24.2(2)比例线段(教案)

合集下载

24.2(2)比例线段(黄金分割)

24.2(2)比例线段(黄金分割)

标题:24.2比例线段(2)关键词:比例中项、黄金分割描述:教学目标1.会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形的面积比与线段比的转化.2.在比例线段性质的证明与运用过程中,体会方程思想的作用.3.会找出一条线段的黄金分割点,找出一个图形中的黄金分割点.4.经历黄金分割点的探索过程,从中体会转化、分类讨论的思想方法.教学重点及难点黄金分割的意义.熟练并灵活运用黄金分割的意义解题.学科:初中九年级>数学第一学期>24.2(2)语种:汉语媒体格式:教学设计.doc课件.ppt学习者:学生资源类型:文本类、课件类素材教育类型:初中教育>初中九年级作者:方忠平单位:上海市风华初级中学地址:共和新路2800号(200072)Email:********************24.2比例线段(2)上海市风华初级中学方忠平41教学内容分析本课主要是两个部分.第一部分是线段的比例中项问题;第二部分是黄金分割及黄金数的有关知识.教学目标1. 会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形的面积比与线段比的转化.2. 在比例线段性质的证明与运用过程中,体会方程思想的作用.3. 会找出一条线段的黄金分割点,找出一个图形中的黄金分割点.4.经历黄金分割点的探索过程,从中体会转化、分类讨论的思想方法.教学重点及难点重点:黄金分割的意义.难点:熟练并灵活运用黄金分割的意义解题.教学用具准备投影仪、笔记本,预习本教学流程设计教学过程一、 情景引入1.观察(1) 请同学们欣赏一段芭蕾舞表演, 对学生视觉上形成美的冲击.师:“芭蕾舞在跳法上和其他舞种有什么区别吗?” 生:“要掂起脚尖.”师:“你们想知道这是为什么吗?”让学生有了强烈的求知欲.(2) 展示四个国家的国旗.中华人民共和国朝鲜新西兰新加坡2.思考师:请问这四面国旗中有共同图案吗?若有,请指出来.师:为什么都会选择五角星这个图案呢?除了政治因素外,还有一个非常重要的原因就是:五角星是一个非常完美的图案. 古希腊数学家毕达哥拉斯有一句名言:“凡是美的东西,都具有共同的特征,这就是部分与部分以及部分与整体之间的协调一致.”下面就让我们从数学的角度来探究五角星中部分与部分以及部分与整体之间存在着怎样的一种关系.[说明] 通过创设情境“四个国家的国旗中都有五角星这个图案”,就会使同学们认识到五角星这个图案不一般,也就会非常想知道五角星中部分与部分以及部分与整体之间到底蕴涵着怎样的一种关系.有了探究的欲望,就会很乐意完成下面的做一做. 3.讨论度量点C 到点A 、B 的距离,计算和的值,你发现了什么?AB AC ACBC [说明」(通过学生亲自动手操作、计算,最终发现了=,即部AB AC ACBC 分与部分之比等于部分与整体之比,符合毕达哥拉斯的审美观点,很自然地就引出了黄金分割的概念.)二、学习新课1.概念辨析例题1如图,线段AB 的长度是,点P 为线段AB 上的一点,l ,求线段AP 的长.ABAPAP PB如果点P 把线段AB 分割成AP 和PB (AP>PB )两段,其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB温组形,组部每作教育下简合的黄金分割点AP 与AB 的比值为,近似值为0.618,这个比值215 称做黄金分割数(简称黄金数).师:下面就让我们来解决刚才的问题,若由黄金分割点来看,理想身材的黄金分割点是肚脐,即一个人的上半身的长度与下半身的长度的比值或下半身的长度与整个身高的比值越接近0.618,就会越给別人有一种美的感觉.但是很可惜,一般人的这个比值大约只有0.58到0.60左右(腿长的人会有较高的比值),由此可见,芭蕾舞演员掂起脚尖跳舞是为了提高这个比值,增加美感.现实生活中这样的例子也很多,比如:女性穿高跟鞋,会让人体看起来更美些.黄金分割是古希腊数学家毕达哥拉斯发现的,古希腊人把它广泛应用于艺术创作当中,其中最经典的作品就是雕像——维纳斯女神,她的上半身和下半身的比率正是0.618.[说明]当学生了解了黄金分割的概念之后,再来解决芭蕾舞演员跳舞要掂起脚尖的问题,并欣赏雕像-----维纳斯女神,能使学生感受到黄金分割的美学价值.2.例题分析问题一(1) 线段AB 有没有除点P 以外的黄金分割点呢?(2) 点D 应满足怎样的条件?(3) 在五角星中点D 是线段AB 的黄金分割点吗?(4) 你还发现了什么?