导数的单调性及极值问题
高三复习:导数与函数的单调性、极值最值(含解析答案)
3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。
高中数学导数与函数的极值与单调性
高中数学导数与函数的极值与单调性在高中数学中,导数与函数的极值与单调性是一个重要且基础的概念。
理解导数与函数的极值与单调性对于解决一些函数的问题非常关键。
本文将通过讨论导数的概念、求导法则以及函数的极值和单调性来详细介绍这个主题。
一、导数的概念与求导法则1. 导数的概念函数的导数表示函数在某一点的变化率,可以理解为函数曲线在该点处的切线的斜率。
导数通常用符号"f'(x)"或"dy/dx"表示。
对于函数y=f(x),其导数可以通过求导得到。
2. 求导法则求导法则是一类用于求函数导数的规则,常见的包括常数法则、幂函数法则、和差法则、乘积法则和商法则等。
这些法则可以帮助我们计算各种函数的导数,从而研究其极值和单调性。
二、函数的极值1. 极值的定义极值是函数在一定区间内取得的最大值或最小值。
极大值表示函数取得的最大值,而极小值表示函数取得的最小值。
2. 寻找极值的方法要寻找函数的极值,我们需要分析函数的导数和二阶导数。
首先,通过求导得到函数的导数,然后找到导数为零或不存在的点。
接下来,求取这些点的二阶导数,通过二阶导数的正负性来判断极值的情况。
三、函数的单调性1. 单调性的定义函数的单调性是指函数在定义域内的变化趋势。
如果函数在某个区间上的导数始终大于零,那么该函数在该区间上是递增的;如果导数始终小于零,函数在该区间上是递减的。
2. 单调性的判断方法为了判断函数的单调性,我们可以先求取函数的导数,并对导数进行分析。
通过导数的正负性可以判断函数在某个区间上是否递增或递减。
如果导数恒大于零,则函数在该区间上递增;如果导数恒小于零,则函数在该区间上递减。
四、综合应用举例下面通过一个例子来综合运用导数与函数的极值与单调性。
例:函数f(x) = x^3 - 3x^2 - 9x + 5,在[-2, 4]区间上的极值与单调性。
解:首先,求取函数的导数:f'(x) = 3x^2 - 6x - 9然后,令导数等于零,解方程:3x^2 - 6x - 9 = 0化简得:x^2 - 2x - 3 = 0解得:x = -1 或 x = 3接下来,求取导数的二阶导数:f''(x) = 6x - 6将x = -1 和 x = 3代入二阶导数得到:f''(-1) = -12f''(3) = 12根据二阶导数的正负性,当x = -1时,f(x)取得极大值;当x = 3时,f(x)取得极小值。
导数与函数的单调性与极值
返回导航页
结束放映
由函数单调性确定参数范围的方法 (1)利用集合间的包含关系处理:y=f(x)在(a,b) 上单调,则区间(a,b)是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单 调递增,则f′(x)≥0;若函数单调递减,则 f′(x)≤0”来求解.
返回导航页
结束放映
变式训练2.已知函数f(x)= x3+mx2-3m2x+1,m∈R. (1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)若f(x)在区间(-2,3)上是减函数,求m的取值范围.
x2-ln x的单调递减区间为
D.(0,+∞)
(
) A.(-1,1]
B.(0,1]
C.[1,+∞)
解析:
1 (1)函数y= 2 x2-ln x的定义域为(0,+∞),
1 (x - 1)(x + 1) y′=x- x = ,令y′≤0,则可得0<x≤1. x
返回导航页
结束放映
当a≠b时,讨论函数f(x)的单调性.
y
a
b
c o
返回导航页
d
结束放映
e x
温馨提示: 请点击相关栏目。
考点 ·大整合 考向 ·大突破 考题 ·大攻略
返回导航页
结束放映
考点 • 大整合
1.明确导数与函数单调性的关系
在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都 不恒等于0. f′(x)≥0=>f(x)在(a,b)上为增函数; f′(x)≤0=>f(x)在(a,b)上为减函数.
返回导航页
结束放映
2.把握两个概念
(1)函数的极小值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值 都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0, 则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值. (2)函数的极大值 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数 值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)< 0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
导数与函数的单调性解析与归纳
导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。
本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。
一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。
导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。
这些计算方法能够帮助我们在具体问题中快速求得函数的导数。
二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。
导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。
通过导数的符号变化,我们可以判断函数的单调性。
三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。
具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。
举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。
导数在研究函数中的使用----单调性、极值、最值
导数在研究函数中的使用----单调性、极值、最值一、 基本概念1、单调性:(1)、已知函数y=f(x),x ∈(a,b) 如对任意的x ∈(a,b),恒有)('x f >0,则f(x)为增函数,切线的倾斜角为锐角. 如对任意的x ∈(a,b),恒有)('x f<0,则f(x)为减函数,切线的倾斜角为钝角.(2))('x f≥0⇔ f(x)是增函数,)('x f≤0⇔ f(x)是减函数y= f(x)在a 出有极值⇒)('a f=0,)('a f=0⇒ f(x)在a 处有极值.(1) 如果在x 0附近的左侧)('x f>0,右侧)('x f<0,,那么f(x 0)是极大值(2) 如果在x 0附近的左侧)('x f<0, 右侧)('x f>0,那么f(x 0)是极小值(3) 如果在x附近的左侧及右侧)('x f不变号,那么f(x 0)不是极值3、 最值问题恒成立问题若不等式f(x) >A 在区间D 上恒成立⇔fx min)(>A 若不等式f(x)<B 在区间D 上恒成立⇔fx max)(<B(2) 能成立问题若在区间D 上存有实数x,使不等式f(x) >A 成立⇔f x max)(>A若在区间D 上存有实数x,使不等式f(x) <B 成立⇔fx min)(<B(3)、恰成立若不等式f(x) >A 在区间D 上恰成立⇔f(x) >A 的解集为D 若不等式f(x) <B 在区间D 上恰成立⇔f(x) <B 的解集为D 函数的单调性典型例题:题型一:研究函数单调区间与原函数图像间的关系例1:求下列函数的单调区间并画出原函数与导函数的图像 (1)f(x)=27623+-x x(2)f(x)=x 21+sinx,(x ∈[0,2π]例2:以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不准确的序号是A .①、②B .①、③C .③、④D .①、④题型二:单调性与单调区间例3(1)若函数f(x)= 326x ax x --+在(0,1)内单调递减,则实数a 的取值范围(2)已知函数y=3261ax bx x +++的递增区间为(-2,3),求a 、b 的值。
五十三期:导数单调性十种题型归纳
五十三期:导数单调性十种题型归纳导数单调性是微积分中重要的概念之一,是指函数在定义域上的单调性特征。
在解题过程中,常常会遇到与导数单调性相关的题型,这里将十种常见的题型归纳总结如下。
一、直接利用导数的正负判别这种题型要求我们利用导数的正负来判断函数的单调性。
具体来说,我们需要计算函数的导函数,然后通过求解导数的符号来确定函数的单调性。
当导数恒大于零时,函数单调递增;当导数恒小于零时,函数单调递减。
二、利用导数的正负变化这种题型要求我们通过导数的正负变化来判断函数的单调性。
具体来说,我们需要找出函数的导函数,然后观察导函数的正负变化情况。
当导数先减小后增大时,函数存在极值点,在极值点附近函数单调性发生变化;当导数先增大后减小时,函数存在极值点,在极值点附近函数单调性发生变化。
三、应用导数的加减法则这种题型要求我们利用导数的加减法则来判断函数的单调性。
具体来说,我们需要将函数表示为若干个函数之和或之差,并进一步求出每个函数的导数。
