九年级数学圆的有关性质-初中三年级数学试题练习、期中期末试卷-初中数学试卷

合集下载

初中九年级上数学练习题(圆的有关性质).doc

初中九年级上数学练习题(圆的有关性质).doc

九年级上数学练习题(圆的有关性质)一、选择题1、下列结论正确的是( )A .弦是直径B .弧是半圆C .半圆是弧D .过圆心的线段是直径2、下列说法正确的是( )A .一个点可以确定一条直线B .两个点可以确定两条直线C .三个点可以确定一个圆D .不在同一直线上的三点确定一个圆3、若⊙P 的半径为13,圆心P 的坐标为(5, 12 ), 则平面直角坐标系的原点O 与⊙P 的位置关系是( ) A .在⊙P 内 B .在⊙P 内上 C .在⊙P 外 D .无法确定4、已知⊙O 的直径为10,圆心O 到弦的距离OM 的长为3,则弦AB 的长是( )A 、4B 、6C 、7D 、85l ,那么它的外接圆的直径是( )A.1B.2C.3D.46、已知⊙O 的半径长6cm ,P 为线段O A 的中点,若点P 在⊙O 上,则OA 的长是( )A .等于6cmB .等于12cmC .小于6cmD .大于12cm7、正方形ABCD 的边长是l ,对角线AC ,BD 相交于点O ,若以O 为圆心作圆.要使点A 在⊙O 外,则所选取的半径可能是( )A.128、出下列命题: (l )垂直于弦的直线平分弦; (2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧; (3 )平分弦的直线必过圆心; (4 )弦所对的两条弧的中点连线垂直平分弦。

其中正确的命题有( )A . 1个 B. 2个 C. 3个 D. 4个9、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A .第①块B .第②块C .第③块D .第④块10、如图,点A,D,G,M 在半圆上,四边形ABOC, DEOF,HMNO 均为矩形,设BC=a,EF=b, NH=C ,则下列各式中正确的是( ) A.a>b>c B.a=b=c C.c>a>b D.b>c>a11、如图,⊙O 的直径为10cm ,弦AB 为8cm , P 是弦AB 上一点,若OP 的长是整数, 则满足条件的点P 有( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个二、填空题12、圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 .13、若圆的一条弦长为该圆的半径等于12cm ,其弦心距等于 cm.14、在Rt △ABC 中,∠C=900, CD ⊥AB, AC=2, BC=3,若以C 为圆心,以2为半径作⊙C ,则点 A在⊙C ,点B 在⊙C ,点D在⊙C .15、三角形的外心是三角形的三条的交点。

中考数学复习《圆的有关性质》测试题(含答案)

中考数学复习《圆的有关性质》测试题(含答案)

中考数学复习《圆的有关性质》测试题(含答案)一、选择题(每题5分,共30分)1.[2014·梧州]已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O 的位置关系是(C) A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【解析】∵⊙O的半径是5,点A到圆心O的距离是7,即点A到圆心O 的距离大于圆的半径,∴点A在⊙O外.2.[2015·珠海]如图29-1,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是(D)A.25°B.30°C.40°D.50°图29-1【解析】∵在⊙O中,直径CD垂直于弦AB,∴AD︵=BD︵,∴∠DOB=2∠C=50°.3.[2015·遂宁]如图29-2,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=(B) A.3 cm B.4 cm C.5 cm D.6 cm图29-2【解析】 显然利用垂径定理.如答图,连结OA , ∵AB =6 cm ,AC =12AB = 3 cm , 又⊙O 的半径为5 cm ,所以OA =5 cm , 在Rt △AOC 中, OC =AO 2-AC 2=52-32=4(cm).4.[2015·宁波]如图29-3,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为(B)A .15°B .18°C .20°D .28°图29-3【解析】 连结OB ,如答图,∠BOC =2∠A =2×72°=144°,∵OB =OC ,∴∠CBO =∠BCO ,∴∠BCO =12(180°-∠BOC )=12×(180°-144°)=18°.5.[2015·巴中]如图29-4,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为(A)A .25°B .50°C .60°D .30° 【解析】 ∵∠BOC =2∠BAC ,∠BOC =50°,第3题答图第4题答图∴∠BAC=25°,∵AC∥OB,∴∠BAC=∠B=25°,∵OA=OB,∴∠OAB=∠B=25°.图29-4 图29-56.[2014·荆门]如图29-5,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是(D) A.∠ACD=∠DAB B.AD=DEC.AD2=BD·CD D.AD·AB=AC·BD【解析】由题意可知,∠ADC=∠ADB=90°,A.∵∠ACD=∠DAB,∴△ADC∽△BDA,故A正确;B.∵AD=DE,∴AD︵=DE︵,∴∠DAE=∠B,∴△ADC∽△BDA,故B正确;C.∵AD2=BD·CD,∴AD∶BD=CD∶AD,∴△ADC∽△BDA,故C正确;D.∵AD·AB=AC·BD,∴AD∶BD=AC∶AB,但∠ADC=∠ADB不是夹角,故D错误.二、填空题(每题5分,共30分)7.[2015·贵州]如图29-6,A ,B ,C 三点均在⊙O 上,若∠AOB =80°,则∠ACB =__40°__.【解析】 ∠ACB =12∠AOB =12×80°=40°.图29-6 图29-78.[2015安徽]如图29-7,点A ,B ,C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是__20°__.9.[2015·娄底]如图29-8,在⊙O 中,AB 为直径,CD 为弦,已知∠ACD =40°,则∠BAD =__50__度. 【解析】 ∵在⊙O 中,AB 为直径,∴∠ADB =90°,∵∠B =∠ACD =40°,∴∠BAD =90°-∠B =50°.10.[2015·泰州]如图29-9,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD 等于__130°__.【解析】 ∵∠A =115°,∴∠C =180°-∠A =65°,∴∠BOD =2∠C =130°.图29-9 图29-10图29-811.[2015·绍兴]如图29-10,已知点A (0,1),B (0,-1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于__60__度. 【解析】 ∵A (0,1),B (0,-1), ∴AB =2,OA =1,∴AC =2, 在Rt △AOC 中,cos ∠BAC =OA AC =12, ∴∠BAC =60°.12.某居民区一处圆形下水管道破裂,修理人员准备更换一段与原管道同样粗细的新管道.如图29-11,水面宽度原有60 cm ,发现时水面宽度只有50 3 cm ,同时水位也下降65 cm ,则修理人员应准备的半径为__50__cm 的管道.图29-11【解析】 如答图所示:过点O 作EF ⊥AB 于点F ,交CD 于点E ,连结OC ,OA , ∵CD ∥AB ,∴EF ⊥CD ,∵CD =60 cm ,AB =50 3 cm , ∴CE =12CD =12×60=30 cm , AF =12AB =12×503=25 3 cm ,设⊙O 的半径为r ,OE =h cm ,则OF =65-h (cm), 在Rt △OCE 中,OC 2=CE 2+OE 2,即r 2=302+h 2,①第12题答图在Rt△OAF中,OA2=AF2+OF2,即r2=(253)2+(65-h )2,②①②联立,解得r=50 cm.三、解答题(共10分)13.(10分)[2014·湖州]如图29-12,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D.(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.图29-12解:(1)证明:如答图,过点O作OE⊥AB于点E.则CE=DE,AE=BE.∴AE-CE=BE-DE,即AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,第13题答图如答图,连结OA,OC,∴CE=OC2-OE2=82-62=27.AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.14.(8分)[2015·安顺]如图29-13,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为(C)图29-13A.2 2 B.4C.4 2 D.8【解析】∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=22OC=22,∴CD=2CE=4 2.15.(10分)某地有一座圆弧形拱桥,圆心为O,桥下水面宽度为7.2 m,如图29-14,过O作OC⊥AB于D,交圆弧于C,CD=2.4 m.现有一艘宽3 m,船舱顶部为方形并高出水面(AB)2 m的货船要经过拱桥,此货船能否顺利通过这座拱桥?图29-14解:如答图,连结ON,OB.∵OC⊥AB,∴D为AB的中点.∵AB=7.2 m,∴BD=12AB=3.6 m.第15题答图设OB=OC=ON=r,则OD=OC-CD=r-2.4.在Rt△BOD中,根据勾股定理得r2=(r-2.4)2+3.62,解得r=3.9(m).∵CD=2.4 m,船舱顶部为方形并高出水面AB为2 m,∴CE=2.4-2=0.4(m),∴OE=r-CE=3.9-0.4=3.5(m).在Rt△OEN中,EN2=ON2-OE2=3.92-3.52=2.96,∴EN= 2.96 m,∴MN=2EN=2× 2.96≈3.44(m)>3(m),∴此货船能顺利通过这座拱桥.16.(12分)[2015·台州]如图29-15,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.图29-15解:(1)∵BC=DC,∴BC︵=DC︵.∴∠BAC=∠CAD=∠CBD.∵∠CBD=39°,∴∠BAC=∠CAD=39°.∴∠BAD=∠BAC+∠DAC=78°;(2)证明:∵EC=BC,∴∠CBE=∠CEB.∵∠CBE=∠1+∠CBD,∠CEB=∠2+∠BAC,∴∠1+∠CBD=∠2+∠BAC.又∵∠BAC=∠CBD,∴∠1=∠2.。

人教版数学九年级上册24.1《圆的有关性质》训练题

人教版数学九年级上册24.1《圆的有关性质》训练题

24.1 圆的有关性质1.如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().B.BC BD= C.∠BAC=∠BAD A.CE=DED.AC>AD2.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是() A.4 B.6 C.7 D.83.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACD C.AD BD= D.PO=PD4.下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个5.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对6.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是()A.AB=2CDB.AB>CDC.AB<2CDD.不能确定7.如图,⊙O中,如果AB=2AC,那么()A.AB=AC B.AB=AC C.AB<2AC D.AB>2AC 8.如图,A, B, C, D 是同一个圆上的顺次四点,则图中相等的圆周角共有()A.2对B.4 对C.8 对D.16对9.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若∠K=200,∠PMQ =400,则∠MQP等于()A. 300B. 350C. 400 D . 50010.如图,△ABC是⊙O的内接三角形,且AB≠AC,∠ABC 和∠ACB的平分线分别交⊙O于点D, E,且BD=CE,则∠A 是( )A.300B.450C.600D.90011.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个12.如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=_____.13.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.14.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是_____.7题8题1题2题3题9题10题11题12题15.如图,A, B, C, D 是⊙O 上的点,已知∠1=∠2,则与AD 相等的弧是 ,与BCD 相等的弧是 ,于是AD= , BD= .16.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求BE 的度数和EF 的度数.17.如图, AB 是⊙O 的直径,C, D 是AB 上的点,且AC=BD; P ,Q 是⊙O 上在AB 同侧的两点,且AP BQ =, 延长PC, QD 分别交⊙O 于点M, N .求证:AM BN =.18.如图,Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E , 求AB 、AD 的长。

初三数学圆的试题及答案

初三数学圆的试题及答案

初三数学圆的试题及答案一、选择题(每题3分,共15分)1. 圆的半径为5,圆心到圆上任意一点的距离称为圆的半径,这种说法()A. 正确B. 圆的半径是圆心到圆上任意一点的距离C. 错误D. 无法判断2. 已知圆的半径为4厘米,圆心到圆上一点的距离为2厘米,那么这个点()A. 一定在圆内B. 一定在圆上C. 一定在圆外D. 不能确定3. 圆的周长公式是()A. C = πrB. C = 2πrC. C = πdD. C = 2πd4. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πdD. S = πd²5. 已知圆的直径为10厘米,那么这个圆的半径是()A. 5厘米B. 10厘米C. 20厘米D. 15厘米二、填空题(每题2分,共10分)6. 圆的直径是半径的________倍。