[说明](这四个问题是有层次性的,问题(1)的结论是显然的,但学生得到的方法却是多样的,有的是凭直觉,有的是利用轴对称得到的,有的是采用旋转方法得到的;问题(2)进一步强化了黄金分割的概念;有了问题1的铺垫,问题(3)、(4)的结论很容易得出,这时学生就真正体会到了五角星确实是一个完美的图形,进一步感受到了黄金分割的美.)问题二师:下面我们再来了解黄金分割在现实生活中的应用.请同学们观察两幅照片,哪一更具有美感呢?师:你们知道这是为什么吗?因为绝对的对称会给人单调、静止、缺乏活力的感觉,为了打破这种感觉,我们在构图的时候,就需要灵活地运用黄金分割来构图,把画面的上下左右用黄金分割来做出4条线,人们发现4条线交汇的4个点是人们的视觉最敏感的地方,被反复证明的是当被摄主体处于或发布在这4个点附近最容易得到“眼球”,在摄影理论里把这4个点称为“趣味中心”.[说明]学生选择图(2)完全是一种直觉,并不明白其中的原因,当把上述道理讲给学生听时,他们对黄金分割的美学价值有更深的认识.问题三师:下面再来看看黄金分割在建筑上的应用.(展示巴黎埃斐尔铁塔、上海东方明珠电视塔、古埃及金字塔三幅图片,讲述其中蕴涵的黄金分割比例,体会黄金分割在建筑上的应用价值和人文价值.)问题四师:同学们已经了解到线段的黄金分割是完美的分割,事实上现实生活中还有另外一种有趣的黄金分割现象.请同学们在下面十个矩形(请若干个同学来找出他认为最合乎美的矩形,最后大部分同学将目标锁定在第①、⑤、⑧和⑩这四个矩形上,此时告诉他们这四个矩形分别是5×8,8×13,13×21,21×34的矩形,请他们用计算器算出这四个矩形的宽与长的比值(结果保留3个有效数字),结果分别是:0.625,0.615,0.619,0.618,这时同学们惊奇地发现这四个矩形的宽与长的比值均接近于黄金比,从而引出黄金矩形的概念.[说明]黄金矩形的概念并不是直接告诉学生的,而是通过亲身经历这么一个活动过程,自己感悟到合乎美的矩形和黄金分割的内在联系.)矩形的宽与长的比为黄金比,这样的矩形称之为黄金矩形.师:古希腊人已经发现黄金矩形是最合乎美的矩形,他们将建筑物的门、窗的轮廓都设计成黄金矩形的形状,其中最著名的就是巴特农神庙.如果把巴特农神庙的轮廓抽象为矩形ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD ,那么我们可以惊奇的发现,,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是BCABBE BC =黄金比吗?[说明]这里涉及到比例变形的一些技巧,要给学生时间进行充分的交流.最终发现巴特农神庙的轮廓为黄金矩形,展示了黄金分割的文化价值.师:黄金矩形之所以称为黄金矩形,并不仅仅因为它的宽与长的比等于黄金比,更重要的是:由上述方法作图后得到的新的矩形BCFE 也为黄金矩形(原因留给同学们课后思考).巴特农神庙之所以神奇,并不仅仅因为它的的轮廓恰好为黄金矩形,它有更深层次的美.[说明]动画演示巴特农神庙在构造上不断符合黄金矩形的神奇现象. 通过动画演示巴特农神庙在构造上不断符合黄金矩形的神奇现象,同学们已经被巴特农神庙中所蕴涵的建筑艺术所折服,使学生再一次感受到了黄金分割和黄金矩形的美学价值.3.问题拓展例题2已知:如图,四边形ABCD 的对角线AC 、BD 交于点O ,求证:.AOD BOC S S ∆∆=OACOOB DO =证略尝试:(1)作顶角为的等腰三角形ABC;036(2)分别量出底边BC 与腰AB 的长度;(3)作的平分线,交AC 于点D ,量出的底边CD 的长度.B ∠BCD ∆最后,分别求出与的底边与腰的长度的比值(精确ABC ∆BCD ∆到0.001)问:比值是多少?所以我们把顶角为的三角形称为黄金三角形.它具有如下的o 36性质:(1);618.0≈ABBC(2)设BD 是的底角的平分线,则也是黄金三角形,ABC ∆BCD ∆且点D 是线段AC 的黄金分割点;(3)如再作的平分线,交BD 于点E ,则也是黄金三C ∠CDE ∆角形,如此继续下去,可得到一串黄金三角形.巩固练习已知点C 是线段AB 的黄金分割点AC =,且AC >BC ,求555-线段AB 与BC 的长.课堂小结1、今天我们共同研究了什么数学知识?2、和以往的数学知识相比,今天的内容有什么不同?作业布置书后练习1、2、3,练习册24.2(2)教学设计说明本节课的研究对象是“黄金分割”,我采用从“美学”——“数学”的逻辑顺序去阐述这个课题,能够极大的提高学生探究的兴趣.并且引用了四个生活中的例子,使学生在不断享受“美”的过程中掌握知识,体验数学的社会功能.。