然后,根据导数的正负判断每个函数的单调性,并结合加减法则得出函数整体的单调性。
四、应用导数的乘法法则这种题型要求我们利用导数的乘法法则来判断函数的单调性。
具体来说,我们需要将函数表示为若干个函数之积,并求出每个函数的导数。
然后,根据导数的正负判断每个函数的单调性,并结合乘法法则得出函数整体的单调性。
五、应用函数的单调性判别法这种题型要求我们利用函数的单调性判别法来判断函数的单调性。
具体来说,我们需要根据函数的定义和性质,结合导数的正负判别,来判断函数在给定区间上的单调性。
六、应用导数的奇偶性这种题型要求我们利用导数的奇偶性来判断函数的单调性。
具体来说,如果函数以奇对称或偶对称的方式分布,则可以通过导数的奇偶性来判断函数的单调性。
七、综合利用多种方法这种题型要求我们综合利用多种方法来判断函数的单调性。
具体来说,我们可以应用前述的各种方法和技巧,结合具体题目的条件和要求,来判断函数的单调性。
导数的单调性极值最值
第十三讲 利用导数求函数的单调性、极值 、最值一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当,)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<当()22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,-∞和)+∞,单调递减区间为(.(2)函数2()ln f x x x =-的定义域为(0,)+∞.1()2f x x x '=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<. 故函数2()ln f x x x =-的单调递增区间为(,)2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2]. f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【解析】 由y =4x 2+1x ,得y ′=8x -1x 2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 2.函数f (x )=x ·e x -e x+1的单调增区间是________.【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。
用导数解决函数的单调性极值最值的方法步骤
用导数解决函数的单调性极值最值的方法步骤导数是微积分中非常重要的概念,它可以通过求取函数的斜率来提供关于函数的很多信息。
通过导数,我们能够判断函数的单调性、极值和最值。
下面,我将详细介绍使用导数进行函数分析的方法步骤。
一、函数的单调性分析:函数的单调性指的是函数在定义域上的递增或递减特性。
使用导数可以判断函数在不同区间上的单调性。
1.求出函数的导数:根据函数的定义,求出函数的导数。
若函数在其中一点存在导数,则说明函数在该点是可导的。
2.导数的符号变化:对求得的导数进行符号变化的分析,即导数求值时,符号的正负变化。
假设导数的结果是f’(x)。
通过求解f’(x)=0的解集,得到导数的零点集合。
3.导数零点的意义:对于导数零点集合中的每一个点进行分析。
如果导数在其中一点处的零点是一个正的极值点,则说明函数在该点是递增的;如果导数在其中一点处的零点是一个负的极值点,则说明函数在该点是递减的。
4.极值点的判定:在求得导数零点的基础上,通过导数的符号变化来判定函数在区间上的单调性。
当导数从正数变为负数时,说明函数在该区间上是递减的;当导数从负数变为正数时,说明函数在该区间上是递增的。
二、函数的极值分析:函数的极值是指函数在其中一点处取得的最大值或最小值。
通过导数可以判断函数的极值点。
1.求出函数的导数:根据函数的定义,求出函数的导数。
2.导数零点的极值分析:计算导数的零点,并求出零点对应的函数值,在零点处求得导数的值,在零点前后进行符号判定。
3.极值点的判定:若导数从负数增加到正数,则说明函数在该点处取得极小值;若导数从正数减小到负数,则说明函数在该点处取得极大值。
三、函数的最值分析:函数的最值是函数在定义域上取得的最大值或最小值。
通过导数可以判断函数的最值点。
1.求出函数的导数:根据函数的定义,求出函数的导数。
2.导数的变化性:通过计算导数的值和导数的符号变化来判断函数的最值。
3.导数的非零点分析:计算函数的定义域上的导数,找出导数等于零的点的集合。
高中数学导数的应用之极值和最值
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
用导数研究单调不单调、有无极值的问题
用导数研究单调不单调、有无极值的问题一.问题的提出导数的引入,使研究函数单调性和最值的方法更加丰富,近几年的高考题中经常出现以下四种类型的问题:类型I : 已知函数()x f y =在A x ∈时单调,求其中参数m 的取值范围;类型II : 已知函数()x f y =在A x ∈时无极值,求其中参数m 的取值范围; 类型III : 已知函数()x f y =在A x ∈时不单调,求其中参数m 的取值范围; 类型IV : 已知函数()x f y =在A x ∈时有极值,求其中参数m 的取值范围。
因为各种类型叙述形式多变,解题方法灵活,能充分考查学生的数学思想、计算功底和优化思维能力,从而备受命题者的青睐。
另一方面,学生面对问题时的状态,往往在听讲时思路清晰,自己做时却出现逻辑不清,或者任感觉做题,方法选择不优,就会做题繁琐,计算困难。
那么这四种类型有哪些常见的解题方法?各种解题方法如何进行优化整合?它们之间的逻辑联系如何?本文从一道经典考题入手来分析提出的问题。
二.经典恒久远的一道试题(2009年高考浙江省理科22题)已知函数()()251223-++--=x x k k x x f ,()122++=kx x k x g ,其中R k ∈。
设函数()()()x g x f x p +=。
若()x p 在区间()3,0上不单调,求k 的取值范围。
解法一 直接法:分离参数,求值域()()()()()15123-++-+=+=x k x k x x g x f x p ,()()()51232++-+='k x k x x p 因为()x p 在区间()3,0上不单调,所以()0='x p 在()3,0上有实数解,且无重根, 由()0='x p ,得()()523122+--=+x x x k , ⎥⎦⎤⎢⎣⎡-+++-=++--=3101291243125232x x x x x k , 令,12+=x t 有()7,1∈t ,记()tt t h 9+=,则()t h 在区间(]3,1上单调递减,在区间[)7,3上单调递增,所以有()[)10,6∈t h ,故()[)10,612912∈+++x x ,得到(]2,5--∈k ,而当2-=k 时,()0='x p 在()3,0上有两个相等的实根1=x ,故舍去,所以()2,5--∈k 。
考点 利用导数求函数的单调性、极值、最值
考点:利用导数求函数的单调性、极值、最值知识点1.求函数单调区间的步骤:①确定f(x)的定义域;②求导数y ′;③令y ′>0(y ′<0),解出相应的x 的范围。
当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数2.求极值常按如下步骤:① 确定函数的定义域;② 求导数;③ 求方程/y =0的根及导数不存在的点,这些根或点也称为可能极值点;④通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。
3.设函数f(x)在[a,b]上连续,在(a,b )内可导,求f(x)在[a,b]上的最大(小)值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
4.最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。
5.求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x );②求方程f ′(x )=0的根 ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查f ′(x )在方程根左右的值的符号,若左正右负,则f (x )在这个根处取得极大值;若左负右正,则f (x )在这个根处取得极小值;若左右不改变符号即都正或都负,则f (x )在这个根处无极值例题1. 函数()ln (0)f x x x x =>的单调递增区间为_______________.2. 讨论下列函数的单调性:(1)x x a a x f --=)((0>a 且1≠a );(2))253(log )(2-+=x x x f a (0>a 且1≠a );3.求下列函数的极值:(1)x x x f 12)(3-=;(2)x ex x f -=2)(;(3).212)(2-+=x x x f练习1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=02.函数y =216x x +的极大值为( ) A.3 B.4 C.2 D.53.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0B.1C.2D.44.y =ln 2x +2ln x +2的极小值为( )A.e -1B.0C.-1D.15.函数y=xsinx+cosx 在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π)6.已知函数y=xf′(x)的图象如下图所示(其中f′(x )是函数f (x )的导函数).下面四个图象中y=f (x )的图象大致是( )7.函数⎪⎭⎫ ⎝⎛+=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>yC .增函数,且0<yD .减函数,且0<y8.函数f (x )=x 3-3x 2+7的极大值为___________.9. 求下列函数的单调区间:(1)32)(24+-=x x x f ; (2)22)(x x x f -=; (3)).0()(>+=b xb x x f10.已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .(1)试求常数a 、b 、c 的值;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由.11.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.。
