【精选资料】届高考二轮复习全国通用数学学案 数列专题教师版全套

合集下载

高中数学《数列》二轮复习教学设计

高中数学《数列》二轮复习教学设计
………………………………………………最新资料推荐………………………………………
必修 5 第 2 章 教学内容分析
《数列》是高考的热点,同时也是高考的难点,在高考中一般占 19 分,小题 5 分,
解答题 14 分,其中小题和解答题的第一问往往是基础题,所以这 9 分是学生必得的
分数。同时引导学生利用函数的思想去直观的认识数列的本质是高考能力立意的指导
(1) 设 数 列 bn1 an1 2an ,

b1=
3 2
证明{ bn
}是等比
数列。
(2)



cn
an 2n
,证明
学生分析问题,并合作解 决问题,教师适时点拨 第(1)问,注意 n 2 第(2)问,可利用第一问 结论,亦可用题设
用等差数列,等比数列的 定义证明数列,并求通项 公式和前 n 项的和;解题 时要总览全局,注意上一 问的结论可作为下面问 题的条件。
反 思
题在高考中考什么,怎么考。学生通过自主探索和合作交流中理解并掌握本节内容。 在课堂教学中充满了师生,生生之间的交流互动。
本节课不足:1、例 3 的幻灯片没设计好,存在有重叠看不清的问题,以后课前要
预看。2、还应更注重细节,讲究规范,强调反思。本节课基本达到了预定的目标,在
教学过程中学生参与度高,课堂气氛活跃。在以后的教学中努力提高教学技巧,逐步
4、 通过解题后的反思,找准自己的问题,总结成功经验,吸取失败教训。
4/5
………………………………………………最新资料推荐……………………………………… 运 用 深 化
1、在数列{ an }中, a1 =8, a4 2 且满足 an2 2an1 an
(1) 求数列{ an }的通项公式

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

高中数学高考二轮复习数列教案(全国专用)

高中数学高考二轮复习数列教案(全国专用)

1.(2013·辽宁,4,易)下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 41.D [考向3]{a n }是等差数列,则a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,故p 1正确;对p 2,举反例,令a 1=-3,a 2=-2,d =1,则a 1>2a 2,故{na n }不是递增数列,p 2不正确;a nn =d +a 1-d n ,当a 1-d >0时,⎩⎨⎧⎭⎬⎫a n n 递减,p 3不正确;a n +3nd =4nd +a 1-d ,4d >0,{a n +3nd }是递增数列,p 4正确.故p 1,p 4是正确的,故选D.2.(2016·浙江,13,中)设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________. 2.[考向2]【解析】 由题意得 ⎩⎨⎧S 2=4,a 2=2S 1+1,∴⎩⎨⎧a 1+a 2=4,a 2=2a 1+1, ∴a 1=1,a 2=3. 又a n +1=2S n +1,∴a 3=2S 2+1=2(1+3)+1=9, a 4=2S 3+1=2(1+3+9)+1=27, a 5=2S 4+1=2(1+3+9+27)+1=81,∴S 5=a 1+a 2+a 3+a 4+a 5=1+3+9+27+81=121, ∴a 1=1,S 5=121. 【答案】 1 1213.(2013·安徽,14,中)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等,设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是____________.3.[考向1]【解析】 设△A 1B 1O 的面积为S 0,梯形A n B n B n +1A n +1的面积为S ,由比例性质得S 0S 0+S =⎝ ⎛⎭⎪⎫a 1a 22=14,S =3S 0,所以S 0+nS S 0+(n +1)S =⎝ ⎛⎭⎪⎫a n +1a n +22⇒1+3n 4+3n =⎝⎛⎭⎪⎫a n +1a n +22,得到3n -23n +1=⎝⎛⎭⎪⎫a n a n +12,由累乘法可得⎝ ⎛⎭⎪⎫a 1a 22·⎝ ⎛⎭⎪⎫a 2a 32·⎝ ⎛⎭⎪⎫a 3a 42·…·⎝ ⎛⎭⎪⎫a n a n +12=⎝ ⎛⎭⎪⎫a 1a n +12=14×47×710×…×3n -23n +1=13n +1⇒⎝ ⎛⎭⎪⎫a 1a n +12=13n +1⇒a n +1=3n +1,且a 1=1,则a n =3n -2.【答案】 a n =3n -24.(2013·湖南,15,难)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.4.[考向2]【解析】 (利用a n 与S n 的关系求通项公式)(1)由已知得S 3=-a 3-123,S 4=a 4-124,两式相减得a 4=a 4+a 3-124+123,∴a 3=124-123=-116. (2)已知S n =(-1)n a n -12n ,①当n 为奇数时,⎩⎪⎨⎪⎧S n +1=a n +1-12n +1,S n =-a n -12n ,两式相减得a n +1=a n +1+a n +12n +1,∴a n =-12n +1;②当n 为偶数时, 则⎩⎪⎨⎪⎧S n +1=-a n +1-12n +1,S n =a n -12n ,两式相减得a n +1=-a n +1-a n +12n +1,即a n =-2a n +1+12n +1=12n .综上,a n =⎩⎪⎨⎪⎧-12n +1(n 为奇数),12n (n 为偶数).∴S 1+S 2+…+S 100=⎝ ⎛⎭⎪⎫-a 1-12+⎝ ⎛⎭⎪⎫a 2-122+…+⎝ ⎛⎭⎪⎫a 100-12100=[(a 2+a 4+…+a 100)-(a 1+a 3+…+a 99)]-⎝ ⎛⎭⎪⎫12+122+…+12100 =⎣⎢⎡⎝ ⎛⎭⎪⎫122+124+…+12100+⎝⎛122+124+…⎦⎥⎤+⎭⎪⎫12100-⎝ ⎛⎭⎪⎫12+122+…+12100=⎝ ⎛⎭⎪⎫122+124+…+12100-⎝ ⎛12+123+…⎭⎪⎫+1299=122⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122501-14-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫122501-14=13⎝ ⎛⎭⎪⎫12100-1. 【答案】 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-15.(2012·四川,20,12分,中)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.5.[考向2,3]解:(1)取n =1,得 a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2.③ 若a 2=0,由①知a 1=0. 若a 2≠0,由③知a 2-a 1=1.④由①④解得a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0或a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1, 即a n =2a n -1(n ≥2),所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列⎝ ⎛⎭⎪⎫公差为-12lg 2,从而b 1>b 2>…>b 7=lg 108>lg 1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0,故当n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.由数列的递推公式求通项公式在高考中经常出现,有选择题、填空题,也出现在解答题中的第一问,近几年考查难度有所降低,分值大约为5分.在复习中,要掌握由递推公式求通项公式的基本方法,即先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.1(1)(2016·安徽池州模拟,14)已知数列{an }满足a 1=1,a n =n -1n ·a n -1(n ≥2),则数列{a n }的通项公式为________.(2)(2016·湖南株洲检测,13)已知数列{a n }满足a 1=1,a n +1=3a n +1,则{a n }的通项公式为________.解题(1)的关键是由a n =n -1n a n -1(n ≥2)联系“累乘法”求通项公式; 解题(2)的关键是将a n +1=3a n +1变形后构造等比数列求解.【解析】 (1)∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1.。