(课件)24.2相似图形的性质(成比例线段)

(课件)24.2相似图形的性质(成比例线段)
a 3 ,那么 a b 3.已知 b 2 b
a 各等于多少? ab

习题和24.2
3.判断下列各组线段是否是成比例线段: (1) 2厘米,3厘米,4厘米,1厘米; (2) 1.5厘米,2.5厘米,4.5厘米,6.5厘米; (3) 1.1厘米,2.2厘米,3.3厘米,4.4厘米; (4) 1厘米,2厘米,2厘米,4厘米.
∴ ad=bc, 在等式两边同加上ac, ∴ ad+ac=bc+ac, ∴ ac-ad=ac-bc, ∴ a(c-d)=(a-b)c, 两边同除以(a-b)(c-d), a c ∴ ab cd

a b , 2.已知: 线段a、b、c满足关系式 b c 且b=4,那么ac=______.
之间有关系_______________
图 24.2.1
像这样,对于四条线段a、b、c、d,如果 其中两条线段的长度的比等于另外两条线段的 a c 比, 如 b d (或a∶b=c∶d),那么,
这四条线段叫做成比例线段,简称比例 线段.此时也称这四条线段成比例.
例1判断下列线段a、b、c、d是否是成比例线段:
a c ab cd ; 例2 证明:(1)如果 ,那么 b d b d
a c 证明(1)∵ b d
在等式两边同加上1, a c ∴ 1 1 b d

ab cd b . d
(2)
a c (2) ∵ b d
a c a c 如果 ,那么 a b c d b d
(1)a=4,b=6,c=5,d=10; 5 1 a 4 2 c 解 (1) ∵ b 6 3 d 10 2
a c , ∴ bቤተ መጻሕፍቲ ባይዱd


∴ 线段a、b、c、d不是成比例线段.

24.2.1比例线段 学案

24.2.1比例线段 学案

24.2.1《成比例线段》教学案一、课时学习目标:1、了解比例线段的概念。

知道与“线段的比”的区别与联系。

2、了解比例的基本性质,会进行简单的变形。

二、课前复习导学:1、什么是相似图形?2、问:这两张图形有什么联系?它们是 图形,它们 的形状 , 不相同,是相似形。

为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。

三、课堂学习研讨1、由上面的格点图可知,B A AB ''=_________,C B BC ''=________,这样B A AB ''与C B BC ''之间有关系_______________.2、概括:像这样,对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如dc b a =(或a ∶b =c ∶d ),那么,这四条线段叫做成比例线段,简称比例线段.此时也称这四条线段成比例.3、问题1判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10; (2)a =2,b =5,c =152,d =35. 解:(1)∵=ba = ,=dc = ,∴b adc ∴线段a,b,c,d 成比例线段。

(2)∵=b a= ,=dc = ,∴badc ∴线段a,b,c,d 成比例线段。

图24.2.14、练习:判断下列线段是否是成比例线段: (1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.5、新结论:对于成比例线段我们有下面的结论: 如果dc b a =,那么ad =bc . 如果ad =bc (a 、b 、c 、d 都不等于0),那么dc ba =.以上结论称为比例的基本性质.6、思考:请试着证明这两个结论。

沪教版(上海)初中数学九年级第一学期 24.2 比例线段-黄金分割 课件

沪教版(上海)初中数学九年级第一学期 24.2 比例线段-黄金分割 课件

比例的等比性质:
如果
a
,b
c d
k
(b,
d

0)
那么
ac a c _b___d___b____d_.
k
a k b a kb
c k d c kd
a c kb kd k bc bd
例1 在梯形ABCD中,对角线AC与BD相交于点
O,SAOD
SBOC ,求证:
DO OB
CO OA
想一想:将条件 SAOD SBOC 换成DC//AB,其它条 件不变,能证明原来的结论正确吗?
AC AD
1.如图,在△ ABC中,点D、E分别在AB、AC
上,且 AD AE
DB EC
.已知S △ ADE=1,S △ DBC=12,
求S △ ABC.
H
3.已知四条线段长分别为1厘米, 2 厘米,2厘米,
x厘米,它们是成比例线段,则x=
厘米.
例2 如图,线段AB的长度为l,点P是线段AB上一 点, PB AP (线段AP是PB、AB的比例中项),
我们做过调查,如果市场上有的电视频主要 有两种,一种是宽:长为3∶4的,另一种是 9∶16的.这两个比值都很接近0.618,也就 是因为黄金矩形是最美的.
画家们发现,按 0.618∶1来设计腿长与 身高的比例,画出的人 体身材最优美,
现今的女性,腰身以下 的长度平均只占身高的 0.58,因此古希腊维纳 斯女塑像及太阳神阿波 罗的形象都通过故意延 长双腿,使之与身高的 比值为0.618,
B P1
∵点P1称为AB的 黄金分割点 (点P1靠近B)
P1B AP1 5 1 0.618 (黄金数) AP1 AB 2
∵点P2称为AB的 黄金分割点 (点P2靠近B)

