七年级数学多边形的内角和
七年级数学下册 第9章 多边形 9.2 多边形的内角和与外角和 多边形的内角和课件(新版)华东师大版
合作探究
四边形的内角和
。 360
D
A
2 4
B
C
即∠A+∠B+∠C+∠D=360o
合作探究
五边形的内角和
。 540
B C
A D
E
合作探究
3180 4180 5180
三角形 四边形 五边形
六边形
七边形
请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?
345 540 °720 °900 °
n-2
例3 已知多边形的每一内角为150°,
求这个多边形的边数.
解:设这个多边形的边数为n, 根据题意,得
(n-2)×180°=150 °n 解得n= 12
答:这个多边形的边数为12.
练习运用
1.如果一个多边形的内角和等于900°, 那么这个多边形是 七 边形.
2.十边形的内角和等于1440°度.
3.正十五边形的每一个内角等于 156°度.
拓展提高
B C
B C
A
A
D
D
E
E
拓展提高
B
.
A
p
E
C
A D
B C
.D
p
E
拓展提高
B
.
A
p
E
C
A D
B C
.D
p
E
小小结结
本节课我们通过把多边形划分成
若干个三角形,用三角形内角和去 求多边形的内角和,从而得到多边 形的内角和公式为(n-2)·180°.这种 化未知为已知的转化方法,必须在 学习中逐步掌握.
例1
求八边形的内角和。
解:八边形的内角和为 (n-2)×180°=(8-2)×180°=10 80°
七年级数学多边形的内角和
练习2: 一个多边形的内角和等于1260。, 它是几边形?
解1:1260。÷180。+2 =7+2 =9
N=N边形内角和÷180。+2
解2:设这个多边形是n边形,依题意得, 180。×(n-2)=1260。 解得:n=9 答:这个多边形是九边形。
例题:如果一个四边形的一组对角互补, 么另一组对角有什么关系?
140。 x。 x。
230。+2x。=360。
2x。= 130。 x。=65。 解:120。+150。+90。+ x。+2x。=180。×(5-2)
150。 2x。 120。
360。+3x。=540。
3x。=180。
x。
x。=60。
例2 如图,在六边形的每个顶点处各取 一个外角,这些外角的和叫做六边形的 外角和.六边形的外角和等于多少? 已知:∠1,∠2,∠3,∠4,∠5,∠6 分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值.
D B B
D
C
180。×2=360。
2 返回
方法二: A D D EE C B A E E E C D
A
D
A
A
B×3 -180。=360。 180。×(3-1)=360。
1
返回
少儿英语
怎样斗得过文宇成都呢?眼见宇文成都如游龙壹般离得越来越近.木元霸居然傻愣着看呆咯,壹动否动,宛如彷佛放弃咯反抗."中/"嗖の壹声,空中横贯壹道金光.眼看着就要壹刀砍来,千钧壹发之际,草丛中横掷出壹支金锏,直接打飞咯宇文成都手中 の双刀,宇文成都壹个空翻,躲过咯金锏,却被掀去咯黑布,只得立即用手掩住面容.&
初中数学 7.3.2 多边形的内角和(含答案)
7.3.2 多边形的内角和课前感悟(课前自主预习,先试试你的身手)1.一个五边形的所有内角都相等,它的每个内角等于______°,每个外角等于______°.2.一个多边形每增加一条边,内角和增加______°,外角和______.3.如果一个多边形的每个外角是30°,那么这个多边形是_____边形,它的内角和等于______°.4.如果一个多边形的内角和等于外角和,那么这个多边形是( ).A .三角形B .四边形C .六边形D . 八边形5.下面哪一个度数是某个多边形的内角和( ).A .270°B .630°C .1920°D .720°6.一个多边形的内角和是三角形外角和的3倍,则这个多边形为( ).A .五边形B .六边形C .八边形D .九边形举一反三(典型例题引路,探求规律方法技巧)【例1】 (2003盐城)一个正多边形,它的一个外角等于它的相邻的内角的41,则这个多边形是( ).A . 正十二边形B . 正十边形C .正八边形D .正六边形分析 不知道多边形内角和的情况下要求多边形的边数,直接运用多边形内角和公式较困难.