7. 如果一个圆的半径为3,则其周长为________厘米。

8. 圆的面积与半径的平方成________比。

9. 一个圆的半径增加1厘米,其面积增加________平方厘米。

10. 圆心角为60°的扇形面积是同半径圆面积的________。

三、简答题(每题5分,共10分)11. 圆的切线有哪些性质?12. 圆的内接四边形有哪些性质?四、计算题(每题10分,共20分)13. 已知一个圆的半径为7厘米,求这个圆的周长和面积。

14. 已知一个扇形的半径为8厘米,圆心角为120°,求这个扇形的弧长和面积。

五、应用题(每题15分,共30分)15. 一个圆形花坛的直径为20米,求这个花坛的周长和面积。

16. 一个圆环,内圆半径为3厘米,外圆半径为5厘米,求这个圆环的面积。

答案:1. C2. C3. B4. A5. A6. 27. 18.848. 正9. 6π10. 1/611. 圆的切线性质:①切线垂直于过切点的半径;②过圆心的直线与切线垂直;③切线与圆只有一个公共点。

初中九年级数学中考专项复习综合滚动练习:圆的有关性质(含答案)

初中九年级数学中考专项复习综合滚动练习:圆的有关性质(含答案)

初中九年级数学中考专项复习综合滚动练习:圆的有关性质(含答案)综合滚动练习:圆的有关性质时间:45分钟分数:100分得分:________一、选择题(每题4分,共32分) 1.⊙O的半径为5,直线AB与⊙O有交点,那么点O到直线AB的距离可能为( ) A.5.5 B.6 C.4.5 D.72.如图,点A,B,C均在⊙O上,假设∠B=40°,那么∠AOC的度数为( ) A.40°B.60° C.80° D.90°第2题图第3题图3.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在O 点钉在一起,并使它们保持垂直,测直径时把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,那么圆的直径为( )A.12个单位 B.10个单位 C.4个单位 D.15个单位 4.(2022·福建中考)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.以下四个角中,一定与∠ACD互余的角是( )A.∠ADC B.∠ABD C.∠BAC D.∠BAD第4题图第5题图第6题图5.如图,AB是圆O的直径,BC,CD,DA是圆O的弦,BC=CD=DA,那么∠BCD 等于( )A.100° B.110° C.120° D.135°6.如图,A,B,C,D为⊙O上的点,OC⊥AB于点E,假设∠CDB=30°,OA =2,那么AB的长为( )A.3 B.23 C.2 D.47.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),那么剪下的△AMN的周长为( )A.20cm B.15cm C.10cm D.无法确定- 1 -8.(2022·陕西中考)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙⊙O 上的一点,在△ABP中PB=AB,那么PA的长为( )53A.5 B. C.52 D.532二、填空题(每题4分,共24分) 9.如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.假设∠A=50°,那么∠BCE=________.第9题图第10题图第11题图10.如图,在⊙O中,AB为直径,CD为弦,∠ACD=40°,那么∠BAD=________°. 11.如图,AB是⊙O的直径,弦CD垂直平分半径OA,那么∠ABC=________. 12.如图①,小敏利用课余时间制作了一个脸盆架,图②是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,那么该脸盆的半径为________cm.第12题图第13题图第14题图13.(2022·宜春二模)如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB=90°,⊙P1是△OAB的内切圆,且P1的坐标为(3,1),那么OB的长为________.14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,假设∠CBD=32°,那么∠BEC的度数为________.三、解答题(共44分)15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,∠D=2∠A.(1)求∠D的度数;(2)假设CD=2,求BD的长.16.(10分)如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O- 2 -上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;5(2)假设⊙O的半径为3,sin∠ADE=,求AE的长.617.(12分)如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD.求证:△ABE是等边三角形.18.(12分)★在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.(1)如图①,假设点D与圆心O重合,AC=2,求⊙O的半径r; (2)如图②,假设点D与圆心O不重合,∠BAC=25°,求∠DCA的度数.- 3 -参考答案与解析1.C 2.C 3.B 4.D 5.C 6.B 7.A8.D 解析:连接OA,OB,OP,OB与AP交于点D.∵∠C=30°,∴∠APB=∠C=30°.∵PB=AB,∴∠PAB=∠APB=30°,∴∠ABP=120°.∵PB=AB,∴OB ⊥AP,AD=PD,∴∠OBP=∠OBA=60°.∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,那么Rt△ABD中,AD=sin60°·AB=353×5=,∴AP=2AD=53.应选D. 229.50°° 12.25 13.514.122°解析:在△ABC的外接圆中,∵∠CBD=32°,∴∠CAD=32°.∵点E是△ABC的内心,∴AE平分∠BAC,BE平分∠ABC,CE平分∠ACB,∴∠BAC =2∠CAD=2×32°=64°,∴∠EBC+∠ECB=(180°-64°)÷2=58°,∴∠BEC=180°-58°=122°.15.解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A.∵∠D =2∠A,∴∠D=∠COD.(3分)∵PD切⊙O于点C,∴∠OCD=90°,∴∠D=45°.(5分)(2)由(1)可知∠D=∠COD,∴∵CD=2,∴OC=OB=2.(7分)在Rt△OCD中,由勾股定理得OD2=OC2+CD2=22+22=8,∴OD=22,∴BD=OD-OB=22-2.(10分)16.解:(1)CD与⊙O相切.(1分)理由如下:连接OD,那么∠AOD=2∠AED =2×45°=90°.∵四边形ABCD是平行四边形,∴AB∥DC,(3分)∴∠CDO=∠AOD=90°,∴OD⊥CD.∴CD与⊙O相切.(5分)(2)连接BE,那么∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6.(8AE5分)在Rt△ABE中,∵sin∠ABE=sin∠ADE==,∴AE=5.(10分)AB617.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°.∵∠DCE+∠BCD=180°,∴∠A=∠DCE.(4分)∵DC=DE,∴∠DCE=∠DEC,∴∠A=∠DEC,即∠A=∠AEB.(6分)(2)由(1)可知∠A=∠AEB,∴AB=EB,∴△ABE是等腰三角形.(7分)∵OE⊥CD,∴CF=DF,∴OE是CD的垂直平分线,∴∵DC=DE,∴DC=DE=EC,∴△DCE 是等边三角形,(10分)∴∠AEB=60°,∴△AEB是等边三角形.(12分)1118.解:(1)过点O作OE⊥AC于点E,那么AE=AC=×2=1.∵翻折后点D与圆心O22212322222?1?重合,∴OE=r.(3分)在Rt△AOE中,AO=AE+OE,即r=1+?2r?,解得r=.(623。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