《比例线段》word教案 (公开课获奖)2022冀教版 (5)

《比例线段》word教案 (公开课获奖)2022冀教版 (5)

29.2比例线段教学设计教学设计思想本节课通过举例实际生活中两条线段的比的问题引入比例线段的概念,可以充分调动学生联系实际和积极思维的能力.在讲解比例线段的概念与性质时,老师并非全盘讲授,而是组织学生思考,探究,学生经历发现结论的过程,真正理解比例线段性质。

教学目标知识与技能:1.能说出线段的比和成比例线段、比例中项的概念;2.熟记比例的基本性质,并能利用该性质解决一些简单的问题;3.会在一条线段上作出黄金分割点。

过程与方法:通过观察、测量、画图、推理等方法探索结论,经历发现结论的过程,发展逻辑思维方法。

情感态度价值观:通过了解黄金分割的应用,扩大视野,体会其中的文化价值。

教学重难点重点:比例的概念与性质难点:比例的性质及应用教学方法探索发现法教学媒体大小不等的两张中国地图课时安排1课时教学过程设计一、复习引入出示两张大小不等的中国地图,问:1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似形。

2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习比例线段。

二、比例线段的概念先从这两张相似的地图上研究。

请一位同学在地图上找出北京、上海、福州的位置,如果我们用A 、B 、C 分别表示大地图上的北京、上海、福州的位置,请用刻度尺在地图上量一量北京到上海的直线距离,即线段AB=__cm ,上海到福州的直线距离,即线段BC=__cm ,在小地图上用A′、B′、C′、分别表示北京、上海、福州的位置,也量一量A′B′=__cm ,B′C′=__cm 。

在地图上量出的AB 与A′B′,BC 与B′C′长度是否相等?为什么会不一样呢?线段AB 与A′B′,BC 与B′C′有什么关系呢?请同学们算一算它们两线段的长度的比,即AB :A′B′,BC :B′C′会有什么样的结果呢?我们会得到AB 与A′B′这两条线段的比与BC ,B′C′这两条线段的比是相等的,即=。

242(1)比例线段

242(1)比例线段

24.2比例线段一、教学目标:1.理解两条线段的比、比例线段的概念.2.掌握比例线段的基本性质.3.理解比例的合比性质、等比性质.4.培养学生学习数学、应用数学的能力.二、教学重、难点:重点:理解比例线段的概念.掌握比例线段的基本性质.难点:比例的合比性质、等比性质的理解.三、课前预习1.比例的基本性质:如果那么,dc b a = ; 2.比例的合比性质:=+=bb a dc b a ,那么如果 ;=-b b a 。

比例的等比性质:如果=++==db c a ,那么k d c b a= = 3.下列各组线段成比例的是( )。

A. 1cm ,3cm ,2cm ,4cmB. 1cm ,20cm ,5cm ,25cmC. 4cm cm 2cm 6,3,cmD. 4cm ,8cm ,6cm ,12cm四、新授新课探索一(1)思考 四个数a,b,c,d,若21,k dc k b a ==,请问在什么情况下,就说这四个数成比例?k1=k2时,就说这四个数成比例.如果两个数的比值与另两个数的比值相等,就说这四个数成比例.通常我们把a,b,c,d 四个实数成比例表示成a:b=c:d,或dc b a =。

其中b,c 称做内项,a,d 称做外项.新课探索一(2)两条线段的长度的比叫做两条线段的比.求两条线段的比时,对这两条线段一定要用同一长度单位来度量.两条线段的比值总是正数.在四条线段中,如果其中两条线段的比与另两条线段的比相等,那么这四条线段叫做成比例线段,简称比例线段(proportional segments).根据DE 是△ABC 的中位线的条件,你能找出成比例线段吗?线段DE,BC,AD,AB 是比例线段.新课探索一(3)如果a,b,c,d 是比例线段,即dc b a =(或d c b a ::=),那么线段d a ,是比例外项,线段b 、c 是比例内项,线段d 是a,b,c 的第四比例项。

比例线段有以下基本性质: 如果d c b a=,那么bc ad =寻找一下上述变化规律.新课探索二(1)比例线段除了具有上述性质以外,还有其他性质吗?思考 如果线段d c b a ,,,满足d c b a =,那么dd c b b a d d c b b a -=-+=+,是否成立? 新课探索二(2)比例的合比性质:新课探索二(3)请运用上述设比值为k 的思想方法来说明:比例的等比性质:等比性质可以推广到任意有限多个相等的比的情形.例如:注意 在实数范围内,式中的分母不能为零,如b+d ≠0,b1+b2+b3≠0.新课探索三五、课内练习六、本课小结比例线段1.两条线段的长度的比叫做两条线段的比.2.在四条线段中,如果其中两条线段的比与另两条线段的比相等,那么这四条线段叫做成比例线段,简称比例线段(proportional segments).如果a,b,c,d 是比例线段,即dc b a = (或a:b=c:d), 那么线段a,d 是比例外项, 线段b,c 是比例内项, 线段d 是a,b,c 的第四比例项.3.比例线段的性质:(1)比例线段的基本性质: 如果dc b a =,那么ad=bc. (可写出有关a,b,c,d 成立的8个比例式.)(2)比例的合比性质:(3) 比例的等比性质:。