但这是一个正多边形,每个内角相等,每个外角也相等,可以求出外角的大小,再根据多边形外角和是360°求出多边形的边数.解 设这个n 边形外角为x °,有x +4x =180°,x =36,1036360==n .选C . 点评 多边形的外角和为360°,与边数无关.正多边形的每个外角相等,所以也可以根据外角的大小确定正多边形的边数.【例2】如果一个多边形的所有内角与某一个外角的和为1350°,则这个多边形的边数为 ,这个外角的度数为 .分析 多边形的内角一定是180°的整数倍,又因为每一个外角都小于180°,1350°=7×180°+90°,90°必为多出的外角.解 设此多边形为n 边形,n -2=7,n =9,所求外角为90°.点评 根据多边形的内角和公式:n 边形的内角和等于(n -2)·180°,多边形的内角和必定是180°的整数倍.当告诉我们添上一个角或少了一个角一个后多边形的内角和是多少度,我们就能根据这个规律确定出这个多出的角或者缺少的角的大小.潜能开发(当堂学习巩固,训练重点、难点、考点)7.四边形ABCD 中,(1)∠A :∠B :∠C =1:2:3,∠D =108°,则∠A =______.(2)∠A +∠C =160°,则∠B +∠D =________.8.四边形的四个内角之比是1:2:3:4,那么,这四个角分别是_________________.9.n 边形内角和与外角和之比是5:2,则n = .10.四边形的四个内角中,最多有____个锐角,在四边形的四个外角中,最多有_____个锐角.11.两个多边形的边数之比为1:2,内角和度数之比为1:3,这两个多边形分别是_____边形和_____边形.12.一个多边形的内角和是1260°,多边形的内角和的边数是( ).A .9B .8C .7D .613.一个多边形的内角和的度数是外角和的2倍,这个多边形是( ).A .三角形B .四边形C .六边形D .八边形14.(2004天津) 若一个正多边形的每一个内角都等于120°,则它是( ).A .正方形B . 正五边形C . 正六边形D .正八边形15.一个多边形除了一个内角外,其余各内角的和为2000°,则这个内角是( ).A .20°B .160°C .200°D .140°16.如图,四边形ABCD 中,∠A = 50︒,∠ABC = 105︒,∠BCD = 90︒,∠1、∠2、∠3、∠4中哪个角是四边形ABCD 的外角?求出它的度数.图7-6117.已知四边形的一个外角等于它不相邻的三个内角之和的41,求这个外角的大小.18.一个多边形截去一个角后,形成另一个多边形的内角和为1800°,你知道原多边形有ABCD 1234A B C DE F多少条边吗?19.一个多边形除一个内角外,其余各内角和是2500 ,这个多边形有多少条边?这个内角是多少度?探究创新(拓展视野,迁移发散,开发智力、潜力、能力)20.设凸(4n +2)边形A 1 A 2 A 3… A 4n+2(n 为自然数)的每个内角都是30°的整数倍,且∠A 1=∠A 2=∠A 3=90°,那么n =__________.21.阅读材料,再画图回答问题.多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图7-62(1)给出了五边形的具体分割方法,分别将五边形分割成了3个、4个、5个三角形.请你按照上述方法将图7-62(2)中的六边形进行分割,并分别写出得到的三角形的个数.说出分割的三角形的个数与多边形的内角和有什么关系.图7-62(1) 图7-62(2)22.已知,如图7-63中,∠A =∠C =90°,对角线BE 、DF 分别平分∠ABC 和∠ADC ,BE 和DF 平行吗?说明你的理由.图7-63参考答案1.108°、72°2.180°、不变3.十二、18004.B5.D6.C7. 43°8. 36°、72°、108°、144°9. 7 10.3、3 11.四、八 12.C 13.C 14.C 15.B 16. 17. 60° 18. 11或12或13 19.16、20° 20. 1 21.4、5、6、从多边形一顶点引出的连线,将多边形分割成的三角形的个数乘以180°正好等于多边形的内角和;从多边形一边上引出的连线,将多边形分割成的三角形的个数减去1,再乘以180°正好等于多边形的内角和;从多边形内一点引出的连线,将多边形分割成的三角形的个数减去2,再乘以180°正好等于多边形的内角和 22.平行。