九年级数学上学期 24.1 圆的有关性质 同步练习卷 含解析

九年级数学上学期 24.1 圆的有关性质 同步练习卷  含解析

24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。

2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质

2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质

2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质一.选择题(共5小题)1.(2020秋•龙游县期末)如图,四边形ADBC内接于⊙O,∠AOB=122°,则∠ACB等于()A.131°B.119°C.122°D.58°2.(2021春•巨野县期末)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有()A.1个B.2个C.3个D.4个3.(2021•清江浦区一模)如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°4.(2020秋•西林县期末)下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等5.(2021•亭湖区一模)如图,AB是⊙O的直径,点C,D在⊙O上,∠D=20°,则∠1的大小是()A.160°B.150°C.140°D.40°二.填空题(共5小题)6.(2021春•兴化市期末)如图,在⊙O中,弧AB=弧AC,∠A=30°,则∠B=°.7.(2020秋•温江区校级期末)如图,点M为⊙O的半径OA的中点,弦BC过点M且垂直于AO,若AO=4,则弦BC的长为.8.(2021春•射阳县校级期末)如图,点A、B、C、D在⊙O上,,则AC BD (填“>”“<”或“=”).9.(2020秋•南充期末)如图是一种机械传动装置示意图,⊙O的半径为50cm,点A固定在⊙O上,连杆AP定长,点P随着⊙O的转动在射线OP上运动.在一个停止状态时,AP与⊙O交于点B,测得AB=60cm,PB=70cm,此时OP长为.10.(2020秋•龙游县期末)如图,AB是⊙O的直径,四边形ACFE是平行四边形,点E,F在圆上,点C是OB上一点,且OC=CF,则∠FOC的度数是.三.解答题(共5小题)11.(2020秋•上虞区期末)如图,AB是⊙O的直径,AB=4,P是AB延长线上一点,且BP=1,过点P作一直线,分别交⊙O于C,D两点,已知∠P=30°.(1)求CD与PC的长;(2)连接BC,AD,求圆内接四边形ABCD的面积.12.(2021•上城区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,连接AD,GD,AG.(1)找出图中和∠ADC相等的角,并给出证明;(2)已知BE=2,AE=8,求CD的长.13.(2021春•昌江区校级期末)已知:在圆O内,弦AD与弦BC相交于点G,AD=CB,M、N分别是CB和AD的中点,联结MN、OG.(1)证明:OG⊥MN;(2)联结AB、AM、BN,若BN∥OG,证明:四边形ABNM为矩形.14.(2021春•亭湖区校级期末)如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交AC、BC于点D、E.(1)求证:点E是BC的中点.(2)若∠BOD=75°,求∠CED的度数.15.(2020秋•南平期末)在扇形AOC中,∠AOC=60°,点B在上,且=2,点E 在半径OB上,以OE,OA为邻边作平行四边形OAFE,当点C,B,F共线时.(1)求∠CF A的度数;(2)求证:CF=OC.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质参考答案与试题解析一.选择题(共5小题)1.(2020秋•龙游县期末)如图,四边形ADBC内接于⊙O,∠AOB=122°,则∠ACB等于()A.131°B.119°C.122°D.58°【考点】圆心角、弧、弦的关系;圆周角定理;圆内接四边形的性质.【专题】圆的有关概念及性质;推理能力.【分析】先利用圆周角定理求出∠D=61°,然后根据圆内接四边形的性质计算∠ACB 的度数.【解答】解:∵∠AOB=122°,∴∠D=∠AOB=61°,∵四边形ADBC为⊙O内接四边形,∴∠ACB+∠D=180°,∴∠ACB=180°﹣61°=119°.故选:B.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理.2.(2021春•巨野县期末)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有()A.1个B.2个C.3个D.4个【考点】圆的认识.【专题】圆的有关概念及性质;推理能力.【分析】利用圆的有关定义与性质分别判断后即可确定正确的选项.【解答】解:①弦是直径,错误,符合题意;②半圆是弧,正确,不符合题意;③过圆心的弦是直径,故错误,符合题意;④圆心相同半径相同的两个圆是同圆,故错误,符合题意,错误的有3个,故选:C.【点评】主要考查圆的认识,判断命题的真假关键是要熟悉课本中的性质定理.3.(2021•清江浦区一模)如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°【考点】圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】根据邻补角的性质求得∠BOC的度数,再根据同弧所对的圆周角是圆心角的一半即可求得∠BDC的度数,【解答】解:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BDC=∠BOC=30°.故选:B.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2020秋•西林县期末)下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【考点】圆心角、弧、弦的关系.【专题】圆的有关概念及性质;应用意识.【分析】根据题意画出符合已知条件的图形,再逐个判断即可.【解答】解:A.如图,弦AB=弦AB,但是所对的两段弧不相等,故本选项不符合题意;B.在同圆或等圆中,相等的弧所对的弦相等,故本选项符合题意;C.如图,∠AOB=∠COD,但是弦AB和弦CD不相等,故本选项不符合题意;D.如图,弦AB=弦AB,但是圆心角∠ADB和∠ACB不相等,故本选项不符合题意;故选:B.【点评】本题考查了圆心角、弧、弦之间的关系,能熟记圆心角、弧、弦之间的关系是解此题的关键,注意:在同圆或等圆中,两个圆心角、两条弧、两条弦,如果其中有一对量相等,那么其余两对量也分别相等.5.(2021•亭湖区一模)如图,AB是⊙O的直径,点C,D在⊙O上,∠D=20°,则∠1的大小是()A.160°B.150°C.140°D.40°【考点】圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】首先根据圆周角定理求得∠2=2∠D=40°,然后由邻补角的定义求∠1的大小.【解答】解:如图,=,∠D=20°,∴∠2=2∠D=40°.∴∠1=180°﹣∠2=140°.故选:C.【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共5小题)6.(2021春•兴化市期末)如图,在⊙O中,弧AB=弧AC,∠A=30°,则∠B=75°.【考点】圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】先根据圆周角定理得到∠B=∠C,然后根据三角形内角和计算∠B的度数.【解答】解:∵弧AB=弧AC,∴∠B=∠C,∵∠A=30°,∴∠B=×(180°﹣30°)=75°.故答案为75.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2020秋•温江区校级期末)如图,点M为⊙O的半径OA的中点,弦BC过点M且垂直于AO,若AO=4,则弦BC的长为4.【考点】等边三角形的判定与性质;勾股定理;垂径定理.【专题】圆的有关概念及性质;解直角三角形及其应用;推理能力.【分析】连接OB,根据垂径定理得出BM=CM,根据直角三角形的边角关系求得∠OBM =30°,解直角三角形求得BM,进而即可求得BC.【解答】解:连接OB,∵点M为⊙O的半径OA的中点,∴OM=OB,∵弦BC过点M且垂直于AO,∴∠OBM=30°,∴BM=OB=×4=2,∵OA⊥BC,∴BM=CM,∴BC=2BM=4,故答案为4.【点评】本题考查了垂径定理以及解直角三角形等,作出辅助线构建直角三角形是解题的关键.8.(2021春•射阳县校级期末)如图,点A、B、C、D在⊙O上,,则AC=BD (填“>”“<”或“=”).【考点】圆心角、弧、弦的关系.【专题】圆的有关概念及性质;几何直观;模型思想.【分析】根据同圆与等圆中,圆心角、弦、弧的关系得出=即可.【解答】解:∵=,∴+=+,即=,∴AC=BD,故答案为:=.【点评】本题考查圆心角、弦、弧的关系,掌握在同圆与等圆中,两个圆心角、两条弦、两条弧中有一组量相等,那么其余两组量也对应相等是正确解答的前提.9.(2020秋•南充期末)如图是一种机械传动装置示意图,⊙O的半径为50cm,点A固定在⊙O上,连杆AP定长,点P随着⊙O的转动在射线OP上运动.在一个停止状态时,AP与⊙O交于点B,测得AB=60cm,PB=70cm,此时OP长为20cm.【考点】垂径定理的应用.【专题】圆的有关概念及性质;推理能力.【分析】作OD⊥AB于D,连接OB,根据垂径定理得到AD=BD=30cm,即可得到PD =100cm,利用勾股定理即可求得结果.【解答】解:作OD⊥AB于D,连接OB,∴AD=BD=AB=30cm,∴OD===40(cm),∴PD=PB+BD=70+30=100(cm),∴OP==20(cm);故答案为20cm.方法二:解:延长PO交圆于D;∵AB=60cm,PB=70cm,∴P A=130cm;由割线定理,得:PB•P A=PC•PD;设点P到圆心的距离是xcm,则有:(x﹣50)(x+50)=70×130,解得x=20cm.故OP长为20cm.故答案为20cm.【点评】本题考查了垂径定理、勾股定理的应用,作出辅助线根据直角三角形是解题的关键.10.(2020秋•龙游县期末)如图,AB是⊙O的直径,四边形ACFE是平行四边形,点E,F在圆上,点C是OB上一点,且OC=CF,则∠FOC的度数是36°.【考点】平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;多边形与平行四边形;圆的有关概念及性质;运算能力;推理能力.【分析】连接AF、BF,根据等腰三角形的性质得出∠FOC=∠CFO=α,求出∠FCB=2α,根据平行四边形的性质得出EF∥AB,AE∥CF,根据平行线的性质得出∠A=∠FCB=2α,∠EF A=∠F AB,求出∠B=∠A=2α,根据OF=OB求出∠OFB=∠B=2α,由三角形内角和定理求出∠OFB+∠B+∠FOC=180°,得出2α+2α+α=180°,求出α即可.【解答】解:连接BF、AF,∵OC=CF,∴∠FOC=∠CFO,设∠FOC=∠CFO=α,则∠FCB=∠FOC+∠CFO=2α,∵四边形AEFC是平行四边形,∴EF∥AB,AE∥CF,∴∠A=∠FCB=2α,∠EF A=∠F AB,∴=,∴=(都加上),∴∠B=∠A=2α,∵OF=OB,∴∠OFB=∠B=2α,在△OFB中,∠OFB+∠B+∠FOC=180°,即2α+2α+α=180°,解得:α=36°,即∠FOC=36°,故答案为:36°.【点评】本题考查了平行四边形的性质,等腰三角形的性质,圆心角、弧、弦之间的关系,圆周角定理等知识点,能求出∠B=∠A是解此题的关键.三.解答题(共5小题)11.(2020秋•上虞区期末)如图,AB是⊙O的直径,AB=4,P是AB延长线上一点,且BP=1,过点P作一直线,分别交⊙O于C,D两点,已知∠P=30°.(1)求CD与PC的长;(2)连接BC,AD,求圆内接四边形ABCD的面积.【考点】垂径定理.【专题】三角形;圆的有关概念及性质;运算能力;推理能力.【分析】(1)过点O作OH⊥CD于点H,连接OC,解直角三角形求得OH,PH,然后根据勾股定理求得CH,进而即可求得CD和PC;(2)求得△APD和△PBC的面积,进而即可求得四边形ABCD的面积.【解答】解:(1)过点O作OH⊥CD于点H,连接OC,在Rt△OPH中,∠P=30°,OP=OB+BP=2+1=3,∴,PH=OP•cos30°=3×=,在Rt△OHC中,.∵CD=2CH,∴.∴.(2)由(1)知:,P A=5,∠P=30°,∴,,∴.【点评】本题考查垂径定理,解直角三角形以及勾股定理的应用,三角形的面积,通过解直角三角形其实三角形的高是解题的关键.12.(2021•上城区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,连接AD,GD,AG.(1)找出图中和∠ADC相等的角,并给出证明;(2)已知BE=2,AE=8,求CD的长.【考点】勾股定理;垂径定理;圆周角定理.【专题】圆的有关概念及性质;图形的相似;推理能力.【分析】(1)由垂径定理可得DE=CE,=,可得结论;(2)通过证明△ACE∽△CBE,由相似三角形的性质可求CE=4,即可求解.【解答】解:(1)∠AGD=∠ADC,理由如下:∵弦CD⊥AB,∴DE=CE,=,∴∠AGD=∠ADC;(2)方法一、如图,连接AC,BC,∵AB是直径,∴∠ACB=90°,∴∠ACE+∠BCE=90°=∠ACE+∠CAE,∴∠BCE=∠CAE,又∵∠AEC=∠BEC=90°,∴△ACE∽△CBE,∴,∴CE•CE=2×8=16,∴CE=4,∴CD=8.方法二、连接OC,∵BE=2,AE=8,∴BA=10,∴OC=OB=5,∴OE=3,∴CE===4,∴CD=8.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.13.(2021春•昌江区校级期末)已知:在圆O内,弦AD与弦BC相交于点G,AD=CB,M、N分别是CB和AD的中点,联结MN、OG.(1)证明:OG⊥MN;(2)联结AB、AM、BN,若BN∥OG,证明:四边形ABNM为矩形.【考点】矩形的判定;垂径定理;圆心角、弧、弦的关系.【专题】矩形菱形正方形;圆的有关概念及性质;推理能力.【分析】(1)证明Rt△OMC≌Rt△OND(HL),推出OM=ON,证明Rt△OMG≌Rt△ONG(HL),推出GM=GN,由OM=ON,推出OG垂直平分线段MN,即OG⊥MN.(2)设OG交MN于J.证明四边形ABNM是平行四边形,由AN=BM,推出四边形ABNM 是矩形.【解答】证明:(1)连接OM,ON,OD,OC.∵BM=CM,AN=ND,∴OM⊥BC,ON⊥AD,∴∠OMC=∠OND=90°,∵AD=BC,∴CM=DN,∵OD=OC,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,∵OG=OG,∠OMG=∠ONG=90°,∴Rt△OMG≌Rt△ONG(HL),∴GM=GN,∵OM=ON,∴OG垂直平分线段MN,即OG⊥MN.(2)设OG交MN于J.∵OG垂直平分线段MN,∴MJ=JN,∵AN=BM.GM=GN,∴AG=BG,∵BN∥OG,MJ=JN,∴BG=GM,∴AG=BG=GN=GM,∴四边形ABNM是平行四边形,∵AN=BM,∴四边形ABNM是矩形.【点评】本题考查垂径定理,全等三角形的判定和性质,矩形的判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14.(2021春•亭湖区校级期末)如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交AC、BC于点D、E.(1)求证:点E是BC的中点.(2)若∠BOD=75°,求∠CED的度数.【考点】等腰三角形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】(1)连接AE,根据直径所对的圆周角为直角得到∠AEB=90°,再根据等腰三角形的性质即可得到结论;(2)根据圆周角定理得到∠DAB=∠BOD=37.5°,再根据圆的内接四边形的对角互补得到∠DAB+∠DEB=180°,而CBED+∠DEB=180°,则∠CED=∠DAB.【解答】(1)证明:连接AE,∵AB为⊙O的直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)解:∵∠BOD=75°,∴∠DAB=∠BOD=37.5°,∵∠DAB+∠DEB=180°,∠CED+∠DEB=180°,∴∠CED=∠DAB=37.5°.【点评】本题考查了在同圆或等圆中,同弧或等弧所对的圆周角的度数等于它所对的圆心角度数的一半;直径所对的圆周角为直角;圆的内接四边形的对角互补;等腰三角形的性质.15.(2020秋•南平期末)在扇形AOC中,∠AOC=60°,点B在上,且=2,点E 在半径OB上,以OE,OA为邻边作平行四边形OAFE,当点C,B,F共线时.(1)求∠CF A的度数;(2)求证:CF=OC.【考点】平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】与圆有关的计算;推理能力.【分析】(1)求出∠OBC=80°,再利用平行四边形的性质求解即可.(2)想办法证明OC=CA,CF=CA,可得结论.【解答】(1)解:∵=2,∴∠AOB=2∠BOC,∵∠AOC=60°,∴∠OBC=20°,∠AOB=40°,∵OB=OC,∴∠OBC=∠OCB=80°,∵四边形OAFE是平行四边形,∴OB∥AF,∴∠OBC=∠CF A=80°.(2)证明:∵OC=OA,∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=AC,∵四边形OAFE是平行四边形,∴OE∥AF,∴∠OAF=180°﹣∠AOB=140°,∴∠CAF=∠CF A=80°,∴CA=CF,∴CF=OC.【点评】本题考查圆周角定理,平行四边形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考点卡片1.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.2.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.3.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.4.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.5.矩形的判定(1)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.6.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.7.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.8.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.9.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.10.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.11.圆内接四边形的性质(1)圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补。