24.2.2相似图形的性质 学案

24.2.2相似图形的性质 学案

24.2.2《相似图形的性质》教学案学习目标:1、探索并掌握相似多边形的性质。

2、解两个多边形相似的判定方法。

复习导学:1、怎样的图形是相似图形?2、什么是成比例线段?3、两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?课堂学习研讨:1、学生做一做(课本47--48页):2、自主探究、猜想(1)动手实验,直观探索图18.2.2中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否为比例线段的关系呢?对应角之间又有什么关系?(提示:为了验证你的猜测是否正确,可以用刻度尺和量角器量量看。

)图18.2.2再看看图18.2.3中两个相似的五边形,是否与你观察图18.2.2所得到的结果一样?图18.2.33、交流合作,大胆猜想在独立动手的基础上,进行交流与合作,并大胆地猜想结果。

4、概括总结,确认猜想概括:由此可以得到两个相似多边形的特征:对应边成比例,对应角相等。

实际上这也是我们识别两个多边形是否相似的方法,即如果_________________________________________,那么这两个多边形相似。

提醒:这就是我们判定两个多边形是否相似的判定方法。

想一想:如果两个多边形的边数不同呢?5、范例讲解例:在图18.2.4所示的相似四边形中,求未知边x、y的长度和角度a的大小。

图18.2.4解:由于两个四边形相似,它们的对应边成比例,对应角相等,所以1847y ==解得x = , y = 。

a = 360°-( )= 。

注意:利用相似多边形的性质时,必须分清对应边和对应角.6、思 考:(1)两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?(2)所有的菱形都相似吗?所有的矩形呢?所有的正方形呢?课堂达标练习:1.根据下图所示,这两个多边形相似吗?说说你的理由。

