概率论与数理统计5

合集下载

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

第五章《概率论与数理统计教程》课件

第五章《概率论与数理统计教程》课件

试决定常数 3.
X ,Y
C
使得随机变量 cY 服从分布

2
分布。
相互独立,都与 N ( 0 , 9 ) 有相同分布, X 分别是来自总体
X ,Y
1
, X 2 , , X 9和
Y1 ,Y 2 , ,Y 9
的样本,

Z
9
X
i
i1
6 - 23
Y
i1
9
则Z 服从—— ,自由度为——。
2 i
4.
X1, X 2, X 3, X 4
是来自总体
X ~ N ( , )
2
的样本,则随机变
量 Y
X3 X4
服从——分布,其自由度为———。
2
(X i )
i1
2
5.

X 1 , X 2 , , X 10
是来自总体 X
~ N ( ,4 )
2
的样本, ( S 2 P
a ) 0 .1
一. 单个正态总体的统计量的分布
X 1 , X 2 , X n是来自正态总体 ~ N ( , 2 )的样本, X
X , S 分别是样本均值和样本 方差
2
定理1
X
n
1
n
X i ~ N ( ,

n
2
);
i1
定理2 U
1
X
/
~ N ( 0 ,1 );
n
定理3
6 - 18
定理7
当 1
2
2 2
2 2 时, 令 S w
( n1 1) S 1 ( n 2 1) S 2
2

概率论与数理统计 第5章

概率论与数理统计 第5章
i 1 4 i 2 2 i i 1
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2

i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求


(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s

概率论与数理统计(经管类) (5)

概率论与数理统计(经管类) (5)

概率论与数理统计(经管类)您的姓名: [填空题] *_________________________________1描述随机变量取值偏离数学期望程度的数字特征是() [单选题] *A.方差(正确答案)B.平方差C.期望D.偏差2设C为常数,则C的方差D (C)=( ) [单选题] *A.1B.0(正确答案)C.2D.53设随机变量X服从【2,5】上的均匀分布,则E(X)=()。

[单选题] *A.1B.2.5C.3.5(正确答案)D.54设随机变量X服从参数为2的泊松分布,则E(2X)=_________。

() [单选题] *A.1B.4(正确答案)C.25设随机变量X的方差D(X)=1,则-X的方差D(-X)=()。

[单选题] *A.1(正确答案)B.0C.2D.56已知随机变量X~N(0,1),则随机变量Y=2X-1的方差为() [单选题] *A.1B.2C.3D.4(正确答案)7设随机变量X服从参数为λ的泊松分布,E(X)=5,则λ=() [单选题] *A.1B.0C.2D.5(正确答案)8设在三次独立重复试验中,事件A出现的概率都相等,若已知A至少出现一次的概率为19/27,则事件A在一次试验中出现的概率为()。

[单选题] *A.1/6B.1/4C.1/3(正确答案)D.1/29同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为()。

[单选题] *B.1/4C.1/3D.1/2(正确答案)10设A与B是任意两个互不相容事件,则下列结论中正确的是() [单选题] *A.P(A)=1-P(B)B.P(A-B)=P(B)C.P(AB)=P(A)P(B)D.P(A-B)=P(A)(正确答案)。

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞

概率论与数理统计答案第五章(东华大学出版)

概率论与数理统计答案第五章(东华大学出版)

第五章复习题Page1941、 设i (i=1,2,,50)ξ 是相互独立的随机变量,且它们都服从参数为0.03λ=的泊松分布。

记1250ξξξξ=+++ ,试用中心极限定理计算P(3)ξ≥。

解:由中心极限定理可认为~ξ((),())(1.5,1.5)N E D N ξξ=,则(3)P ξ≥1.31.5)1)1(1.225)10.889751.51.5P ===-Φ=-=。

2、 一部件包括10部分。

每部分的长度是一个随机变量,它们相互独立且具有同一分布。

其数学期望为2mm ,均方差为0.05mm ,规定总长度为20±0.1mm 时产品合格,试求产品合格的概率。

解:由中心极限定理可认为总长度~ξ((),())(20,0.025)N E D N ξξ=,则(19.920.P ξ≤≤()2(0.6325)10.4735025P ξ=≤=Φ-=。