中考数学复习 专题22 圆的有关性质-人教版初中九年级全册数学试题

中考数学复习 专题22 圆的有关性质-人教版初中九年级全册数学试题

圆的有关性质☞解读考点知识点名师点晴垂径定理1.垂径定理能运用垂径定理解决有关问题.2.垂径定理逆定理能运用垂径定理的逆定理解决有关问题.圆心角、弧、弦之间相等关系的定理1.圆心角了解圆心角的概念2.圆心角、弧、弦之间相等关系的定理应用弧、弦、圆心角的关系进行证明和计算.圆周角1.圆周角了解圆周角的概念2.圆周角的定理理解圆周角定理及其推论,熟练掌握圆周角的定理及其推理的灵活运用.☞2年中考【2015年题组】1.(2015某某)如图,AB是⊙O的直径,C.D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20° B.30° C.40° D.70°【答案】A .考点:圆周角定理.2.(2015某某)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD=48°,则∠BAC 的大小是( )A .60° B.48° C.30° D.24° 【答案】D . 【解析】试题分析:∵直径AB ⊥CD ,∴BC BD ,∴∠BAC=12∠BOD=12×48°=24°.故选D .考点:1.圆周角定理;2.垂径定理.3.(2015某某)如图,四边形ABCD 是⊙O 的内接四边形,若∠A=70°,则∠C 的度数是( )A .100° B.110° C.120° D.130° 【答案】B . 【解析】试题分析:∵四边形ABCD 是⊙O 的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B .考点:圆内接四边形的性质.4.(2015某某)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠O AB的度数为()A.25° B.50° C.60° D.30°【答案】A.考点:1.圆周角定理;2.平行线的性质.5.(2015凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80° B.100° C.110° D.130°【答案】D.【解析】试题分析:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=12∠1,∴∠A=130°.故选D.考点:圆周角定理.6.(2015某某)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm【答案】B .【解析】试题分析:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=12AB=12×6=3cm,∵⊙O的半径为5cm,∴OC=22OA AC-=2253-=4cm,故选B.考点:1.垂径定理;2.勾股定理.7.(2015襄阳)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40° B.100° C.40°或140° D.40°或100°【答案】C.考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论.8.(2015某某)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°【答案】D.【解析】试题分析:如图,∵∠AOC=160°,∴∠ABC=12∠AOC=12×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.考点:圆周角定理.9.(2015某某)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB 上一点,则∠ACB=()A.80° B.90° C.100° D.无法确定【答案】B.考点:1.圆周角定理;2.坐标与图形性质.10.(2015某某)⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.10 B.23 C.13 D.32【答案】C.【解析】试题分析:过A作AD⊥BC,由题意可知AD必过点O,连接OB,∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3,∴OD=AD﹣OA=2,Rt△OBD中,根据勾股定理,得:OB=22BD OD+=13.故选C.考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.11.(2015某某)如图,在⊙O中,AB AC=,∠AOB=50°,则∠ADC的度数是()A.50° B.40° C.30° D.25°【答案】D.考点:1.圆周角定理;2.垂径定理.12.(2015龙东)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60° B.120° C.60°或120° D.30°或150°【答案】C.考点:1.圆周角定理;2.含30度角的直角三角形;3.垂径定理;4.分类讨论.13.(2015某某)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C【答案】B.【解析】试题分析:如图1,连接BD、CD,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=22AB AD -=2265-=11,∵弦AD 平分∠BAC ,∴CD=BD=11,∴∠CBD=∠DAB ,在△ABD 和△BED 中,∵∠BAD=∠EBD ,∠ADB=∠BDE ,∴△ABD ∽△BED ,∴DE DBDB AD =,即11511DE =,解得DE=115,∴AE=AB ﹣DE=5﹣115=2.8.故选B .考点:1.相似三角形的判定与性质;2.勾股定理;3.圆周角定理;4.综合题. 14.(2015某某)如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D 中,正确的结论为( )A .①② B.②③ C.①②③ D.①③ 【答案】D .考点:1.锐角三角函数的增减性;2.圆周角定理.15.(2015某某)如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为( )A .4B .5C .6D .7 【答案】B .考点:1.轴对称-最短路线问题;2.圆周角定理;3.综合题.16.(2015某某)如图所示,MN 是⊙O 的直径,作AB⊥MN,垂足为点D ,连接AM ,AN ,点C 为AN 上一点,且AC AM =,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD=BD;②∠MAN=90°;③AM BM =;④∠ACM+∠ANM=∠MOB;⑤AE=12MF .其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵MN 是⊙O 的直径,AB⊥MN,∴AD=BD,AM BM =,∠MAN=90°,故①②③正确;∵AC AM =,∴AC AM BM ==,∴∠ACM+∠ANM=∠MOB,故④正确;∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=12MF ,故⑤正确.正确的结论共5个.故选D .考点:1.圆周角定理;2.垂径定理;3.压轴题.17.(2015某某)如图,在⊙O 中,半径OD 垂直于弦AB ,垂足为C ,OD=13cm ,AB=24cm ,则CD= cm .【答案】8.考点:1.垂径定理;2.勾股定理.18.(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.【答案】30.【解析】试题分析:连接OC,∵弦CD 垂直平分半径OA,∴OE=12OC,∴∠OCD=30°,∠AOC=60°,∴∠ABC=30°.故答案为:30.考点:1.垂径定理;2.含30度角的直角三角形;3.圆周角定理.19.(2015某某)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.【答案】30°或150°.考点:1.三角形的外接圆与外心;2.等边三角形的判定与性质;3.圆周角定理;4.分类讨论.20.(2015某某)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【答案】1 2.【解析】试题分析:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC=ACAB=12,∴tan∠AED=12.故答案为:12.考点:1.圆周角定理;2.锐角三角函数的定义;3.网格型.21.(2015某某)如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为.【答案】61°.考点:圆周角定理.22.(2015某某)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC 于点D,则OD的长为.【答案】4.【解析】试题分析:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴OD=22OB BD=4.故答案为:4.考点:1.垂径定理;2.勾股定理.23.(2015某某)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD= .【答案】1 3.考点:1.圆周角定理;2.解直角三角形.24.(2015某某)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=1 4,则线段AC的长为.【答案】2.【解析】试题分析:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=1 4,在Rt△ACD中,∵sinD=ACAD=14,∴AC=14AD=14×8=2.故答案为:2.考点:1.圆周角定理;2.解直角三角形.25.(2015某某省)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠A=40°,则∠B= 度.【答案】70°.考点:1.圆周角定理;2.圆心角、弧、弦的关系.26.(2015某某省)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB ,BC的中点,则MN长的最大值是.【答案】32.【解析】试题分析:∵点M,N分别是AB,BC的中点,∴MN=12AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=62,∴MN=12AD=3232考点:1.三角形中位线定理;2.等腰直角三角形;3.圆周角定理;4.最值问题.27.(2015某某省)如图,点O为BC所在圆的圆心,∠BOC=112°,点D在BA 的延长线上,AD=AC,则∠D= .【答案】28°.考点:1.圆周角定理;2.等腰三角形的性质.28.(2015某某)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC 的长是.833考点:1.全等三角形的判定与性质;2.勾股定理;3.圆心角、弧、弦的关系;4.圆周角定理;5.综合题;6.压轴题.29.(2015某某)已知⊙O为△ABC的外接圆,圆心O在AB上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.①求证:OD⊥BC;②求EF的长.【答案】(1)作图见试题解析;(2321 7(2)①如图2,∵AD 平分∠BAC ,∴∠DAC=∠BAD ,∴CD BD =, ∵OD 过圆心,∴OD ⊥CB ;②∵AB 为直径,∴∠C=90°,∵OD ⊥CB ,∴∠OFB=90°,∴AC ∥OD ,∴OF OBAC AB =,,即5410OF =,∴OF=2,∵FD=5﹣2=3,在RT △OFB 中,BF=22OB OF -=2252-=21,∵OD ⊥BC ,∴CF=BF=21,∵AC ∥OD ,∴△EFD ∽△ECA ,∴34EF FD CE AC ==,∴37EF CF =,∴EF=37CF=3217⨯=3217.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.30.(2015某某)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1)求证:∠A=∠AEB ;(2)连接OE ,交CD 于点F ,OE ⊥CD ,求证:△ABE 是等边三角形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.圆内接四边形的性质;2.等边三角形的判定与性质;3.圆周角定理;4.综合题.31.(2015凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O 于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=454,AB=194,PD=DC+2,求点O到PC的距离.【答案】(1)证明见试题解析;(2)3.【解析】试题分析:(1)先连接AD,BC,由圆内接四边形的性质可知∠PAD=∠PCB,∠PDA=∠PBC,故可得出△PAD∽△PCB,再由相似三角形的对应边成比例即可得出结论;(2)由PA•PB=PD•PC,求出CD,根据垂径定理可得点O到PC的距离.试题解析:(1)连接AD,BC,∵四边形ABDC内接于⊙O,∴∠PAD=∠PCB,∠PDA=∠PBC,∴△PAD∽△PCB,∴PA PDPC PB,∴PA•PB=PC•PD;(2)连接OD,作OE⊥DC,垂足为E,∵PA=454,AB=194,PD=DC+2,∴PB=16,PC=2DC+2,∵PA•PB=PD•PC,∴454×16=(DC+2,第1题,2DC+2),解得:DC=8或DC=﹣11(舍去),∴DE=4,∵OD=5,∴OE=3,即点O到PC的距离为3.考点:1.相似三角形的判定与性质;2.圆周角定理;3.综合题.32.(2015某某省)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【答案】(16;(2332.(2)连结OQ,如图2,在Rt△OPQ中,PQ=22OQ OP-=29OP-,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=12OB=32,∴PQ长的最大值为239()2-=332.考点:1.圆周角定理;2.勾股定理;3.解直角三角形;4.最值问题;5.压轴题.33.(2015某某)【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=25,AD=1,求DG的长.【答案】【思考】证明见试题解析;【应用】(1)证明见试题解析;(2)21 2.【应用】(1)如图2,取CD的中点O,则点O是RT△ACD的外心,∵∠CAD=∠DEC=90°,∴点E在⊙O上,∴∠ACD=∠AED,∵∠FDA=∠AED,∴∠ACD=∠FDA,∵∠DAC=90°,∴∠ACD+∠ADC=90°,∴∠FDA+∠ADC=90°,∴OD⊥DF,∴DF为Rt△ACD的外接圆的切线;(2)∵∠BGE=∠BAC,∴点G在过C、A、E三点的圆上,如图3,又∵过C、A、E三点的圆是RT△ACD的外接圆,即⊙O,∴点G在⊙O上,∵CD是直径,∴∠DGC=90°,∵AD∥BC,∴∠ADG=90°,∵∠DAC=90°,∴四边形ACGD是矩形,∴DG=AC,∵sin∠AED=25,∠ACD=∠AED,∴sin∠ACD=25,在RT△ACD中,AD=1,∴ADCD=25,∴CD=52,∴22 CD AD212,∴212.考点:1.切线的判定;2.圆周角定理;3.圆的综合题;4.压轴题.【2014年题组】1.(2014·某某省某某市)在△ABC中,AB=AC=5,sinB=45,⊙O过点B、C两点,且⊙O半径r=10,则OA的值()A. 3或5 B. 5 C.4或5 D. 4【答案】A.考点:1.垂径定理;2.等腰三角形的性质;3.勾股定理;4.解直角三角形.2.(2014·某某)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A .2B .4C .6D .8 【答案】C .考点:1.勾股定理;2.垂径定理.3.(2014·凉山)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( )A .25cmB .45cmC .25cm 或45cm D.523cm 或43cm 【答案】C . 【解析】试题分析:根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论连接AC ,AO ,∵⊙O 的直径CD=10cm ,AB⊥CD,AB=8cm ,∴AM=12AB=12×8=4cm,OD=OC=5cm .当C点位置如答图1所示时,∵OA=5cm ,AM=4cm ,CD⊥AB ,∴2222OM OA AM 543-=-=cm .∴CM=OC+OM=5+3=8cm.∴在Rt△AMC 中,2222AC AM CM 4845=+=+=. 当C 点位置如图2所示时,同理可得OM=3cm ,∵OC=5cm,∴MC=5﹣3=2cm .∴在Rt△AMC 中,2222AC AM CM 4225=+=+=.综上所述,AC 的长为25cm 或45cm .故选C.考点:1.垂径定理;2.勾股定理;3.分类思想的应用.4.(2014·呼和浩特)已知⊙O的面积为2π,则其内接正三角形的面积为()A.33 B.36 C.332D.362【答案】C.5.(2014·某某)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN 于点F,P为EF上任意一点,,则PA+PC的最小值为.【答案】72.考点:1.轴对称的应用(最短路线问题);2.勾股定理;3.垂径定理.6.(2014·某某省某某市)在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为.【答案】2.【解析】试题分析:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=12AC•B D=12×1×4=2.考点:1.垂径定理;2.勾股定理.7.(2014·某某省湘西州)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE= cm.【答案】4.【解析】试题分析:∵CD⊥AB,∴CE=12CD=12×6=3cm,∵在Rt△OCE中,OE=2222534 OC CE-=-=cm.考点:1.垂径定理;2.勾股定理.8.(2014·某某某某市)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.【答案】3.考点:1.垂径定理;2.勾股定理.9.(2014·某某某某市)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=度.【答案】50.【解析】试题分析:∠ACB=12∠AOB=12×100°=50°.考点:圆周角定理.10.(2014·某某)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3.考点:1.垂径定理;2.勾股定理.☞考点归纳归纳 1:垂径定理及其推论基础知识归纳:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.基本方法归纳:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.注意问题归纳:这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【例1】如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【答案】B.考点:1.垂径定理;2.勾股定理.归纳2:弧、弦、弦心距、圆心角之间的关系定理基础知识归纳:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.基本方法归纳:正确理解和使用圆心角、弧、弦三者的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.注意问题归纳:这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.【例2】如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【答案】B.考点:圆心角、弧、弦的关系.归纳3:圆周角定理基础知识归纳:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.基本方法归纳:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.注意问题归纳:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.【例3】如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠BOC=()A.25° B.50° C.130° D.155°【答案】C.【解析】试题分析:∵CD⊥AB,∠DAB=65°,∴∠ADC=90°-∠DAB=25°.∴∠AOC=2∠ADC=50°.∴∠BOC=180°-∠AOC=130°.故选C.考点:圆周角定理.☞1年模拟1.(2015届某某省某某市调研考试)如图,用直角三角板经过两次画图找到圆形工件的圆心,这种方法应用的道理是()A.垂径定理B.勾股定理C.直径所对的圆周角是直角D.900的圆周角所对的弦是直径【答案】D.考点:圆周角定理.2.(2015届某某省某某市联考)如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=()OACBA.100° B.110° C.120° D.130°【答案】A.【解析】试题分析:在优弧AC上取点D,连接AD,CD,∵四边形ABCD是圆内接四边形,∠ABC=130°,∴∠D=180°-10°=50°.∵∠D与∠AOC是同弧所对的圆周角与圆心角,∴∠AOC=2∠D=100°.故选A.考点:圆周角定理.3.(2015届某某省某某东台一模)在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y=kx ﹣3k+4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .510D .312【答案】B .考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理. 4.(2015届某某省某某市联考)如图,AB 是⊙O 的直径且AB=43,点C 是OA 的中点,过点C[,作CD⊥AB 交⊙O 于D 点,点E 是⊙O 上一点,连接DE ,AE 交DC 的延长线于点F ,则AE·AF 的值为( ).FDCA EOA .83.12 C .63.93【答案】B .考点:相似三角形的判定和性质;圆周角定理.5.(2015届某某省某某市一模)如图,已知:AB是⊙O的直径,弦CD⊥AB,连结OC、AD,∠OCD=32°,则∠A=()A.32 B.29 C.58 D.45【答案】B.【解析】试题分析:连接OD,由题意,∠COB=90°-32°=58°,由垂径定理知∠COB=∠DOB,所以∠A=29°.故选B.考点:1.圆周角定理;2.垂径定理.6.(2015届某某农业大学附属中校级模拟)如图所示,AB是⊙O的直径,CD是⊙O的弦,连结AC、AD,若∠CAB=35°,则∠ADC的度数为()A、35°B、45°C、55°D、65°【答案】C.考点:圆周角的性质,直角三角形.7.(2015届某某农业大学附属中校级模拟)如图,⊙O的弦AB=8,M是AB的中点,且OM =3,则⊙O的半径等于()A、8B、4C、10D、5【答案】D.【解析】试题分析:连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM=4,根据勾股定理即可求得OA的长22OA OM AM=+=5.考点:垂径定理,勾股定理.8.(2015届某某省黄冈中学校级模拟)如图PA、PB分别与⊙O相切于点A、B,若∠P=40°,∠ABP=____________°.【答案】70°.考点:切线的性质.9.(2015届某某省某某市校级模拟)在⊙O中,AB是⊙O的直径,AB=8cm,,M是AB上一动点,CM+DM的最小值是 cm.【答案】8.【解析】试题分析:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M 为CM+DM的最小值时的位置,由垂径定理,,∴,∵,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.考点:1.轴对称-最短路线问题;2.勾股定理;3.垂径定理.。