导数在函数的单调性,极值中的应用
导数在函数的单调性、极值中的应用一、知识梳理1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下关系:如果f_′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f_′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果f_′(x)=0,那么f(x)在这个区间内为常数.问题探究1:若函数f(x)在(a,b)内单调递增,那么一定有f ′(x)>0吗?f ′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f ′(x)≥0,f ′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.2.函数的极值与导数(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在x=a附近其他点的函数值都小,f ′(a)=0,而且在点x=a附近的左侧f_′(x)<0,右侧f_′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f ′(b)=0,而且在点x=b附近,左侧f_′(x)>0,右侧f_′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.问题探究2:若f ′(x0)=0,则x0一定是f(x)的极值点吗?提示:不一定.可导函数在一点的导数值为0是函数在这点取得极值的必要条件,而不是充分条件,如函数f(x)=x3,在x=0时,有f ′(x)=0,但x=0不是函数f(x)=x3的极值点.二、自主检测1.函数y=x-lnx的单调减区间是( )A.(-∞,1) B.(0,1)C.(1,+∞) D.(0,2)2.函数f(x)=x3-3x2+3x的极值点的个数是( )A.0 B.1C.2 D.33.函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是( ) A.[3,+∞) B.[-3,+∞)C.(-3,+∞) D.(-∞,-3)4.(2012年山东诸城高三月考)已知函数y=f(x),其导函数y=f ′(x)的图象如图所示,则y=f(x)( )A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值5.若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a=( )A.2 B.3C.4 D.56.(1)函数f(x)在x=x0处可导,则“f ′(x0)=0”是“x0是函数f(x)极值点”的________条件.(2)函数f(x)在(a,b)上可导,则“f ′(x)>0”是“f(x)在(a,b)上单调递增”的________条件.(3)函数f(x)在(a,b)上可导,则“f ′(x)≥0”是“f(x)在(a,b)上单调递增”的________条件.三、考向指导考点1 求函数的单调区间1.求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求 f ′(x),令f ′(x)=0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x)在各个开区间内的符号,根据f ′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.2.证明可导函数f(x)在(a,b)内的单调性的步骤(1)求 f ′(x).(2)确认 f ′(x)在(a,b)内的符号.(3)作出结论: f ′(x)>0时,f(x)为增函数; f ′(x)<0时,f(x)为减函数.例1 (2010年全国)已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.课堂过手练习:设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(1)a的值;(2)函数y=f(x)的单调区间.考点2 由函数的单调性求参数的取值范围已知函数的单调性,求参数的取值范围,应注意函数f(x)在(a,b)上递增(或递减)的充要条件应是 f ′(x)≥0(或 f ′(x)≤0),x∈(a,b)恒成立,且 f ′(x)在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有 f ′(x0)=0,甚至可以在无穷多个点处 f ′(x0)=0,只要这样的点不能充满所给区间的任何一个子区间.例2 已知函数f(x)=x3-ax-1,在实数集R上y=f(x)单调递增,求实数a的取值范围.课堂过手练习:已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R 内单调递增,求a 的取值范围;(3)是否存在a ,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.考点3 求已知函数的极值运用导数求可导函数 y =f(x)极值的步骤:(1)先求函数的定义域,再求函数 y =f(x)的导数 f ′(x);(2)求方程 f ′(x)=0的根;(3)检查 f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值.如果左负右正,那么 f(x)在这个根处取得极小值.例3 设f(x)=ex1+ax 2,其中a 为正实数.(1)当a =43时,求f(x)的极值点;(2)若f(x)为R 上的单调函数,求a 的取值范围.课堂过手练习:函数f(x)=x3-3x2+1在x =________处取得极小值.考点4 利用极值求参数已知函数解析式,可利用导数及极值的定义求出其极大值与极小值;反过来,如果已知某函数的极值点或极值,也可利用导数及极值的必要条件建立参数方程或方程组,从而解出参数,求出函数解析式.例4 设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.课堂过手练习:设函数f(x)=(x-a)2lnx,a∈R.若x=e为y=f(x)的极值点,求实数a.易错点求参数取值时出现典例:已知函数f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.(1)当函数在某个区间内恒有f ′(x)=0,则f(x)为常数,函数不具有单调性.∴f (x)≥0是f(x)为增函数的必要不充分条件.在解题中误将必要条件作充分条件或将既不充分与不必要条件误作充要条件使用而导致的错误还很多,在学习过程中注意思维的严密性.(2)函数极值是一个局部性概念,函数的极值可以有多个,并且极大值与极小值的大小关系不确定.要强化用导数处理单调性、极值、最值、方程的根及不等式的证明等数学问题的意识.(3)如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.纠错课堂练习:已知函数f(x)=x3+ax2+bx+c在x=1处取极值-2.(1)试用c表示a,b;(2)求f(x)的单调递减区间.1.与函数的单调性有关的问题(1)利用导数求函数的单调区间,可通过f ′(x)>0或f ′(x)<0来进行,至于区间的端点是否包含,取决于函数在端点处是否有意义,若有意义,则端点包含与不包含均可;若无意义,则必不能包含端点.(2)若函数f(x)在(a,b)上递增(或递减),则在(a,b)上f ′(x)≥0(或f ′(x)≤0)恒成立,若该不等式中含有参数,我们可利用上述结论求参数的范围,它蕴涵了恒成立思想.利用上述方法求得参数的范围后,要注意检验该参数的端点值能否使f ′(x)=0恒成立.若能,则去掉该端点值;否则,即为所求.2.与函数的极值有关的问题(1)求函数的极值点,可通过f ′(x)=0来求得,但同时还要注意检验在其两侧附近的导函数值是否异号.(2)若函数f(x)在x=x0处有极值,则一定有f ′(x0)=0,我们可利用上述结论求参数的值.。
导数的应用(单调性、极值、最值)
例5 求出函数 f ( x) x3 3x2 24x 20 的极值. 解 f ( x) 3x2 6x 24 3( x 4)(x 2) 令 f ( x) 0, 得驻点 x1 4, x2 2. f ( x) 6x 6, f (4) 18 0, 故极大值 f (4) 60,
单调区间为 (,1], [1,2],[2,).
