热学(李椿+章立源+钱尚武)习题解答_第1章温度

合集下载

热学课后习题答案

热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

李椿 热学 思考题答案

李椿 热学 思考题答案

部分思考题解答1、气体的平衡状态有何特征?当气体处于平衡状态时还有分子热运动吗?与力学中所指的平衡有何不同?实际上能不能达到平衡态?答;系统处于平衡状态时,系统和外界没有能量交换,内部也没有化学变化等任何形式的能量转换,系统的宏观性质不随时间变化。

对气体来说,系统状态的宏观参量有确定数值,系统内部不再有扩散、导热、电离或化学反应等宏观物理过程发生。

气体处于平衡态时,组成系统的分子仍在不停地运动着,只不过分子运动的平均效果不随时间变化,表现为宏观上的密度均匀,温度均匀和压强均匀。

与力学中的平衡相比较,这是两个不同的理想概念。

力学中的平衡是指系统所受合外力为零的单纯静止或匀速运动问题。

而热力学中的平衡态是指系统的宏观性质不随时间变化。

但组成系统的分子却不断地处于运动之中,只是与运动有关的统计平均量不随时间改变,所以这是一种热动平衡。

平衡态是对一定条件下的实际情况的概括和抽象。

实际上,绝对的完全不受外界条件变化影响的平衡状态并不存在。

2、一金属杆一端置于沸水中,另一端和冰接触,当沸水和冰的温度维持不变时,则金属杆上各点的温度将不随时间而变化。

试问金属杆这时是否处于平衡态?为什么?答:金属杆就是一个热力学系统。

根据平衡态的定义,虽然杆上各点的温度将不随时间而改变,但是杆与外界(冰、沸水)仍有能量的交换。

一个与外界不断地有能量交换的热力学系统所处的状态,显然不是平衡态。

3、水银气压计中上面空着的部分为什么要保持真空?如果混进了空气,将产生什么影响?能通过刻度修正这一影响吗?答:只有气压计上面空着的部分是真空,才能用气压计水银柱高度直接指示所测气体的压强。

如果气压计内混进了一些空气,则这种气体也具有一定的压强。

这时,水银柱高度所指示的压强将小于所测气体的真实压强,而成了待测气体与气压计内气体的压强之差。

能否在刻度时扣除漏进气体的压强,而仍由水银柱的高度来直接指示待测气体的压强呢?也不行。

因为水银气压计内部气体的压强随着温度和体积的变化而变化,对不同压强和不同温度的待测气体测量时,内部气体的压强是不同的。

《热学》期末复习用 各章习题+参考答案

《热学》期末复习用 各章习题+参考答案

(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.

秦允豪《热学》答案+思考题答案

秦允豪《热学》答案+思考题答案
,是已知的。
题 1-18 图
解:设截面积为 S,原闭管内气柱长为 R 大气压为 P 闭管内水银面下降后,其内部压强为。 对闭管内一定质量的气体有:
以水银柱高度为压强单位:
取正值,即得
1-19 一端封闭的玻璃管长
,贮有空气,气体上面有一段长为
的水
银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再
(2)设 解:根据
,当摩尔体积增大到 时,气体的温度是多高?
理想气体状态方程
和过程方程

(1)
(2) 而
,则
1-24 图 1-24 为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水 银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提瓶R,
水银就进入两根相同的毛细管 和 内,当 中水银面的高度差
,步骤(2)中罩内压强为
,步骤(4)中,罩内压强为
作过程中温度可视不变,则根据玻-马定律知
,假设操
未放矿石时:
放入后:
解联立方程得
1-26 一抽气机转速
转/分,抽气机每分钟能够抽出气体 ,设容器的容积
,问经过多少时间后才能使容器的压强由
降到

解:设抽气机每转一转时能抽出的气体体积为 ,则
当抽气机转过一转后,容器内的压强由 抽出压强为 的气体 ,因而有
,设容器
的容积为
,毛细管直径
,求待测容器中的气压。
题 1-24 图
解:设 管体积 ,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测
容器的气体压强相等。以B内气体为研究对象,当R继续上提后, ,由于温度可视为不变,则根据玻-马定律,有