九年级数学圆的性质及习题

九年级数学圆的性质及习题

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;A内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级数学练习题(圆的基本性质)5

九年级数学练习题(圆的基本性质)5

九年级数学下练习题(圆的基本性质)一、 填空题:(21分)1、如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(((44、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= . 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________(5题图) (6题图) (7题图) (二、解答题1题) 二、解答题(70分)1、如上图4,AB 是⊙O 的直径. (1)若OD ∥AC ,与 的大小有什么关系?为什么? (2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.2、已知:如图,在⊙O 中,弦AB=CD.求证:⑴弧AC=弧BD ; ⑵∠AOC=∠BOD3、如图,已知:⊙O 中,AB 、CB 为弦,OC 交AB 于D ,求证:(1)∠ODB>∠OBD ,BBBDCA(2)∠ODB =∠OBC ;4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。

求证:CE=DF5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点,且AB = CD , 求证:∠AMN=∠CNM7、已知如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE ,CDC求证:∠D=∠B8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E , 求证:弧AE=弧EB9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,证明你的观点。

九年级数学同步练习-圆的有关性质

九年级数学同步练习-圆的有关性质

24.1圆的有关性质1、有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是().A. 1B. 2C. 3D. 42、如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是cm.3、下列结论正确的是().A. 优弧一定大于劣弧B. 相等的圆心角所对的弧相等C. 外心到三角形各边的距离相等D. 同弧或等弧所对的圆周角相等4、下列结论正确的是().A. 经过圆心的直线是圆的对称轴B. 直径是圆的对称轴C. 与圆相交的直线是圆的对称轴D. 与直径相交的直线是圆的对称轴5、下列说法正确的是().A. 弦是直径B. 弧是半圆C. 直径是圆中最长的弦D. 半圆是圆中最长的弧6、在同圆或等圆中,下列说法错误的是().A. 相等弦所对的弧相等B. 相等弦所对的圆心角相等C. 相等圆心角所对的弧相等D. 相等圆心角所对的弦相等7、半径为9cm的圆中,长为12πcm的一条弧所对的圆心角的度数为.8、如图,⊙O中,如果∠AOB=2∠COD,那么().A. AB=2CDB. AB<DCC. AB<2DCD. AB>2DC9、如图,AB,CD是⊙O的直径,AE⌢=BD⌢,若∠AOE=32°,则∠COE的度数是().A. 32°B. 60°C. 68°D. 64°10、下列命题中正确的是().A. 弦是圆上任意两点之间的部分B. 半径是弦C. 直径是最长的弦D. 弧是半圆,半圆是弧11、已知⊙O的半径为5cm,则圆中最长的弦长为cm.12、以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;其中正确的个数是().A. 4B. 3C. 2D. 113、下列说法中,不正确的是().A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧14、下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有().A. 1个B. 2个C. 3个D. 4个15、下列说法中,正确的是().A. 相等的圆心角所对的弦相等B. 圆心角的度数等于它所对弧的度数C. 相等的弦所对的弧相等D. 相等的圆心角所对的弧相等16、下列说法中正确的是().A. 长度相等的两条弧相等B. 相等的圆心角所对的弧相等C. 相等的弦所对的弧相等D. 相等的弧所对的圆心角相等17、下面四个图中的角,为圆心角的是().A.B.C.D.18、已知,如图,∠AOB=∠COD,下列结论不一定成立的是().A. AB=CDB. AB⌢=CD⌢C. △AOB≌△CODD. △AOB、△COD都是等边三角形1 、【答案】 B;【解析】①确定一个圆的条件是确定圆心与半径,故此说法错误;②直径是弦,直径是圆内最长的弦,故此说法正确;③只有过圆心的弦才是直径,故此说法错误;④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,故此说法正确.故错误的说法是①③,共2个.故选B.2 、【答案】4;【解析】∵AB=2cm,∴圆的直径是4cm.故答案为:4.3 、【答案】 D;【解析】 A选项 : 必须在同圆或等圆中,优弧一定大于劣弧,故本选项说法错误.B选项 : 必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误.C选项 : 外心到三角形各顶点的距离相等,故本选项说法错误.D选项 : 同弧或等弧所对的圆周角相等,故本选项说法正确.4 、【答案】 A;【解析】A.对称轴是直线且过圆心,故A正确;B.直径是线段,故B错误;C.不符合圆的对称轴性,故C错误;D.没有说过圆心,故D错误.故选A.5 、【答案】 C;【解析】 A选项 : 直径是弦,但弦不一定是直径,故A错误;B选项 : 半圆是弧,但弧不一定是半圆,故B错误;C选项 : 直径是圆中最长的弦,故C正确;D选项 : 半圆是小于优弧而大于劣弧的弧,故D错误;6 、【答案】 A;【解析】A、相等弦所对的弧不一定相等,故本选项错误;B、相等弦所对的圆心角相等,故本选项正确;C、相等圆心角所对的弧相等,故本选项正确;D、相等圆心角所对的弦相等,故本选项正确.7 、【答案】240°;【解析】设圆心角的度数为n,=12π,则nπ×9180解得n=240,所以所求圆心角为240°.8 、【答案】 C;【解析】如图,过点O作OE⊥AB交⊙O于点E,连接AE、BE,∠AOB,∴∠AOE=∠BOE=12∠AOB,又∵∠COD=12∴∠AOE=∠BOE=∠COD,∴CD=AE=BE,∵在△ABE中,AE+BE>AB,∴2CD>AB.故选C.9 、【答案】 D;【解析】∵AE⌢=BD⌢,∴∠BOD=∠AOE=32°,又∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.10 、【答案】 C;【解析】 A选项 : 弧是圆上任意两点之间的部分,弦是圆上任意两点的连线,故A错误;B选项 : 半径不是弦,故B错误;C选项 : 直径是最长的弦,故C正确;D选项 : 半圆是弧,弧不一定是半圆,故D错误.11 、【答案】10;【解析】∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.12 、【答案】 D;【解析】①直径相等的圆是等圆,符合等圆的性质,故本小题正确;②长度相等弧不一定重合,因此不一定是等弧,故本小题错误;③在同圆或等圆中,相等的弦所对的弧也相等,故本小题错误;④圆的对称轴是直径所在的直线,故本小题错误;所以D选项是正确的.13 、【答案】 D;【解析】 A选项 : 直径是最长的弦,正确;B选项 : 同圆中,所有的半径都相等,正确;C选项 : 圆既是轴对称图形,也是中心对称图形,正确;D选项 : 只有在同圆和等圆中,长度相等的弧是等弧,错误.14 、【答案】 A;【解析】①同圆或等圆中长度相等的弧是等弧,所以本选项说法错误,不符合题意;②同圆或等圆中相等的圆心角所对的弧相等,所以本选项说法错误,不符合题意;③同圆或等圆中劣弧一定比优弧短,所以本选项说法错误,不符合题意;④直径是圆中最长的弦,本选项说法正确,符合题意;故选A.15 、【答案】 B;【解析】A.必须在“同圆或等圆”中.C.相等的弦所对的弧有优弧、劣弧之分.D.必须在“同圆或等圆”中.16 、【答案】 D;【解析】 A、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;B、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、在同圆或等圆中,相等的弦所对的优弧或劣弧相等,故本选项错误;D、相等的弧所对的圆心角相等,正确,故选D.17 、【答案】 D;【解析】圆心角的顶点必须在圆心上,∴选项A,B,C均不正确,故选D.18 、【答案】 D;【解析】∵∠AOB=∠COD,∴AB=CD,AB⌢=CD⌢,∵OA=OB=OC=OD,∴△AOB≌△COD,∴A、B、C成立,D不一定成立,故选:D.。