3、 一个加法器同时收到20个噪声电压(1,2,,20)k V k = 。

设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布。

V 为加法器上受到的总噪声电压,求(105)P V >解:由中心极限定理可知)3500,100()121020,520())(),((~2N N V D V E N V =⨯⨯=,则(105))1(0.39)10.65170.3483P V P >=>=-Φ=-= 4、 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(0.5,0.5]-上服从均匀分布。

(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2) 问几个数加在一起可使得误差总和的绝对值小于10的概率为0.90?解:(1)由中心极限定理:误差总和)125,0()1211500,01500(~N N =⨯⨯ξ,因此(||15)2(12(10.9099)0.1802P P ξ>=>=-Φ=⋅-=。

概率论与数理统计第5章

概率论与数理统计第5章

p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
p(xn ) = ∏ p( xi )
i =1
n
14 September 2009
1.
若连续型总体 X 的密度函数为 p(x ), , X n )是取自总体 X 的样本, iid
(X 1 , X 2 ,
X1, X2, … , Xn
n 则 (X 1 , X 2 , , X n )的密度函数为 p( x1 , x2 , , xn ) = p(x1 )p(x2 ) p(xn ) = ∏ p( xi ) i =1
数理统计
学习基础:1、高等数学 2、概率论
前面的学习已知:随机变量及其所伴随的概率分布全面描述了 随机现象的统计规律性,所以要研究一个随机现象首先要 知道它的概率分布. 概率论中:许多问题的概率分布通常是已知的或假设为已知的然后 在此基础上进行一切计算与推理. 实际中:一个随机现象的概率分布可能完全不知道 或知道分布类型却不知道其中的参数.例如正态分布
则 (X 1 , X 2 ,
, X n )的密度函数为
p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
n
p(xn )
⎧n −λ ∑ xi ⎪ Π λe −λxi = λ ne i=1 = ⎨ i =1 ⎪ 0 ⎩
xi > 0, i = 1, 2, 其它
,n
例如 设某批产品共有N 个,其中的次品 数为M, 其次品率为 p = M / N 若 p 是未知的,则可用抽样方法来估计它. 从这批产品中任取一个产品,用随机变量 X来描述它是否是次品: 所取的产品是次品 ⎧ 1, X =⎨ ⎩ 0, 所取的产品不是次品 X 服从参数为p 的0-1分布,可用如下表示 方法: P(x) = p (1− p) ,

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

[注]: X n P → a 注: 推论(辛钦大数定律) 推论(辛钦大数定律)
X n − a P → 0
设独立随机变量 X 1 , X 2 ,⋅ ⋅ ⋅, X n 服从同一分布 并且有数学 服从同一分布, 期望 µ 及方差 σ 2, X 1 , X 2 ,⋅ ⋅ ⋅, X n 的算术平均值当 n → ∞ 则 时,按概率收敛于µ, 即对于任何正数 ε,恒有 按概率收敛于 ,
第五章 大数定理与中心极限定理
“大数定律”: 用来阐明大量随机现象平均结果稳定性的定理 大数定律” 用来阐明大量随机现象平均结果稳定性的定理. 大数定律
一、切比雪夫不等式
切比雪夫不等式: 切比雪夫不等式: 设随机变量 X 有数学期望 EX 及方差 DX, , 下列不等式成立: 则对于任何正数 则对于任何正数 ε,下列不等式成立:
2 i
n
则:E(Yn ) =
2 µi , D(Yn ) = ∑σi2 = sn . ∑
n i =1
n
i =1
i =1
∴ Z n = Yn
1 = sn

n Y n − EY n 1 n = = ∑ X i − ∑ µ i sn i =1 DY n i =1
∑ (X
i =1
n
i
− µ i ), 则有:E ( Z n ) = 0 , D ( Z n ) = 1 . 则有:
概率论中有关论证随机变量的和的极限分布是正态分布的定 概率论中有关论证随机变量的和的极限分布是正态分布的定 随机变量的和的极限分布是正态分布 是独立随机变量, 设 X 1 , X 2 ,⋅ ⋅ ⋅ , X n ,⋅ ⋅ ⋅ 是独立随机变量,并各有
EX i = µ i , DXi = σ , i = 1,2,⋅ ⋅ ⋅, n,⋅ ⋅ ⋅. 设 n = ∑Xi , Y