(全国通用)2020版高考数学二轮复习 提升专题 数列 教案讲义

(全国通用)2020版高考数学二轮复习 提升专题  数列 教案讲义

第1讲 等差数列、等比数列[例1] (1)(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n(2)(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.[答案] (1)A (2)1213[解析] (1)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2. 所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.(2)由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13(1-35)1-3=1213.[解题方略] 等差(比)数列基本运算的解题思路 (1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[跟踪训练]1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B.54 C.45D.-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A.-1B.1C.-2D.2解:(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0.解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+2n -1=n 2.解析:选C 法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q +4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q+2)2=0,所以q =-2,故选C.3.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[例2] (1)(2019·长春市质量监测一)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.(2)在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] (1)法一:设数列{a n }的公比为q (q >0且q ≠1),由题意可得⎩⎪⎨⎪⎧S 6=a 1(1-q 6)1-q=30, ①S 9=a 1(1-q 9)1-q =70,②①÷②得,1-q 61-q 9=1+q 31+q 3+q 6=37,又由q >0,得q 3=2,再由S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=13,得S 3=13S 6=10. 法二:由题意可得(S 6-S 3)2=S 3(S 9-S 6),即(30-S 3)2=40S 3,即S 23-100S 3+900=0,解得S 3=10或S 3=90,又数列{a n }的各项均为正数,所以S 3<S 6,S 3=90(舍去),故S 3=10.(2)设{a n }的公差为d .法一:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得6.5≤n ≤7.5. 因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7(13-2×7+15)2=49.法二:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15. 所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] (1)10 (2)49[解题方略] 与数列性质有关问题的求解策略[跟踪训练]1.在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A.-2+22B.- 2C. 2D.-2或 2解析:选B 设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.2.(2019·四省八校双教研联考)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( ) A.-1 B.0 C.1D.2解析:选C 法一:设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.法二:设{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.法三:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.3.数列{a n }是首项a 1=m ,公差为2的等差数列,数列{b n }满足2b n =(n +1)a n ,若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.解析:由题意得,a n =m +2(n -1), 从而b n =n +12a n =n +12[m +2(n -1)].又对任意n ∈N *都有b n ≥b 5成立,结合数列{b n }的函数特性可知b 4≥b 5,b 6≥b 5,故⎩⎪⎨⎪⎧52(m +6)≥3(m +8),72(m +10)≥3(m +8),解得-22≤m ≤-18.答案:[-22,-18][例3] 设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1; 当n ≥2时,a n =S n -S n -1=a n -1-a n , 即a n a n -1=12(n ≥2,n ∈N *). 所以数列{a n }是首项为1, 公比为12的等比数列,故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.[解题方略]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[跟踪训练]已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值.(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n . 解:(1)因为数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). 所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)因为S n =2a n -3n , 所以S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3,①把b n =a n +3及b n +1=a n +1+3,代入①式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1,所以a n =b n -3=6×2n -1-3=3(2n-1).逻辑推理——等比数列运算中的分类讨论[典例] 已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A.(-∞,-1] B.(-∞,0)∪[1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)[解析] 设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞). [答案] D[素养通路]等比数列的公比q <0时,相邻两项一定异号,相隔一项的两项符号一定相同;等比数列的公比q >0时,数列中的各项符号相同.用等比数列前n 项和公式时,如果其公比q 不确定,要分q =1和q ≠1两种情况进行讨论.本题考查了逻辑推理及数学运算的核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A.16B.8C.4D.2解析:选C 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.2.(2019·湖南省五市一校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6=( )A.6B.7C.8D.9解析:选B 法一:由题意知,数列{a n }是等差数列,设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d +a 1+5d =12,a 1+a 1+2d +a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以a 1+a 6=a 1+a 1+5d =7,故选B. 法二:由题意知,数列{a n }是等差数列,将a 2+a 4+a 6=12与a 1+a 3+a 5=9相加可得3(a 1+a 6)=12+9=21,所以a 1+a 6=7,故选B.3.(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A.32B.31C.64D.63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B. 法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.4.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2019=( ) A.1 B.-2 C.3D.-3解析:选A 因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n-1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.5.(2019届高三·西安八校联考)若等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A.10B.11C.12D.13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n+1<0的正整数n 的值为12,故选C.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A.0B.-9C.9D.1解析:选 C 由已知可得,数列{a n }为等差数列,f (x )=sin2x +cos x +1,∴f ⎝ ⎛⎭⎪⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin2x -cos x +1,∴f (π-x )+f (x )=2,∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.二、填空题7.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.解析:设等比数列的公比为q ,则a n =a 1qn -1=qn -1.∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34,即4q 2+4q +1=0,∴q =-12,∴S 4=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:588.(2019·北京高考)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -109.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14,∴数列{a n }的公差为2.答案:2 三、解答题10.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d .因为a 1=-10, 所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.11.(2019·广西梧州、桂林、贵港等期末)设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)∵⎩⎪⎨⎪⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,∴⎩⎪⎨⎪⎧a 1=1,d =2, 故a n =1+(n -1)×2=2n -1. (2)由(1)知,S n =n (1+2n -1)2=n 2.∵S 3,a 14,S m 成等比数列,∴S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.12.(2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?解:(1)证明:∵a 3=7,a 3=3a 2-2,∴a 2=3, ∴a n =2a n -1+1, ∴a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n, ∴a n =2n-1,∴S n =2(1-2n)1-2-n =2n +1-n -2,∴n +S n -2a n =n +(2n +1-n -2)-2(2n-1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.B 组——大题专攻强化练1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n(n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明:数列{b n }为等差数列;(2)设c n =n a n,求数列{c n }的前n 项和S n . 解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n=3a n +3n3n=a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝ ⎛⎭⎪⎫1-13n =32-12·3n -1.2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.3.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.4.已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2020成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1.(2)由(1)知,b n =2n+1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n)1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1031,f (10)=211+10-2=2056, 故使b 1+b 2+…+b n >2020成立的最小正整数n 的值是10.第2讲 数列通项与求和[例1] (1)已知S n 为数列{a n }的前n 项和,a 1=1,当n ≥2时,S n -1+1=a n ,则a 8=________.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. [解析] (1)当n =2时,S 1+1=a 2,即a 2=2.当n ≥2时,⎩⎪⎨⎪⎧S n -1+1=a n ,S n +1=a n +1,相减得a n +1=2a n ,又a 1=1,所以a 2=2a 1.所以数列{a n }构成一个等比数列, 所以a 8=a 2·q 6=2×26=128.(2)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. [答案] (1)128 (2)22n -1[解题方略]1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[跟踪训练]1.已知S n 是数列{a n }的前n 项和,且log 5(S n +1)=n +1,则数列{a n }的通项公式为________.解析:由log 5(S n +1)=n +1,得S n +1=5n +1,所以S n =5n +1-1.当n ≥2时,a n =S n -S n -1=4×5n;当n =1时,a 1=S 1=24,不满足上式.所以数列a n 的通项公式为a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2. 答案:a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2 2.已知首项为2的数列{a n }满足a n +1(2n -1)=a n (2n +1)(n ∈N *),则数列{a n }的通项公式为a n =________.答案:4n -2解析:因为a n +1(2n -1)=a n (2n +1)(n ∈N *),且a 1=2,所以a n +1a n =2n +12n -1,得a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×53×…×2n -12n -3=4n -2. 考点二数列的求和题型一 分组转化求和[例2] 已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解] (1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16,所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n-1=3n.(2)由(1)得b n =3n+2n -1,所以S n =(3+32+33+ (3))+(1+3+5+…+2n -1) =3(1-3n)1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32. [解题方略]求解此类题的关键:一是会“列方程”,即会利用方程思想求出等差数列与等比数列中的基本量;二是会“用公式”,即会利用等差(比)数列的通项公式,求出所求数列的通项公式;三是会“分组求和”,观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n 项和时可用分组求和法,把数列分成几个可以直接求和的数列;四是会“用公式法求和”,对分成的各个数列的求和,观察数列的特点,一般可采用等差数列与等比数列的前n 项和公式求和.题型二 裂项相消求和[例3] (2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.[解] (1)由已知有S n -S n -1=1(n ≥2,n ∈N ), ∴数列{S n }为等差数列,又S 1=a 1=1, ∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,∴n ≥5,∴n 的最小值为5. [解题方略]求解此类题需过“三关”:一是定通项关,即会利用求通项的常用方法,求出数列的通项公式;二是巧裂项关,即能将数列的通项公式准确裂项,表示为两项之差的形式;三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.题型三 错位相减求和[例4] (2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式.(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).[解题方略]运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }是不是一个为等差数列,一个为等比数列;二是错开位置,为两式相减不会看错列做准备;三是相减,相减时一定要注意最后一项的符号,学生在解题时常在此步出错,一定要小心.[跟踪训练]1.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,∴q =2.于是a 1=2,∴数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,∴T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n 2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,∴T n =1+12+122+…+12n -1-n2n=1-⎝ ⎛⎭⎪⎫12n1-12-n2n =2-n +22n.2.(2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),求T n .解:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.∴1a n =1+12(n -1)=12(n +1), 即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2), ∴b n =1n (n +1)=1n -1n +1(n ≥2),∴T n =b 1+b 2+…+b n =⎛⎪⎫1-12+ ⎛⎪⎫12-13+…+ ⎛⎪⎫1n -1n +1=1-1n +1=n n +1. [例5] (2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.[解] (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.[解题方略]求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.[跟踪训练](2019·重庆市七校联合考试)已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式;(2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧d a 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1), 所以S n =(2+22+23+…+2n )+(1+3+5+…+2n -1)=2n +1+n 2-2.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1).由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7. 由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1.(2)由(1)得b n =2n -1+(n -1)ln2,所以T n =(1+2+22+…+2n -1)+[0+1+2+…+(n -1)]ln2=1-2n1-2+n (n -1)2ln2=2n-1+n (n -1)2ln2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2),则a 1+a 2+…+a 2020=( )A.-3027B.3027C.-3030D.3030解析:选C 因为a 1+a 2+…+a 2020=(a 1+a 2)+(a 3+a 4)+…+(a 2019+a 2020)=(1-4)+(7-10)+…+[(3×2019-2)-(3×2020-2)]=(-3)×1010=-3030,故选C.2.已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=( )A.-12B.23C.12D.11解析:选D 因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.3.(2019·广东省六校第一次联考)数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)na n (n ∈N *),则数列{b n }的前50项和为( )A.49B.50C.99D.100解析:选A 由题意得,当n ≥2时,a n =S n -S n -1=2n ,当n =1时,a 1=S 1=3,所以数列{b n }的前50项和为(-3+4)+(-6+8)+…+(-98+100)=1+2×24=49,故选A.4.已知数列{a n }是等差数列,若a 2,a 4+3,a 6+6构成公比为q 的等比数列,则q =( ) A.1 B.2 C.3D.4解析:选A 令等差数列{a n }的公差为d ,由a 2,a 4+3,a 6+6构成公比为q 的等比数列,得(a 4+3)2=a 2(a 6+6),即(a 1+3d +3)2=(a 1+d )·(a 1+5d +6),化简得(2d +3)2=0,解得d =-32.所以q =a 4+3a 2=a 1-92+3a 1-32=a 1-32a 1-32=1.故选A.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1016个浮雕,这些浮雕构成一幅优美的图案,若从最下层往上,浮雕的数量构成一个数列{a n },则log 2(a 3a 5)的值为( )A.8B.10C.12D.16解析:选C 依题意得,数列{a n }是以2为公比的等比数列, 因为最下层的浮雕的数量为a 1,所以S 7=a 1(1-27)1-2=1016,解得a 1=8,所以a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *),所以a 3=25,a 5=27,从而a 3×a 5=25×27=212, 所以log 2(a 3a 5)=log 2212=12,故选C.6.(2019·洛阳市统考)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2a n(2a n -1)(2a n +1-1),若k >T n 恒成立,则k 的最小值为( )A.17 B.149 C.49D.8441解析:选B ∵6S n =a 2n +3a n ,∴6S n +1=a 2n +1+3a n +1, ∴6a n +1=(a n +1+a n )(a n +1-a n )+3(a n +1-a n ), ∴(a n +1+a n )(a n +1-a n )=3(a n +1+a n ), ∵a n >0,∴a n +1+a n >0,∴a n +1-a n =3, 又6a 1=a 21+3a 1,a 1>0,∴a 1=3.∴{a n }是以3为首项,3为公差的等差数列,∴a n =3n ,∴b n =17·⎝ ⎛⎭⎪⎫18n -1-18n +1-1,∴T n =17·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -1-18n +1-1=17·⎝ ⎛⎭⎪⎫17-18n +1-1<149, ∴k ≥149,∴k 的最小值为149,故选B.二、填空题7.在各项都为正数的等比数列{a n }中,已知a 1=2,a 2n +2+4a 2n =4a 2n +1,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q >0,因为a 1=2,a 2n +2+4a 2n =4a 2n +1, 所以(a n q 2)2+4a 2n =4(a n q )2,化为q 4-4q 2+4=0, 解得q 2=2,q >0,解得q = 2.则数列{a n }的通项公式a n =2×(2)n -1=2n +12.答案:2n +128.(2019·安徽合肥一模改编)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为________. 解析:设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1.∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).答案:2n +1n4(n +1)9.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,∴数列{a n }是等比数列,首项是1,公比是2,所以a n =2n -1.因为a n b n =-n 2+9n -20,所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6} 三、解答题10.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.11.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n2n +2n .(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n +1-2-2n +2=2n,当n =1时,a 1=S 1=2,所以a n =2n .(2)∵b n =a n2n +2n =2n +1,∴a n b n =(2n +1)·2n.∴T n =3×2+5×22+7×23+…+(2n +1)·2n, 2T n =3×22+5×23+7×24+…+(2n +1)·2n +1,∴-T n =6+23+24+…+2n +1-(2n +1)·2n +1=6+23(1-2n -1)1-2-(2n +1)2n +1=-2-(2n -1)·2n +1.∴T n =(2n -1)·2n +1+2.12.(2019·郑州市第二次质量预测)数列{a n }满足:a 12+a 23+…+a nn +1=n 2+n ,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1a n ,数列{b n }的前n 项和为S n ,求满足S n >920的最小正整数n .解:(1)由题意知,a 12+a 23+…+a nn +1=n 2+n ,当n ≥2时,a 12+a 23+…+a n -1n =(n -1)2+n -1,两式相减得,a nn +1=2n ,a n =2n (n +1)(n ≥2).当n =1时,a 1=4也符合,所以a n =2n (n +1),n ∈N *. (2)b n =1a n=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1), 由S n =n 2(n +1)>920得n >9,所以满足条件的最小正整数n 为10.B 组——大题专攻强化练1.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得a 1=S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 1=1,所以a n =n -n -1.(2)b n =(-1)na n =(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. ∴S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,∴(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, ∴a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1-12n +1=-2n +22n +1.∴T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.3.(2019·江苏高考题节选)定义首项为1且公比为正数的等比数列为“M ­数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M ­数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0, 解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M ­数列”.(2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). 4.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,所以当n ≥2时,(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,所以b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,即b n =2-12n -1(n ≥2),易知b 1=1满足上式,所以b n =2-12n -1(n ∈N *).(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1,①12T n =121+222+323+…+n2n ,② 由①-②得,12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n 2n =2-n +22n . 所以T n =4-n +22n -1.所以数列{a n }的前n 项和S n =n (n +1)-4+n +22n -1.[思维流程——找突破口][典例] 已知数列{a n }满足a 1=1,na n +1=2(n +1)·a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [快审题][稳解题] (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 理由如下: 由条件可得a n +1n +1=2a nn, 即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[题后悟道] 等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等.[针对训练]已知正数数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式.(2)设b n =(1-a n )2-a (1-a n ),若b n +1>b n 对任意n ∈N *恒成立,求实数a 的取值范围.。