通常用列表讨论。
例3 确定函数 f ( x) 3 x2 的单调区间.
解 D : (,).
f ( x) 2 , 33 x
( x 0)
y 3 x2
当x 0时,导数不存在.
当 x 0时,f ( x) 0, 在(,0]上单调减少;
当0 x 时, f ( x) 0, 在[0,)上单调增加;
解
f
(
x)
2
(
x
1
2) 3
( x 2)
3
当x 2时, f ( x)不存在. 但函数f ( x)在该点连续.
当x 2时,f ( x) 0;
2、若在 (a, b) 内 f '( x) 0,则 f ( x) 在 (a, b) 上单减.
例1 讨论函数 y ex x 1 的单调性.
解 y ex 1, 且 D (, ).
在(,0)内, y 0,
函数单调减少; 在(0,)内, y 0, 函数单调增加. 注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
如 果 存 在 着 点x0的 一 个 邻 域, 对 于 这 邻 域 内 的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性
题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。
导数与函数的单调性、极值、最值
[变式训练] (2017·北京卷)已知函数 f(x)=excos x-x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间0,π2上的最大值和最小值.
解:(1)因为 f(x)=excos x-x,所以 f(0)=1, f′(x)=ex(cos x-sin x)-1,所以 f′(0)=0, 所以 y=f(x)在(0,f(0))处的切线方程为 y=1. (2)f′(x)=ex(cos x-sin x)-1,令 g(x)=f′(x),
考点 2 利用导数求函数的最值(讲练互动) 【例】 (2019·广东五校联考)已知函数 f(x)=ax+ln x,其中 a 为常数. (1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值. 解:(1)易知 f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令 f′(x)=0,得 x=1. 当 0<x<1 时,f′(x)>0;当 x>1 时,f′(x)<0.
由题设知 f′(1)=0,即(1-a)e=0,解得 a=1. 此时 f(1)=3e≠0. 所以 a 的值为 1. (2)f′(x)=[ax2-(2a+1)x+2]ex =(ax-1)(x-2)ex. 若 a>12,则当 x∈(1a,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x)>0.
②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a, 当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞) 上单调递增,故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,f(x)在 x=ln a 处取得极小值 ln a,无极大 值.
导数用于单调性和极值问题
专题十四、导数用于单调性和极值问题题型一利用导数判断函数的单调性sin x n1.证明:函数f(x)= 在区间7,n上单调递减.x 2题型二利用导数求函数的单调区间2•求下列函数的单调区间.(1) f(x)= x3—x;(2)y = e x—x+ 1.3. 求函数y = x2—In x2的单调区间.题型三已知函数单调性求参数的取值范围a4. 已知函数f(x) = x2+ _(x丸,常数a€ R).若函数f(x)在x€ [2 , +8)上是单调递增的,x的取值范围.5. (1)已知函数f(x)=x3+ bx2+ cx + d的单调减区间为[—1,2],求b, c的值.(2)设f(x)= ax3+ x恰好有三个单调区间,求实数a的取值范围.题型四用单调性与导数关系证不等式16. 当x >0时,证明不等式ln(x+ 1) > x —;x2.n 17. 当0<x<2时,求证:x—sin x<y.题型五、函数的极值问题8.下列函数存在极值的是( )C . y = 3x — 1 29 .设函数 f (x )= '+ In x ,则()x1x = 2为f (x )的极大值点 1x =;为f (x )的极小值点x = 2为f (x )的极大值点 x = 2为f (x )的极小值点10 •若函数y = f (x )是定义在R 上的可导函数,则A .充分不必要条件B •必要不充分条件C •充要条件D .既不充分也不必要条件 11 .函数y = x e x 的最小值为12 .若函数f (x )= -^(a >0)在[1 ,+R ]上的最大值为」,则a 的值为x 2 + a 3题型六、利用极值求参数范围n 3 n13.已知函数f (x )= a sin x — b cos x 在x = 一时取得极值,则函数 y = f (— x )是()4 4A •偶函数且图象关于点(n, 0)对称 3 nB .偶函数且图象关于点(丁, 0)对称B .y = x 2f '(x o )= 0是x o 为函数y = f (x )的极值点的3 nC•奇函数且图象关于点q-, 0)对称D .奇函数且图象关于点(n, 0)对称14 .已知函数f(x)= x3+ ax2+ bx + c, f(x)在x = 0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性.(1) 求实数b的值;(2) 求实数a的取值范围.题型七、导数用于解决实际问题15 .用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为()A. 6B. 8C. 10 D . 1216 .一工厂生产某型号车床,年产量为N台,分批进行生产,每批生产量相同,每批生产的准备费为C2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C1元,求在不考虑生产能力的条件下,每批生产该车床_________ 台,一年中库存费和生产准备费之和最小.题型八、图像问题17.二次函数y= f(x)的图象过原点且它的导函数y=f '(x)的图象是如图所示的一条直线,y=f(x)的图象的顶点在()A •第i象限B.第n象限C .第川象限D .第W象限18.设函数f(x)在定义域内可导,y = f(x)的图象如下图所示,则导函数y= f '(x)的图象可能是( )巩固练习:119.定义域为R的函数f(x)满足f(1)= 1,且f(x)的导函数f '(x)>2,则满足2f (x)<x + 1的X 的集合为()A . {x|- 1<x<1} B. {x|x<1}C. {x|x< —1 或x>1} D . {x|x>1}n 120 .函数f(x)= sin x+ 2xf'(3), f '(x)为f(x)的导函数,令a = —;, b = log 32,则下列关系正3 2确的是()A . f(a)>f(b) B. f(a)<f(b)C. f(a) = f(b) D . f(|a|)< f(b)21. 若关于x的方程x3—3x+ m = 0在[0,2]上有根,则实数m的取值范围是()A . [ —2,2] B. [0,2]C. [ —2,0] D . (— s,—2) U (2 ,+^ )1 122. 已知函数f(x) = ax3+ ax2—2ax + 2a +1的图象经过四个象限,则实数a的取值范围是3 223. 已知函数f(x)= x3—3x,若过点A(1 , m)(m工一2)可作曲线y = f(x)的三条切线,则实数m的取值范围为_________三、解答题24 .求证:x>0 时,1 + 2x<e 2x.x —125.设函数f(x)= a ln x + ,其中a为常数.x +1(1)若a = 0,求曲线y= f(x)在点(1 , f(1))处的切线方程;⑵讨论函数f(x)的单调性.26 .已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y= 4 —x2在x轴上方的曲线上,求矩形的面积最大时的边长.x a327.