概率论与数理统计第5章

概率论与数理统计第5章

X
1 n
n i 1
Xi
样本方差(sample variance)
S2 1 n n1i1
2
Xi X
整理课件
几个常用的统计量
设 (X1,X2, ,Xn)是总体 X 的一个样本,
样本均方差或标准差
1 n
2
S n1i1 Xi X
它们的观测值用相应的小写字母表示.反映总 体X取值的平均,或反映总体X取值的离散程度。
Sj XjW 1j Xj Xj1Xj Wj
频率直方图中的小矩形的面积近似地反映了样本数
据落在某个区间内的可能性大小,故它可近似描述X的分
布状况。
整理课件
第二.计算样本特征数
1.反映集中趋势的特征数:样本均值、中位数、众数等 样本均值MEAN 中位数MEDIAN 众数
X 90.3
91
91, 94
40≤n≤60
6≤k≤8
60≤n≤100
8≤k≤10
100≤n≤500
10≤k≤20
整理课件
数据分组数参考表
数 40 10 15 20 40 60 80 10 15 20 50 10
据 ~6 0 0 0 0 0 0 00 00 00 00 00
数0
0
分 6~ 7~ 10 16 20 24 27 30 35 39 56 74
整理课件
简单随机抽样
例如:要通过随机抽样了解一批产品的次品率, 如果每次抽取一件产品观测后放回原来的总量中,则 这是一个简单随机抽样。
但实际抽样中,往往是不再放回产品,则这不是一个 简单随机抽样。但当总量N很大时,可近似看成是简单 随机抽样。
整理课件
统计量
定义 设( X1,X2, ,Xn)为总体X的一个样本, f(X1,X2, ,Xn)为不含任何未知参数的连续函数,则 称 f(X1,X2, ,Xn)为样本( X1,X2, ,Xn)的一个统计量。

陈国华等主编概率论与数理统计第五章习题解答

陈国华等主编概率论与数理统计第五章习题解答

x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,

概率论与数理统计 第五章

概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的

(概率论与数理统计茆诗松)第5章统计量及其分布

(概率论与数理统计茆诗松)第5章统计量及其分布

统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。

构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

概率论与数理统计第5章

概率论与数理统计第5章

2、定理以数学形式证明了随机变量X
1
,
X
的算术平均
n
X

1 n
n i 1
X i接近数学期望E( X k ) (k
1,2, n),这种接近
说明其具有的稳定性
这种稳定性的含义说明算术平均值是依概率收敛的意义下 逼近某一常数.
1.(2010-1)设 n 为n次独立重复试验中事件A发生的次数,p是事件
10
3.(2009 1)
设X i

0, 1,
事件A不发生 事件A发生 (i 1, 2,
,100),且P(A) 0.8,
100
X1, X 2 , , X100相互独立,令Y Xi则由中心极限定理知Y 近似服从于 i 1
正态分布,其方差为________ .
4.(2008 -10)设总体X的分布律为P{X 1} p, P{X 0} 1- p, 其中0 p 1.
P{|
m n

p
|
}1

ln im
P{|
m n

p
|

}
0
注: 贝努里大数定律表明,当重复试验次数n充分 大时,事件A发生的频率m/n与事件A的概率p有较 大偏差的概率很小.
事件发生的频率可以代替事件的概率.
5.2.2 独立同分布随机变量的切比雪夫大数定律
定理5-3
设随机变量X
1
,
X

2
,X
n
,
是独立同分布随机变量序列,
E( Xi ) , D( Xi ) 2 (i 1, 2, )均存在,则对任意 0有
lim{|
n

概率论与数理统计教程_第五版_ppt课件

概率论与数理统计教程_第五版_ppt课件
.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.