初三数学圆的有关性质练习题

初三数学圆的有关性质练习题

初三数学圆的有关性质练习题1. 问题描述:已知圆A的半径为5cm,圆B的直径为10cm,求圆B的半径和周长。

解答:根据圆的性质,圆的周长公式为C = 2πr,其中C代表周长,π为圆周率,r为半径。

对于圆A,已知其半径为5cm,可以直接带入周长公式计算,得到圆A的周长为:C(A) = 2π × 5 = 10π ≈ 31.42cm对于圆B,已知其直径为10cm,可以通过直径与半径的关系计算其半径。

直径等于半径的两倍,即d = 2r:10 = 2rr = 10/2 = 5cm圆B的半径为5cm,可以带入周长公式计算,得到圆B的周长为:C(B) = 2π × 5 = 10π ≈ 31.42cm所以,圆B的半径为5cm,周长为31.42cm。

2. 问题描述:已知圆C的半径为8cm,圆的面积等于35.2平方厘米,求圆的周长。

解答:对于圆C,已知其半径为8cm,可以带入圆的面积公式计算,面积公式为S = πr^2,其中S代表面积,π为圆周率,r为半径。

已知圆的面积为35.2平方厘米,可以带入面积公式求解:35.2 = π × 8^235.2 = 64ππ ≈ 35.2/ 64 ≈ 0.55将计算得到的π带入圆的周长公式C = 2πr,可以计算圆的周长:C = 2π × rC = 2 × 0.55 × 8 ≈ 8.8 × 8 ≈ 70.4cm所以,已知圆C的半径为8cm,面积为35.2平方厘米,该圆的周长约为70.4cm。

3. 问题描述:已知圆D和圆E的半径分别为6cm和10cm,圆E的面积比圆D的面积大多少平方厘米?解答:对于圆D,已知其半径为6cm,可以带入圆的面积公式计算,面积公式为S = πr^2,其中S代表面积,π为圆周率,r为半径。

对于圆E,已知其半径为10cm,同样带入圆的面积公式计算。

首先计算圆D的面积:S(D) = π × 6^2S(D) ≈ 3.14 × 36 ≈ 113.04平方厘米然后计算圆E的面积:S(E) = π × 10^2S(E) ≈ 3.14 × 100 ≈ 314平方厘米圆E的面积大于圆D的面积的差为:S(E) - S(D) = 314 - 113.04 ≈ 200.96平方厘米所以,圆E的面积比圆D的面积大约200.96平方厘米。