热学(李椿+立源+钱尚武)习题解答_第四章气体内的输运过程

热学(李椿+立源+钱尚武)习题解答_第四章气体内的输运过程

热学(李椿+⽴源+钱尚武)习题解答_第四章⽓体内的输运过程第四章⽓体内的输运过程4-1.氢⽓在,时的平均⾃由程为×m,求氢分⼦的有效直径。

解:由=得:=代⼊数据得:(m)4-2.氮分⼦的有效直径为,求其在标准状态下的平均⾃由程和连续两次碰撞间的平均时间。

解:=代⼊数据得:-(m)=代⼊数据得:=(s)4-3.痒分⼦的有效直径为3.6×m,求其碰撞频率,已知:(1)氧⽓的温度为300K,压强为1.0atm;(2)氧⽓的温度为300K,压强为1.0×atm解:由=得==代⼊数据得:=6.3×()()4-4.某种⽓体分⼦在时的平均⾃由程为。

(1)已知分⼦的有效直径为,求⽓体的压强。

(2)求分⼦在的路程上与其它分⼦的碰撞次数。

解:(1)由得:代⼊数据得:(2)分⼦⾛路程碰撞次数(次)4-5.若在下,痒分⼦的平均⾃由程为,在什么压强下,其平均⾃由程为?设温度保持不变。

解:由得4-6.电⼦管的真空度约为HG,设⽓体分⼦的有效直径为,求时单位体积内的分⼦数,平均⾃由程和碰撞频率。

解:(2)(3)若电⼦管中是空⽓,则4-7.今测得温度为压强为时,氩分⼦和氖分⼦的平均⾃由程分别为和,问:(1)氩分⼦和氖分⼦的有效直径之⽐是多少?(2)时,为多⼤?(3)时,为多⼤?解:(1)由得:(2)假设氩分⼦在两个状态下有效直径相等,由得:(3)设氖⽓分⼦在两个状态下有效直径相等,与(2)同理得:4-8.在⽓体放电管中,电⼦不断与⽓体分⼦相碰撞,因电⼦的速率远远⼤于⽓体分⼦的平均速率,所以后者可以认为是静⽌不动的。

设电⼦的“有效直径”⽐起⽓体分⼦的有效直径来可以忽略不计。

(1)电⼦与⽓体分⼦的碰撞截⾯为多⼤?(2)证明:电⼦与⽓体分⼦碰撞的平均⾃由程为:,n为⽓体分⼦的数密度。

解:(1)因为电⼦的有效直径与⽓体分⼦的有效直径相⽐,可以忽略不计,因⽽可把电⼦看成质点。

⼜因为⽓体分⼦可看作相对静⽌,所以凡中⼼离电⼦的距离等于或⼩于的分⼦都能与电⼦相碰,且碰撞截⾯为:(2)电⼦与⽓体分⼦碰撞频率为:(为电⼦平均速率)4-9.设⽓体分⼦的平均⾃由程为试证明:⼀个分⼦在连续两次碰撞之间所⾛路程⾄少为x的⼏率是解:根据(4.6)式知在个分⼦中⾃由程⼤于x的分⼦占总分⼦数的⽐率为=由⼏率概念知:对于⼀个分⼦,⾃由程⼤于x的⼏率为,故⼀个分⼦连续两次碰撞之间所⾛路程⾄少为x的⼏率是。

《热学》(李椿 ) 电子教案(2015)

《热学》(李椿 ) 电子教案(2015)

个与外界不断地有能量交换
100 c 的热力学系统所处的状态,
显然不是平衡态而是稳定态。
o
金属杆
0 oc
热动平衡:
平衡态下,组成系统的微观粒子仍处于不 停的无规运动之中,只是它们的统计平均效 果不随时间变化,因此热力学平衡态是一种 动态平衡,称之为热动平衡。
状态参量——平衡态的描述
确定平衡态的宏观性质的量称为状态参量。 – 常用的状态参量有四类: 几何参量 (如:气体体积) 力学参量(如:气体压强) 化学参量(如:混合气体各化学组分的质量和
《热学》电子教案
李椿
高等教育出版社
绪论
• 热学是研究热现象的理论
• 热现象:与温度有关的物理性质的变化

热力学(热现象的宏观规律)
• 热现象

统计物理学(热现象的微观规律)

气体分子动理论
• 从微观上看,热现象是组成物体的粒子(分子、原子、电 子等)永不停息的热运动结果,每一微观粒子的运动具有
偶然性,总体上却存在确定的规律性
TTtr,,
ptr ,Vtr ptr ,V
据定压气体温标公式有
pV C
T V 273.16 V
Vtr
T V 273.16 ptrV
p Vtr tr
将玻 — 马定律 pV C 代入上式,得
从而有
T V 273.16 C
Ctr
C Ctr T V
273.16
• 研究方法不同
热学内容体系示意图
引言
热学的研究 对象、方法
热学发展简 述
宏观理论
微观理论
物性学
热一律
热二律
气体动理论 (平衡态)