高考数学二轮复习 第三部分 讲重点 解答题专练 第2讲 数列教学案 理-高三全册数学教学案

高考数学二轮复习 第三部分 讲重点 解答题专练 第2讲 数列教学案 理-高三全册数学教学案

第2讲 数列■真题调研——————————————【例1】 [2019·全国卷Ⅱ]已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.【例2】 [2019·江苏卷]定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M-数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M-数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k +1成立,求m 的最大值.解:(1)设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M-数列”. (2)①因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12b n +1-b n, 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12b n +1-b n -b n -1b n 2b n -b n -1,整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *. 因为数列{c n }为“M-数列”, 设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln k k ≤ln q ≤ln kk -1.设f (x )=ln x x (x >1),则f ′(x )=1-ln xx2. 令f ′(x )=0,得x =e.列表如下:因为2=6<6=3,所以f (k )max =f (3)=ln33.取q =33,当k =1,2,3,4,5时,ln k k≤ln q ,即k ≤q k,经检验知qk -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.【例3】 [2019·天津卷]设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c 1=1,c n =⎩⎪⎨⎪⎧1,2k <n <2k +1,b k ,n =2k,其中k ∈N *.①求数列的通项公式;②求.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎪⎨⎪⎧6q =6+2d ,6q 2=12+4d ,解得⎩⎪⎨⎪⎧d =3,q =2,故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n.所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n.(2)①=(3×2n +1)(3×2n -1)=9×4n-1.所以,数列{}的通项公式为=9×4n-1.②=⎣⎢⎡⎦⎥⎤2n ×4+2n2n-12×3+i =1n (9×4i -1)=(3×22n -1+5×2n -1)+9×41-4n1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).【例4】 [2019·浙江卷]设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式; (2)记c n =a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2n ,n ∈N *. 解:(1)设数列{a n }的公差为d ,由题意得a 1+2d =4,a 1+3d =3a 1+3d ,解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得 (S n +1+b n )2=(S n +b n )(S n +2+b n ). 解得b n =1d(S 2n +1-S n S n +2).所以b n =n 2+n ,n ∈N *. (2)c n =a n2b n =2n -22n n +1=n -1n n +1,n ∈N *.我们用数学归纳法证明.(1)当n =1时,c 1=0<2,不等式成立; (2)假设当n =k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2k ,那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2k +k k +1k +2<2k +1k +1<2k +2k +1+k =2k +2(k +1-k )=2k +1, 即当n =k +1时不等式也成立.根据(1)和(2),不等式c 1+c 2+…+c n <2n 对任意n ∈N *成立. ■模拟演练——————————————1.[2019·南昌二模]已知数列{a n }是公差不为零的等差数列,a 1=1,且存在实数λ满足2a n +1=λa n +4,n ∈N *.(1)求λ的值及数列{a n }的通项公式; (2)求数列{a 2n -n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d ≠0, 由2a n +1=λa n +4(n ∈N *),①得2a n =λa n -1+4(n ∈N *,n ≥2),②两式相减得,2d =λd ,又d ≠0,所以λ=2. 将λ=2代入①可得a n +1-a n =2,即d =2, 又a 1=1,所以a n =1+(n -1)×2=2n -1. (2)由(1)可得a 2n -n =2(2n -n )-1=2n +1-(2n +1),所以S n =(22+23+…+2n +1)-[3+5+…+(2n +1)]=41-2n1-2-n 3+2n +12=2n +2-n 2-2n -4.2.[2019·广州综合测试二]已知{a n }是递增的等比数列,a 2+a 3=4,a 1a 4=3.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)解法一:设等比数列{a n }的公比为q . 因为a 2+a 3=4,a 1a 4=3,所以⎩⎪⎨⎪⎧a 1q +a 1q 2=4,a 1·a 1q 3=3.解得⎩⎪⎨⎪⎧a 1=9,q =13,或⎩⎪⎨⎪⎧a 1=13,q =3.因为{a n }是递增的等比数列,所以a 1=13,q =3,所以数列{a n }的通项公式为a n =3n -2.解法二:设等比数列{a n }的公比为q . 因为a 2+a 3=4,a 1a 4=a 2a 3=3,所以a 2,a 3是方程x 2-4x +3=0的两个根,解得⎩⎪⎨⎪⎧a 2=1,a 3=3,或⎩⎪⎨⎪⎧a 2=3,a 3=1.因为{a n }是递增的等比数列,所以a 2=1,a 3=3,则q =3, 所以数列{a n }的通项公式为a n =3n -2.(2)由(1)知b n =n ×3n -2,则S n =1×3-1+2×30+3×31+…+n ×3n -2, ①在①式两边同时乘以3得,3S n =1×30+2×31+3×32+…+n ×3n -1, ②①-②得-2S n =3-1+30+31+…+3n -2-n ×3n -1,即-2S n =131-3n1-3-n ×3n -1,所以S n =14(2n -1)×3n -1+112.3.[2019·福建质检]数列{a n }的前n 项和S n 满足S n =2a n -n . (1)求证数列{a n +1}是等比数列,并求a n ;(2)若数列{b n }为等差数列,且b 3=a 2,b 7=a 3,求数列{a n b n }的前n 项和.解:(1)当n =1时,S 1=2a 1-1,所以a 1=1. 因为S n =2a n -n , ①所以当n ≥2时,S n -1=2a n -1-(n -1), ② ①-②得a n =2a n -2a n -1-1,所以a n =2a n -1+1,所以a n +1a n -1+1=2a n -1+1+1a n -1+1=2a n -1+2a n -1+1=2,所以{a n +1}是首项为2,公比为2的等比数列, 所以a n +1=2·2n -1=2n,所以a n =2n-1.(2)由(1)知,a 2=3,a 3=7, 所以b 3=a 2=3,b 7=a 3=7.设{b n }的公差为d ,则b 7=b 3+(7-3)·d , 所以d =1,所以b n =b 3+(n -3)·d =n , 所以a n b n =n (2n -1)=n ·2n-n .设数列{n ·2n}的前n 项和为K n ,数列{n }的前n 项和为T n , 所以K n =2+2×22+3×23+…+n ·2n, ③ 2K n =22+2×23+3×24+…+n ·2n +1, ④③-④得-K n =2+22+23+…+2n -n ·2n +1=21-2n 1-2-n ·2n +1=(1-n )·2n +1-2.所以K n =(n -1)·2n +1+2.又T n =1+2+3+…+n =n n +12,所以K n -T n =(n -1)·2n +1-n n +12+2,所以{a n b n }的前n 项和为 (n -1)·2n +1-n n +12+2.4.[2019·安徽合肥质检]已知等比数列{a n }的各项都是正数,其中a 3,a 2+a 3,a 4成等差数列,a 5=32.(1)求数列{a n }的通项公式;(2)记数列{log 2a n }的前n 项和为S n ,求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由已知得⎩⎪⎨⎪⎧2a 2+a 3=a 3+a 4,a 5=32,即⎩⎪⎨⎪⎧2a 1q +a 1q 2=a 1q 3,a 1q 4=32.∵a n >0,∴q >0,解得⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n. (2)由已知得,S n =log 2a 1+log 2a 2+…+log 2a n =n n +12,∴1S n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2n n +1.。