七年级数学多边形内角和
C
学一学 C 图 1 D 图2 B C
B
P
B
A
A
P
如图1,在四边形内任取一点P, 连接PA、PB、PC、PD将四边 形变成有一个公共顶点的四个 三角形,四边形内角和等于 180°×4 - 360°= 360°
如图2,在四边形的一边上任取一点P, 连接PB、PC,将四边形变成有一个公 共顶点的三个三角形,四边形内角和 等于180° ×3- 180° = 360°
C、减少 180° D、无法确定
;股指配资 股指配资 ;
色の魔晶,往怀中一丢.双腿一蹬,整个人如剑般飞射出去. 循着记忆,他快速来到一个小河边,快速冲洗一番,换了身衣服.昨晚他衣服可被剑齿虎抓了个稀巴烂,而且衣服上血腥味很浓,很容易引来高级魔智.而他现在穿の衣服可是他最后の一套衣服,进山前在蛮城买の. "就这吧!" 冲洗完,他快速离 开,找到一个落脚点,是一个大树,而这棵大树旁边却隔了十多米才有古树,上面の枝叶并没有连接.昨晚他休息の古树,一开始就已经检查过了,并无魔智.而后の剑齿虎,显然是从旁边の古树上,悄悄过来の.吃一堑,长一智,犯错误不要急,但是跟着犯第二次の人那就是猪了! "开始吧!" 草草吃了点 干粮,白重炙盘坐在树干上,双眼紧闭,神情分外激动. "淡定,淡定,要淡定!" 他告诉自己要淡定,要心静如水,要心平气和.因为他决定要做一件非常危险の事情,一件前无古人の惊天创举. 他要打破前人の修炼方式,用一种前无古人,后无来者の修炼方式修炼.如果能成功那么他の修为将一日千里, 一举突破十几年来戴在他头顶上の那顶废物帽子. 他决定用战气去冲击经脉内の堵塞物质. 没错!不是溶解,不是腐蚀,而是冲击,大力の冲击. 众所周知,练家子前五境界,武夫境,士卒境,精英境,统领境,将军境,这五境界修炼の主要目の,就是吸收天地灵气,然后转换成细胞内の微量战气.有了战气 之后,则可以利用战气去慢慢腐蚀,溶解,分化经脉中の堵塞物质,从而让战气有个存储运转の地方. 人类身体拥有九小经脉,三大经脉,打通九小经脉.形成小周天,让战气在九小经脉中不同循环运转,这就突破了精英境の巅峰达到统领境.进而再打通全身三条大经脉,让战气在全身十二经脉,并且凝结 丹田,让战气在丹田和十二经脉中形成大周天循环,则达到了将军境. 这五境界の修炼说容易,很容易!对于经脉中堵塞物质少の"天才"来说,非常容易.而对于经脉中堵塞物质多の"废物"来说,这五境界难于上青天,大陆上许多人,终其一生可能卡在这五境界,一辈子不能迈过这道门槛,一辈子碌碌无 为. 像白重炙就属于后者,像夜轻狂那种一般の天才,清理一条经脉估计只用了十天半月时间,而白重炙则需要几年.十天半月和几年.这是什么样の概念,所以他父亲夜刀の武道心经才会说道,境界以下,全看个人天赋.天赋不行,终身无大成就. 破仙府修炼功法千万种,各种功法有强有弱.但是!前五 境界の修炼方法却大同小异,只是修炼速度快慢而已. 经脉! 是人体最脆弱の地方,是人体最重要の地方.所以清理经脉中の堵塞物质,谁都不敢快,谁都要小心翼翼,万分仔细.因为战气狂暴无比,里面蕴含着非凡の力量.运用战气去清理经脉中の堵塞物质,你不能不小心,不能不慢.因为你速度快了, 用力过度了,那么你就会经脉爆裂,你就会,死! 当前 第2陆章 零23章 恐怖の修炼速度(上) 所以清理经脉需要慢慢运用战气去溶解,腐蚀,分化.看书 就好比吃糖,含在嘴里,慢慢用唾液去溶解他,用舌头去tian,在嘴巴里转动,慢慢磨损. 但是! 今天白重炙准备用一种前所未有の方式去清理堵 塞物质! 他要用战气去冲击,去撞击堵塞物质.一样の吃糖,别人是含着慢慢化,他却要咬碎,咀嚼,直接粉碎它. 咬碎!咀嚼!直接粉碎! 速度怕是绝对要比慢慢含化快几十,几百倍.只是…这,是要找死吗?这样修炼绝对会经脉爆裂而亡の. "经脉爆裂是吗?哥又不是没爆过.来吧,让经脉爆得更加猛 烈一些吧…青铜戒指看你の了!"白重炙连呼三口气,咬着牙,运起战气朝冲脉之中の堵塞物质狠狠撞去. "撞,撞,撞!" 白重炙咬着牙,运起战气朝冲脉之中の堵塞物质狠狠撞去.两条打通の经脉中,丝丝战气,在他の指挥下变成了一把利剑,猛然提速,朝着冲脉中一团粘稠状の堵塞物质狠狠撞去. " 砰!" 战气化作の利剑和那团粘稠状物质撞到了一起,白重炙仿佛感听到了一声金铁相撞の"砰"の声音.粘稠状物质,被撞得四分五裂,犹如一朵绽放の烟花,瞬间分解,化作一颗颗粒状物质,分散在冲脉之中. 额,成功了? 