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。

解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。

解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。

若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。

,烘烤后的分子数为N 。

根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。

设混合气体的温度为150℃,求混合气体的压强。

新概念物理教程热学标准答案-第一章-温度

新概念物理教程热学标准答案-第一章-温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

《 热学》各章思考题+参考解答

《 热学》各章思考题+参考解答

热学思考题和参考解答第一章 热学基础知识和温度1.1 若热力学系统处于非平衡态,温度概念能否适用?【答】 对于处于非平衡态的系统,只要局域平衡条件能满足,则对于处于局域平衡的每个子系统来说,温度概念仍能适用。

1.2 系统A 和B 原来各自处在平衡态,现使它们互相接触,试问在下列情况下,两系统接触部分是绝热的还是透热的,或两者都可能?(1)当A V 保持不变,A p 增大时,B V 和B p 都不发生变化;(2)当A V 保持不变,A p 增大时,B p 不变而B V 增大;(3)当A V 减少,A p 增大时,B V 和B p 均不变.【答】设容器都是密闭的.(1)是绝热的.因为A p A V 增大,所以A 的温度 增加.但它并不使B 状态发生变化,说明既没有热量传递也没有做功.(2)是透热的.因为A p A V 增大,所以A 的温度增加.从B 来说,B V 增加了,说明B 膨胀对外做了功,其能量只能来源于从A 吸热.(3)因为B V 和B p 均不变,说明B 的温度不变.但是A V 减少,同时A p 增大,这两者的乘积可变可不变,所以A 的温度也可变可不变.若A 的温度改变则是绝热的;若A 的温度不变,则A ,B 相互 接触的部分仍然绝热,因为B 的状态始终不变.1.3 在建立温标时是否必须规定热的物体具有较高的温度,冷的物体具有较低的温度?是否可作相反的规定?在建立温标时,是否须规定测温属性一定随温度作线性变化?【答】 在建立温标时必须规定热的物体具有较高的温度,冷的物体具有较低的温度,因为热量是从高温物体传递到低温物体的.很有意思的是,对于处于负温度的子系则是例外.因为负温度比正温度还要高,热量是从负温度物体流向正温度物体的.建立温标时并不一定规定测温属性随温度作线性变化,这完全由分度公式来规定.1.4 冰的正常溶点是多少?纯水的三相点温度是多少?【答】 冰的正常溶点是273.15K,纯水的三相点温度是273.16K 。

热学课后习题答案

热学课后习题答案

第一章温度1—1 定容气体温度计得测温泡浸在水得三相点槽内时,其中气体得压强为50mmHg。

(1)用温度计测量300K得温度时,气体得压强就是多少?(2)当气体得压强为68mmHg时,待测温度就是多少?解:对于定容气体温度计可知:(1)(2)1—3用定容气体温度计测量某种物质得沸点。

原来测温泡在水得三相点时,其中气体得压强;当测温泡浸入待测物质中时,测得得压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点得理想气体温度。

解:根据从理想气体温标得定义:依以上两次所测数据,作T—P图瞧趋势得出时,T约为400、5K亦即沸点为400、5K.题1-4图1-6水银温度计浸在冰水中时,水银柱得长度为4.0cm;温度计浸在沸水中时,水银柱得长度为24.0cm。

(1)在室温时,水银柱得长度为多少?(2)温度计浸在某种沸腾得化学溶液中时,水银柱得长度为25.4cm,试求溶液得温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它得读数比实际得气压小,当精确得气压计得读数为时,它得读数只有。

此时管内水银面到管顶得距离为。

问当此气压计得读数为时,实际气压应就是多少、设空气得温度保持不变。

题1—15图解:设管子横截面为S,在气压计读数为与时,管内空气压强分别为与,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器得容积,问经过多少时间后才能使容器得压强由降到。

解:设抽气机每转一转时能抽出得气体体积为,则当抽气机转过一转后,容器内得压强由降到,忽略抽气过程中压强得变化而近似认为抽出压强为得气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把得氮气压入一容积为得容器,容器中原来已充满同温同压得氧气。