(通用版)高考数学二轮复习 第一部分 专题二 数列教学案 文-人教版高三全册数学教学案

(通用版)高考数学二轮复习 第一部分 专题二 数列教学案 文-人教版高三全册数学教学案

专题二数列[研高考·明考点]偶考点 1.三角函数的综合问题2.平面向量与解三角形、三角函数的综合问题偶考点 数列与其他知识的综合问题第一讲 小题考法——等差数列与等比数列考点(一) 主要考查方式有两种:一是利用a n 与S n 的关系求通项a n 或前n 项和S n ;二是利用a n 与a n +1的关系求通项a n 或前n 项和S n .数列的递推关系式[典例感悟][典例] (1)(2017·云南调研)已知数列{a n }的前n 项和为S n ,且满足4(n +1)(S n +1)=(n +2)2a n (n ∈N *),则数列{a n }的通项公式a n =( )A .(n +1)3B .(2n +1)2C .8n 2D .(2n +1)2-1(2)(2017·成都模拟)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.[解析] (1)当n =1时,4×(1+1)×(a 1+1)=(1+2)2×a 1,解得a 1=8.当n ≥2时,4(S n +1)=n +22a n n +1,则4(S n -1+1)=n +12a n -1n ,两式相减得,4a n =n +22a nn +1-n +12a n -1n,整理得,a na n -1=n +13n 3,所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n +13n 3×n 3n -13×…×3323×8=(n +1)3.检验知,a 1=8也符合,所以a n =(n +1)3. (2)根据a 1+a 222+a 332+…+a nn 2=a n ,①有a 1+a 222+a 332+…+a n -1n -12=a n -1,②①-②得,a nn2=a n -a n -1,即n 2a n -1=(n 2-1)a n ,所以a n a n -1=n 2n 2-1=n 2n +1n -1,所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×222+12-1×323+13-1×…×n 2n +1n -1=22×32×42×…×n 22-12+13-13+14-14+1…n -1n +1=22×32×42×…×n21×3×2×4×3×5×…×n -1×n +1 =2n n +1. [答案] (1)A (2)2n n +1[方法技巧]由a n 与S n 的关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1n =1,S n -S n -1n ≥2.[演练冲关]1.(2018届高三·广东五校联考)数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 017=( )A.2 0171 009 B.2 0151 008 C.2 0162 017 D.2 0152 016解析:选A 由a 1=1,a n +1=a 1+a n +n 可得a n +1-a n =n +1,利用累加法可得a n -a 1=n -1n +22,所以a n =n 2+n2,所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,故1a 1+1a 2+…+1a 2 017=211-12+12-13+…+12 017-12 018=2⎝ ⎛⎭⎪⎫1-12 018=2 0171 009,故选A. 2.(2017·石家庄质检)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( )A .3 690B .3 660C .1 845D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以{a n }的前60项和为S 60=30+2×30+30×30-12×4=1 830.3.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则S 5=________. 解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:121考点(二)主要考查与等差比数列的通项公式、前n 项和公式有关的五个基本量间的“知三求二”运算.等差、等比数列的基本运算[典例] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97(2)(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8(3)(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. [解析] (1)∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98,故选C. (2)设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2, 所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24. (3)设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.[答案] (1)C (2)A (3)32[方法技巧]等差(比)数列基本运算的解题思路(1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[演练冲关]1.(2017·合肥质检)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36解析:选C 由a 2+S 3=4及a 3+S 5=12得⎩⎪⎨⎪⎧4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.故选C.2.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , 则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-83.(2018届高三·河南十校联考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________.解析:∵{a n }是公差为1的等差数列, ∴S 8=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.答案:192[典例] (1)(2017·云南调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50(2)(2017·长沙模拟)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )C.8 D.8-4 2(3)(2018届高三·湖南名校联考)若{a n}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016·a2 017<0,则使前n项和S n>0成立的最大正整数n是( )A.2 016 B.2 017C.4 032 D.4 033[解析] (1)由等比数列的性质可知,数列S3,S6-S3,S9-S6,S12-S9是等比数列,即数列4,8,S9-S6,S12-S9是等比数列,所以S9-S6=16,S12-S9=32,所以S12=(S12-S9)+(S9-S6)+(S6-S3)+S3=32+16+8+4=60,故选B.(2)在等比数列{a n}中,a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8,故选C.(3)因为a1>0,a2 016+a2 017>0,a2 016·a2 017<0,所以d<0,a2 016>0,a2 017<0,所以S4 032=4 032a1+a4 0322=4 032a2 016+a2 0172>0,S4 033=4 033a1+a4 0332=4 033a2 017<0,所以使前n项和S n>0成立的最大正整数n是4 032,故选C.[答案] (1)B (2)C (3)C[方法技巧]等差、等比数列性质问题的求解策略(1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.[演练冲关]1.已知等差数列{a n}中,a1=1,前10项和等于前5项和,若a m+a6=0,则m=( ) A.10 B.9C.8 D.2解析:选A 记数列{a n}的前n项和为S n,由题意S10=S5,所以S10-S5=a6+a7+a8+a9+a10=0,又a6+a10=a7+a9=2a8,于是a8=0,又a m+a6=0,所以m+6=2×8,解得m=10.2.(2017·合肥质检)已知数列{a n}是首项为a,公差为1的等差数列,数列{b n}满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:选A 因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n=1+a n a n =1+1a n ,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.3.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:50[典例] (1)(2018届高三·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值为( )A .- 3B .-1C .-33D . 3(2)设数列{}a n 是等差数列,数列{}b n 是等比数列,记数列{}a n ,{}b n 的前n 项和分别为S n ,T n .若a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),则a 7+a 5b 7+b 5=________. [解析] (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3. (2)设等差数列{}a n 的公差为d ,等比数列{}b n 的公比为q . 由a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),得⎩⎪⎨⎪⎧a 5=b 5,a 5+d =b 5q ,2a 5+3d =4b 5+b 5q ,解得⎩⎪⎨⎪⎧q =-5,d =-6a 5.故a 7+a 5b 7+b 5=2a 5+2d b 5q 2+b 5=2a 5+2-6a 525a 5+a 5=-10a 526a 5=-513. [答案] (1)A (2)-513[方法技巧]等差、等比数列综合问题的求解策略(1)对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.(2)数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列的有关最值问题.[演练冲关]1.(2017·云南调研)已知数列{a n }是等差数列,若a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,则q =( )A .-2B .-1C .1D .2解析:选C 依题意,得2a 3=a 1+a 5,2a 3-6=a 1+a 5-6,即2(a 3-3)=(a 1-1)+(a 5-5),所以a 1-1,a 3-3,a 5-5成等差数列.又a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,因此有a 1-1=a 3-3=a 5-5,q =a 3-3a 1-1=1. 2.(2017·望江调研)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为( )A .-47B .-48C .-49D .-50解析:选C 由已知得⎩⎪⎨⎪⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23,那么nS n =n 2a 1+n 2n -12d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,又6<203<7,从而检验n =6时,6S 6=-48,n =7时,7S 7=-49.所以nS n 的最小值为-49.3.(2017·太原模拟)设等比数列{a n }的前6项和S 6=6,且1-a 22为a 1,a 3的等差中项,则a 7+a 8+a 9=________.解析:依题意得a 1+a 3=2-a 2,即S 3=a 1+a 2+a 3=2,由等比数列的性质,知数列S 3,S 6-S 3,S 9-S 6成等比数列,即数列2,4,S 9-S 6成等比数列,于是有S 9-S 6=8,即a 7+a 8+a 9=8.答案:8[必备知能·自主补缺] (一) 主干知识要记牢 1.等差数列、等比数列等差数列 等比数列通项公式a n =a 1+(n -1)d a n =a 1q n -1(q ≠0)前n 项和公式S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n 1-q =a 1-a n q1-q;(2)q =1,S n =na 1(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (二) 二级结论要用好 1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ;p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd .(3)连续k 项的和(如S k ,S 2k -S k ,S 3k -S 2k ,…)构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1. (5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. [针对练1] 一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:52.等比数列的重要规律与推论 (1)a n =a 1qn -1=a m qn -m;p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)构成的数列是等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q . (5)对于等比数列前n 项和S n ,有: ①S m +n =S m +q mS n ;②S m S n =1-q m 1-q n(q ≠±1). (三) 易错易混要明了已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.[针对练2] 已知数列{a n }的前n 项和S n =n 2+1,则该数列的通项公式为________. 解析:当n =1时,a 1=S 1=2.当n ≥2时,a n =S n -S n -1=(n 2+1)-[(n -1)2+1]=n 2-(n -1)2=2n -1, 又当n =1时,2×1-1=1≠2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=9a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=8a 1+a 82=8a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q2+1a 1q 3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12 B.5+12 C.3-52 D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q2a 4+a 4q 2=a 31+q 2a 41+q 2=1q =25+1=5-12,故选A.10.(2017·张掖模拟)等差数列{a n }中,a n a 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -1d a 1+2n -1d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14. 二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n+1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×1-291-2=210-2=1 022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t为增函数,从而a 1a 2…a n 的最大值为26=64.答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n +2.故{a n }是等差数列,所以a n =2n ,S n =2×1+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +12-n +1+60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n +1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9 解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-22,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n22n -12=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +12,1S n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n -1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n=1-1n =n -1n ,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________.解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a nb n=2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n,所以c n=a n +b n a n b n =2n 2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036第二讲 大题考法——数 列[典例1] (2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3. ① (1)由a 3+b 3=5得2d +q 2=6.②联立①②解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.[备课札记][方法技巧]等差、等比数列的基本量的求解策略(1)分析已知条件和求解目标,确定为最终解决问题需要先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,即确定解题的逻辑次序.(2)注意细节.例如:在等差数列与等比数列综合问题中,若等比数列的公比不能确定,则要看其是否有等于1的可能;在数列的通项问题中,第一项和后面的项能否用同一个公式表示等.[演练冲关]1.(2017·洛阳模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2; (2)求数列{a n }的通项公式.解:(1)令n =1得2a 1a 2=4a 1-3,又a 1=1,∴a 2=12.由题可得,2a n a n +1=4S n -3,① 2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. ∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k-1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k-32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.题型(二) 主要考查错位相减法求和、裂项相消法求和以及分组求和,且常结合数列的递推公式、周期等命题.数 列 求 和 问 题[典例感悟][典例2] 等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则c n =⎩⎪⎨⎪⎧2n n +2,n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1). [备课札记][方法技巧]1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比; ②将两个和式错位相减; ③整理结果形式.[演练冲关]2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n . 解:(1)∵{a n }为等差数列, ∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1. (2)∵b n =2a n +a n =22n +1+(2n +1)=2×4n+(2n +1),∴T n =2×(4+42+ (4))+(3+5+…+2n +1) =2×41-4n1-4+n 3+2n +12=83(4n -1)+n 2+2n . 3.(2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n.由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n. (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.题型(三)主要考查等差数列与等比数列的定义、等差中项及等比中项,且常与数列的递推公式相结合命题.等差、等比数列的判定与证明[典例感悟][典例3] (2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =-2×[1--2n]1--2=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[备课札记][方法技巧]判定和证明数列是等差(比)数列的方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为与正整数n 无关的某一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; ②若a 2n =a n -1·a n +1≠0(n ∈N *,n ≥2),则{a n }为等比数列.[演练冲关]4.(2018届高三·东北三校联考)已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)证明:记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n 3-3a n =1-a n 31-a n =13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12×⎝ ⎛⎭⎪⎫13n -1,即a n =2×3n -11+2×3n -1.所以数列{a n }的通项公式为a n =2×3n -11+2×3n -1.(2)由(1)知,1a n =12×⎝ ⎛⎭⎪⎫13n -1+1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝ ⎛⎭⎪⎫1-13n 1-13+n =34⎝ ⎛⎭⎪⎫1-13n +n .[解题通法点拨] 数列问题重在“化归”[循流程思维——入题快]等差数列与等比数列是我们最熟悉的两个基本数列,在高中阶段它们是一切数列问题的出发点与落脚点.首项与公差(比)称为等差(比)数列的基本量,大凡涉及这两个数列的问题,我们总希望把已知条件化归为等差或等比数列的基本量间的关系,从而达到解决问题的目的.这种化归为基本量处理的方法是解决等差或等比数列问题特有的方法,对于不是等差或等比的数列,可通过转化化归,转化为等差(比)数列问题或相关问题求解.由于数列是一种特殊的函数,也可根据题目特点,将数列问题化归为函数问题来解决.[按流程解题——快又准][典例] (2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.[解题示范](1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2. 又a 21+2a 1=4a 1+3, 解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17 +…+12n +1-12n +3=n32n +3.[思维升华] 对于数列的备考:一是准确掌握数列中a n 与S n 之间的关系,这是解决数列问题的基础;二是重视等差与等比数列的复习,熟悉其基本概念、公式和性质,这是解决数列问题的根本;三是注意数列与函数、不等式等的综合问题,掌握解决此类问题的通法;四是在知识的复习和解题过程中体会其中所蕴含的数学思想方法,如分类讨论、数形结合、等价转化、函数与方程思想等.[应用体验](2017·张掖模拟)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }的通项公式与数列{b n }的通项公式; (2)令c n =b n2n +1,其中n ∈N *,记数列{c n }的前n 项和为T n ,求T n +n +22n的值.解:(1)由题意知a 1=1,∵a n =-3S n +4,∴a n +1=-3S n +1+4. 两式相减并化简得a n +1=14a n ,∴{a n }是首项为1,公比为14的等比数列,∴a n =⎝ ⎛⎭⎪⎫14n -1.b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n . (2)∵c n =b n 2n +1=2n 2n +1=n2n ,∴T n =12+222+323+…+n2n ,①12T n =122+223+…+n -12n +n2n +1, ②①-②得,12T n =12+122+123+…+12n -n 2n +1=1-n +22n +1.∴T n =2-n +22n,即T n +n +22n=2.[课时跟踪检测] 1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n n -12d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1,所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去),所以a n =2n -1.(2)a 1+a 3+a 9+…+a 3n =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1)=2×(1+3+32+ (3))-(n +1)=2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=14(a n -1+1),所以数列{a n +1}是以512为首项,14为公比的等比数列.所以a n +1=512×⎝ ⎛⎭⎪⎫14n -1=211-2n ,a n=211-2n -1.(2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2.当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.4.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1, ① ∴当n ≥2时,S n -1=2a n -1-a 1;②①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3,∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列.∴a n =2n.(2)∵a n =2n,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +12n +1-22n +2-2=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1=2n-12n +1-1. 5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式及前n 项和T n . 解:(1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,当n =1时,a 1+S 1=1,∴a 1=12,a 1-1=-12,又c n =a n -1,∴{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n。