可是白重炙还没来得急高兴,利剑般の战气陡然间也跟着爆裂了起来,汹涌の力 量犹如爆炸の雷管,一下往四处绽发.战气和堵塞物质相撞の那节经脉瞬间被炸裂. "啊,啊,啊!" 一阵撕心裂肺の痛楚瞬间传到了他の脑海中.一时间他全身开始抽搐起来,脸上肌肉都变形了,变得狰狞恐怖起来. "不行了,要昏迷了,青铜戒指,一切看你の了……" 短短几秒钟,剧烈の疼痛让白重炙晕 死过去.昏迷前,他把希望全放在了青铜戒指の白色气流上. "嗤!" 青铜戒指没有让他失望,在他身受重创,即将死亡之时.青铜戒指自动启动护主功能,散发一股白色气流,瞬间透过皮肤,从他の无名指直接窜进他の身体,最后停留在他那节破损の经脉上. 冲脉中,那节经脉已经被炸得千疮百孔,不成 样子了.但在白色气流の环绕滋润下,竟然快速の开始修补起来,这气流竟然神奇如斯. 十分钟! 二十分钟! 半小时后,白重炙缓缓睁开眼睛,全身舒适无比,似乎有种大冷天洗了个热水澡般の爽快.片刻之后,他连忙盘坐起来,内视身体の状况. 冲脉之中,经脉已经完好如初,似乎刚才の一切没有发生 过一般.而经脉之中の堵塞粘稠物质却明显少了许多. 这,这疯狂の!前无古人,后无来者の修炼方式,竟然成了! "哈哈……" 片刻之后,山脉中传来一阵癫狂喜悦の大笑,引起阵阵飞鸟声. …… 眨眼间,一个月过去了. 蛮荒山脉外围地区,一个黑衣青年,急速の在山脉中穿行,青年长相斯文冷峻,身 子略显瘦弱.可是其行走中身形如风,稳健有力,神情悠然,眼神如电.浑身不知觉中给人一种自信,从容の气质. 此刻,青年急行の步伐突然不合常规の停了下来,身子却没有丝毫晃动,似乎早先他就是站在那里般.高速运动所带来の冲力和惯性似乎在他の身体上感受不到般.青年静静站在那里,侧耳聆 听一下,突然双腿一蹬,身子如同一只灵活の狸猫般,几下爬上了旁边一课古树上,竟然没有发出一点声音. "一级魔智风狼群,额,有十八只…小白你明天の食物又有了.出来干活了,召唤战智!"青年轻轻の笑了笑,低声说了句,胸口一颤,一股黑色の气流陡然间从他胸口冒出,慢慢凝结,最后成型,是一 只黑色の狮鼻犬般小智. 小智一出来很亲昵の摇着尾巴,伸着舌头讨好着青年.青年却不以为意,伸手摸了摸小智の头."开工!"低呼一声,整个人就如同利箭般朝不远处の风狼群激射而去. "咻!" 小智尾巴停止了摇动,眼中冒出一道红光,跟着青年疾射而去,速度竟然比青年还快. 不远处,一群风狼, 正悠悠哉哉の在林中散着步,寻找着食物.陡然间,前面两只风狼毛发竖立,眼冒寒光,惊觉の望着空中. "裂地斩!" 半空中,一大一小两道黑影飞射而来,分别对上前面两条风狼.左边の青年赤手空拳,从半空中急速飞下,左腿高高抬起,几乎跨到肩膀の位置.然后猛の朝前面风狼头劈下,竟然隐隐带着 风啸声. 风狼是一级魔智,但是它の速度确实顶尖の,可是面临着这疾风般の一腿,竟然连反应の时间都没有,只是头部微微の朝旁边侧移了一点. "砰!" 黑色如同铁棒般の大腿狠狠の劈在风狼头顶上,一声脆响,坚硬如铁の风狼头直接粉碎,白色の脑浆,和红色の血液四处喷洒. 一个照面,一只风狼, 直接劈死. 而另一边,只有人头般大小の小智,战斗却斯文の多.小智对着另一头风狼急速飞来,在快靠近狼头位置时,竟然再次加速,在风狼还没反应之前,小嘴一张,露出尖锐の四颗虎牙,从风狼颈部掠过. "嗤" 风狼颈部半边皮肉生生被撕裂,几根大血管顿时涌出大量の鲜血,风狼扭了扭头,露出恐惧 の眼神,轰然倒地. "额,不错!看谁杀の快!" 青年满意の看了小智一眼,微笑说道,整个人再次加速,化掌为刀,朝着后面の
多边形内角和外角和的公式
多边形内角和外角和的公式
多边形的内角和公式是:n边形的内角和等于(n-2)×180°。
其中,n是多边形的边数。
而多边形的外角和总是等于360°,它与边数的多少无关。
对于内角和,随着多边形边数的增加,内角和也会增加;反之,边数减少,内角和也会减少。
每增加一条边,内角的和就增加180°,且多边形的内角和必须是180°的整数倍。
另外,一个多边形最多有三个内角为锐角,最少可以没有锐角(如矩形);而多边形的外角中最多有三个钝角,最少可以没有钝角。
以上内容仅供参考,如需更全面准确的信息,可查阅数学相关书籍或请教数学专业人士。
七年级数学多边形内角和与外角和
解:由n边形的内角和公式可得:
(n -2) ·180 = 144n 180n – 360 = 144n 180n -144n=360 36n = 360 n = 10
[例4]一个多边形的内角和等于它的外角 和的3倍,它是几边形?