热学(李椿+章立源+钱尚武)习题解答_第1章温度

热学(李椿+章立源+钱尚武)习题解答_第1章温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg 时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]?(?C/[X]), b = –[100 X i/(X s–X i)]?C, 其中的[X]代表测温性质X的单位.8. (1) –205?C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16?, 273.47?;(3) 不存在0度.20. 13.0 kg?m-3.24. 由教科书137页公式可得p = 3.87?10-3 mmHg.25. 846 kg?m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg?m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159?10-3 atm, 71.59 atm, 7159 atm; 4.871?10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km?s-1和2.38 km?s-1第二章部分习题的参考答案1. 3.22?103 cm-3.3. 1.89?1018.4. 2.33?10-2 Pa.5. (1) 2.45?1025 m-3;(2) 1.30 kg?m-3;(3) 5.32?10-26 kg;(4) 3.44?10-9 m;(5) 6.21?10-21 J.6. 3.88?10-2 eV,7.73?106 K.7. 301 K.8. 5.44?10-21 J.9. 6.42 K, 6.87?104Pa (若用范德瓦耳斯方程计算) 或6.67?104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m?s-1;(2) 7.91 m?s-1;(3) 7.07 m?s-111. (1) 1.92?103 m?s-1;(2) 483 m?s-1;(3) 193 m?s-1.12. (1) 485 m?s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02?104 K, 1.61?105 K; 459 K, 7.27?103 K.16. (1) 1.97?1025 m-3 或2.00?1025 m-3;(2) 由教科书81页公式可得3.26?1027m-2或3.31?1027 m-2;(3) 3.26?1027 m-2或3.31?1027 m-2;(4) 7.72?10-21 J, 6.73?10-20 J.17. 由教科书81页公式可得9.26?10-6 g?cm-2?s-1.18. 2.933?10-10 m.19. 3.913?10-2 L, 4.020?10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ?(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)?{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)?(4π/3)d3]}?(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m?s-1;(2) 3.37 m?s-1;(3) 4.00 m?s-1.2. 395 m?s-1, 445 m?s-1, 483 m?s-1.4. 3π/8.5. 4.97?1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94?10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m?s-1;(2) 1.36?10-2 g?h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2?[1 + (mv2/2kT)]?exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ?[1 + (v2/v p2)]?exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74?103 J?mol-1, 2.49?103 J?mol-1.27. 6.23?103 J?mol-1, 6.23?103 J?mol-1; 3.09?103 J?g-1, 223 J?g-1.28. 5.83 J?g-1?K-1.29. 6.61?10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J?mol-1?K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74?10-10 m.2. 5.80?10-8 m, 1.28?10-10 s.4. (1)5.21?104 Pa; (2) 3.80?106 m-1.6. (1) 3.22?1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45?10-7 m;(3) 1.08?10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11?10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09?10-10 m.15. 2.23?10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg?m-4;(2) 1.19?1023 s-1;(3) 1.19?1023 s-1;(4) 4.74?10-10 kg?s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04?103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42?103 J, –1.99?103 J, 567 J.3.(1) 1.50?10-2 m3;(2) 1.13?105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44?103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47?107 J?mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J?mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19. 注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49?104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];10. [略].11. [略].12. [略].13. [略].15. ?T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)]}?{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]?{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19?108 J.2. 7.24?10-2 N?m-1.3. 1.29?105 Pa.4. 1.27?104 Pa.6. f = S[α(R1-1 + R2-1) –(ρgh/2)]= {Sα?[2cos(π–θ)]/[2(S/π)1/2 ?cos(π–θ) + h–h sin(π–θ)]} + {Sα?[2cos(π–θ)]/h} –(Sρgh/2)≈Sα?[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98?10-2 m.10. (1) 0.712 m; (2) 9.60?104 Pa; (3) 2.04?10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J?kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21?103 J.2. (1) 6.75?10-3 m3;(2) 1.50?10-5 m3;(3) 液体体积为1.28?10-5 m3, 气体体积为9.87?10-4 m3.4. 373.52 K.6. 1.36?107 Pa.7. [略].8. [略].9. 1.71?103 Pa.11. 4.40?104 J?mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121?104 J?mol-1, 2.547?104 J?mol-1, 5.75?103 J?mol-1.。