高三数学第二轮复习教案《数列》

高三数学第二轮复习教案《数列》

数列(第二轮复习)1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差 a n =a 1+(n-1)d ,等比a n =a 1q n -13.等差(比)中项如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab4.重要性质:m+n=p+q ⇔ a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ⇔ a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列)5.等差数列前n 项和等比数列前n 项和6.如果某个数列前n 项和为Sn ,则7.差数列前n 项和的最值(1)若a1>0,d <0,则S n 有最大值,n 可由 ⎩⎨⎧≥≥+0a 0a 1n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ⎩⎨⎧≤≤+0a 0a 1n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法:(1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.(2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.(3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.(4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,()()⎩⎨⎧≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 21211-+=+=()()()⎪⎩⎪⎨⎧≠--==111111q qq a q na S n n在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.9. 三个模型:(1)复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(2).单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) (3).产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x10.例、习题:1.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根组成首项为1/4的等差数列,则a+b的值为( )A. 3/8B. 11/24C. 13/24D. 31/722.在等差数列{a n}中,a2+a4=p,a3+a5=q.则其前6项的和S6为( )(A) 5 (p+q)/4 (B) 3(p+q)/2 (C) p+q (D) 2(p+q)3.下列命题中正确的是( )A.数列{a n}的前n项和是S n=n2+2n-1,则{a n}为等差数列B.数列{a n}的前n项和是S n=3n-c,则c=1是{a n}为等比数列的充要条件C.数列既是等差数列,又是等比数列D.等比数列{a n}是递增数列,则公比q大于14.等差数列{a n}中,a1>0,且3a8=5a13,则S n中最大的是( )(A)S10(B)S11(C)S20(D)S215.等差数列{a n}中,S n为数列前n项和,且S n/S m=n2/m2 (n≠m),则a n / a m值为( )(A)m/n (B)(2m-1)/n (C)2n/(2n-1) (D)(2n-1)/(2m-1)6.已知{a n}的前n项和S n=n2-4n+1,则|a1|+|a2|+…|a10|=( )(A)67 (B)65 (C)61 (D)567.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为()(A)12 (B)10 (C)8 (D)68.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2 (16个1)位转换成十进制形式是( )(A) 217-2 (B) 216-2 (C) 216-1 (D)215-19.{a n}为等比数列,{b n}为等差数列,且b1=0,C n=a n+b n,若数列{C n}是1,1,5,…则{C n}的前10项和为___________.10.如果b是a,c的等差中项,y是x与z的等比中项,且x,y,z都是正数,则(b-c)log m x+(c-a)log m y+(a-b)log m z=_______.11.数列{a n}的前n项和S n=n2+1,则a n=_________________.12.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.13.已知等比数列{a n }的公比为q ,前n 项的和为S n ,且S 3,S 9,S 6成等差数列.(1)求q 3的值;(2)求证a 2,a 8,a 5成等差数列.14.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,求公差d.15.数列{a n }是由正数组成的等比数列,S n 为前n 项的和,是否存在正常数c ,使得 对任意的n ∈N +成立?并证明你的结论.16.一个首项为正数的等差数列中,前3项和等于前11项和,问此数列前多少项的和最大?17.已知等比数列{a n }的首项a1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N*),数列{a n }与{b n }的前n 项和分别记为A n 与B n ,试比较A n 与B n 的大小.()()()c S c S c S n n n -=-+-++12lg 2lg lg18.设等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,试求S 110.19.已知数列{a n }和{b n }满足(n ∈N +),试证明:{a n }成等差数列的充分条件是{b n }成等差数列.20.已知数列{a n }中的a 1=1/2,前n 项和为S n .若S n =n 2a n ,求S n 与a n 的表达式.21.在数列{a n }中,a n >0, 2Sn = a n +1(n ∈N) ①求S n 和a n 的表达式;②求证: n a n a a b n n +++⋅++⋅+⋅= 21212121111321<+++nS S S S。

高考数学二轮复习精品资料专题03 数列教学案(教师版)

高考数学二轮复习精品资料专题03 数列教学案(教师版)