已知函数f (x ) = 4 + - — ln x —-,其中a € R ,且曲线y = f (x )在点(1 , f (i))处的切线垂直于 4 X2 1y ="X .(1) 求a 的值;(2) 求函数f (x )的单调区间与极值.28 .设函数 f (x )= e x — ax — 2.(1) 求f (x )的单调区间;(2) 若a = 1 , k 为整数,且当x >0时,(x — k )f '(x ) + x + 1>0,求k 的最大值.专题十四、导数用于单调性和极值问题参考答案x cos x — sin x n1.证明f '(x )= : ,又 x € 一,冗, x 2 2贝U cos x <0 ,「.x cos x — sin x <0 ,n•f(X )<0 ,「.f (x )在;,n 上是减函数.2. 解 (1)f'(x ) = 3x 2 — 1 = (一 3x + 1)( ;3x — 1),令 f '(x )<0,贝U x € — , .3 3• f (x ) = x 3 — x 的单调增区间为—o.令 f '(x )>0 ,则 x € 一 oo,-单调减区间为33,(2)y '毛x — i ,令 y >o ,即 e x — 1>0 ,则 x € (0 ,+^ );令 y '<0,即 e x —1<0,贝U x € ( — g, 0), .•.y = e x — x + 1的单调增区间(0,+g ),单调减区间为(一g, 0).23.解 •••函数 y = f (x )= x 2— In x 2 的定义域为(—g,0) U (0,+g ),又 f '(x ) = 2x — _ =x2 x 2 — 1 2 x — 1 x + 1x = x ,由上表可知,函数 f (x ) = x 2 — In x 2在区间(一1,0) , (1 ,+g )上单调递增;在区间(一g, —1), (0,1)上单调递减.a 2x 3 — a4.解 f'(x )= 2x — 7 = 2—x 2 x 22x 3— a•/x 2>0 , .2x 3— a >0 , •a W 2x 3在x € [2 ,+g )上恒成立..•.a W (2 X 3)min .•••X € [2 ,+g ), y = 2x 3是单调递增的, .•.(2X 3)min = 16 ,「.a W 16.2x 3— 16当 a = 16 时,f'(x ) = ------- 2— >0(x € [2 ,+g ))有且只有 f'(2) = 0 ,.a 的取值范围是(一x 2g, 16].5. 解 (1) ••函数f (x )的导函数f'(x ) = 3x 2 + 2bx + c ,由题设知—1< x <2是不等式3x 2 + 2bx + c <0的解集.• —1,2是方程3x 2 + 2bx + c = 0的两个实根,2c•-1 +2=-3b ,(一1)x2=3,3即 b = — _, c = — 6.2(2) vf '(x ) = 3ax 2+ 1,且f (x )有三个单调区间, •方程f '(x ) = 3ax 2 + 1 = 0有两个不等的实根, ••A= 02 — 4 x 1 x 3a >0 ,―a <0.要使f (x )在[2 ,+g )上是单调递增的,则f '(x )» 在x € [2 ,+g )时恒成立,x 2>0 在 x € [2 , + g )时恒成立.•••a 的取值范围为(一3 0).16. 审题指导利用导数证明不等式,首先要构造函数f (x ) = ln(x + 1) -x +2x 2,证明f (x )在(0, + 3)上单调增,由f (x )> f (0) = 0证得.1[规范解答]令 f (x ) = ln(x + 1) — x + 2x 2, (4 分) 1 x 2贝U f '(x ) = 一 1 + x = .(6 分)1 + x 1 + x 当 x € (0 ,+3 )时,f '(x ) >0 , •••f(x )在(0,+3)上是增函数.(8分) 于是当 x > 0 时,f (x ) > f (0) = 0 ,1•••当 x >0 时,不等式 In(x + 1) >x — [x 2成立.(12 分) 1 n7. 证明 设 g (x ) = x — sin x —-x 3, x € 0, 一,6 21 xx —_x 2= 2 sin 2_— 2 2n—,二0 v sin x v x ,2x x「•sin 2;< 2 2,:g '(x ) v 0,n•••g(x)在0, 2上单调递减,1 /.g (x )v g (0) = 0 ,.「x — sin x v 一x 3.6 8. [答案]D[解析]画出图像即可知 y = x 2存在极值f (0) = 0. 9. [答案]D[解析]本节考查了利用导数工具来探索其极值点问题.f '(x )=—爲 + =一(1 — _) = 0 可得 x = 2. x 2 x x x当 0<x <2 时,f '(x )<0 , f (x )递减,当 x >2 时f '(x )>0 , /f (x )单调递增.所以x = 2为极小值点.对于含有对数形式的函数在求导时,不要忽视定义域.g (x ) = 1 — cos •/x € 0 ,当 x < — 1 时,y '<0,当 x > — 1 时 y >0 1「•y min = f (— 1)=——e12.[答案],:3 — 1x 2 + a — 2x 2a — x 2厂[解析]f'(x ) =;; =2.当 x>- a 时 f'(x )<0 ,x 2 + a 2 x 2 + a 2减的,当一"a<x <” a 时,f '(x )>0 , f (x )在(一"a ,“ a ) 讨=F ,a = ^<1,不合题意.•••Kg = f ⑴=土 =寸,解得 a = 3一 1.13. [答案]Dn[解析]■•f(x )的图象关于x = 一对称,4n• .f (0) =f (2),••- b = a ,/•f(x ) = a si n x — b cos x = a s in x + a cos x = 2a si n( x + ;),3 n3 n n 一一— x )= 2a sin( : — x +;) =2a sin( n —x ) =2a sin x .3 n 显然f ( — x )是奇函数且关于点(n, 0)对称,故选D.4 14.[解析] ⑴由导数公式表和求导法则得, f '(x ) = 3x 2+ 2ax + b ,10.[答案][解析] 如y = x 3, y ' =3x 2, y '|x = o = 0,但x = 0不是函数y = x 3的极值点.11.[答案][解析] y '#x + l)e x= 0, x =— 1.f (x )在(-.a ,+^ )上是递上是递增的.当 x = a 时,fC a )因为f (x )在x = 0处取得极值,所以f'(0) = 0 ,即得b = 0.2 2⑵令f '(x )= 0,即卩3x 2+ 2ax = 0,解得x = 0或x = -;a .依题意有一;a >0.3 3 因为函数在单调区间[0,2]和[4,5]上具有相反的单调性,15. [答案]B[解析]设截去的小正方形的边长为x cm ,铁盒的容积为 V cm 3,由题意,得 V = x (48—2x )2(0< x <24) , V '^2(24 — x )(8 — x ).令 V '=0,则在(0,24)内有 x = 8,故当 x = 8 时,V 有最大值.17. [答案]Ab+ b ,由 y = f '(x )的图象可知,2a <0 , b >0 ,「.a <0 , b >0,「.一—>0 ,2 a 故选A. 18. [答案]A[解析]f (x )在(—g, 0)上为增函数,在(0,+^ )上变化规律是减T 增T 减,因此 f '(x )的图象在( — m, 0)上,f (x )>0,在(0,+g )上f '(x )的符号变化规律是负T 正T 负,故选所以应有 22 一产4,解得一6<a <-3.[解析] N设每批生产x 台,则一年生产二批.一年中库存费和生产准备费之和 y = C i x +C 2N (0< x <N ).xC 2Ny '毛i -=.由 y ' =0 及 0<x <N ,解得x 2(台).根据问题的实际意义, y 的最小值是存在的,且 y '=0有唯一解.故x =C 2N百台是使费用最小的每批生产台数.