解:设这个多边形是n边形,则它的内角和是(n -2)· 180°,外角和等于360°, 所以:(n-2)· 180=3×360 解得:n=8 答:这个多边形是八边形.
归纳总结
边数
3
4
5
6
8
…
…
n
从一个顶点出发的 对角线的条数
上述对角线分成的 三角形个数
0
1 0
1
2 2
2 3 5
3 4 9
5
6 20
n-3
n-2 n(n-3) 2
… …
总的对角线条数
例1. 过某个多边形一个顶点的所有对角线, 将这个多边形分成5个三角形.这个多边形 是几边形?它的内角和是多少?
解: 依题意, 这个多边形是七边形, 它的内角和是(7-2) ×180°=900°
540º
360º
180º
;微信刷票 微信刷票;
强者の话,也只能是压制修为,当年才能进入玄域.而现在不同了,玄域上空の这种压制不存在了,是个生灵都可以进入玄域,并不会有什么压制力量了.当年玄域中也没有什么圣地或者是圣地家族,都是壹些低阶修行者在这里面过渡修行の,现在玄域中出现了十一些圣地.壹共有十三个圣地,现在被大家和各域所承认の, 也就只有这十三个圣地了.莫初圣地是其中壹个,至少能排进前六の圣地了,可以说实力也是很强大の,再加上莫初圣地の圣主和长老们,作派壹向还很正派,所以每年都会有大量の散修,过来投靠.根汉扫了几人の元灵,得到了不少消息,也包括他们所知道の壹些
(完整版)多边形及其内角和知识点
知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n (n-3)3、4、6/。
拼成360度的角3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
数学公式多边形内角和公式
数学公式多边形内角和公式
已知
已知正多边形内角度数则其边数为:360÷(180-内角度数)
推论
任意多边形的外角和=360
正多边形任意两个相邻角的连线所构成的三角形是
等腰三角形
多边形的内角和
定义
〔n-2〕×180
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n 180deg;,以O 为公共顶点的n个角的和是360deg;
所以n边形的内角和是n 180deg;-2×180deg;=(n-2) 180deg;.
即n边形的内角和等于(n-2)×180deg;.
证法二:连结多边形的任一顶点A1与其他各个顶点
的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2) 180deg;
所以n边形的内角和是(n-2)×180deg;.
证法三:在n边形的任意一边上任取一点P,连结P 点与其它各顶点的线段可以把n边形分成(n-1)个三角形,这(n-1)个三角形的内角和等于(n-1) 180deg;
以P为公共顶点的(n-1)个角的和是180deg;
所以多边形内角和公式n边形的内角和是(n-1)
180deg;-180deg;=(n-2) 180deg;.。
初中数学多边形的内角和与外角和
第3节多边形的内角和与外角和一,多边形(1)定义:平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形(2)分类:多边形可以分为凸多边形和凹多边形,我们研究的是凸多边形(3)其中内角相等,边也相等的多边形叫正多边形(4)多边形的内角和与外角和性质1:多边形的内角和等于(n-2)·180°,多边形的外角和等于360°.推导:2.多边形的边数与内角和、外角和的关系:(1)n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.3.正n边形:正n边形的内角的度数为(n-2)·180°n,外角的度数为n360.【类型一】利用内角和求边数一个多边形的内角和为540°,则它是()A.四边形B.五边形C.六边形D.七边形【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为()A.1620°B.1800°C.1980°D.以上答案都有可能【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.450°B.540°C.630°D.720°【类型四】 利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解:设此多边形的内角和为x ,则有1125°<x <1125°+180°,即180°×6+45°<x <180°×7+45°,探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A .八边形B .九边形C .十边形D .十一边形【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A .五边形B .四边形C .三角形D .不能确定4.多边形对角线的条数N 边形对角线的条数公式 21N(N-3) 例1:一个凸多边形的每个内角都是140°,求这个多边形对角线的条数例2:一个多边形的内角和比它外角和的3倍少180°,求它对角线的条数。
数学教案多边形内角和与外角和【优秀3篇】
数学教案多边形内角和与外角和【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学教案多边形内角和与外角和【优秀3篇】作为一名教职工,总归要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
七年级数学下册第7章平面图形的认识二7.2多边形的内角和与外角和
边数.
【参考答案】14边形.
2021/12/10
第十二页,共三十三页。
中考(zhōnɡ kǎo) 在线
: 考点(kǎo diǎn) 三角形内角和性质.
【例】(2014江苏镇江)如图7.5-5,直线(zhíxiàn)m∥n,Rt△ABC的顶点A 在直线n上,∠C=90°,若∠1=25°,∠2=70°,则∠B=_______°4.5°
【讲解】垂线带来直角三角形,三角形三个内角的和等
于180°,平行线带来相等的角(或互补的角)等等,
这是根据已知角求未知角之类的问题要能够发现的信息.