概率论与数理统计-第五章

概率论与数理统计-第五章

【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

,
i
1,2, , n, .
设Yn
Xi,
i 1
n
n
则: E Yn
i , D Yn
2 i
sn2 .
i 1
i 1
Zn
Yn
Yn
EYn DYn
1 sn
n i1
Xi
n i 1
i
1 n
sn i1
Xi i ,
则有:E(Zn ) 0, D( Zn ) 1.
11
林德伯格定理:
显然, 当n 时,P(Bn ) 1.
[注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
中几乎必然发生。 10
第二节 中心极限定理
概率论中有关论证随机变量的和的极限分布是正态分布的定
理叫做中心极限定理。

X1
,
X
, , X , 是独立随机变量,并各有
2
n
n
EX i
i ,
DX i
2 i
的频率作为事件 A 的概率近似值时, 误差小于0.01的概率.

设事件A 在每次试验中发生的概率为 p,
在这10000次试验
中发生了X 次, 因此,所求事件的概率为
则 EX np 10000 p, DX 10000 p1 p,
P
X 10000
p
0.01 P
X 10000 p
100
P X EX 100 1 DX 1002
DX n
1 n2
nK
K n
由此,
当 n 充分大时,
随机变量
也就是说,
X 的值较紧密地聚集在它的数学期望 n
分散程度是很小的,
Xn

概率论与数理统计:5_1大数定律

概率论与数理统计:5_1大数定律
则对于任意实数 > 0,
P(X ) E(X )
证 仅证连续型 r.v.的情形
P( X
)
f
(x)dx
x
f
(x)dx
1
0
xf
(x)dx
E(X
)
推论 1 ——马尔可夫 ( Markov ) 不等式
设随机变量 X 的k阶绝对原点矩 E( |X |k)
存在,则对于任意实数 > 0,
P(|
X
|
由 Chebyshev 不等式, = 0.01n ,故
P|

X
0.75n
|
0.01n
1
0.1875n (0.01n)2
1
0.1875n (0.01n)2
0.90
解得 n 18750
大数定律
贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生 的次数, p 是每次试验中 A 发生的概率, 则 0 有
lim P
n
1 n
n k 1
Xk
0

lim P
n
1 n
n k 1
Xk
1
定理的意义
具有相同数学期望和方差的独立 r.v.序列的 算术平均值依概率收敛于数学期望.
当 n 足够大时, 算术平均值几乎是一常数.
数学 期望
可被
算术 均值
近似代替
注1 X1, X 2,, X n , 不一定有相同的数学 期望与方差,可设
P940
X
1060
1059
Ck 6000
k 941
1 6
k
5 6
6000k

