).在x 处取电荷元d q .d q = l d x = q d x / (2l ) 它在P 点产生的电势2202208d 4d d xa l x q xa q U P +π=+π=εε整个杆上电荷产生的电势:⎰-+π=llP x a xlqU 220d 8ε()llx a x l q -++π=220ln 8ε2220ln 8⎥⎥⎦⎤⎢⎢⎣⎡++π=a l a l l qε⎥⎥⎦⎤⎢⎢⎣⎡++π=a l a l l q220ln 4ε9.20 两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ=(R 1<r <R 2) 两球的电势差:⎰⎰π==212120124d R R R R r dr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 C9.21 电荷以相同的面密度分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . [0ε=8.85×10-12 C 2 /(N·m 2)] (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?解:(1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441rr r r σσε()210r r +=εσ2100r r U +=εσ=8.85×10-9 C / m 2(2) 设外球面上放电后电荷面密度为σ',则应有:()2101r r U σσε'+='= 0 即 :σσ21r r -=' 外球面上应变成带负电,共应放掉电荷:()⎪⎪⎭⎫⎝⎛+π='-π='212222144r r r r q σσσ ()20021244r U r r r εσπ=+π==6.67×10-9 C9.22如题图9.15所示,半径为R 的均匀带电球面,带有电荷q .沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为r 0.设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零).解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=',该线元在带电球面的电场中所受电场力为:204q dxdF x λπε=整个细线所受电场力为:()l r r l q x x q F l r r +π=π=⎰+000204d 400ελελ,方向沿x 正方向.x电荷元在球面电荷电场中具有电势能:04q dxdW xλπε=整个线电荷在电场中具有电势能:⎪⎪⎭⎫⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ9.23一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如题图9.16所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有:2rE λπε=即两极间的电场强度可表示为:02E rλπε=, (R 1<r <R 2), E 的方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-=()120/ln 2R R U U A B -=πελ所以,两极间的电场强度为:()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()12111ln /B A U U F eE R eR R R -==⋅=4.37×10-14 N方向沿半径指向阳极.9.24 题图9.17为一球形电容器,在外球壳的半径b 及内外导体间的电势差U 维持恒定的条件下,内球半径a 为多大时才能使内球表面附近的电场强度最小?求这个最小电场强度的大小.解:设内球壳带电量为q ,则根据高斯定理可得出两球壳之间间半径为r 的同心球面上各点电场强度的大小为204q E r πε=内外导体间的电势差:011()4baqU E dr a bπε=⋅=-⎰ 当内外导体间电势差U 为已知时,内球壳上所带电荷即可求出为:4abUq b aεπ=-内球表面附近的电场强度大小为:()24q bUE a a b a ε==π-欲求内球表面的最小场强,令0dEda=,则()()011d d 22=⎪⎪⎭⎫ ⎝⎛---=a b a a b a bU a E 得到:2ba = 并有0d d 2/22>=b a a E可知这时有最小电场强度:()bUa b a bU E 4min =-=9.25 题图9.18所示,一半径为R 的“无限长”圆柱形带电体,其电荷体密度为:Ar =ρ (r ≤R ),式中A 为常量.求:(1) 圆柱体内、外各点场强大小分布;(2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:2sE ds rhE ⋅=π⎰⎰为求高斯面内的电荷,r R ≤时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为:r r Ah V ''π=d 2d 2ρ则包围在高斯面内的总电荷为3/2d 2d 302Ahr r r Ah V rVπ=''π=⎰⎰ρ由高斯定理得: ()033/22εAhr rhE π=π解出:()023/εAr E = (r ≤R )r R >时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RVπ=''π=⎰⎰ρ由高斯定理:()033/22εAhR rhE π=π解出:()r AR E 033/ε= (r >R )(2) 计算电势分布当r R ≤时:⎰⎰⎰⋅+==l R Rrl rr rAR r r A r E U d 3d 3d 0320εε ()Rl AR r R A ln 3903330εε+-=当r >R 时 :rlAR r r AR r E U lrl rln 3d 3d 0303εε=⋅==⎰⎰9.26已知某静电场的电势函数x y x U ln 22++-= (SI).求点(4,3,0)处的电场强度各分量值.解:由场强与电势梯度的关系式得x U E x ∂∂-==-1000 V/m ;0=∂∂-=y U E y ;0=∂∂-=zUE z9.27 如题图9.19所示,在电矩为e p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功。