2021/12/10
第十三页,共三十三页。
B
m 2
C
1
n
A 图7.5-5
中考(zhōnɡ kǎo) 在线
1.(2015四川省绵阳)如图7.5-7,在△ABC中,∠B、∠C的平分线BE、CD 相交(xiāngjiāo)于点F,∠ABC=42°,∠A=60°,则∠BFC= ( ). C
A.1个 B.2个 C.3个 D.4个
2021/12/10
图7.5-11
第二十五页,共三十三页。
课堂练习
3.若n边形的内角(nèi jiǎo)和是1260°,则边数n为( A.8 B.9 C.10 D.11
B ).
4. 一个(yī ɡè)多边形的每一个内角都是144°,则此多边形的边数为( B).
八边形.
中考在线
: 考点(kǎo diǎn) 多边形的外角和
【例】(2014•抚顺)将正三角形、正四边形、正五边形按如图7.5-36所示
的位置摆放.如果∠3=32°,那么∠1+∠2=
初中数学华东师大七年级下册(2023年新编)第9章 多边形多边形的内角和
多边形的内角和与外角和一、教材的地位和作用:本节课内容是华东师大版七年级数学下册第九章第二节《多边形的内角和与外角和》第1课时,它是多边形相关知识的重点。
教材从复习三角形的定义、内角和到学习探究多边形的定义、内角和,环环相扣,前面的知识为后边的知识做了铺垫,联系性、类比性都比较强。
通过这节课的学习,培养了学生积极参与课堂探究的习惯及探索与归纳的能力,在探究中体会从简单到复杂,从特殊到一般,以及类比、转化等重要的数学思想方法。
二、学情分析:本章的第一节学习的是三角形的有关知识,学生已经经历了三角形定义、边、角、外角及内角和的探究过程,对这些知识已经有了一定的认识,并且具备了一些探究和归纳的能力,这为本节课的学习打下了很好的基础。
因此对于学习本节内容的知识条件已经具备,通过自学、互学、小组探究,学生将会自主探究出所学的知识,轻松、愉快地完成本节课的学习任务。
三、教学目标1.知识与技能目标:学会主动探索、归纳和掌握多边形的内角和公式,并会运用其解决相关问题。
并通过多边形内角和公式的推导,体验数学中的“转化”思想。
2.过程与方法目标:经历探索多边形内角和公式等的过程,在实践中培养学生的推理能力以及主动探究意识.3.情感态度与价值观目标:经历多边形内角和的探索过程,感受从特殊到一般的类比的学习方法,初步体会转化的数学思想,在学习中感受研究数学的乐趣。
四、教学重、难点1.重点:多边形的内角和定理及运用。
2.难点:多边形的内角和定理的推导过程(数学转化思想)。
五、教学过程1.情境导入:全世界瞩目的2023年冬奥会将在中国北京举行。
如果设计师能设计一个内角和为2023度的多边形图案,那该多有纪念意义呀!那么可能吗?它会是几边形呢?2.预习提问:问题1 :什么叫三角形?你能说出什么叫四边形、五边形、多边形吗?通过类比,总结出多边形的定义。
(学生回答)问题2:说一说下面所指的是多边形的什么(顶点、边、角)?(学生独立回答)三角形如何表示?四边形和五边形又是怎样表示呢?(通过课前预习,学生独立回答),同时通过出示多边形的图片,让学生认识凸多边形和凹多边形(不在现在的研究范围),并强调,如果教材没有特别指明,多边形都指的是凸多边形。
七年级数学 多边形的内角和
七年级数学多边形的内角和[教学目标]1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.[教学重点、难点]1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.[教学过程]一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.EB分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.D三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.ABCD解:如图,四边形ABCD 中,∠A +∠C =180°。
多边形的内角和教学教案【优秀8篇】
多边形的内角和教学教案【优秀8篇】多边形的内角和与外角和教案初中数学多边形内角和教案篇一(一)知识教学点1.使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2.了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2.通过推导四边形内角和定理,对学生渗透化归思想。
3.会根据比较简单的条件画出指定的四边形。
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。
类比、观察、引导、讲解1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
2课时投影仪、胶片、四边形模型、常用画图工具教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第2课时【复习提问】1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9,求的度数(打出投影).【引入新课】前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。
【讲解新课】1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的。
苏科版数学七年级下册多边形的内角和、外角和
典型例题
例1 在△ABC中,∠A=40°,∠B=∠C,求∠C的度数.
解:在△ABC中,∠A+∠B+∠C=180°,∠A=40°,得 ∠B+∠C=180°-∠A=180°-40°=140°, ∵ ∠B=∠C ∴ ∠C=140°÷2=70°.
典型例题
例2 如图,△ABC的角平分线BD、CE相交于点P, ∠A=70°. 求∠BPC
122° x°
B
B
C
(2)
(2)x=29°;
方程 思想
A
y°
31°
C
(3)
(3)y=59°.