概率论与数理统计第五章

概率论与数理统计第五章

第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。

本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。

然而,实际情况往往并非如此。

一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。

例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。

再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。

那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。

为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。

由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。

数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。

这种伴有一定概率的推断称为统计推断。

二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。

为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。

我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。

总体中所包含的个体的个数称为总体的容量。

容量有限的总体称为有限总体,容量无限的总体称为无限总体。

例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。

所有5000只灯泡的寿命是一个有限总体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.757
28.299 29.819 30.319 … …
上分位点
查表练习:
求下列各式中的 C 值
1. Y ~ 2 ( 24), P (Y C ) 0.1 2. Y ~ 2 (40), P (Y C ) 0.95 3. Y ~ t (6), P (Y C ) 0.05 4. Y ~ t (15), P (Y C ) 0.01 5. F0.05 (4,9), F0.1 (10,5), F0.9 (10,20),
1 5 2 5 2 1 1.8 x i 0.6 (0 1 0 1 1) 0 .3 4 i 1 4 4 4
第六章 样本及抽样分析
抽样分布 统计量是不含未知量的样本函数,也是随机变量。
统计量的分布称抽样分布。
当总体分布已知时,抽样分布也确定了,但这些分布 很难求出。 抽样 总体 样本 统计量 抽样分布 概率
t1 ( n) t ( n)
第六章 样本及抽样分析
正态总体统计量的分布
X 1 , X 2 , , X n 来自正态总体 N ( , 2 ) 的样本,其样
本均值和样本方差
n 1 n 1 2 X Xi , S2 ( X X ) n i 1 n 1 i 1 i
第六章 样本及抽样分析
练习
2.设总体X~N(a, b),其中 a 已知,b 未知。再设
X1, X2, X3 是取自总体 X 的一个样本。那么,函数
(1)X1 + X2 + X3;(2)X2 + 2a;(3)X1; (4)max{X1, X2, X3};(5)∑Xi2 / b 中哪些是统计量?
第六章 样本及抽样分析
•对称性: t1 ( n) t ( n)
• n →∞,密度函数趋
向标准正态分布;
α
1-α
分位点 查表
深绿面积占整个面积的 5 分之一,那么点x称为 5 分 之一右侧分位点,记为x0.2
α分位点(0<α<1)指将密度曲线下面的面积按比例α划分的点, 有左(侧)分位点和右(侧)分位点,后者也称上分位点。
… 2.156
n
… 10
0.99
… 2.558
0.975
… 3.247
0.95
… 3.940

… …

… …
0.05
… 18.307
0.025
… 20.483
0.01
… 23.209
0.005
… 25.188
11
12 13 14 … …
2.603
3.074 3.565 4.075 … …
3.053
3.571. 4.107 4.660 … …
的分布性质:
X ~ N ( ,
2
n
),
( X ) n

~ N (0,1)
( n 1) S 2
2 X n ~ t ( n 1) S
~ 2 ( n 1)
X , S 2 相互独立
第六章 样本及抽样分析
正态总体统计量的分布
X i ~ N ( , 2 ), 1 n 1 n 2 E ( X ) E X i , D( X ) D X i n i 1 n i 1 n
n n
2
n
Xi X

1 n X i nX 0 i 1
2
只有 n—1 个独立的 随机变量
X X 2 i ~ ( n 1) i 1
第六章 样本及抽样分析
正态总体统计量的分布
X n ~ t ( n 1) S X n1 2 2 ~ N ( 0 , 1 ), S ~ ( n 1) 2 2 /n
179.0 165.6 172.4 171.6 163.7
173.9 167.4 180.3 168.1 175.4
173.7 166.6 160.5 172.2 170.1
157.0 163.1 172.4 170.1
174.2 176.8 162.5 163.5
166.0 169.2 166.4 176.1
第六章 样本及抽样分析
总体与样本
在实际问题中,往往并不知道是什么样分 布,或者分布中的参数值是什么,这需要用数 理统计的办法来解决。从全体研究对象中抽取 部分个体(有限)进行试验,尽可能从中获取 对研究对象统计规律 作出精确可靠的推测 -统计推断。
统计学的研究对象:
客观事物总体的数量特征和数量关系等。
估计/推断
第六章 样本及抽样分析
几种常用的统计量分布
2 (一) 分布
设 X 1 , X 2 , , X n 来自总体 X~N(0,1) 的样本,则称统计量
2 Y X X X 为服从自由度 n 的 分布。
2 1
2 2
2 n
(自由度乃独立的随机变量的个数)即 Y ~
2 ( n)
n 1 2 S ( X X ) ∑ n 1 i 1 i 1 n k Ak ∑ X n i 1 i 1 n k Bk ∑ ( X X ) n i 1 i 2
A1 X n 1 2 B2 S n
统计量也是 随机变量
k 阶中心矩
标准差
S S2
其观测值用小写表示。
第六章 样本及抽样分析 例 有一组样本观测值为 (5,4,6,5),计算其样本均值、 样本方差、2 阶原点矩和 3 阶中心矩。
f ( x1 , x 2 ,, x n ) = f ( x1 ) f ( x 2 ) f ( x n )
第六章 样本及抽样分析
统计量
-- 是样本的函数,用来对总体的未知参 数进行推断,故其中不含有未知的总体参数。 常用的统计量
样本均值 样本方差 k 阶原点矩
X ( X1 X 2 X n ) n
( X ) 2 n
n1
2
X n ~ t ( n 1) n1 S
S2
第六章 样本及抽样分析 1.设正态分布 N (100,100) 的有一个容量为 10 的样本,其样本 2 均值服从______,样本方差乘以____后服从 (9) 分布。 2. 已知来自正态总体 N (0, 2 ) 的样本均值和样本方差, (1)查什么分布表可以确定 P(| X | a ) 的值? (2)
是否服从卡方分布?若 kY ~ χ2( n ),求 k,n
第六章 样本及抽样分析
抽样分布 (二)t-分布
X ~ N (0,1), Y ~ 2 (Y /n
服从自由度为 n 的 t-分布
T ~ t( n ) 。
第六章 样本及抽样分析
抽样分布 性质:
练习
4.设X~B(1, p),X 的一组观察值为 0,1,0,1,1,那么
样本均值的观察值=
,样本方差的观测值=

