数值分析期末复习总结

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值分析期末复习(整理版)

数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。

厦门大学 数值分析 期末考试复习整理

厦门大学 数值分析 期末考试复习整理

y i 1 y i hf (x i ,y i )
9.2.2
梯形公式
y i 1 y i
h
2
f(x ,y
i
i
) f(x i 1 ,y i 1 )
法方程?
(0 ,0 ) (0 ,1 ) ( , ) (1 ,1 ) 1 0 ( n ,0 ) ( n ,1 )
曲线拟合 (1) 直线拟合
(0 , n ) (1 , n ) ( n , n )
a0 (f ,0 ) a1 (f ,1 ), an (f , n )
(2) 多项式拟合 对于给定的一组数据
xi , yi , i 1, 2,
,m
,寻求次数不超过 n (n<<m ) 的多项式,
y a0 a1x a2 x
2
正规方程组
an x
n
a0 m a1 xi an xin yi 2 n 1 a x a x a x xi yi 0 i 1 i n i a0 xin a1 xin 1 an xi2 n xin yi
由插值多项式的唯一性可知 Nn(x) Ln(x),故其余项也相同。 定理:Newton 插值多项式的余项为
Rn(x)= f[x0 ,x1,… xn, x] n+1(x) 其中n+1 (x)=(x - x0)(x - x1 )(x - x2 )…(x - xn)
注:一般当 x 靠近 x0 时用前插,靠近 xn 时用后插,故两种公式亦称为表初公式和表末公式。 Newton 向前差分插值公式
2, ,m ,设拟合直线为: y(x ) a0 a1x ,则正规方程为: 已知数据点: x i ,y i ,i 1,

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析考试复习总结汇总

数值分析考试复习总结汇总

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1)(2)解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析考试复习总结

数值分析考试复习总结

数值分析考试复习总结 Last revised by LE LE in 2021第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段 在哪些阶段将有哪些误差产生答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析期末复习-福大研究生版

数值分析期末复习-福大研究生版

数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章 误差与有效数字一、 有效数字1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。

2、 两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为4、 考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3)二、 避免误差危害原则 1、 原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a )(2) 避免相近数相减(方法:有理化)eg. 或(3) 减少运算次数(方法:秦九韶算法)eg.P20习题14三、 数值运算的误差估计 1、 公式:(1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时除以f (x *)) eg.P19习题1、2、5(2) 多元函数(P8)eg. P8例4,P19习题4第二章 插值法一、 插值条件1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一二、 拉格朗日插值及其余项1、 n 次插值基函数表达式(P26(2.8))2、 插值多项式表达式(P26(2.9))3、 插值余项(P26(2.12)):用于误差估计*(1)11102n r a ε--≤⨯;x εx εx εx ++=-+();1ln ln ln ⎪⎪⎭⎫ ⎝⎛+=-+x εx εx x cos 1-2sin 22x =n i y x P ii n ,,2,1,0)(Λ==4、 插值基函数性质(P27(2.17及2.18))eg.P28例1三、 差商(均差)及牛顿插值多项式 1、 差商性质(P30):(1) 可表示为函数值的线性组合(2) 差商的对称性:差商与节点的排列次序无关 (3) 均差与导数的关系(P31(3.5)) 2、 均差表计算及牛顿插值多项式四、埃尔米特插值(不用背公式) 两种解法:(1) 用定义做:设P 3(x)=ax 3+bx 2+cx+d ,将已知条件代入求解(4个条件:节点函数值、导数值相等各2个)(2) 牛顿法(借助差商):重节点eg.P49习题14 五、三次样条插值定义(1) 分段函数,每段都是三次多项式(2) 在拼接点上连续(一阶、二阶导数均连续) (3)考点:利用节点函数值、导数值相等进行解题第三章 函数逼近与曲线拟合一、 曲线拟合的最小二乘法解题思路:确定ϕi ,解法方程组,列方程组求系数(注意ϕi 应与系数一一对应)eg.P95习题17nj y x S j j ,,1,0,)(Λ==形如y=ae bx 解题步骤: (1) 线性化(2)重新制表(3)列法方程组求解(4)回代第四章 数值积分与数值微分一、 代数精度 1、 概念:如果某个求积公式对于次数不超过m 的多项式准确成立,但对于m+1次多项式不准确成立,则称该求积公式具有m 次代数精度 2、 计算方法:将f(x)=1,x,x 2, …x n 代入式子求解 eg.P100例1二、 插值型的求积公式求积系数定理:求积公式至少具有n 次代数精度的充要条件是:它是插值型的。