[解析]设 f (x ) = ax 2 + bx + C ,'••二次函数 y = f (x )的图象过原点,二 c = 0,-f '(x ) = 2ax4ac — b 2 b 2—47°,4aC 2N16.[答案]C iA.19. [答案]B1 [解析]令g(x) = 2f(x) —x— 1 ,・.・f '(X)>2,•••g'(x)= 2f (x)—1>0 ,「.g(x)为单调增函数,•••f(l) = 1 ,「.g(l) = 2f(l) —1 —1 = 0,•••当x<1 时,g (x)<0,即2f(x)<x+ 1,故选 B.20. [答案]An[解析]'-f '(x)= cos x + 2f '( 一),3n n n•••f '(3)= cos 3 +2f‘(3),/•f(x) = si n x —x.又f (x) = cos x— 1 <0, 故f(x)在R上递减.1又'一Fog 32 ,2f 1 <0,•••f(x ) = 0 在[0,2]上有解,•••f 2 >0 ,6322. [答案](-5,-石)[解析]f '(x )= ax 2+ ax — 2a = a (x — 1)(x + 2), 由f (x )的图象经过四个象限知,若a >0,贝Uf — 2<0 ,此时无解;若a <0,则f 1 >0 ,23. [答案](—3 , — 2)[解析]f '(x )= 3x 2— 3,设切点为 P (X 0, y °),则切线方程为 y — (x 3— 3x °)= (3x 6 — 3)(x —X 0),T 切线经过点 A (1 , m ),:m — (x 0 — 3x °) = (3x 0 — 3)(1 — X 0),;m = — 2x 3+ 3x 0 — 3 , m z=-6x 0 + 6x 0, •当0< X 0<1时,此函数单调递增,当X 0<0或X 0>1时,此函数单调递减, 当X 0 = 0时,m = — 3,当X 0 = 1时,m = — 2,•当一3< m < — 2时,直线 y = m 与函数y =—2x 3+ 3x 0 — 3的图象有三个不同交点,从而X 0有三个不同实数根,故过点 A (1 , m )可作三条不同切线,• m 的取值范围是(一3, — 2).24. [分析]禾U 用函数的单调性证明不等式是常用的方法之一,而函数的单调性,可利用其导 函数的符号确定.[解析]设 f (x ) = 1 + 2x — e 2x , 则 f'(x ) = 2 — 2e 2x = 2(1 — e 2x ).当 x >0 时,e 2x >1 , f '(x ) = 2(1 — e 2x )<0 ,m — 2<0,m• —2 <m <2.f — 2 >0 , f 1<0 ,6 3•—5<a <—材,综上知, 6 3 < a < — . 5 16所以函数f(x) = 1 + 2x —e2x在(0,+^ )上是减函数.当 x >0 时,f (x )<f (O) = 0,即当 x >0 时,1 + 2x — e 2x <0,即 1 + 2x <e 2x . 25. [解析](1)f (x )的定义域为(0,+^ )a x +1— x — 1 a 2 f '(x ) = _+" 2 = - + - 2x x +1 1 2 3x x + 1 22 1•••a = 0,「.f '(x ) = ―,根据导数的几何意义,所求切线的斜率k = f '(1)=-,I而 f (1) = 0.1•••所求切线方程为y = [(x — 1), 即 x — 2y — 1 = 0.21 ° 当a = 0 时,f '(x )=;>0 ,x + 1•••f(x )在(0,+s )递增.令 g (x ) = ax 2 + 2(a + 1)x + aA = 4( a + 1)2 — 4a 2 = 8a + 4- a + 1—2 a + 12 ° 当 a >0 时,A >0 ,此时 g (x ) = 0 的两根 X 1 =:, X 2 =a—a + 1 +" 2a + 1a■/a>0 ,「.X 1<0 , X 2<0./•g(x )>0 ,:x € (0,—g ),「.f '(x )>0 故f (x )在(0,+s )递增.13°当锐时,A= 8a + 4® 即时,g (x)切,/f 3°.a (2) f '(x )=-x + 12+ 2x x x + 1 2ax 2+ 2 a + 1 x + a1当 A >0,即- 2<a <° 时,•••令 f '(X )>0 , X € (X 1 , X 2),f '(x )<0 , X € (0 , X 1) U (X 2,+^)• ••f(X )在(X 1 , X 2)递增,在(0, X 1)和(X 2 ,+8 )上递减. 综上所述:当a>0时,f (x )在(0,+^ )递增. 1当一2< a <0 时,f (x )在(X 1, X 2)递增,— a + 1+M 2a + 1 — a + 1—yl 2a + 1在(0 ,X 1)禾廿(X 2, +m)递减(其中 X 1 =:,X 2=:).aa1当 a w —2时,f (x )在(0,+m)递减.26. [分析]如图,设出AD 的长,进而求出|AB |表示出面积S ,然后利用导数求最值.[解析]设矩形边长为 AD = 2x ,则|AB | = y = 4 — x 2,则矩形面积 S = 2x (4 — x 2)(0< x <2), 即 S = 8x — 2x 3 ,「.S'= — 6x 2,X 1 =X 2 =—a +1+ -• 2a+ 1>0—a +1—2a + 1>083时,矩形的面积最大.[点评]本题的关键是利用抛物线方程,求出矩形的另一边长.27.[解析] ⑴函数f (x )的定义域为(0,+^ ),1 a 1f'(x )= 一一二一一,由导数的几何意义,且切线与1 y = x 垂直. 21 5得「⑴蔦—a - 1 一 2,心=;•令f '(x ) = 0解得x =— 1或5, — 1不在定义域之内故舍去.•••当 x € (0,5) , f '(x )<0 ,「.f (x )在(0,5)递减. 当 x € (5 , +s ), f '(x )>0 ,「.f (x )在(5 , +s )递增. 5 1 3•••f (x )在 x = 5 时取极小值 f (5) = 一+ 一- ln5 —_=— ln5.4 4228.[分析][解析](1)f (x )的定义域为(— °°,+^° ),f '(x )= e x — a .若a w 0,则f (x )>0,所以f (x )在(— s,+s )单调递增. 若 a >0,则当 x € (— g, In a )时,f '(x )<0 ; 当 x € (In a ,+g )时,f '(x )>0 ,x 5 3 ⑵由⑴知 f (x )=4+4;-lnx -2,•f (x )蔦-4x 21 x2 — 4x - 5x 4x 22 — 2令S'=0,解得X 1 =—尸,X 2=—尸(舍去)寸3 寸3S 取得最大值,此时,即矩形的边长分别为所以f (x )在( — g, In a )单调递减,在(In a ,+^ )单调递增.⑵由于 a = 1,所以(x — k )f '(x )+ x + 1 = (x — k )(e x — 1)+ x + 1.故当 x >0 时,(x — k )f '(x )+ x + 1>0 等价于—x e x — 1e x则 g ,(x)=+ 1 =-由(1)知,函数 h (x ) = e x — x —2 在(0,+g )单调递增.而 h (1)<0 , h (2)>0,所以 h (x ) 在(0 , +g )存在唯一的零点.故g '(X )在(0 ,+g )存在唯一的零点.设此零点为a ,则a € (1,2).当 x € (0, a 时,g ((x )<o ; 当 x € ( a , +g )时,g '(x )>0.所以g (x )在(0,+g )的最小值为g ( a). 又由 g ( a)= 0,可得 e a= a + 2 , 所以 g ( a)= a + 1 € (2,3).由于①式等价于 k <g (a),故整数k 的最大值为2.1•••f (-;)>f (log 32), 即 f (a )> f (b ). 21. [答案]A[解析] 令 f (x ) = x 3 — 3x + m ,则 f '(x )= 3x 1 2— 3 = 3(x + 1)(x — 1),显然当 x < — 1 或x >1 时,f '(x )>0 , f (x )单调递增,当一1< x <1 时,f '(x )<0 , f (x )单调递减,•在 x =— 1 时,f (x ) 取极大值f ( — 1) = m + 2,在x = 1时,f (x )取极小值f (1) = m — 2.故f (x )在(0,+s )递减.x + 1k<L +x(x >0).e x — x —2 e x — 1 2。