《热学》第一章习题参考答案

《热学》第一章习题参考答案

《热学》第一章习题参考答案1-1按线形标度法,可设华氏温标与摄氏温标的关系为 t F =at+b 参考教材P2内容知 t=0 时,t F =32,以及t=100时,tF=212 .即+=+=ba b a 100*2120*32? a=59,b=32 ,故华氏温标与摄氏温标的换算关系为 t F =59+32 , 若 t F =t ,即t=59+32 ? t=-40 ,即在-40摄氏度的温标下,摄氏温标与华氏温标给出相同的读数.1-21)此题须从理想气体温标的定义来考虑.理想气体温标是定容(或定压)气体温度计来实现的.实验表明,无论用什么气体,无论是定容还是定压气体温度计,所建立的温标在测温泡内的气体压强趋于0时,都趋于一个极限值,这个极限温标就是理想气体温标.我们可以先根据题意算出三次测量所得的,用定容气体温标表示的沸点温度,然后应用作图法,求出当测温泡内气体在水的三相点时的压强P tr 趋于0时的定容气体温标的极限,此极限即为该题所要求的某种物质的沸点的理想气体温度.根据T=273.16*trP P. 可得三次测得的沸点温度分别为: T 1=273.16*500734=401.00(K) T 2=273.16*2004.293=400.73(K)T 3=273.16*10068.146=400.67(K)在T---P tr 图上作出(T 1,P tr1),(T 2,P tr2).(T 3,P tr3)三点.由图看三点连线趋势得知:当P tr ->0时T->400.50K,此即待测沸点的理想气体温度.此题告诉我们一个道理,理想气体温度不能用温度计直接测量.只能借助气体温度计做间接测量.2)t*=a ε+b=a(αt+βt(2))+b按规定。

冰点t=0时,t*=100度,即++=++=b a ba )100*100*(100)0*0*(022βαβα? a=?5m v ,b=0即t*=5ε。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-8设一定容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强分别为和。

(1)当气体的压强为时,待测温度是多少?(2)当温度计在沸腾的硫中时(硫的沸点为),气体的压强是多少?解:解法一设P与t为线性关系:由题给条件可知:当时有当时得:由此而得(1)(2)时解法二若设t与P为线性关系利用第六题公式可得:由此可得:(1)时(2)时1-9当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定:式中题1-9题(1)题1-9图(2)题1-9图(3)(1)试计算当和时热电动势的值,并在此围作图。

(2)设用为测温属性,用下列线性方程来定义温标:并规定冰点为,汽化点为,试求出a和b的值,并画出图。

(3)求出与和对应的值,并画出图(4)试比较温标t和温标。

解:令(1)(2)在冰点时,汽化点,而,已知解得:(3)当时当时当时当时(4)温标t和温标只有在汽化点和沸点具有相同的值,随线性变化,而t不随线性变化,所以用作测温属性的温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与虽非线性变化,却能直接反应熟知的温标,因此各有所长。

1-10 用L表示液体温度计中液柱的长度。

定义温标与L之间的关系为。

式中的a、b为常数,规定冰点为,汽化点为。

设在冰点时液柱的长度为,在汽化点时液柱的长度,试求到之间液柱长度差以及到之间液柱的长度差。

解:由题给条件可得: (1) (2)解联立方程(1)(2)得:则1-11定义温标与测温属性X之间的关系为,其中K为常数。

(1)设X为定容稀薄气体的压强,并假定在水的三相点为,试确定温标与热力学温标之间的关系。

(2)在温标中,冰点和汽化点各为多少度?(3)在温标中,是否存在0度?解:(1)根据理想气体温标,而X=P (1)由题给条件,在三相点时代入式代入(1)式得: (2)(2)冰点代入(2)式得汽化点代入(2)式得(3)若,则从数学上看,不小于0,说明有0度存在,但实际上,在此温度下,稀薄汽体可能已液化,0度不能实测。

1-12一立方容器,每边长20cm其中贮有,的气体,当把气体加热到时,容器每个壁所受到的压力为多大?解:对一定质量的理想气体其状态方程为因,而故1-13一定质量的气体在压强保持不变的情况下,温度由升到时,其体积将改变百分之几?解:根据方程则体积改变的百分比为1-14一氧气瓶的容积是,其中氧气的压强是,规定瓶氧气压强降到时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天。

解:先作两点假设,(1)氧气可视为理想气体,(2)在使用氧气过程中温度不变。

则:由可有每天用掉的氧气质量为瓶中剩余氧气的质量为天1-15水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-16截面为的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。