(完整版)数值分析考试复习总结汇总,推荐文档

(完整版)数值分析考试复习总结汇总,推荐文档

10
100
误差估计:
f
max | f (x) fh (x) |
(x ih) (x (i 1)h) . 2! ixx(i1)h

第三章
最佳一致逼近:(了解) 最佳平方逼近
主要分两种情形:
1. 连续意义下
在空间 L2[a,b]中讨论
2. 离散意义下
在 n 维欧氏空间 Rn 中讨论,只要求提供 f 的样本值
n (x)
(x
xi
)
n
(xi
)
ji
n
n
其中: n (x) (x x j ), n xi (xi x j ) .
j0
j0
ji
例 1 n=1 时,线性插值公式
P1 ( x)
y0
(x x1) (x0 x1)
y1
(x x0 ) (x1 x0 )

例 2 n=2 时,抛物插值公式
P2 (x)
可得: L3 (x) x 2 (x 1 2)
方法二. 令
L3 (x) x(x 1 2) ( Ax B)

L3
(1)
3 2

L3 (1)
1, 2
定 A,B
(称之为待定系数法)

15.设 f (x) x2 ,求 f (x) 在区间[0,1] 上的分段线性插值函数 fh (x) ,并估计误差, 取等距节点,且 h 1/10 .
(2)
2x ( x 1 x
x 1 x) .
(3) 1 cos x sin 2 x sin x .

x
x(1 cos x) 1 cos x
第二章
拉格朗日插值公式(即公式(1))

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

15
Lagrange插值
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
1, j k lk ( x j ) 0, j k
则称 lk(x) 为节点 x0 , x1 , … , xn 上旳拉格朗日插值基函数
16
线性与抛物线插值
两种特殊情形
x0 ƒ(x0)
x1 ƒ(x1) ƒ[x0, x1]
x2 ƒ(x2) ƒ[x1, x2] ƒ[x0, x1, x2]
x3 ƒ(x3) ƒ[x2, x3] ƒ[x1, x2, x3] ƒ[x0, x1, x2, x3]

xn ƒ(xn) ƒ[xn-1, ƒ[xn-2, xn-1, ƒ[xn-3, xn-2, xn-1, … ƒ[x0, x1,2…7 ,
ln 0.54 旳精确值为:-0.616186···
可见,抛物线插值旳精度比线性插值要高
Lagrange插值多项式简朴以便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
19
Lagrange插值
lk(x) 旳体现式 由构造法可得
lk (
x)
( x x0 ) ( xk x0 )
Rn(x)
n1
Nn( x) a0 a1( x x0 ) a2( x x0 )( x x1 ) an ( x xi )
i 1
其中 a0 f ( x0 ), ai f [x0 ,, xi ], i 1,2,, n
Nn(x) 是 n 次多项式
Rn( x) f [x, x0 , ... , xn]( x x0 )...( x xn1)( x xn )

e(x*) x x*

数值分析期末总结与体会

数值分析期末总结与体会

数值分析期末总结与体会数值分析是一门应用数学课程,主要研究数值计算方法和数值计算误差,并为实际问题提供数值计算解决方案。

在本学期的学习中,我深入学习了数值计算的基本概念与原理,并通过编程实践掌握了常见的数值计算方法。

在期末考试前夕,我对这门课的学习经历进行了总结与体会,下面是我对数值分析的期末总结与体会。

一、总结1. 知识掌握:在学习过程中,我通过系统的学习,掌握了课程中介绍的求根问题、插值问题、数值积分和数值微分等数值计算方法。

我了解了牛顿迭代法、二分法、割线法等求解非线性方程根的方法,熟悉了拉格朗日插值、牛顿插值等插值方法,学会了辛卜生插值多项式、三次样条插值等高级插值方法。

同时,我还学习了梯形法则、辛普森法则等数值积分算法,掌握了欧拉法、龙格-库塔法等数值微分算法。

2. 编程实践:在理论学习的基础上,我通过编写程序加深了对数值计算方法的理解与掌握。

我使用Python语言编写了求解非线性方程根、插值计算、数值积分和数值微分的代码,并通过实际运行验证了这些数值计算方法的正确性与有效性。

编程实践过程中,我深刻体会到了算法的重要性,不同的算法对于同一个数值计算问题,可能会有不同的效果。

3. 数值计算误差:在学习数值计算的过程中,我逐渐认识到数值计算误差的存在与产生机理。

由于计算机内部采用的是二进制表示法,而浮点数的二进制表示无法准确表示所有的实数,从而引入了舍入误差;另外,数值计算方法本身也存在精度误差,例如插值多项式的截断误差、数值积分的数值误差等。