圆的有关性质(共46题)(解析版)--2023年中考数学真题分项汇编

圆的有关性质(共46题)(解析版)--2023年中考数学真题分项汇编

圆的有关性质(46题)一、单选题1(2023·四川自贡·统考中考真题)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,连接BD ,∠DCA =41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°【答案】C 【分析】由CD 是⊙O 的直径,得出∠DBC =90°,进而根据同弧所对的圆周角相等,得出∠ABD =∠ACD =41°,进而即可求解.【详解】解:∵CD 是⊙O 的直径,∴∠DBC =90°,∵AD =AD,∴∠ABD =∠ACD =41°,∴∠ABC =∠DBC -∠DBA =90°-41°=49°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.2(2023·四川凉山·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠ADB =30°,BC =23,则OC =()A.1B.2C.23D.4【答案】B【分析】连接OB ,由圆周角定理得∠AOB =60°,由OA ⊥BC 得,∠COE =∠BOE =60°,CE =BE =3,在Rt △OCE 中,由OC =CE sin60°,计算即可得到答案.【详解】解:连接OB ,如图所示,,∵∠ADB =30°,∴∠AOB =2∠ADB =2×30°=60°,∵OA ⊥BC ,∴∠COE =∠BOE =60°,CE =BE =12BC =12×23=3,在Rt △OCE 中,∠COE =60°,CE =3,∴OC =CE sin60°=332=2,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.3(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB .“会圆术”给出AB 的弧长l 的近似值计算公式:l =AB +MN 2OA .当OA =4,∠AOB =60°时,则l 的值为()A.11-23B.11-43C.8-23D.8-43【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB ,得ON ⊥AB ,∴点M ,N ,O 三点共线,∵OA =4,∠AOB =60°,∴△OAB 是等边三角形,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23∴l =AB +MN 2OA=4+4-23 24=11-43.故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.4(2023·四川宜宾·统考中考真题)如图,已知点A 、B 、C 在⊙O 上,C 为AB的中点.若∠BAC =35°,则∠AOB 等于()A.140°B.120°C.110°D.70°【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:∵点A 、B 、C 在⊙O 上,C 为AB的中点,∴BC =AC ,∴∠BOC =∠AOC =12∠AOB ,∵∠BAC =35°,根据圆周角定理可知∠BOC =2∠BAC =70°,∴∠AOB =2∠BOC =140°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于⊙O ,连接OC ,OD ,则∠BAE -∠COD =()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE =180°-360°5,∠COD =360°5,∴∠BAE -∠COD =180°-360°5-360°5=36°,故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.7(2023·云南·统考中考真题)如图,AB 是⊙O 的直径,C 是⊙O 上一点.若∠BOC =66°,则∠A =()A.66°B.33°C.24°D.30°【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC =BC,∠BOC =66°,∴∠A =12∠BOC =33°,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB =AB ,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.9(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =3,则∠CAO 的度数与BC 的长分别为()A.10°,1B.10°,2C.15°,1D.15°,2【答案】C【分析】过点O 作OE ⊥AD 于点E ,由题意易得∠CAD =∠ADB =45°=∠CBD =∠BCA ,然后可得∠OAD =∠ODA =30°,∠ABD =∠ACD =12∠AOD =60°,AE =12AD =32,进而可得CD =2OC =2,CF =12CD =22,最后问题可求解.【详解】解:过点O 作OE ⊥AD 于点E ,如图所示:∵BC∥AD,∴∠CBD=∠ADB,∵∠CBD=∠CAD,∴∠CAD=∠ADB,∵AC⊥BD,∴∠AFD=90°,∴∠CAD=∠ADB=45°=∠CBD=∠BCA,∵∠AOD=120°,OA=OD,AD=3,∴∠OAD=∠ODA=30°,∠ABD=∠ACD=12∠AOD=60°,AE=12AD=32,∴∠CAO=∠CAD-∠OAD=15°,OA=AEcos30°=1=OC=OD,∠BCD=∠BCA+∠ACD=105°,∴∠COD=2∠CAD=90°,∠CDB=180°-∠BCD-∠CBD=30°,∴CD=2OC=2,CF=12CD=22,∴BC=2CF=1;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.10(2023·浙江台州·统考中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).A.2B.2C.4+22D.4-22【答案】D【分析】设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,由题意可得,EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,过点O作OF⊥AB,如下图:则EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:OE=AB=4,AF=OF=12AB=2由勾股定理可得:OA=OF2+AF2=22,∴AE =4-22,故选:D .【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11(2023·山东枣庄·统考中考真题)如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =48°,∠APD =80°,则∠B 的度数为()A.32°B.42°C.48°D.52°【答案】A【分析】根据圆周角定理,可以得到∠D 的度数,再根据三角形外角的性质,可以求出∠B 的度数.【详解】解:∵∠A =∠D ,∠A =48°,∴∠D =48°,∵∠APD =80°,∠APD =∠B +∠D ,∴∠B =∠APD -∠D =80°-48°=32°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出∠D 的度数.12(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于⊙O ,点P 在AF 上,Q 是DE 的中点,则∠CPQ 的度数为()A.30°B.36°C.45°D.60°【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接OC ,OD ,OQ ,OE ,∵正六边形ABCDEF ,Q 是DE的中点,∴∠COD =∠DOE =360°6=60°,∠DOQ =∠EOQ =12∠DOE =30°,∴∠COQ =∠COD +∠DOQ =90°,∴∠CPQ =12∠COQ =45°,故选:C .【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.13(2023·湖北十堰·统考中考真题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.43B.7C.8D.45【答案】B【分析】作BM⊥AC于点M,由题意可得出△AEB≌△DEC,从而可得出△EBC为等边三角形,从而得到∠GEF=60°,∠EGF=30°,再由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.【详解】解:作BM⊥AC于点M,在△AEB和△DEC中,∠A=∠DAE=ED∠AEB=∠DEC,∴△AEB≌△DEC ASA,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠GEF=60°,BC=EC∴∠EGF=30°,∵EG=2,OF⊥AC,∠EGF=30°∴EF=12EG=1,又∵AE=ED=3,OF⊥AC∴CF=AF=AE+EF=4,∴AC=2AF=8,EC=EF+CF=5,∴BC=EC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=52,BM=BC 2-CM2=532,∴AM=AC-CM=112,∴AB=AM2+BM2=7.故选:B.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键.14(2023·山西·统考中考真题)如图,四边形ABCD 内接于⊙O ,AC ,BD 为对角线,BD 经过圆心O .若∠BAC =40°,则∠DBC 的度数为()A.40°B.50°C.60°D.70°【答案】B【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC =BC ,∴∠BDC =∠BAC =40°,∵BD 为圆的直径,∴∠BCD =90°,∴∠DBC =90°-∠BDC =50°;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.15(2023·湖北宜昌·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为( ).A.5B.4C.3D.2【答案】B 【分析】根据等腰三角形的性质得出OD ⊥AC ,根据勾股定理求出OC =10,进一步可求出BD 的长.【详解】解:∵AD =CD =8,∴点D 为AC 的中点,∵AO =CO ,∴OD ⊥AC ,由勾股定理得,OC =CD 2+OD 2=62+82=10,∴OB =10,∴BD =OB -OD =10-6=4,故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键16(2023·河北·统考中考真题)如图,点P 1~P 8是⊙O 的八等分点.若△P 1P 3P 7,四边形P 3P 4P 6P 7的周长分别为a ,b ,则下列正确的是()A.a <bB.a =bC.a >bD.a ,b 大小无法比较【答案】A【分析】连接P 1P 2,P 2P 3,依题意得P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6=P 1P 7,△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,故b -a =P 1P 2+P 2P 3-P 1P 3,根据△P 1P 2P 3的三边关系即可得解.【详解】连接P 1P 2,P 2P 3,∵点P 1~P 8是⊙O 的八等分点,即P 1P 2 =P 2P 3 =P 3P 4=P 4P 5 =P 5P 6 =P 6P 7 =P 7P 8=P 8P 1∴P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6 =P 4P 5 +P 5P 6 =P 7P 8+P 8P 1 =P 1P 7∴P 4P 6=P 1P 7又∵△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,∴b -a =P 3P 4+P 4P 6+P 6P 7+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 1P 7+P 2P 3+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 2P 3-P 1P 3在△P 1P 2P 3中有P 1P 2+P 2P 3>P 1P 3∴b -a =P 1P 2+P 2P 3-P 1P 3>0故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.17(2023·浙江杭州·统考中考真题)如图,在⊙O 中,半径OA ,OB 互相垂直,点C 在劣弧AB 上.若∠ABC =19°,则∠BAC =()A.23°B.24°C.25°D.26°【答案】D【分析】根据OA ,OB 互相垂直可得ADB 所对的圆心角为270°,根据圆周角定理可得∠ACB =12×270°=135°,再根据三角形内角和定理即可求解.【详解】解:如图,∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴ADB 所对的圆心角为270°,∴ADB 所对的圆周角∠ACB =12×270°=135°,又∵∠ABC =19°,∴∠BAC =180°-∠ACB -∠ABC =26°,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.18(2023·湖北黄冈·统考中考真题)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若∠C =20°,∠BPC =70°,则∠ADC =()A.70°B.60°C.50°D.40°【答案】D【分析】先根据圆周角定理得出∠B =∠C =20°,再由三角形外角和定理可知∠BDP =∠BPC -∠B =70°-20°=50°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =20°,∴∠B =20°,∵∠BPC =70°,∴∠BDP =∠BPC -∠B =70°-20°=50°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB -∠BDP =90°-50°=40°,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.19(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m【答案】B【分析】由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,根据垂径定理,得到AD =372m ,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,∴OD =OC -CD =R -7 m ,∵OC 是半径,且OC ⊥AB ,∴AD =BD =12AB =372m ,在Rt △ADO 中,AD 2+OD 2=OA 2,∴372 2+R -7 2=R 2,解得:R =156556≈28m ,故选:B .【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.20(2023·四川·统考中考真题)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是()A.56°B.33°C.28°D.23°【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.21(2023·山东聊城·统考中考真题)如图,点O 是△ABC 外接圆的圆心,点I 是△ABC 的内心,连接OB ,IA .若∠CAI =35°,则∠OBC 的度数为()A.15°B.17.5°C.20°D.25°【答案】C【分析】根据三角形内心的定义可得∠BAC 的度数,然后由圆周角定理求出∠BOC ,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是△ABC 的内心,∠CAI =35°,∴∠BAC =2∠CAI =70°,∴∠BOC =2∠BAC =140°,∵OB =OC ,∴∠OBC =∠OCB =180°-∠BOC 2=180°-140°2=20°,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键.22(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.23(2023·广东·统考中考真题)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =()A.20°B.40°C.50°D.80°【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠BAC =50°,∴∠ABC =90°-∠BAC =40°,∵AC =AC ,∴∠D =∠ABC =40°;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24(2023·河南·统考中考真题)如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵∠C =55°,∴由圆周角定理得:∠AOB =2∠C =110°,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.25(2023·全国·统考中考真题)如图,AB ,AC 是⊙O 的弦,OB ,OC 是⊙O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若∠BAC =70°,则∠BPC 的度数可能是()A.70°B.105°C.125°D.155°【答案】D【分析】根据圆周角定理得出∠BOC =2∠BAC =140°,进而根据三角形的外角的性质即可求解.【详解】解:∵BC =BC ,∠BAC =70°,∴∠BOC =2∠BAC =140°,∵∠BPC =∠BOC +∠PCO ≥140°,∴∠BPC 的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.26(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,∠BCD =105°,连接OB ,OC ,OD ,BD ,∠BOC =2∠COD .则∠CBD 的度数是()A.25°B.30°C.35°D.40°【答案】A【分析】根据圆内接四边形对角互补得出∠A =180°-105°=75°,根据圆周角定理得出∠BOD =2∠A =150°,根据已知条件得出∠COD =13∠BOD =50°,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,∠BCD =105°,∴∠A =180°-105°=75°∴∠BOD =2∠A =150°∵∠BOC =2∠COD∴∠COD =13∠BOD =50°,∵CD =CD∴∠CBD =12∠COD =12×50°=25°,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.27(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°【答案】A【分析】证明∠NMO=∠MNO=35°,可得∠AOB=2×35°=70°,结合OA=OB,C为AB的中点,可得∠AOC=∠BOC=35°.【详解】解:∵∠MNO=35°,MO=NO,∴∠NMO=∠MNO=35°,∴∠AOB=2×35°=70°,∵OA=OB,C为AB的中点,∴∠AOC=∠BOC=35°,故选A.【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题28(2023·四川南充·统考中考真题)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【答案】4【分析】根据圆周角定理得出∠ACB=90°,再由勾股定理确定AB=13,半径为132,利用垂径定理确定OM⊥AC,且AD=CD=6,再由勾股定理求解即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=12,BC=5,∴AB=13,∴AO=12AB=132,∵点D,M分别是弦AC,弧AC的中点,∴OM⊥AC,且AD=CD=6,∴OD=AO2-AD2=52,∴MD=OM-OD=AO-OD=4,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.29(2023·浙江金华·统考中考真题)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.【答案】5π6【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD ⊥AB ,∵AB =AC =6cm ,∠BAC =50°,∴BD =CD ,∠BAD =∠CAD =12∠BAC =25°,∴∠DOE =2∠BAD =50°,OD =12AB =12AC =3cm ,∴弧DE 的长为50×π×3180=5π6cm ,故答案为:5π6cm .【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30(2023·四川广安·统考中考真题)如图,△ABC 内接于⊙O ,圆的半径为7,∠BAC =60°,则弦BC 的长度为.【答案】73【分析】连接OB ,OC ,过点O 作OD ⊥BC 于点D ,先根据圆周角定理可得∠BOC =2∠BAC =120°,再根据等腰三角形的三线合一可得∠BOD =60°,BC =2BD ,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接OB ,OC ,过点O 作OD ⊥BC 于点D ,∵∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,OD ⊥BC ,∴∠BOD =12∠BOC =60°,BC =2BD ,∵圆的半径为7,∴OB =7,∴BD =OB ⋅sin60°=723,∴BC =2BD =73,故答案为:73.【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31(2023·甘肃武威·统考中考真题)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是⊙O 上一点,∠CDB =55°,则∠ABC =°.【答案】35【分析】由同弧所对的圆周角相等,得∠A =∠CDB =55°,再根据直径所对的圆周角为直角,得∠ACB =90°,然后由直角三角形的性质即可得出结果.【详解】解:∵∠A ,∠CDB 是BC所对的圆周角,∴∠A =∠CDB =55°,∵AB 是⊙O 的直径,∵∠ACB =90°,在Rt △ACB 中,∠ABC =90°-∠A =90°-55°=35°,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若∠D =100°,则∠B 的度数是.【答案】80°【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠D=100°,∴∠B=180°-∠D=80°.故答案为:80°.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.33(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.【答案】52.5°【分析】方法一∶如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,然后再根据等腰三角形的性质求得∠OAB=65°、∠OAD=25°,最后根据角的和差即可解答.方法二∶连接OB,OD,由题意可得:∠BAD=105°,然后根据圆周角定理即可求解.【详解】方法一∶解:如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,∠AOD=155°-25°=130°,∴∠OAB=12180°-∠AOB=77.5°,∠OAD=12180°-∠AOB=25°,∴∠BAD=∠OAB-∠OAD=52.5°.故答案为52.5°.方法二∶解∶连接OB,OD,由题意可得:∠BAD=155°-50°=105°,根据圆周角定理,知∠BAD=12∠BOD=12×105°=52.5°.故答案为:52.5°.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键.34(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是个.【答案】10【分析】先求出正五边形的外角为72°,则∠1=∠2=72°,进而得出∠AOB=36°,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角=360°5=72°,∴∠1=∠2=72°,∴∠AOB=180°-72°×2=36°,∴共需要正五边形的个数=360°36°=10(个),故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法.35(2023·湖南永州·统考中考真题)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm.水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.【答案】16【分析】过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12AB,依题意,得出OD=6,进而在Rt△AOD中,勾股定理即可求解.【详解】解:如图所示,过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12 AB,∵水的最深处到水面AB 的距离为4cm ,⊙O 的半径为10cm .∴OD =10-4=6cm ,在Rt △AOD 中,AD =AO 2-OD 2=102-62=8cm∴AB =2AD =16cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36(2023·湖北随州·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠AOB =60°,则∠ADC 的度数为.【答案】30°【分析】根据垂径定理得到AB =AC,根据圆周角定理解答即可.【详解】解:∵OA ⊥BC ,∴AB =AC ,∴∠ADC =12∠AOB =30°,故答案为:30°.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.37(2023·湖南·统考中考真题)如图所示,点A 、B 、C 是⊙O 上不同的三点,点O 在△ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若∠A =60°,∠OCD =40°,则∠ODC =度.【答案】80【分析】先根据圆周角定理求出∠BOC 的度数,再根据三角形的外角定理即可得出结果.【详解】解:在⊙O 中,∵∠BOC =2∠A =2×60°=120°,∴∠ODC =∠BOC -∠OCD =120°-40°=80°故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器台.【答案】4【分析】圆周角定理求出∠P 对应的圆心角的度数,利用360°÷圆心角的度数即可得解.【详解】解:∵∠P =55°,∴∠P 对应的圆心角的度数为110°,∵360°÷110°≈3.27,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.39(2023·浙江杭州·统考中考真题)如图,六边形ABCDEF 是⊙O 的内接正六边形,设正六边形ABCDEF 的面积为S 1,△ACE 的面积为S 2,则S 1S 2=.【答案】2【分析】连接OA ,OC ,OE ,首先证明出△ACE 是⊙O 的内接正三角形,然后证明出△BAC ≌△OAC ASA ,得到S △BAC =S △AFE =S △CDE ,S △OAC =S △OAE =S △OCE ,进而求解即可.【详解】如图所示,连接OA ,OC ,OE ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴AC =AE =CE ,∴△ACE 是⊙O 的内接正三角形,∵∠B =120°,AB =BC ,∴∠BAC =∠BCA =12180°-∠B =30°,∵∠CAE =60°,∴∠OAC =∠OAE =30°,∴∠BAC =∠OAC =30°,同理可得,∠BCA =∠OCA =30°,又∵AC =AC ,∴△BAC ≌△OAC ASA ,∴S △BAC =S △OAC ,由圆和正六边形的性质可得,S △BAC =S △AFE =S △CDE ,由圆和正三角形的性质可得,S △OAC =S △OAE =S △OCE ,∵S 1=S △BAC +S △AFE +S △CDE +S △OAC +S △OAE +S △OCE =2S △OAC +S △OAE +S △OCE =2S 2,∴S 1S 2=2.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.40(2023·广东深圳·统考中考真题)如图,在⊙O 中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O 交于点D ,若∠ADC =20°,则∠BAD =°.【答案】35【分析】由题意易得∠ACB =90°,∠ADC =∠ABC =20°,则有∠BAC =70°,然后问题可求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =AC,∠ADC =20°,∴∠ADC =∠ABC =20°,∴∠BAC =70°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =35°;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由AB =6可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,∵AB ⊥CD ,且AB =10寸,∴AE =BE =5寸,设圆O 的半径OA 的长为x ,则OC =OD =x ,∵CE =1,∴OE =x -1,在直角三角形AOE 中,根据勾股定理得:x 2-(x -1)2=52,化简得:x 2-x 2+2x -1=25,即2x =26,∴CD =26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题42(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,⊙A 与x 轴相切于点B ,与y 轴相交于点C ,D .连接AB ,过点A 作AH ⊥CD 于点H .(1)求证:四边形ABOH 为矩形.(2)已知⊙A 的半径为4,OB =7,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵⊙A 与x 轴相切于点B ,∴AB ⊥x 轴.∵AH ⊥CD ,HO ⊥OB ,∴∠AHO =∠HOB =∠OBA =90°,∴四边形AHOB 是矩形.(2)如图,连接AC .∵四边形AHOB 是矩形,∴AH =OB =7.在Rt △AHC 中,CH 2=AC 2-AH 2,∴CH =42-(7)2=3.∵点A 为圆心,AH ⊥CD ,∴CD =2CH =6.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.43(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O ,A 是⊙O 上一点,只用圆规将⊙O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在⊙O 上逆时针方向顺次截取AB =BC =CD;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于⊙O 上方点E ;③以点A 为圆心,OE 长为半径作弧交⊙O 于G ,H 两点.即点A ,G ,D ,H 将⊙O 的圆周四等分.【答案】见解析。