(第一题)(第2题)2.如图,正方形的边长a = 10,菱形的边长b = 5,它们相似吗?请说明理由。

《比例线段(2)》精品教案

《比例线段(2)》精品教案

4.1比例线段(二)1.了解两条线段的比和比例线段的概念.2.能根据条件写出比例线段;会运用比例线段解决简单的实际问题.3.通过实际问题的解决,培养学生运用数学的意识.重点:比例线段的概念及比例性质的运用.难点:课本例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点.一、新课导入复习引入1.比例的基本性质是__ab=cd⇔ad=bc__.2.由ad=bc可推出哪些比例式__ab=cd,ac=bd,ba=dc,bd=ac,____ca=db,cd=ab,db=ca,dc=ba.__3.操场上有一群学生在玩游戏,其中男生与女生的人数比例是3∶2,后来又有6名女学生加入进来,此时女生与男生的人数比为5∶3,求原来各有多少男生和女生【解】设原来有男生3x人,女生2x人,则(2x+6)∶3x=5∶315x=6x+18解得x=2所以3x=6,2x=4∴原来有6名男同学和4名女同学.说明:引入一个实际问题,引起学生们的关注,让学生去解决感兴趣的问题,为下一个枯燥的几何问题做好铺垫.二、新知学习(一)比一比两条线段的长度的比,叫做这两条线段的比.如图所示,设线段OC=2,OC′=4,则线段OC与OC′的比就是2∶4=12,记为OCOC′=12.由图,从△ABC到△A′B′C′是一个相似变换,可得ABA′B′=12,BCB′C′=12,所以ABA′B′=BCB′C′.注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长度单位有多种,但求比值必须在同一长度单位下,比值一定是正数,比值与采用的长度单位无关.(3)表示方式与用数字的比表示类同,但它也可以表示为AB∶CD.(二)议一议什么是比例线段一般地,四条线段a,b,c,d中,如果a与b的比等于c与d的比,即ab=cd,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.例如,上图中,AB,A′B′,BC,B′C是比例线段.(三)做一做1.如图所示,BCAB=,BC AC =. 2.已知线段a ,b ,c ,若a 2=b 3=c5,且3a -2b +5c =25,求a ,b ,c 的值.【解】设a 2=b 3=c5=k(k≠0).则a =2k ,b =3k ,c =5k ,∵3a -2b +5c =25, ∴6k -6k +25k =25. 解得k =1.∴a =2,b =3,c =5.说明:通过比一比、议一议、做一做,加深对比例及比例线段的理解,从而提高学生的认知水平.三、新知应用【例1】已知线段a =30 mm ,b =2 cm ,c =45 cm ,d =12 mm ,试判断a ,b ,c ,d 是否成比例线段.【分析】判断四条线段是否成比例线段,先要把四条线段的长度单位化为同一单位,然后按从小到大(或从大到小)的顺序排列,再分别计算第一和第二与第三和第四线段的数量比,如果比相等,那么这四条线段成比例,否则不成比例.【解】取mm 作单位,则b =20mm ,c =8mm ,按从小到大的顺序为c ,d ,b ,a. ∵c ∶d =8∶12=2∶3, b ∶a =20∶30=2∶3, ∴c ∶d =b∶a.即四条线段a ,b ,c ,d 成比例线段.说明:判断四条线段(或数)是否成比例,在同一单位下,除了直接计算a∶b 和c∶d 进行判断外,还可以计算ad 和bc ,利用ad =bc ⇔a b =cd进行判断.【例2】如图,在△ABC 中,AD ,CE 是△ABC 上的高线,找出图中的一组比例线段,并说明理由.【分析】(1)根据比例的基本性质,要判断四条线段是否成比例,只要采取什么方法(看其中两条线段的乘积是否等于另外两条线段的乘积)(2)已知条件中有三角形的高,我们通常可以把高与什么知道联系起来 (3)根据三角形的面积公式,你能得到一个怎样的等式 根据所得的等式可以写出怎样的比例式 【解】AD AB =CEBC .理由如下:∵S △ABC =12AB·CE=12BC·AD,∴AB·CE=BC·AD,∴AD AB =CEBC. 说明:利用面积是比例线段中得到等积式的常用方法之一. 四、巩固新知 尝试完成下面各题.1.下列各组线段,能成比例线段的是( B ) A .1 cm ,2 cm ,3 cm ,4 cm B .3 cm ,6 cm ,4 dm ,8 mm C .3 cm ,9 cm , dm ,6 cm D .2 cm ,5 cm , dm ,8 cm2.已知a ,b ,c ,d 是成比例线段,其中a =3 cm ,b =2 cm ,c =6 cm ,求线段d 的长度.解:设d=x cm,则有ab=cd,即32=6x.∴3x=12.解得x=4.∴d=4 cm.3.如图,在平行四边形ABCD中AE⊥BC,AF⊥CD,找出图中一组比例线段,并说明理由.解:∵BC·AE=S▱ABCD =CD·AF,∴BCCD=AFAE.4.有两组线段,每组分别有4条,长度如下:(1)a=8 cm,b=cm,c=dm,d=10 cm.(2)a=16 mm,b=8 mm,c=5 mm,d=10 mm.请判断它们是否成比例线段,试说明理由.解:(1)b= cm,c= dm=6 cm,a=8 cm,d=10 cm. ∵bd=,ca=48,bd≠ca,∴这四条线段不成比例.(2)c=5 mm,b=8 mm,d=10 mm,a=16 mm.∵ac=80,bd=80,∴ac=bd,即ab=dc,∴这四条线段成比例.五、课堂小结1.两条线段的比及比例线段的概念.2.方程思想的体现.3.比例线段的实际问题中的应用.六、课后作业请完成本资料对应的课后作业部分内容.。

数学教案-比例线段 (第2课时)(标准版)

数学教案-比例线段 (第2课时)(标准版)

数学教案-比例线段(第2课时)1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念. 2.掌握比例基本性质和合分比性质. 3.通过通过的应用,培养学习的计算能力. 4.通过比例性质的教学,渗透转化思想. 5.通过比例性质的教学,激发学生学习兴趣.二、教学设计先学后做,启发引导三、重点及难点 1.教学重点比例性质及应用. 2.教学难点正确理解成比例线段及应用.四、课时安排1课时五、教具学具准备股影仪、胶片、常用画图工具六、教学步骤【复习提问】 1.什么是线段的比? 2.已知这两条线段的比是吗,为什么?【讲解新课】 1.比例线段:见教材P203页。

如:见教材P203页图5-2。

又如:即a、b、c、d是成比例线段。

注:①已知问这四条线段成比例吗?(答:成比例。

,这里与顺序无关)。

②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材P203页比例线段的一些附属概念。

2.比例的性质:(1)比例的基本性质:如果,那么。

它的逆命题也成立,即:如果,那么。

推论:如果,那么。

反之亦然:如果,那么。

①基本性质证明了“比例式”和“等积式”是可以互化的。

②由,除可得到外,还可得到其它七个比例式。

即由一个等积式,可写成八个不同的比例式(让学生试写)。

然后教师教给方法。

即:先按左:右=右:左“写出四个比例式。

再由等式的对称性写出另外四个比例式:。

注意区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。

即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:如果,那么证明:∵ ,∴ 即:同理可证:(找学生板演)(3)等比性质:如果那么证明:设;则∴ 等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