函数的单调性与极值点的求解
函数的单调性与极值点的求解函数的单调性是指在定义域内,函数值的变化趋势是否具有一致性。
而极值点则是指函数在某一区间内取得最大值或最小值的点。
确定函数的单调性和找出极值点对于理解函数的性质和解决实际问题具有重要意义。
本文将介绍如何判断函数的单调性以及如何求解函数的极值点。
一、函数的单调性判断函数的单调性的方法有两种:用导数和用函数的图像。
1. 用导数判断函数的单调性对于函数y=f(x),在区间(a,b)上可导,如果在(a,b)上f'(x)>0,则函数在该区间内单调递增;如果f'(x)<0,则函数在该区间内单调递减。
举例:考虑函数y=x^2,在整个实数集上可导。
计算导数f'(x)=2x,可以发现当x>0时,f'(x)>0,函数递增;当x<0时,f'(x)<0,函数递减。
2. 用函数的图像判断函数的单调性根据函数的图像,如果图像从左往右逐渐上升,则函数在该区间内单调递增;如果图像从左往右逐渐下降,则函数在该区间内单调递减。
举例:观察函数y=x^2的图像,可以看到当x>0时,函数的图像从左往右逐渐上升;当x<0时,函数的图像从左往右逐渐下降。
函数的单调性判断对于求解函数的极值点也是有帮助的。
二、极值点的求解函数的极值点包括极大值点和极小值点,可以通过以下步骤求解:1. 求函数的导数对于函数y=f(x),求它的一阶导数f'(x)。
如果函数存在极值点,那么在该点处导数等于零或者不存在。
2. 求解导数为零的方程根据求导得到的方程f'(x)=0,解方程得到使得导数为零的点,即可能的极值点。
3. 求解导数不存在的点导数不存在的点也可能是极值点,需要检查这些点是否满足极值点的条件。
4. 比较函数值在求解得到的可能的极值点中,比较这些点处的函数值,找出函数在该点处的最大值或最小值,即确定极值点。
举例:考虑函数y=x^3-3x^2+2x,在整个实数集上可导。
导数与函数单调性和极值最值的关系
导数与函数单调性和极值最值的关系一、知识导学1.函数的单调性与导数的关系在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。
2.函数的单调性与极值的关系一般地,对于函数y =f(x),且在点a 处有f ′(a)=0.(1)若在x =a 附近的左侧导数小于0,右侧导数大于0,则f(a)为函数y =f(x)的极小值.(2)若在x =a 附近的左侧导数大于0,右侧导数小于0,则f(a)为函数y =f(x)的极大值.求函数)(x f 极值的步骤:①求导数)(x f '。
求方程0)(='x f 的根.②求方程0)(/=x f 的根.③列表;④下结论。
3.函数的最大值和最小值(1)设)(x f y =是定义在区间[]b a ,上的函数,)(x f y =在),(b a 内有导数,求函数)(x f y =在[]b a ,上的最大值与最小值,可分两步进行.①求)(x f y =在),(b a 内的极值.②将)(x f y =在各极值点的极值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(2)若函数)(x f 在[]b a ,上单调增加,则)(a f 为函数的最小值,)(b f 为函数的最大值;若函数)(x f 在[]b a ,上单调递减,则)(a f 为函数的最大值,)(b f 为函数的最小值. 注意:(1)在求函数的极值时,应注意:使导函数)(x f '取值为0的点可能是它的极值点,也可能不是极值点。
例如函数3)(x x f =的导数23)(x x f =',在点0=x 处有0)0(='f ,即点0=x 是3)(x x f =的驻点,但从)(x f 在()+∞∞-,上为增函数可知,点0=x 不是)(x f 的极值点.(2) 在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值,然后通过对函数求导,发现定义域内只有一个点使得导函数为0,那么立即可以断定在这个点处的函数值就是最大(小)值。
导数与方程单调性和极值点的关系
导数与方程单调性和极值点的关系导数是微积分中的一个重要概念,它可以帮助我们研究函数的单调性和极值点。
本文将探讨导数与方程单调性以及极值点之间的关系。
方程单调性与导数在研究方程的单调性时,我们可以利用导数的概念。
一个函数在某个区间上是递增的,意味着它的导数在该区间上大于零;而一个函数在某个区间上是递减的,意味着它的导数在该区间上小于零。
通过这种方式,我们可以将方程的单调性与导数联系起来。
例如,考虑一个函数f(x),它在区间[a, b]上是递增的。
这意味着f'(x) > 0,其中f'(x)表示函数f(x)的导数。
因此,在区间[a, b]上,方程f'(x) = 0没有解。
这是因为导数大于零表明函数在该区间上是递增的,不可能同时存在一个点使得导数等于零。
同样地,如果一个函数在某个区间上是递减的,意味着它的导数在该区间上小于零。
在这种情况下,方程f'(x) = 0可能有解,因为导数小于零表明函数在该区间上是递减的,可能存在一个点使得导数等于零。
极值点与导数极值点是函数在某个区间上的最大值或最小值点。
导数可以帮助我们确定一个函数的极值点的位置。
考虑一个函数f(x)在区间[a, b]上有一个极值点。
如果这个极值点是一个局部最小值点,那么在该点处的导数f'(x) = 0。
同样地,如果这个极值点是一个局部最大值点,那么在该点处的导数f'(x) = 0。
这是因为极值点的定义需要函数在该点的导数为零。
然而,需要注意的是,导数为零的点并不一定是极值点。
在寻找极值点时,我们还需要考虑导数的符号变化。
如果一个函数在某个点的左侧导数大于零,而在右侧导数小于零,那么该点就是一个局部最大值点。
相反,如果一个函数在某个点的左侧导数小于零,而在右侧导数大于零,那么该点就是一个局部最小值点。
综上所述,导数与方程的单调性和极值点之间存在密切关系。
通过导数,我们可以确定一个函数在某个区间上的单调性以及极值点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮复习导数 (一) 2015. 02. 07一、 运用导数研究函数的单调性 单调区间:(1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图:答题步骤: 第一步:求定义域; 第二步:求)(x 'f ;第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性,(列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。
例1:(2012西城一模)已知函数()e (1)ax af x a x=⋅++,其中1-≥a . 求)(x f 的单调区间.解:2(1)[(1)1]()eaxx a x f x a x++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分当1a ≠-时,令()0f x '=,解得1x =-,或11x a =+. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+; 单调递增区间为(1,0)-,1(0,)1a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +; 单调递增区间为(,1)-∞-,1(,)1a +∞+.…………13分1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。