掌握数值计算误差的产生原因和估计方法,对于正确评估数值计算结果的精度至关重要。

4. 应用实例:在学习过程中,我们还分析了各种实际问题,并通过数值计算方法得到了解决方案。

例如,在求根问题中,我们可以利用牛顿迭代法估计气体状态方程的参数;在插值问题中,我们可以使用拉格朗日插值方法恢复图像;在数值积分中,我们可以利用梯形法则或辛普森法则计算定积分;在数值微分中,我们可以应用欧拉法或者龙格-库塔法求解微分方程等。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析期末总结pdf

数值分析期末总结pdf

数值分析期末总结pdf一、引言数值分析指的是利用数值方法对数学问题进行计算和求解的一门学科,在科学计算和工程技术领域中具有重要的应用价值。

本学期学习了数值分析的基本理论知识和常用的数值计算方法,对于提高科学计算和工程分析的准确性和效率具有重要意义。

通过这门课程的学习,我深刻认识到数值分析在实际问题求解中的重要性,并且对于数值方法的原理和应用有了一定的了解。

下面将对本学期学习的内容进行总结和思考。

二、数值误差的分类在数值计算过程中,会产生各种不同类型的误差。

了解不同类型的误差对于评估计算结果的准确性十分重要。

常见的数值误差包括:绝对误差、相对误差、截断误差和舍入误差等。

绝对误差指的是数值计算结果与真实值之间的差距。

相对误差是绝对误差除以真实值,用来计算计算结果相对于真实值的相对准确性。

截断误差是指数值计算方法本身的误差,通常由数值逼近和离散化引起。

舍入误差是因计算机中浮点数的机器精度引起的误差,它是由于计算机在二进制下无法准确表示所有实数而引起的。

在数值计算中,为了减小舍入误差,可以采用舍入规则和舍入策略来控制舍入过程。

三、插值和拟合插值和拟合是数值分析中常用的数值逼近方法,它们可以通过已知数据点推断出未知数据点的数值。

插值是通过已知数据点构造一个函数,使得该函数在已知点上的取值与给定函数完全一致。

常见的插值方法包括拉格朗日插值和牛顿插值等。

拟合是通过已知数据点构造一个函数近似地表示给定函数,以最小化数据点和拟合函数之间的误差。

拟合方法包括最小二乘法和样条插值等。

在插值和拟合的过程中,需要根据实际问题选择适当的插值函数或拟合函数,并确定适当的插值节点或拟合参数。

选择不同的函数或节点参数可能会导致不同的逼近精度和计算效率。

因此,在实际问题中需要根据需求和计算资源的限制综合考虑。

四、数值微积分数值微积分是利用数值方法求解微积分问题的一门学科,常见的数值微积分问题包括数值积分和常微分方程数值解等。

数值积分是计算给定函数在给定区间上的定积分值。

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

数值分析期末复习知识点

数值分析期末复习知识点

第一章(有效数字位数)1、经四舍五入取近似值,其绝对误差限不超过末尾数字的半个单位。

2、设X*为准确值,X为近似值,称e=X*-X为近似值X的绝对误差,简称误差(显然e可正可负,准确值X*未知,因此e的准确值无法求出)3、|e|=|X-X*|≤ŋ,则称ŋ为近似值X的绝对误差限,简称误差限。

4、e r=e/X*称为相对误差,由于准确值X*总是未知的,所以也把e r*=e/X称为近似值X的相对误差5、|e r*|=|e/X|≤ŋ*,则称ŋ*为近似值X的相对误差限6、设X是X*的近似值,如果|X*-X|≤1/2×10-k,则称用X近似值表示X*时准确到小数点后第k位,并称从小数点后第k位起,直到最左边的非零数字之间的所有数字为有效数字,称有效数字的位数为有效数位。

7、设X是X*的近似值,X=±10m×0.a1a2…,其中a i(i=2,3…)是0到9之间的自然数,a1≠0,m为整数,如果|X*-X|≤1/2×10m-n,那么称近似值有n位有效数字。