今将左侧的上端封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少?设空气的温度保持不变,压强题1-16图解:根据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为(两管水银柱高度差)设左端水银柱下降常数即整理得:(舍去)1-17图1-17所示为一粗细均匀的J形管,其左端是封闭的,右侧和大气相通,已知大气压强为,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作理想气体。

题1-17图解:设从J形管右侧灌满水银时,左侧水银柱高为h。

假设管子的直径与相比很小,可忽略不计,因温度不变,则对封闭在左侧的气体有:而(S为管的截面积)解得:(舍去)1-18如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管水银下降了,问闭管水银面下降了多少?设原来闭管水银面上空气柱的高度R和大气压强为,是已知的。

题1-18图解:设截面积为S,原闭管气柱长为R大气压为P闭管水银面下降后,其部压强为。

对闭管一定质量的气体有:以水银柱高度为压强单位:取正值,即得1-19 一端封闭的玻璃管长,贮有空气,气体上面有一段长为的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因而使一部分水银漏出。

当大气压为时,六在管的水银柱有多长?解:题1-19图设在正立情况下管气体的压强为,以水银柱高度表示压强,倒立时,管气体的压强变为,水银柱高度为由于在倒立过程温度不变,解之并取的值得1-20求氧气在压强为,温度为时的密度。

解:已知氧的密度1-21容积为的瓶贮有氢气,因开关损坏而漏气,在温度为时,气压计的读数为。

过了些时候,温度上升为,气压计的读数未变,问漏去了多少质量的氢。

解:当时,容器氢气的质量为:当时,容器氢气的质量为:故漏去氢气的质量为1-22 一打气筒,每打一次可将原来压强为,温度为,体积的空气压缩到容器。

设容器的容积为,问需要打几次气,才能使容器的空气温度为,压强为。

解:打气后压强为:,题上未说原来容器中的气体情况,可设原来容器中没有空气,设所需打气次数为,则得:次1-23一气缸贮有理想气体,气体的压强、摩尔体积和温度分别为、和,现将气缸加热,使气体的压强和体积同时增大。

设在这过程中,气体的压强和摩尔体积满足下列关系式:其中为常数(1)求常数,将结果用,和普适气体常数表示。

(2)设,当摩尔体积增大到时,气体的温度是多高?解:根据理想气体状态方程和过程方程有(1)(2)而,则1-24图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。

继续上提瓶R,水银就进入两根相同的毛细管和,当中水银面的高度差,设容器的容积为,毛细管直径,求待测容器中的气压。

题1-24图解:设管体积,当水银瓶R上提时,水银上升到虚线处,此时B气体压强与待测容器的气体压强相等。

以B气体为研究对象,当R继续上提后,气体压强增大到,由于温度可视为不变,则根据玻-马定律,有由于1-25用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:(1)打开活拴K,使管AB和罩C与大气相通。

上度移动D,使水银面在n处。

(2)关闭K,往上举D,使水银面达到m处。

这时测得B、D两管水银面的高度差。

(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。

(4)往上举D,使水银面重新到达m处,这时测得B、D两管水银面的高度差已知罩C和AB管的容积共为,求矿物的密度。

题1-25图解:设容器B的容积为,矿物的体积为,为大气压强,当打开K时,罩压强为,步骤(2)中罩压强为,步骤(4)中,罩压强为,假设操作过程中温度可视不变,则根据玻-马定律知未放矿石时:放入后:解联立方程得1-26一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27按重量计,空气是由的氮,的氧,约的氩组成的(其余成分很少,可以忽略),计算空气的平均分子量及在标准状态下的密度。

解:设总质量为M的空气中,氧、氮、氩的质量分别为。

氧、氮、氩的分子量分别为。

空气的摩尔数则空气的平均摩尔质量为即空气的平均分子量为28.9。

空气在标准状态下的密度1-28把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。

解:根据道尔顿分压定律可知又由状态方程且温度、质量M不变。

1-29用排气取气法收集某种气体(见图1-29),气体在温度为时的饱和蒸汽压为,试求此气体在干燥时的体积。

题1-29图解:容器气体由某气体两部分组成,令某气体的压强为则其总压强干燥时,即气体不含水汽,若某气体的压强也为其体积V,则根据PV=恒量(T、M一定)有1-30 通常称德瓦耳斯方程中一项为压强,已知德瓦耳斯方程中常数a,对二氧化碳和氢分别为和,试计算这两种气体在,0.01和0.001时的压强,解:根据压强公式,设压强为的压强。

相关文档
最新文档