例2:(2012-2013朝阳第一学期期末)已知函数1()()2ln ()f x a x x a x=--∈R .求函数()f x 的单调区间.解:函数()f x 的定义域为(0,)+∞.222122()(1)ax x af x a x x x -+'=+-=(1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立,则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ∆=-, (ⅰ)若01a <<,由()0f x '>,即()0h x >,得x <或x >;………………5分由()0f x '<,即()0h x <x <<6分所以函数()f x 的单调递增区间为1(0,)a 和1()a +∞,单调递减区间为11(a a.……7分 (ⅱ)若1a ≥,()0h x ≥在(0,)+∞上恒成立,则()0f x '≥在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递增.……8分2)分类讨论的特点:二次项系数不确定 ,一元二次方程解的个数不确定 。
例3:2011年海淀期末已知函数1()ln(1)1af x x ax x -=+-++ (12a ≥). 求函数()f x 的单调区间.解:2211(21)()1(1)(1)a x ax a f x a x x x --+-'=--=+++,1x >-, .......................................2分 令()0f x '=,得到1212,0x x a =-= , 由12a ≥可知120a-≤ ,即10x ≤....................5分 ① 即12a =时,12120x x a =-==.所以,2'2()0,(1,)2(1)x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当112a <<时,1120a-<-<,即1210x x -<<=, 所以,在区间1(1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分故 ()f x 的单调递减区间是1(1,2)a--和(0,)+∞,单调递增区间是1(2,0)a -. .........10分③当1a ≥时,1121x a=-≤-,所以,在区间(1,0)-上()0f x '>; ................................11分在区间(0,)+∞上()0f x '< , ...............................12分故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. ............................13分 综上讨论可得:当12a =时,函数()f x 的单调递减区间是(1,)-+∞; 当112a <<时,函数()f x 的单调递减区间是1(1,2)a--和(0,)+∞,单调递增区间是1(2,0)a -;当1a ≥时,函数()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞.3)分类讨论的特点:二次函数的开口已确定 ,两个根大小不确定 (相等和小于两种情况),一根是否在目标区域不确定 ,需要讨论。
例4:已知函数2()ln(1)(0)2k f x x x x k =+-+≥.求()f x 的单调区间. 对于导函数'(1)()1x kx k f x x+-=+符号的讨论.由于10x +>是函数定义域的要求,可以将对'(1)()1x kx k f x x+-=+符号的讨论进一步化简为只需讨论()(1)g x x kx k =+-的符号了.而已知条件限定了0k ≥,从而决定了函数的类型是一次函数或二次函数,也就决定了分类讨论标准分为两大类:0k =和0k >.当0k >时,二次函数的讨论涉及零点10x =和21kx k-=大小的比较,还需分01,1,0k k k <<=>三种情况. 解:(1)'()1x kx k f x x +-=+,(1,)x ∈-+∞. 当0k =时,'()1xf x x=-+.所以,在区间(1,0)-上,'()0f x >;在区间(0,)+∞上,'()0f x <. 故()f x 得单调递增区间是(1,0)-,单调递减区间是(0,)+∞.当01k <<时,由(1)'()01x kx k f x x+-==+,得10x =,210kx k -=>所以,在区间(1,0)-和1(,)kk-+∞上,'()0f x >;在区间1(0,)k k -上,'()0f x < 故()f x 得单调递增区间是(1,0)-和1(,)kk-+∞,单调递减区间是1(0,)k k -. 当1k =时,2'()1x f x x=+.故()f x 得单调递增区间是(1,)-+∞.当1k >时,(1)'()01x kx k f x x +-==+,得11(1,0)kx k-=∈-,20x =.所以,在区间1(1,)kk--和(0,)+∞上,'()0f x >;在区间1(,0)k k -上,'()0f x <. 故()f x 得单调递增区间是1(1,)kk--和(0,)+∞,单调递减区间是1(,0)k k - 综上讨论可得: 略 4)分类讨论的特点:二次项系数不确定 ,二次方程的两根大小不确定,需要讨论。
例5:(2011年) 已知函数2()()e .xkf x x k =-(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有1()ef x ≤,求k 的取值范围.解:(Ⅰ)221()()e .xk f x x k k'=-令()00f '=,得x k =±. 当k >0时,()()f x f x '与的情况如下:. 当k <0时,()()f x f x '与的情况如下:,k -∞-. (Ⅱ)当k >0时,因为111(1)ee kf k ++=>,所以不会有1(0,),().ex f x ∀∈+∞≤ 当k <0时,由(Ⅰ)知()f x 在(0,+∞)上的最大值是24().ek f k -=所以1(0,),()e x f x ∀∈+∞≤等价于241().e e k f k -=≤ 解得102k -<≤.故当1(0,),()e x f x ∀∈+∞≤时,k 的取值范围是1[,0).2-5)分类讨论的特点:二次项系数不确定 ,二次方程的两根大小不确定,需要讨论。
当讨论二次项系数的符号时,就可进一步确定两个根的大小关系 。
二、已知含参函数在区间上的单调或不单调或存在单调区间,求参数的取值范围.练习:1.已知函数()(2)f x x bx b b R =++∈, 若()f x 在区间1,2⎛⎫ ⎪⎝⎭0上单调递增,求b 的取值范围.2. 已知函数2()(2) =-ax f x ax x e ,a 为常数,且 (0)≥a 在区间)2上单调递减,求a 的取值范围.3. 已知函数() (0)=≠kx f x xe k ,在区间()1,1-上单调递增,求k 的取值范围.4. 已知函数21()2ln 2=-+f x x ax x 在(0,+∞)上不单调,求实数a 的取值范围 。
5. 设函数2()ln ()=+-f x x x a , ()∈a R 若函数()f x 在[1,2]上存在单调递增区间,求实数a 的取值范围.例6:已知函数ax x x f -+=21)((0<a <1),求证()f x 在[0,+∞)上不单调。
三、函数的极值点.1.(2013年湖北)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( ) A.121()0,()2f x f x >>- B .121()0,()2f x f x <<- C .121()0,()2f x f x ><- D .121()0,()2f x f x <>-2.(2010北京文科)设函数()323a f x x bx cx d =+++,()0a >,且方程()'90f x x -=的两个根分别为1,4. 若()f x 在(),-∞+∞内无极值点,求a 的取值范围.3.设函数()()21f x x aIn x =++有两个极值点,且12x x <(1)求a 的取值范围,并讨论()f x 的单调性; (II )证明:()21224In f x ->4. [2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.5.[2014·四川卷] 已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.6.[2014·湖南卷] 已知常数a>0,函数f(x)=ln(1+ax)-2x x+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.。