8、四舍五入所得到的数均为有效数字,但并不是说非四舍五入所得到的数不能为有效数字。

第二章、非线性方程求根(不动点迭代、牛顿法、弦截法、快速弦截法、局部收敛、全局收敛、收敛阶)1、不动点迭代法(迭代法)(单根区间求解方法):将非线性方程f(x)=0化为一个同解方程x=ø(x),若要求f(x*)=0,则x*=ø(x*),称x*为f(x)的零点,为ø(x)的一个不动点。

2、定理:设迭代函数ø(x)在【a,b】上连续,且满足(1)当x∈【a,b】时,a≤ø(x)≤b,(2)存在一正数L,满足0<L<1,且∀x∈【a,b】,有|ø/(x)|≤L<1。

则1、方程x=ø(x)在【a,b】内有唯一解x*。

2、对于任意初值x0∈【a,b】,迭代法x k+1=ø(x k)均收敛x*3、设ø(x)有不动点x*,如果存在x*的一个邻域 S:|X*-X|< ŋ,对任意初值x0∈S,迭代过程x k+1=ø(x k)均收敛,则称迭代过程在根x*邻近局部收敛。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试估计线性插值和抛物线插值计算 ln 0.54 的误差
M n 1 x xi ( n 1)! i 0
n
解 线性插值
R1 ( x ) f ( 2) ( ) ( x x0 )( x x1 ) 2
计算插值点 x 上的近似值时,应选取与 x 相近插值节点
x0=0.5, x1=0.6, (0.5, 0.6)
… …
ƒ[x0, x1,…, xn]
22
差商举例
例:已知 y = (x) 的函数值表,试计算其各阶差商
i xi f(xi) 0 -2 5 1 -1 3 2 1 17 3 2 21
ex23.m ex24.m
Newton 插值公式
Newton 插值公式
由差商的定义可得
1 2
n 1
f ( x) f ( x0 ) ( x x0 ) f [ x, x0 ]
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
线性插值多项式(一次插值多项式)
n=2 2
L2 ( x )
y0 ( x x 0 )( x x 2 ) ( x x 0 )( x x1 ) ( x x1 )( x x 2 ) y1 y2 ( x0 x1 )( x0 x 2 ) ( x1 x 0 )( x1 x 2 ) ( x 2 x 0 )( x 2 x1 )
xk xi
f(x) 关于点 xi , xj 的一阶差商
问题
如何从 pn-1(x) 得到 pn(x) ? 怎样确定参数 a0 , … , an ?
f [ xi , x j , xk ]
f [ x j , xk ] f [ xi , x j ]
f(x) 关于点 xi , xj , xk 的 二阶差商
x* = a1.a2···al 10m (a10) ), 若 x* 具有 n 位有效数字,则其相对误差限满足
计算方法
第二章
r*
1 10-(n-1) 2a1
插值法
6
反之,若 x* 的相对误差限满足 1 r* 10-(n-1) 2(a1+1) 有效位数越多, 则 x* 至少有 n 位有效数字。 相对误差限越小 5
但与函数 f(x) 无关
13
Rn ( x ) f ( x ) Ln ( x )
f ( n1) ( x ) n 1 ( x ) ( n 1)!
其中 x(a, b) 且与 x 有关, n1 ( x ) ( x x0 )( x x1 ) ( x xn ) 证明:(板书)
1 + (x x0) 2 + … … + (x x0)…(x xn1)
n 1
-2 7 4
f ( x ) f ( x0 ) f [ x0 , x1 ]( x x0 ) f [ x0 , x1 , x2 ]( x x0 )( x x1 ) ...
什么是差商
n 1 k 0
pn ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xk )
设函数 f(x),节点 x0 , … , xn
f [ xi , x j ]
f ( x j ) f ( xi ) x j xi
则称 P(x) 为 f(x) 的插值函数 插值条件
插值节点无需递 增排列,但必须 确保互不相同!
通过基函数来构造插值多项式的方法就称为基函数插值法
基函数法基本步骤
① 寻找合适的基函数 ② 确定插值多项式在这组基下的表示系数
求插值函数 P(x) 的方法就称为插值法
7
8
2
Lagrange插值
单项式基函数
2
有效数字
有效数字:若近似值 x* 的误差限是某一位的半个单
位(即截取按四舍五入规则) ,且该位到 x* 的第 的第一位非 位非 零数字共有 n 位,则称 x* 有 n 位有效数字 等价描述 设 x*为 x 的近似值,若 x* 可表示为 且有
有效数字
例: = 3.14159265 ··· ,近似值