初三圆试题及答案数学

初三圆试题及答案数学

初三圆试题及答案数学初三数学圆的试题及答案如下:1. 已知圆的半径为5,求圆的面积。

答案:圆的面积公式为A=πr²,将半径r=5代入公式,得到A=π×5²=25π。

2. 若点A(3,4)在圆x²+y²=25内,则该圆的直径是多少?答案:点A(3,4)在圆x²+y²=25内,说明该点到圆心的距离小于半径。

圆的半径为5,因此直径为2×5=10。

3. 已知圆的直径为10,求该圆的周长。

答案:圆的周长公式为C=πd,将直径d=10代入公式,得到C=π×10=10π。

4. 已知圆的周长为6π,求该圆的半径。

答案:圆的周长公式为C=2πr,将周长C=6π代入公式,得到6π=2πr,解得r=3。

5. 已知圆的半径为4,求该圆的直径。

答案:圆的直径为半径的2倍,因此直径d=2×4=8。

6. 已知圆的直径为12,求该圆的面积。

答案:圆的半径为直径的一半,即r=12÷2=6。

将半径代入面积公式A=πr²,得到A=π×6²=36π。

7. 若点B(-2,-3)在圆x²+y²=16外,则该圆的半径是多少?答案:点B(-2,-3)在圆x²+y²=16外,说明该点到圆心的距离大于半径。

圆的半径为4,因此该点到圆心的距离大于4。

8. 已知圆的半径为5,求该圆的直径。

答案:圆的直径为半径的2倍,因此直径d=2×5=10。

9. 已知圆的周长为8π,求该圆的半径。

答案:圆的周长公式为C=2πr,将周长C=8π代入公式,得到8π=2πr,解得r=4。

10. 已知圆的直径为8,求该圆的面积。

答案:圆的半径为直径的一半,即r=8÷2=4。

将半径代入面积公式A=πr²,得到A=π×4²=16π。

以上就是初三数学圆的试题及答案,涵盖了圆的面积、周长、半径和直径等基本概念和计算方法。

九年级数学圆的测试题及答案(全)

九年级数学圆的测试题及答案(全)

圆的有关概念与性质圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

圆的有关性质初三练习题

圆的有关性质初三练习题

圆的有关性质初三练习题1. 单选题:下列哪个选项是关于圆的有关性质的描述?a) 圆的面积等于πr²b) 圆的外切矩形的面积小于圆的面积c) 圆周长等于2πrd) 圆的直径等于圆的半径的两倍2. 填空题:已知圆的半径为5cm,求其直径长为______cm。

3. 判断题:若两个圆的半径相等,则它们的面积一定相等。

4. 多选题:下列哪些是圆的有关性质?a) 弧长公式:L = α/360° × 2πrb) 圆的切线与半径垂直c) 弦的长大于弧的长d) 圆心角等于弧所对的圆周角e) 圆的半径与直径满足关系式:d = 2r5. 解答题:已知圆的半径为8cm,求其面积和周长。

6. 判断题:如果两个圆的半径相等,则它们的直径也一定相等。

7. 单选题:下列哪个选项是圆的有关性质的描述?b) 弧长与圆心角的关系:L = rθc) 两条弧长相等的弧所对的圆心角一定相等d) 圆上的两点可以连成一条直线8. 填空题:确定圆心为O,半径为6cm的圆上,P点与Q点之间的弧长为12πcm,则圆心角∠POQ的度数为______。

9. 判断题:两条相交的弦一定相等。

10. 解答题:已知圆的周长为12πcm,求其半径和面积。

11. 单选题:下列哪个选项是关于两个相交圆的有关性质的描述?a) 两个相交圆一定有2个公共切线b) 两个相交圆的外切矩形的面积一定小于两个圆的面积之和c) 两个相交圆的内切矩形的面积一定大于两个圆的面积之和d) 两个相交圆的半径之和一定大于两个相交弦的长度之和12. 填空题:已知圆的周长为18πcm,则其直径长为______cm。

13. 判断题:两个相交圆的交点一定在两个圆的直径上。

14. 多选题:下列哪些是与圆的有关性质有关的计算公式?a) 圆的面积公式:S = πr²b) 圆的弧长公式:L = 2πrd) 圆心角的计算公式:α = L/re) 弧度制与角度制的换算公式:θ(度数) = θ(弧度) × 180°/π15. 解答题:已知圆的面积是16πcm²,求其半径和周长。

24.1圆的有关性质练习卷人教版数学九年级上册

24.1圆的有关性质练习卷人教版数学九年级上册

人教版九年级上册《24.1圆的有关性质》同步练习卷 一、选择题 1. 下列说法中错误的是( )A .半圆是弧B .半径相等的圆是等圆C .过圆心的线段是直径D .弓形是弦及弦所对的弧组成的图形2. 在以AB=8cm 为直径的圆上,到AB 的距离为4cm 的点有( )A .无数个B .1个C .2个D .4个3. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个4. 如图,BC 是半圆O 的直径,D ,E 是BC ―上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠DOE=40°,那么∠A 的度数为( )A .35°B .40°C .60°D .70°5.若⊙O所在平面内一点P到⊙O上的点的最大距离为7,最小距离为3,则此圆的半径为()A.5 B.2 C.10或4 D.5或2 二、填空题6.若四边形的四个顶点在同一个圆上,则这个四边形可能是______ .7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 ______ .8.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD的度数是 ______ 度.9.如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠B=20°,∠C=30°,则∠BOC= ______ .10.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,OP⊥AB,则PQ的长是 ______ .三、解答题11.如图,AC是⊙O的直径,点B在圆上(不与点A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,∠AOB=3∠ADB.求证:DE= 1AC.212.如图,A、B、C为⊙O上三点,∠ACB=20〇,求∠BAO的度数.13.如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.问:线段CE和线段BF相等吗?请说明理由.14.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.15.如图a,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.(1)如图b,当点P在半径OA上时,若QP=QO,求∠OCP的度数.(2)当点P在直线l上其他位置时,是否还存在∠OCP使得QP=QO?若存在,请求出∠OCP的度数;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆的有关性质-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初
中数学试卷-试卷下载
第30课圆的有关性质
〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质
〖大纲要求〗
1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个
圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半
径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的
圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关
问题;
6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;
想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

〖考查重点与常见题型〗
1.判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学
生对基本概念和基本定理的正确理解,如:下列语句中,正确的有()
(A)相等的圆心角所对的弧相等
(B)平分弦的直径垂直于弦
(C)长度相等的两条弧是等弧
(D)弦过圆心的每一条直线都是圆的对称轴
2.论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。

此种结论的证明重
点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。

考点训练:
1.在⊿ABC中,⊿C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C 和⊿A的位置关系是()
(A)C在⊿A 上(B)C在⊿A 外(C)C在⊿A 内(D)C在⊿A 位置不能确定。

2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()
(A)16cm或6cm,(B)3cm或8cm (C)3cm (D)8cm
3.如图,弦AC,BD相交于E,且AB,BC,CD的弧长相等,
⊿AED=30°,则⊿AED的度数是()
(A)150°(B) 105°(C) 120° (D)140°
4.在⊿ABC中,⊿C=90°,O是BC上的一点,以OB为半径作
⊿O交于AB于D,交BC于E,⊿A=30°BD=6,则⊿O的直径是()
(A)12(B) 9(C) 6 (D)3
5.AB是⊿O直径,AB=4,F是OB中点,弦CD⊿AB于F,则CD=_________
6.⊿ABC内接于⊿O,OD⊿BC,⊿BOD=36°,则⊿A=____
7.圆内接⊿ABC中,AB=AC,圆心到BC的距离为3cm,圆的半径为7cm,则腰长AB=___
8.四边形ABCD内接于圆,AB,BC,CD,DA的弧长之比为5:8:3:2则⊿ABC=_____
9.如图,⊿O中两条不平行弦AB和CD的中点M,N.且AB=CD,求证:⊿AMN=⊿CNM
10.如图,四边形ABCD内接于⊿O,⊿ADC=90°,B是弧AC的中点,AD=20,CD=15,求BD 的长。

解题指导。

1.如图,⊿O1的圆心在⊿O的圆周上,⊿O和⊿O1交于A,B,AC切⊿O1于A,连结CB,BD 是⊿O的直径,⊿D=40°求:⊿A O1B、⊿ACB和⊿CAD的度数。

2.如图,AB是⊿O直径,ED⊿AB于D,交⊿O于G,EA交⊿O于C,CB交ED于F,求证:DG2=DE&#8226;DF
3.如图,⊿O是⊿ABC外接圆,AD⊿BC于D,交⊿O于N,AE平分⊿BAC交⊿O于E,求证:AE 平分⊿OAD
4.已知,如图O为圆心,⊿AOB=120°,弓形高ND=2cm,矩形EFGH的两顶点E,F在弦AB上,H,G在弦AB上,且EF=4HE,求HE的长。

独立训练:
1.三角形的外心一定在该三角形上的三角形是()
(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形
2.边长为2的等边三角形的外接圆的半径是()
(A)(B)(C)2(D)
3,圆内接四边形ABCD中,四个角的度数比可顺次为()
(A)4:3:2:1(B)4:3:1:2(C)4:2:3:1(D)4:1:3:2
4.AB是⊿O的弦,⊿AOB=80°则弦AB所对的圆周角是()
(A)40°(B) 140°或40°(C) 20° (D)20°或160°
5.AB是⊿O的弦,C为⊿O上的一点,弧AC,CB的长比是1:2,弦BC=12cm,则⊿O半径为______cm
6.⊿O直径为8,弦AB=4,则⊿AOB=_____。

7.圆的半径为2cm,圆内一条弦长为2cm,则弦的中点与弦所对弧的中点间的距离为______,这条的弦心距为_______
8.已知⊿O中,半径OD⊿直径AB,F是OD中点,弦BC过F点,
若⊿O半径为R则弦BC长_____
9.如图,⊿ABC内接于⊿O,且BC是⊿O的直径,AD⊿BC于D,F是弧BC中点,且AF交BC 于E,AB=6,AC=8,求CD,DE,及EF的长。

10.如图,弦EF⊿直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA&#8226;MC =MB&#8226;MD
欢迎下载使用,分享让人快乐。

相关文档
最新文档