2013高考数学二轮复习精品资料专题03 数列教学案(教师版)【2013考纲解读】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题.【知识网络构建】【重点知识整合】 一、等差数列与等比数列 1.S n 与a n 的关系在数列{a n }中,S n =a 1+a 2+…+a n ,从而a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列性质如果数列{a n }是公差为d 的等差数列,则 (1)a n =a 1+(n -1)d ,S n =na 1+n n -12d =n a 1+a n2.(2)对正整数m ,n ,p ,q ,a m +a n =a p +a q ⇔m +n =p +q ,a m +a n =2a p ⇔m +n =2p . 3.等比数列性质如果数列{a n }是公比为q 的等比数列,则(1)a n =a 1q n -1,S n =⎩⎪⎨⎪⎧a 11-q n1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.(2)对正整数m ,n ,p ,q ,a m a n =a p a q ⇔m +n =p +q ,a m a n =a 2p ⇔m +n =2p . 4.等差、等比数列S n 的性质若等差数列的前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m ,…为等差数列;等比数列的前n 项和为S n ,则在公比不等于-1时,S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列.5.等差、等比数列单调性等差数列的单调性由公差d 的范围确定,等比数列的单调性由首项和公比的范围确定.二、数列求和及数列应用 1.常用公式等差数列的前n 项和,等比数列的前n 项和, 1+2+3+…+n =n n +12,12+22+32+…+n 2=n n +12n +16,13+23+…+n 3=⎣⎢⎡⎦⎥⎤n n +122.3.数学求和的基本方法公式法、分组法、裂项相消法、错位相减法、倒序相加法. 4.数列的应用等差数列模型、等比数列模型、递推数列模型. 【高频考点突破】考点一 等差数列和等比数列的基本运算等差数列 等比数列通项公式a n =a 1+(n -1)d a n =a 1q n -1(q ≠0)前n 项和S n =n a 1+a n2=na 1+n n -12d (1)q ≠1,S n =a 11-q n 1-q =a 1-a n q1-q(2)q =1,S n =na 1例1、设等比数列{a n }的前n 项和为S n ·已知a 2=6,6a 1+a 3=30,求a n 和S n · 解:设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧a 1=3,q =2,或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3时,q =2时,a n =3×2n -1,S n =3×(2n-1);当a 1=2,q =3时,a n =2×3n -1,S n =3n-1.【变式探究】S n 为等差数列{a n }的前n 项和,S 2=S 6, a 4=1,则a 5=________.考点二 等差、等比数列的判定和证明数列{a n }是等差或等比数列的证明方法: (1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为常数; ②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).例2、已知数列{a n }和{b n }满足a 1=m ,a n +1=λa n +n ,b n =a n -2n 3+49.(1)当m =1时,求证:对于任意的实数λ,数列{a n }一定不是等差数列; (2)当λ=-12时,试判断数列{b n }是否为等比数列.(2)当λ=-12时,a n +1=-12a n +n ,b n =a n -2n 3+49.b n +1=a n +1-2n +13+49考点三等差、等比数列的性质等差数列等比数列性质(1)若m、n、p、q∈N*,且m+n=p+q,则am+an=ap+aq(2)an=am+(n-m)d(3)Sm,S-Sm,S-S,…仍成等差数列(1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq(2)an=amqn-m(3)Sm,S-Sm,S-S,…仍成等比数列(Sn≠0)例3、等差数列{a n}的首项为a1,公差为d,前n项和为S n,则“d>|a1|”是“S n的最小值为S1,且S n无最大值”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点四数列求和数列求和的方法技巧:(1)转化法:有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)裂项相消法:利用通项变形,将通项分裂成两项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.例4、等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前2n项和S2n·【变式探究】等比数列{a n}的各项均为正数,且2a1+3a2=1,a23=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n}的前n项和.解:(1)设数列{a n}的公比为q.由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.考点五 数列与函数、不等式例5、设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式; (2)证明:对于一切正整数n,2a n ≤bn +1+1.②当b ≠1时,c n +11-b =1b (c n -1+11-b ),且c 1+11-b =1b +11-b =1b 1-b, {c n +11-b }是首项为1b 1-b ,公比为1b的等比数列, ∴c n +11-b =1b1-b ·(1b )n -1,由n a n +11-b=11-b b n 得a n =n 1-b bn1-bn,∴a n =⎩⎪⎨⎪⎧1, b =1n 1-b b n1-bn ,b ≠1.【难点探究】难点一 等差数列的通项、求和的性质例1、(1)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110(2)设数列{a n }是公差不为0的等差数列,a 1=2且a 1,a 5,a 13成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4B.n 23+5n3C.n 22+3n4D .n 2+n【点评】 在等差数列问题中其最基本的量是其首项和公差,在解题时根据已知条件求出这两个量,其他的问题也就随之解决了,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.难点二 等比数列的通项、求和的性质例2 (1)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15(2)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 1·a 2·…·a 9=________.【点评】 等比数列中有关系式a n a m=qn -m(m ,n ∈N *),其中q 为公比,这个关系式可以看做推广的等比数列的通项公式,即a n =a m qn -m(m ,n ∈N *),当m =1时就是等比数列的通项公式.难点三 等差、等比数列的综合问题例3 、成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.【分析】 (1)由条件可以先求得数列{b n }的第三项,进而借助等比数列的通项公式求出b n ,(2)充分结合等比数列的定义不难证明.【解答】 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15.解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)证明:由(1)得数列{b n }的前n 项和S n =541-2n1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.难点四 数列求和及其应用例4、在数1和100之间插入n 个实数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记作T n ,再令a n =lg T n ,n ≥1.(1)求数列{a n }的通项公式;(2)设b n =tan a n ·tan a n +1,求数列{b n }的前n 项和S n .【点评】本题考查等比数列的性质、三角函数等知识.本题两问中的方法都是值得注意的,在第一问中采用的是倒序相乘法,这类似数列求和中的倒序相加法;第二问采用的裂项相消法和两角差的正切公式结合在一起,这在近年来的高考试题中是不多见的,这与我们平时见到的裂项相消法有较大的不同,但基本思想是把不能使用公式直接求和的问题转化为可以逐项相消的问题,基本思想就是裂项.难点五数列应用题的解法例5、某个集团公司下属的甲、乙两个企业在2010年1月的产值都为a万元,甲企业每个月的产值比前一个月的产值增加的数值相等,乙企业每个月的产值比前一个月的产值增加的百分数相等,到2011年1月两个企业的产值又相等.(1)到2010年7月,试比较甲、乙两个企业的产值的大小,并说明理由;(2)甲企业为了提高产能,决定用3.2万元买一台仪器.从2011年2月1日投放使用,从启用的第一天起连续使用,第n天的维修保养费为n+4910元(n∈N*),求前n天这台仪器的日平均耗资(含仪器的购置费),并求日平均耗资最小时使用了多少天?(2)设一共用了n 天,则n 天的平均耗资为P (n ),则P (n )=3.2×104+⎝ ⎛⎭⎪⎫5+n +4910n 2n=3.2×104n +n 20+9.92,当且仅当3.2×104n =n20时P (n )取得最小值,此时n =800,故日平均耗资最小时使用了800天.【点评】 本题考查等比数列模型、等差数列模型的实际应用,并与基本不等式进行交汇.数列在实际问题中有着极为广泛的应用,数列的应用问题在高考中虽然不是主流,但并不排除在高考中考查数列实际应用问题的可能。

最新整理高三数学20 高考数学第二轮数列备考复习教案.docx

最新整理高三数学20 高考数学第二轮数列备考复习教案.docx

最新整理高三数学20 高考数学第二轮数列备考复习教案20 高考数学二轮复习资料专题三数列(教师版)考纲解读1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.考点预测1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中an与Sn之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.要点梳理1.证明数列是等差数列的两种基本方法:(1)定义法:为常数;(2)等差中项法: .2.证明数列是等比数列的两种基本方法:(1)定义法: (非零常数);(2)等差中项法: .3.常用性质:(1)等差数列中,若 ,则 ;(2)等比数列中,若 ,则 .4.求和:(1)等差等比数列,用其前n项和求出;(2)掌握几种常见的求和方法:错位相减法、裂项相消法、分组求和法、倒序相加法;(3)掌握等差等比数列前n项和的常用性质.考点在线考点1 等差等比数列的概念及性质在等差、等比数列中,已知五个元素或,中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。

〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。

等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。

(通用版)高三数学二轮复习 第一部分 重点保分题 题型专题(十三)数列教师用书 理-人教版高三全册数

(通用版)高三数学二轮复习 第一部分 重点保分题 题型专题(十三)数列教师用书 理-人教版高三全册数

题型专题(十三) 数列[师说考点]1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ;S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式a n =a 1q n -1(q ≠0);S n =a 1(1-q n )1-q =a 1-a n q 1-q(q ≠1).[典例] (1)(2016·高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.[解析] ∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.[答案] 6(2)(2016·全国乙卷)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .①求{a n }的通项公式; ②求{b n }的前n 项和.[解] ①由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1. ②由①知a n b n +1+b n +1=nb n ,得b n +1=b n3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n1-13=32-12×3n -1. [类题通法]1.等差(比)数列的基本运算在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (或q )的方程组求解,但要注意消元法及整体代换,以减少计算量.2.判断和证明数列是等差(比)数列的2种方法 (1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为与正整数n 无关的一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; ②若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列.[演练冲关]1.若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( ) A.38B.245C.316D.916解析:选C 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3,(a 1q 2)2=4a 1q ·a 1q 5,解得⎩⎪⎨⎪⎧a 1=32,q =12.所以a 4=a 1q 3=32×⎝ ⎛⎭⎪⎫123=316.2.(2016·某某质检)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是( )A.215B.225C.235D.245解析:选D ∵2na n =(n -1)a n -1+(n +1)a n +1,∴数列{na n }是以a 1=1为首项,2a 2-a 1=5为公差的等差数列,∴20a 20=1+5×19=96,∴a 20=245.3.(2016·某某质检)已知等差数列{a n }的前n 项和为S n ,且S 3=9,a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)若a n ≠a 1(当n ≥2时),数列{b n }满足b n =2a n ,求数列{b n }的前n 项和T n . 解:(1)a 23=a 1a 7,即(a 1+2d )2=a 1(a 1+6d ), 化简得d =12a 1或d =0.当d =12a 1时,S 3=3a 1+3×22×12a 1=92a 1=9,得a 1=2,d =1,∴a n =a 1+(n -1)d =2+(n -1)=n +1,即a n =n +1; 当d =0时,由S 3=9,得a 1=3,即有a n =3. (2)由题意可知b n =2a n =2n +1,∴b 1=4,b n +1b n=2. ∴{b n }是以4为首项,2为公比的等比数列, ∴T n =4(1-2n)1-2=2n +2-4.[师说考点]等差数列等比数列性 质若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m +a n =a p +a q若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a qa n =a m +(n -m )da n =a m q n -mS m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S n ≠0)n 10100 )A .100B .99C .98D .97[解析] 选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.(2)(2016·某某七校联考)在数列{a n }中,a 1=5,(a n +1-2)(a n -2)=3(n ∈N *),则该数列的前2 016项的和是________.[解析] 依题意得(a n +1-2)(a n -2)=3,(a n +2-2)·(a n +1-2)=3,因此a n +2-2=a n -2,即a n +2=a n ,所以数列{a n }是以2为周期的数列.又a 1=5,因此(a 2-2)(a 1-2)=3(a 2-2)=3,故a 2=3,a 1+a 2=8.注意到2 016=2×1 008,因此该数列的前2 016项的和等于1 008(a 1+a 2)=8 064.[答案] 8 064 [类题通法]等差(比)数列性质应用策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解;(2)数列是一种特殊的函数,具有函数的一些性质,如周期性、单调性(如本例(2)及[演练冲关]2).[演练冲关]1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9 D .6解析:选D 由题意得S 11=11(a 1+a 11)2=11a 6=22,即a 6=2,所以a 3+a 7+a 8=3a 6=3×2=6,故选D.2.(2016·某某模拟)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0成立的最大的自然数n 是( )A .9B .10C .11D .12解析:选A 由题可得{a n }的公差d =3-74-2=-2,a 1=9,所以a n =-2n +11,可见{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=2a 52×9>0,S 10=a 5+a 62×10=0,S 11=2a 62×11<0,从而该题选A.[师说考点]数列求和的关键是分析其通项,数列的基本求和方法有公式法、错位相减法、裂(拆)项相消法、分组法、倒序相加法和并项法等.[典例] (2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.[解] (1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [类题通法]1.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比.②把两个和的形式错位相减. ③整理结果形式.[演练冲关]1.若a n =(-1)n(4n -3),则数列{a n }的前2n 项和T 2n 为________.解析:因为a n =(-1)n(4n -3),所以T 2n =(-1+5)+(-9+13)+(-17+21)+…+[-(8n -7)+(8n -3)]=4×n =4n .答案:4n2.(2016·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列;(2)求数列{a n }的前n 项和S n . 解:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.3.(2016·某某质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①S n -1=32a n -1-1(n ≥2),②①-②得:a n =⎝ ⎛⎭⎪⎫32a n -1-⎝ ⎛⎭⎪⎫32a n -1-1,即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1)=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1.数列与其他知识的交汇数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化为特殊数列求解,一些题目常与函数、向量、三角函数、不等式等知识交汇结合,考查数列的基本运算与应用.[典例] (1)(2016·某某质检)对于函数y =f (x ),部分x 与y 的对应关系如下表:x 1 2 3 4 5 6 7 8 9 y375961824数列{x n }满足:x 1=1,且对于任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上,则x 1+x 2+…+x 2 015=( )A .7 554B .7 549C .7 546D .7 539[解析] 选A ∵数列{x n }满足x 1=1,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上,∴x n +1=f (x n ),∴由图表可得x 2=f (x 1)=3,x 3=f (x 2)=5,x 4=f (x 3)=6,x 5=f (x 4)=1,…,∴数列{x n }是周期为4的周期数列,∴x 1+x 2+…+x 2 015=503(x 1+x 2+x 3+x 4)+x 1+x 2+x 3=503×15+9=7 554.故选A.(2)设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量=(1,2),则数列{a n }的前n 项和S n =________.[解析] ∵P n (n ,a n ),∴P n +1(n +1,a n +1), ∴=(1,a n +1-a n )=(1,2),∴a n +1-a n =2,∴{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1, ∴S n =n +n (n -1)2×2=n 2.[答案] n 2[类题通法](1)第(1)题是函数与数列的交汇,第(2)题是平面向量与数列的交汇;(2)解答此类问题的一般思路为利用已知条件结合函数、平面向量的知识转化为数列的问题进行求解.[演练冲关]1.(2016·某某模拟)正项等比数列{a n }中的a 1、a 4 031是函数f (x )=13x 3-4x 2+6x -3的极值点,则log 6a 2 016=( )A .1B .2 C.2D .-1解析:选A 因为f ′(x )=x 2-8x +6,且a 1、a 4 031是方程x 2-8x +6=0的两根,所以a 1·a 4031=a 22 016=6,即a 2 016=6,所以log 6a 2 016=1,故选A.2.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12(n -1)n2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (xy )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2,则数列{a n }的通项公式a n =________.解析:由题意知,a n +1=f (2n +1)=2f (2n )+2n f (2)=2a n +2n +1,则a n +12n +1=a n2n +1,所以⎩⎨⎧⎭⎬⎫a n 2n 是首项为1,公差为1的等差数列,所以a n2n =n ,a n =n ·2n.答案:n ·2n一、选择题1.(2016·某某模拟)在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2 D .±2解析:选A 因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,a 1=a 3q2=1,故选A.2.(2016·某某七校调研)在等比数列{a n }中,S n 是它的前n 项和,若q =2,且a 2与2a 4的等差中项为18,则S 5=( )A .62B .-62C .32D .-32解析:选A 依题意得a 2+2a 4=36,q =2,则2a 1+16a 1=36,解得a 1=2,因此S 5=2×(1-25)1-2=62,选A.3.(2016·某某六市联考)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114B.32C.72D .1 解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎪⎨⎪⎧d =d2,a 1-d2=0,解得⎩⎪⎨⎪⎧d =12,a 1=14,a 6=a 1+5d =14+52=114,故选A. 4.(2016·某某模拟)已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( )A .4B .5C .6D .7解析:选C ∵{a n }是各项均为正数的等比数列且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6,故选C.5.(2016·某某模拟)已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x 、y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n )(n ∈N *),则a 2 017的值为( )A .4 033B .3 029C .2 249D .2 209解析:选A 根据题意,不妨设f (x )=⎝ ⎛⎭⎪⎫12x,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 017=4 033.6.(2016·某某质检)已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3·a 5=4,则下列说法正确的是( )A .{a n }是单调递减数列B .{S n }是单调递减数列C .{a 2n }是单调递减数列D .{S 2n }是单调递减数列解析:选C 由于{a n }是等比数列,则a 3a 5=a 24=4,又a 2=12,则a 4>0,a 4=2,q 2=16,当q =-66时,{a n }和{S n }不具有单调性,选项A 和B 错误;a 2n =a 2q 2n -2=12×⎝ ⎛⎭⎪⎫16n -1单调递减,选项C 正确;当q =-66时,{S 2n }不具有单调性,选项D 错误. 二、填空题7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________. 解析:∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =2(1-3n)1-3=3n-1.答案:3n-18.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. 答案:43⎝⎛⎭⎪⎫1-14n +29.(2016·某某质检)已知数列{a n }的前n 项和S n =3(2n-1),数列{b n }的通项公式为b n =5n -2.数列{a n }和{b n }的所有公共项按从小到大的顺序构成数列{}.若数列{}的第n 项恰为数列{a n }的第k n 项,则数列{k n }的前32项的和是________.解析:当n ≥2时,a n =S n -S n -1=3(2n-1)-3(2n -1-1)=3×2n -1,当n =1时,a 1=S 1=3,∴a n =3×2n -1.令a t =b s ,∴3×2t -1=5s -2,则s =3×2t -1+25.t =1,s =1,符合题意,t =2,s =85,不合题意,t =3,s =145,不合题意,t =4,s =265,不合题意,t =5,s =10,符合题意,……,∴{k n }是以1为首项,4为公差的等差数列,∴数列{k n }的前32项之和为32×1+32×312×4=2 016.答案:2 016 三、解答题10.等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n ;数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n.解:(1)设等差数列{a n }的公差为d ,d >0,{b n }的公比为q , 则a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧q (2+d )=6,q +3+3d =8,解得⎩⎪⎨⎪⎧d =1,q =2,或⎩⎪⎨⎪⎧d =-43,q =9(舍去). 故a n =n ,b n =2n -1.(2)由(1)知S n =1+2+…+n =12n (n +1).1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1S 1+1S 2+…+1S n =2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 11.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝ ⎛⎭⎪⎫π12,-2,⎝ ⎛⎭⎪⎫7π12,2,且在区间⎝ ⎛⎭⎪⎫π12,7π12上为单调函数.(1)求ω,φ的值; (2)设a n =nf ⎝⎛⎭⎪⎫n π3(n ∈N *),求数列{a n }的前30项和S 30.解:(1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z ,∵|φ|<π,∴φ=-2π3.(2)∵a n =2n sin ⎝⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列{2sin(2n π3-2π3)}(n ∈N *)的周期为3,前三项依次为0,3,-3,∴a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), ∴S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.12.(2016·某某七市联考)已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3-b 3=1.(1)求数列{a n },{b n }的通项公式; (2)记=a n b n ,求数列{}的前n 项和S n .word11 / 11 解:(1)设{a n }的公差为d ,{b n }的公比为q ,由已知可得⎩⎪⎨⎪⎧1+d =q ,2(1+2d )-q 2=1,即⎩⎪⎨⎪⎧1+d =q ,q 2-4q +3=0, 解得⎩⎪⎨⎪⎧d =0,q =1或⎩⎪⎨⎪⎧d =2,q =3,从而a n =b n =1或a n =2n -1,b n =3n -1.(2)①当a n =b n =1时,=1,所以S n =n ;②当a n =2n -1,b n =3n -1时,=(2n -1)×3n -1,S n =1+3×3+5×32+7×33+…+(2n -1)×3n -1,3S n =3+3×32+5×33+7×34+…+(2n -1)×3n ,从而有(1-3)S n =1+2×3+2×32+2×33+…+2×3n -1-(2n -1)×3n=1+2(3+32+…+3n -1)-(2n -1)×3n =1+2×3(1-3n -1)1-3-(2n -1)×3n =-2(n -1)×3n-2,故S n =(n -1)×3n +1.综合①②,得S n =n 或S n =(n -1)×3n +1.。

高三数学第二轮数学专题复习全套教案

高三数学第二轮数学专题复习全套教案

高三数学第二轮数学专题复习全套教案目标为高三学生提供一套完整的数学专题复教案,帮助他们加深对数学知识的理解和掌握,为高考做好准备。

复内容1. 函数与方程- 函数的概念和性质- 一次函数和二次函数的图像、性质及应用- 方程的根与解的判定- 一元一次方程组和一元二次方程的求解方法- 函数方程的解法和应用2. 三角函数- 三角函数的概念和性质- 常用三角函数的图像、性质及应用- 三角函数的基本关系式和恒等变换- 解三角函数方程和不等式的方法3. 数列与数学归纳法- 数列的概念和性质- 等差数列和等比数列的推导和应用- 数学归纳法的基本原理和应用- 常见数列问题的解法4. 三角比例和相似- 三角比例的性质和应用- 直角三角形和一般三角形的相似性质- 解三角形的基本方法和应用- 四边形的性质和计算教学安排1. 每个教题讲解时长约为30分钟,包括概念讲解和示例演练。

2. 每个专题分为3节课,共计9节课。

3. 每节课后设置10道练题,供学生完成并检查答案。

4. 每周安排一次模拟考试,让学生检验自己的研究成果。

教案编写原则1. 教案内容简明扼要,重点突出,不涉及复杂的法律问题。

2. 尽可能使用清晰简单的语言,避免使用过多的专业术语。

3. 引用的内容必须能够得到确认,并标明出处。

4. 鼓励学生积极参与讨论和解决问题,培养他们的思考能力和解决问题的能力。

结语这份高三数学第二轮数学专题复全套教案旨在帮助学生复数学知识,强化概念和技巧的掌握。

教案内容简明扼要,注重培养学生的思考能力和解决问题的能力。

希望学生能够利用这份教案,全面提升数学水平,为高考取得好成绩做好准备。

> 注意:该文档的内容是根据提供的信息创作的,内容的准确性和可行性需要进一步核实确认。

高考数学二轮复习数列学案(全国通用)

高考数学二轮复习数列学案(全国通用)