插值举例
抛物线插值:取 x0=0.4, x1=0.5, x2=0.6, 可得 l 0.54 ln 0 54 L2(0.54) (0 54) =-0.6153 0 6153 在实际计算中,不需要给出插值多项式的表达式
ex21.m
试分别用线性插值和抛物线插值计算 ln 0.54 的近似值
解:为了减小截断误差,通常选取插值点 x 邻接的插值节点 线性插值 取 x0=0.5 线性插值: 0 5, x1=0.6 06得
利用线性无关的单项式族:1 , x , x 2 , , x
2
线性与抛物线插值
两种特殊情形
n
n
构造 n 次多项式: f ( x ) a0 a1 x a2 x an x
n=1
L1 ( x ) y0 l0 ( x ) y1l1 ( x ) y0
x x0 x x1 y1 x0 x1 x1 x0
f [ x, x0 ] f [ x0 , x1 ] ( x x1 ) f [ x, x0 , x1 ]
解:差商表如下
xi -2 -1 1 2 ƒ(xi) 5 3 17 21
一阶差商 二阶差商 三阶差商
……
f [ x, x0 , ... , xn1 ] f [ x0 , ... , xn ] ( x xn ) f [ x, x0 , ... , xn ]
若存在正数 r*,使得 |er*| r*,
= x* *
er* =
绝对误差 可能取正,也可能取负 绝对误差 越小越具有参考价值 但 绝对误差 却不能很好地表示近似值的精确程度
1Байду номын сангаас
x* - x x*
近似值的精确程度取决于 相对误差 的大小 实际计算中我们所能得到的是 误差限 或 相对误差限
插值基本概念
什么是插值
插值区间
基函数插值法
基函数法
记 n+1 维线性空间
已知函数 y = f(x) 在 [a, b] 上有定义,且已经测得在点
a x0 < x1 < ··· < xn b 处的函数值为 y0 = f(x0),… ,yn = f(xn)
如果存在一个简单易算的函数 P(x),使得
12
3
Lagrange插值
lk(x) 的表达式
lk ( x )
由构造法可得
误差估计
如何估计误差
Rn ( x) f ( x) Ln ( x)
插值余项
( x x0 ) ( x xk 1 )( x xk 1 ) ( x xn ) ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )
x x0 x x1 y1 0.1823 x 1.6046 L1 ( x ) y0 x0 x1 x1 x0
将 x=0.54 代入可得: ln 0.54 L (0.54) =-0.6202 1
11
ln 0.54 的精确值为:-0.616186···
可见,抛物线插值的精度比线性插值要高 见 抛物线插值的精度比线性插值要高 Lagrange插值多项式简单方便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
f ( 2) ( ) 2 4
R1 (0.54) 2(0.54 0.5)(0.54 0.6) 0.0048
15 16
4
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组
0 ( x) 1 1 ( x ) x x0 2 ( x ) ( x x0 )( x x1 )
n ( x ) ( x x0 )( x x1 ) ( x xn1 )
当增加一个节点 xn+1 时,只需加上基函数
n
解决办法
设计一个可以逐次生成插值多项式的算法,即 设计 个可以逐次生成插值多项式的算法 即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
n 1 ( x x i )
i 0
17 18
Newton 插值
此时 f(x) 的 n 次插值多项式为
差商
j 1, j k

n
x xj xk x j
定理
设 f(x) Cn[a, b] ( n 阶连续可微 ),且 f (n+1)(x) 在 (a, b) 内存在,则对 x[a,b],有
性质 注意
l0(x) , l1(x) , … , ln(x) 构成 Zn(x) 的一组基 l0(x) , l1(x) , … , ln(x) 与插值节点有关,
(a10)
187.93,0.037856 ,2.7183 ,8.0000 注:0.2300有4位有效数字,而0.23只有2位有效数字 12300如果写成0.123105,则表示只有3位有效数字。
3
则 x* 有 n 位有效数字
数字末尾的0不可以随意添加或省略!
4
1
有效数字
定理:设近似值 x* 可表示为
差商的计算
如何巧妙地计算差商
差商表
xi ƒ(xi)
x0 x1 x2 x3 xn
21
f [ x0 , x1 , , xk ]
相关文档
最新文档