1 5 1 x x i (0 1 0 1 1) 0.6 5 i 1 5
5 5 1 1 s 2 ( xi 0.6) 2 ( xi2 0.6 2 ) 4 i 1 4 i 1
• (2)查到20年前该校同龄男生平均身高为168cm,20 年来城市男生的身高是否发生了变化?
• (3)收集到100名农村男生的平均身高和标准差分别为 168.9cm和5.4cm,问与城市同龄男生的身高有否差距?
50名17岁城市男生身高(单位:cm) 163.3 179.0 176.5 178.4 165.1 179.4 176.3 173.2 172.3 169.3 172.8 176.4 163.7 177.0 174.0 174.3 184.5 171.9 181.4 164.6 176.4 166.2 173.5 171.7 167.9 168.7 175.6 179.6 179.0 171.5 173.1 174.1 177.2 170.3 176.2 45名17岁农村男生身高(单位:cm) 171.2 163.7 173.1 171.9 164.4 167.4 162.4 170.6 170.1 169.0 163.4 163.7 166.8 162.4 162.3 168.6 162.8 161.6 167.4 174.0 169.5 167.4 162.3 161.7 173.9 168.9 165.4 173.2 170.4 176.8 175.0 165.2 161.9 168.5 167.1
第六章 样本及抽样分析
总体与样本
总体,母体(研究对象)
随机变量 X 可能取值的全体
个体(组成总体的元素)
对总体 X 的一次观测
表现为:某个指标
表现为:一次观测值
抽样 — 总体中抽取一部分个体的过程; 样本 — 抽样得到 X 的一组数据; 样本容量(大小)— 样本中的个体数量
第六章 样本及抽样分析
对给定的α(概率值),若 P ( X x ) 则称 x 为 f (x) 的 α 上分位点。
抽样分布往往由α 制成上分位点表
右侧尾部概率
2 P { 2 ( n) ( n)}
自由度
如:查找自由度为 12 的卡方分布,关于右侧 尾部概率 0.05 的上分位点?
α=0.995
x ( 5 4 6 5) 4 5 1 2 2 s (0 ( 1) 2 12 0 2 ) 2 / 3 3 1 2 2 2 2 a 2 (5 4 6 5 ) 102 / 4 4 1 3 3 3 3 b3 (0 ( 1) 1 0 ) 0 4
n X / S 服从什么分布?
3. 设总体 X ~ N ( , 2 )有两个容量分别为10和15的两个样本 均值 X1 , X 2 . p1 P(| X1 | ), p2 P(| X 2 | ), 比较 两个概率大小。 4. X ~ B(1, p),求 D( X ), E ( S 2 ) 5. X ~ N(15, 2),有两个容量为 10 和 15 的两个样本,求其样 本均值差的绝对值小于 0.2 的概率。
相关文档
最新文档