比例线段(公开课教案)

比例线段(公开课教案)

比例线段教学目的:1、理解比例线段的概念2、掌握比例线段的判定方法及第四比例项的求法。

3、理解比例的基本性质并掌握它的初步应用,培养学生用方程思想解决问题。

教学重点:比例线段及其性质的应用。

教学难点:应用比例的基本性质实行比例变形。

教学媒体:投影片教学设想:本节课需要实行两个知识点的教学。

一是比例线段的概念与判定;二是比例的基本性质及应用。

第一个知识点是典型的数学概念建立问题,其中利用了由具体到一般的研究方法;第二个知识点是数学性质的推导和应用问题。

本节课两个重要的知识点都得兼顾,又各有轻重,还有很多附属概念需要介绍,同时配备什么类型的例习题才能有效地巩固概念和性质更需要教师深思和揣摩。

为此,整个教学过程设想分六步实行。

1、建立比例线段的概念通过复习两条线段比的定义及求法,找到新知识建立的固着点和突破点,然后分析引例,从具体的例子中抽象概括出比例线段的概念。

2、熟悉比例线段的概念(1)(其中的一个比例式) ⇒=dc b a a, b, c,d 四条线段成比例 (2) a, b, c, d 四条线段成比例dc b a =⇒(唯一的一个比例式) (3) 与比例线段相关的其它概念项、内项、外项、第四比例项(4) 比例中项3、比例的基本性质:⇒=dc b a ad=bc ad=bcd c b a =⇒ 4、比例线段和比例的基本性质的应用例1 交给学生判断四条线段成比例的方法例2第四比例项及比例中项的求法例3比例线段和比例的基本性质的实际应用5、巩固练习6、课堂小结及课堂作业。

教学过程:一、建立比例线段的概念1、复习两条线段比的定义。

导语:上节课同学们学习了两条线段比的相关知识,这节课我们来学习和研究比例线段的相关问题(板书课题),在学习新知识之前,我们先复习一下两条线段比的定义及求法,请同学们回忆一下什么是两条线段的比?求下面两条线段的比。

引例:如图:AB=50,BC=25A 'B '=20 B 'C '=10求BC AB ,C B B A '''' D A B C D A B C 解:∵ 22550==BC AB 21020==''''C B B A∴ BC AB =C B B A '''' 2、分析引例得出四条线段AB 、BC 、A 'B '、B 'C '是成比例线段。

比例线段(2)教案

比例线段(2)教案

4.1比例线段(2)教案课题 4.1比例线段(2)单元第四单元学科数学年级九年级(上)学习目标1.理解两条线段的比与比例线段的概念;2.能根据具体问题求比例线段.重点比例线段的概念.难点例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题回顾:如果两个数的比值与另两个数的比值相等,就说这四个数成比例.我们把 a、b、c、d 这四个数成比例,表示成(或a:b=c:d),那么这四个数a、b、c 、d 成比例其中:a、b、c、d 叫做组成比例的项,a、d 叫做比例外项,b、c 叫做比例内项。

做一做1、设线段AB=2cm,AC=4cm,两条线段的长度比是。

2、设线段AB=200cm,AC=4m,两条线段的长度比是。

两条线段的长度比叫做这两条线段的比. 思考自议在实际问题中理解比例线段的概念;求两条线段的比,就是求这两条线段长度的比;判断四条线段是否成比例,就是判断这四条线段的长度是否成比例.OC=2,OC’=4线段AB=,A’B’=2∴二、提炼概念一般地,如果四条线段a,b,c,d中,a与b的比等于c与d的比.即那么这四条线段叫做成比例线段,简称比例线段.注意:求两条线段的比必须选定同一长度单位,但比值与单位的大小无关.判断四条线段是否成比例的方法有两种:(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。

(2)查看是否有两条线段的积等于其余两条线段的积。

三、典例精讲例3、如图,在直角三角形ABC中,CD是斜边AB上的高线,请找出一组比例线段,并说明理由例4、如图是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪个方向?到高雄市的实际距离是多少km?(比例尺1:9000000)少要写出两组).EC AE DB AD =BC DE AC AE AB AD ==AC CE AB BD ==4.5. 如图所示,在△ABC 和△A ′B ′C ′中,∠BAC =∠B ′A ′C ′=90°,AB =AC ,A ′B ′=A ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的高线,△ABC 的面积为1,△A ′B ′C ′的面积为4. (1)求AD ∶A ′D ′; (2)求BC ∶B ′C ′;(3)线段BC ,B ′C ′,AD ,A ′D ′是否成比例?解:(1)在△ABC 中,∠BAC =90°,AB =AC ,∴△ABC是等腰直角三角形.又∵AD⊥BC,∴AD=BD=DC.又∵S△ABC=1,∴12AD·2AD=1,∴AD=1.同理得A′D′=2.AD∶A′D′=1∶2.(2)∵BC=2AD,∴BC=2,而B′C′=2A′D′,∴B′C′=4.∴BC∶B′C′=2∶4=1∶2.(3)由(1)(2)知BC∶B′C′=AD∶A′D′,∴BC,B′C′,AD,A′D′成比例.课堂小结1.两条线段的比定义:两条线段________的比叫这两条线段的比.2.比例线段定义:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即__________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.长度,。