∟
2、已知在△ABC中,∠A:∠B:∠C=1:2:3,求最大内角的度数.
设∠A=x,∠B=2x,∠C=3x ∵ 在△ ABC中∠A+∠B+∠C=180 ° ∴ x+2x+3x=180 ∴ x=30, ∴3x=90, 最大角∠C为90 °.
数学文化
古希腊数学家欧几里德、泰勒斯等给予了证明。
阅读 三角形内角和定理:从历史到课堂
归纳总结:
文字语言: 三角形的内角和是180°
几何语言:
A
在△ABC中
∠A+∠B+∠C=180°(三角形内角和是180 ° ).
B
C
练一练
1、求出图中的n、x、y的值:
A
81°
A
x°
B 72°
n°
C
(1)
(1)n=27°;
的度数.
整体思想
解:在△ABC中, ∠A+∠ABC+ ∠ACB=180 °、 ∠A=70 °得
A
∠ABC+ ∠ACB=180 °- ∠A=110 °,
初中数学 什么是内角和和外角和
初中数学什么是内角和和外角和在初中数学中,内角和和外角和是描述角度关系的重要概念。
下面将详细介绍内角和和外角和的概念、性质和应用。
1. 内角和(Sum of Interior Angles):内角和是指多边形所有内角的度数之和。
在图形中,内角和是指多边形所有内角的度数相加的结果。
例如,在三角形ABC中,内角和是三个内角的度数之和。
内角和的特点是,它是指多边形所有内角的度数之和。
对于n边形,内角和的度数之和为(n-2) × 180度。
2. 外角和(Sum of Exterior Angles):外角和是指多边形所有外角的度数之和。
在图形中,外角和是指多边形所有外角的度数相加的结果。
例如,在三角形ABC中,外角和是三个外角的度数之和。
外角和的特点是,它是指多边形所有外角的度数之和。
对于n边形,外角和的度数之和为360度。
内角和和外角和的性质:1. 内角和的性质:- 对于n边形,内角和的度数之和为(n-2) × 180度。
- 在正多边形中,每个内角的度数相等,且内角和的度数之和为(n-2) × 180度。
2. 外角和的性质:- 对于n边形,外角和的度数之和为360度。
- 在正多边形中,每个外角的度数相等,且外角和的度数之和为360度。
内角和和外角和的应用:1. 计算角度大小:通过已知内角和或外角和的度数,可以计算其他内角或外角的度数。
2. 解决几何问题:内角和和外角和的概念可以应用于各种几何问题,如计算多边形内角和、证明角度关系等。
3. 证明定理和推导结论:内角和和外角和的性质是证明定理和推导结论的重要工具,可以帮助我们进行推理和论证。
4. 角度关系的判定:通过观察图形,可以利用内角和和外角和的性质来判定角度关系,如判断多边形的内角和外角和是否满足特定条件。
综上所述,内角和和外角和是初中数学中的重要概念,它们在解决各种与角度相关的问题时起着重要的作用。
理解内角和和外角和的概念、性质和应用,对于初中数学的学习和应用都具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那
A D
解:如图所示,四边形ABCD中, B ∠A+∠C=180。 因为 ∠A+∠B+ ∠C+ ∠D=(4-2)×180。 =360。 C 所以 ∠B+ ∠D =360。-( ∠A+∠C ) =360。- 180。 =180。 这就是说,如果四边形的一组对角互补,那么另一组 对角也互补。
练习3:求下列图中x的值。 解:140。+90。+x。+x。=180。×(4-2)
∴ ∠1+∠2+∠3+∠4+∠5 =360°
类比前边的做法,你能归纳出 n 边形的外角和是多少吗?
∵ n边形的每一个外角与它相邻的内角的和是_____ 证明: 180º, n • 180º , ∴ n边形的内角和加外角和等于 ________ ∵ ∴
(n-2) • 180º , n 边形的内角和等于 ___________
7.3.2
多边形内角和
温故知新
1 多边形:在平面内,由一些线段首尾顺次 相接组成的和图形叫多边形。 2 三角形的内角和等于 180 ,。 外角和等于 。 。 360 3 长方形的内角和等于 ,外角和等于 。
360。
360。
1 任意四边形的内角和等于多少度? 你是怎样得到的?你能找到几种方法?
A A
D
D
B C D
B
E P
C
A
F B
A
B
D C
C
1 2
2 选择同一种方法分别求出任意五边形、六边 形的内角和等于多少度?
A
B C D E
A F
B
C D
E
180。×3=540。
180。×4=720。
思考:n边形的内角和如何表示?
A B A A
E
B
F E C D
D B C
C
D
四边形 180。×2=360。 (4-2)
练习2: 一个多边形的内角和等于1260。, 它是几边形?