高考冲刺:数列【高考展望】1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中n a 与n S 之间的互化关系是高考解答题的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等. 【知识升华】1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n 项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量1a 、d (或q ),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意1q =和1q ≠两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如n a 与n S 的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题也是命题点,这类题关键在于建模及数列的一些相关知识的应用.8.本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【典型例题】类型一:正确理解和运用数列的概念与通项公式例1.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… …………………………………【思路点拨】计算图形中相应1的数量的特征,然后寻找它们之间的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列【学法导航】 (一)方法总结1. 求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项2. 数列中的不等式问题是高考的难点热点问题,对不等式的证明有比较法、放缩,放缩通常有化归等比数列和可裂项的形式。

3. 数列是特殊的函数,而函数又是高中数学的一条主线,所以数列这一部分是容易命制多个知识点交融的题,这应是命题的一个方向 (二)复习建议在进行数列二轮复习时,建议可以具体从以下几个方面着手: 1.运用基本量思想(方程思想)解决有关问题; 2.注意等差、等比数列的性质的灵活运用;3.注意等差、等比数列的前n 项和的特征在解题中的应用; 4.注意深刻理解等差数列与等比数列的定义及其等价形式;5.根据递推公式,通过寻找规律,运用归纳思想,写出数列中的某一项或通项,主要需注意从等差、等比、周期等方面进行归纳;6.掌握数列通项an 与前n 项和Sn 之间的关系; 7.根据递推关系,运用化归思想,将其转化为常见数列; 8.掌握一些数列求和的方法(1)分解成特殊数列的和(2)裂项求和(3)“错位相减”法求和(4)倒序相加法(5)公式法。

9.以等差、等比数列的基本问题为主,突出数列与函数、数列与方程、数列与不等式、数列与几何等的综合应用.【专题综合】1. 等差、等比数列的概念与性质例1. 已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足:.22,1175243=+=⋅a a a a (1)求通项n a ;(2)若数列}{n b 是等差数列,且cn S b nn +=,求非零常数c ; 解:(1)设数列{}n a 的公差为d 由题意得:⎩⎨⎧=+=++2252117)3)(2(111d a d a d a ⎩⎨⎧==411d a 或 ⎩⎨⎧-==4211d a (舍去)所以:34-=n a n (2)n n n n S n-=-+=222)341(由于c n S n + 是一等差数列 故b an cn S n+=+对一切自然数n 都成立 即:bc n b ac an b an c n n n +++=++=-)())((222⎪⎩⎪⎨⎧=-=+=012bc b ac a⎪⎪⎩⎪⎪⎨⎧-===2102c b a 或 ⎪⎩⎪⎨⎧=-==012c b a (舍去) 所以21-=c点评:本题考查了等差数列的基本知识,第二问,判断数列是等差数列的条件,要抓住它的特征,充分应用等差数列的判断条件,转化为恒成立问题。

例2.设数列{a n }和{b n }满足a 1=b 1=6, a 2=b 2=4, a 3=b 3=3, 且数列{a n +1-a n }(n ∈N *)是等差数列,数列{b n -2}(n ∈N *)是等比数列. (1)求数列{a n }和{b n }的通项公式; (2)是否存在k ∈N *,使a k -b k ∈(0,21)?若存在,求出k ;若不存在,说明理由. 解:(1)由题意得:[])()()1()(1223121a a a a n a a a a n n ----+-=-+ =3)1(2-=-+-n n所以 =-+-+=-+=--)4()5()4(21n n a n a a n n n[]927212)4()2()1(6)4()5(0)1()2(6)4()5(0)1()2(21+-=-+--+=-+-+++-+-+=-+-+++-+-+=n n n n n n n n a (2≥n )上式对1=n 也成立 所以 927212+-=n n a n311121)21()42(4)22)(2(2---=⨯=---=-n n n n b b b b所以 3)21(2-+=n nb(2)3232)21(7272121292721---+-=⎪⎭⎫⎝⎛--+-=-=k k k k k k k k k b a c 当 3,2,1=k 时 0=k c 当4≥k时 21)21(47)274(21)21(47)27(2134232=-⎥⎦⎤⎢⎣⎡+-≥-⎥⎦⎤⎢⎣⎡+-=--k k k c 故不存在正整数k 使⎪⎭⎫ ⎝⎛∈-21,0k k b a 2. 求数列的通项与求和例3.(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为解:前n -1 行共有正整数1+2+…+(n -1)个,即22n n-个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力 例4.(2009年广东卷文)已知点(1,31)是函数,0()(>=a a x f x且1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(,数列}{n b )0(>n b 的首项为c ,且前n 项和n S 满足n S -1-n S =n S +1+n S (2n ≥).(1)求数列}{n a 和}{n b 的通项公式; (2)若数列{}11+n n b b 前n 项和为n T ,问n T >20091000的最小正整数n 是多少? 解:(1)()113f a ==Q ,()13xf x ⎛⎫∴= ⎪⎝⎭1 2 3 4 5 67 8 9 1011 12 13 14 15 ………………()1113a f c c =-=- ,()()221a f c f c =---⎡⎤⎡⎤⎣⎦⎣⎦29=-, ()()323227a f c f c =---=-⎡⎤⎡⎤⎣⎦⎣⎦ . 又数列{}n a 成等比数列,22134218123327a a c a ===-=-- ,所以 1c =;又公比2113a q a ==,所以12112333n nn a -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭*n N ∈ ;1n n S S --==Q ()2n ≥又0n b >0>, 1=;数列构成一个首相为1公差为1()111n n +-⨯= , 2n S n =当2n ≥, ()221121nn n b S S n n n -=-=--=- ;21n b n ∴=-(*n N ∈);(2)12233411111n n n T b b b b b b b b +=++++L ()1111133557(21)21n n =++++⨯⨯⨯-⨯+K1111111111112323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭K 11122121nn n ⎛⎫=-= ⎪++⎝⎭; 由1000212009nn T n =>+得10009n >,满足10002009n T >的最小正整数为112. 3. 数列与不等式的联系例5.(2009届高三湖南益阳)已知等比数列{}n a 的首项为311=a ,公比q 满足10≠>q q 且。

又已知1a ,35a ,59a 成等差数列。

(1)求数列{}n a 的通项 (2)令na nb 13log =,求证:对于任意n N *∈,都有122311111...12n n b b b b b b +≤+++(1)解:∵315259a a a ⋅=+ ∴24111109a q a a q =+ ∴4291010q q -+= ∵10≠>q q 且 ∴13q= ∴113n n n a a q --== (2)证明:∵133log log 3na n nb n === ,11111(1)1n n b b n n n n +==-++∴12231111111111 (11223)11n n b b b b b b n n n ++++=-+-++-=-++ 122311111...12n n b b b b b b +∴≤+++点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n 的范围证出不等式例6、(2008辽宁理) 在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (2)证明:1122111512n n a b a b a b +++<+++….解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,. 用数学归纳法证明:①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n =k +1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n =k +1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立. (2)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+.故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭……111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭ (111111562216412)n ⎛⎫=+-<+= ⎪+⎝⎭ 综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力. 4. 数列与函数、概率等的联系例7.(2007江西理)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概 率为( )A.B.C.D.解:一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,成等差数列的概率为,选B点评:本题是以数列和概率的背景出现,题型新颖而别开生面,有采取分类讨论,分类时要做到不遗漏,不重复。

例8. 已知数列}{n a 的前n 项和为n S ,对一切正整数n ,点),(n n S n P 都在函数x x x f 2)(2+=的图像上,且过点),(n n S n P 的切线的斜率为n k . (1)求数列}{n a 的通项公式. (2)若n k na b n 2=,求数列}{n b 的前n 项和n T .(3)设},2{},,{**∈==∈==N n a x x R N n k xx Q n n ,等差数列}{n c 的任一项R Q c n ⋂∈,其中1c 是R Q ⋂中的最小数,11511010<<c ,求}{n c 的通项公式.解:(1)点),(n n S n P 都在函数x x x f 2)(2+=的图像上,∴2*2()n S n n n N =+∈,当n2≥时,12 1.n n n a S S n -=-=+当n=1时,113a S ==满足上式,所以数列}{n a 的通项公式为2 1.n a n =+ (2)由x x x f 2)(2+=求导可得()22f x x =+‘过点),(n n S n P 的切线的斜率为n k ,22n k n ∴=+.24(21)4n k n n n b a n ∴=⋅+⋅=.12343445447421)4n n ∴=⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅⨯+⨯n T +4(①由①×4,得2341443445447421)4n n +=⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅⨯+⨯n T +4(②①-②得: ()231343424421)4n n n +⎡⎤-=⨯+⨯++⋅⋅⋅+⨯⎣⎦nT +4-( 21141434221)414n n n -+⎡⎤-=⨯+⨯+⨯⎢⎥-⎣⎦(4)-(26116499n n ++∴=⋅-n T (3){22,},{42,}Q x x n n N R x x n n N **==+∈==+∈,Q R R ∴⋂=. 又n c Q R ∈⋂,其中1c 是R Q ⋂中的最小数,16c ∴=.{}n c 是公差是4的倍数,*1046()c m m N ∴=+∈.又10110115c <<,*11046115m m N<+<⎧∴⎨∈⎩,解得m=27. 所以10114c =,设等差数列的公差为d ,则1011146121019c cd ---===,6(1)12126n c n n ∴=++⨯=-,所以{}n c 的通项公式为126n c n =-【专题突破】 一、选择题1 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A 4- B 6- C 8- D 10-2 设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( )A 1B 1-C 2 D21 3 若)32lg(),12lg(,2lg +-xx成等差数列,则x 的值等于( ) A 1 B 0或32 C 32 D 5log 24 已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A B C D )251,251(++- 5 在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )A 钝角三角形B 锐角三角形C 等腰直角三角形D 以上都不对 6 在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( )A 等差数列B 等比数列C 等差数列或等比数列D 都不对 7.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200=( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +-B .3nC .2nD .31n-9.设4710310()22222()n f n n N +=+++++∈,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有( )A .3B .4C .8D .911.设数列{}n a 的前n 项和为n S ,令12nnS S S T n+++=,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn 2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________.15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd 的最小值是________.16.在等差数列{}n a 中,公差21=d,前100项的和45100=S ,则99531...a a a a ++++=_____________三、解答题17. 设为等比数列,T na n a n a a a n n n =+-+-+++-1231122()()…,已知T T 1214==,。

相关文档
最新文档