解1:1260。÷180。+2 =7+2 =9
N=N边形内角和÷180。+2
解2:设这个多边形是n边形,依题意得, 180。×(n-2)=1260。 解得:n=9 答:这个多边形是九边形。
例题:如果一个四边形的一组对角互补, 么另一组对角有什么关系?D B NhomakorabeaBD
C
180。×2=360。
2 返回
方法二: A D D EE C B A E E E C D
A
D
A
A
B
E
C B
D
180。×3 -180。=360。 180。×(3-1)=360。
1
返回
;
/ 新一美学半永久技术学校
韩式半永久定妆培训
flp160ach
我憋足了劲儿,一定要抓住机会打一个翻身仗。因为蘑菇的周期短见效快,我的妻子肖燕又有多年种植蘑菇的技术和经验。 老人们开始关心起示范园里的事来。 “苏院长,你就让我们干些力所能及的活吧,比如装装蘑菇包,扒扒玉米芯,这种活我们都能干。”马老爷子看不下去了, 便主动地找我反映情况。 “是啊是啊„„我天天白吃白喝„„要是把苏院长累病了,谁来管我?”傻子一个劲儿地嚷着,“我也要干活„„有了钱过 年才有新衣服„„” 傻子的话惹得大家捧腹大笑„„ “傻子,原来你不傻,有了钱还知道买新衣服,能算上是傻子吗?”王大娘要拿傻子当话柄。 “你们都说我傻„„我才不傻呢!依我看„„最傻的人只有一个,他就是„„”傻子欲言又止,抬起头,用直愣愣的眼光看着 大家。 “说呀,最傻的人是谁?”王大娘紧追着傻子的话不放。 “对呀,傻子,你说呀。 “说出来„„大娘给你说个好媳妇。大家都在逗他„„ 他用手摸了摸自己的脑袋,突然用手指着我说:“最傻的人就是苏院长„„他只知道对别人好,不知道疼自己和老婆„„” 傻子的话使在场的人哑口无言,连我也没有想到他竟然说出这样的‘傻话’来。 他却傻傻地笑着,“说我傻,我才不傻呢,傻子怎么能看得出来呢„„苏院长,我这次没有说傻话吧?” 我抚摸着傻子的头,心里有一种说不出的滋味。 根据大家的建议,养老院有了新的规定:凡是自愿参加劳动者,按照劳动强度的大小分别给与适当的工资或者减免相对的养老 费。这样一来,大大地提高了老人们的责任心和积极性。那些抱有观望心态的老人们听说在养老院既能挣钱,又能不拖累儿女, 他们也纷纷前来报名,养老院的人口一下子由原来的九人增加到了二十一人。 一天,张老爷子终于在家憋不住了,拄着拐棍来找我。一见面就握着我的手说:“苏贤侄儿,惭愧啊惭愧„„真是老眼光看不 透新问题,人老了就是犯糊涂啊„„今天大伯前来负荆请罪„„不知贤侄儿能否容我老汉来贵院虚度晚年?” “欢迎欢迎„„我说过来者自愿离去自由,如果您实在住不惯,我也绝不勉强„„” “你这是说哪儿的话?既来之则安之,村里的老人都来养老院了,村里村外连个说话的伴儿都没有了,我一个孤苦伶仃的老 汉还能到哪儿去呢?” 说完,他拍拍我的肩,呵呵地笑了。
A 6 B
2 1
F
5
C
3
E D
4
1 6 2 7 5 10
解:∵∠1+∠6=180°,∠2+∠7=180°, ∠3+∠8=180°,∠4+∠9=180°, ∠5+∠10=180°
8 3 9 4
∴∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10 =180*5=900°
而∠6+∠7+∠8+∠9+∠10 =540°
A4
n 边形的外角和等于n • 180º – (n-2) • 180º =360º 。
A3
An
推论:任意多边形的外 角和等于360º 。
A1
A2
课堂 小结:
n边形内角和 = 180。×(n-2)
边数N = N边形内角和÷180。+2
方法一:
A
A D D C B B
A D D B C B
A D
B
C
140。 x。 x。
230。+2x。=360。
2x。= 130。 x。=65。 解:120。+150。+90。+ x。+2x。=180。×(5-2)
150。 2x。 120。
360。+3x。=540。
3x。=180。
x。
x。=60。
例2 如图,在六边形的每个顶点处各取 一个外角,这些外角的和叫做六边形的 外角和.六边形的外角和等于多少? 已知:∠1,∠2,∠3,∠4,∠5,∠6 分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值.
五边形 180。×3=540。 (5-2)
六边形 180。×4=720。 (6-2)
N边形内角和=180。×(n-2)
提示
练习1:你能说出七边形的内角和吗? 十边形呢?
解:七边形内角和:
N边形内角和=180。 ×(n-2)
180。×(7-2)=900。
十边形内角和:
180。×(10-2)=1440。