沪教版数学(上海)九年级第一24.2比例线段教学设计(2课时)

沪教版数学(上海)九年级第一24.2比例线段教学设计(2课时)
3.采用多元化的教学方法和评价方式:
-运用小组合作、讨论交流等形式,培养学生的合作意识和团队协作能力。
-采用课堂提问、课后作业、小组讨论等多种评价方式,全面了解学生的学习情况。
4.强化巩固,提高解题能力:
-设计具有代表性的例题和练习题,帮助学生巩固所学知识,形成解题思路。
-引导学生总结解题方法和技巧,提高学生的解题能力。
(二)讲授新知
1.比例线段的概念:讲解比例线段的定义,让学生明确什么是比例线段,以及如何表示比例线段。
2.比例线段的性质:通过具体实例,讲解比例线段的性质,如比例线段的分割性质、相似性质等,并引导学生运用性质解决实际问题。
3.比例尺的应用:介绍比例尺的概念,讲解如何根据比例尺进行地图上的距离计算和测量。
4.通过课堂练习和课后作业,巩固所学知识,提高学生的解题技巧。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生主动学习的热情,增强学生的自信心。
2.培养学生严谨、细致的学习态度,使学生养成良好的学习习惯。
3.培养学生运用数学知识解决实际问题的意识,增强学生的实践能力。
4.通过数学知识的学习,培养学生发现问题、分析问题、解决问题的能力,提高学生的综合素质。
1.学生对比例的概念已有初步了解,但部分学生对比例线段的性质和运用尚不熟练,需要教师在教学过程中进行引导和巩固。
2.学生在解决实际问题时,可能存在一定的困难。因此,在教学过程中,教师应注重培养学生的知识迁移能力,引导学生将所学知识运用到实际问题中。
3.学生的合作学习能力有待提高。在教学过程中,教师应充分利用小组合作、讨论交流等形式,培养学生的合作意识,提高学生的团队协作能力。
4.学生对数学学科的兴趣和自信心存在差异。教师应关注学生的个体差异,通过多样化的教学手段和评价方式,激发学生的学习兴趣,增强学生的自信心。

比例线段教案(完美版)

比例线段教案(完美版)

比例线段一、教材分析1.教材的地位与作用本课是为今后相似的描述与计算奠定基础。

2.教学目标(1)知识与技能:掌握比例、比例线段的概念,会辨认比例式中的“项”,会求常见图形中的线段比。

(2)数学思考:经历比例、比例线段的概念得出过程,体会类比的思想,促进探究、质疑,归纳能力的发展。

(3)问题解决:通过问题情境的创设和解决过程,进一步体会数学与生活的紧密联系,体会数学的思维方式,增进数学学习的情感。

(4)情感、态度与价值观:在交流协作中,体会生生交往与师生交往的乐趣;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣。

3.重点与难点本节课的重点是比例及比例线段,难点是应用。

二、学生分析九年级的学生在小学中已经学过比的概念,在七年级时又学过线段长度等知识,在第一课中对比例也有了一定的了解,因此在知识上已经具备了继续学习比例及比例线段的基础。

在思维能力上,学生经历了两年多的初中数学学习,已经具备了一定的数学学习能力,空间想象能力和抽象思维能力都有一定的增长,计算能力也有了较大的提高。

三、教法与学法教学中应贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学的民主化,促进开放式教学的深入研究。

要充分发挥教师的主导作用和学生的主体作用,注重知识的发生、发展过程。

教师要给学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、猜想,主动探索并获取知识,将面向全体、因生施教落到实处,培养学生的创新精神和实践能力。

四、活动流程1.创设情境,引入新课(1)提出问题:“今天这节课我们先来欣赏几组漂亮的图片。

这是什么?”“在这两幅图片上你发现了什么?”(2)继续提问:“相似图形必须满足什么特征?对大小有无要求?”(3)让学生来寻找实际生活中的相似图形。

问:那你们都洗过几寸的照片?有洗过跟真人那么大的照片吗?如果洗出来的照片太小了怎么办?太大了呢?师:比如从一寸放大到五寸,或是从七寸缩小到五寸,这里蕴含着一个重要的数学知识——比例。

24.2(2)比例线段

24.2(2)比例线段

PB AP 点P是线段AB上的一点,且 AP AB
求线段AP的长.(用 l 表示)
x l-x
l
A
l
P
.
B
即线段 AP是AB 和PB的比 例中项.
问1:由图可知,线段 AB、AP、PB之间有 怎样的数量关系?
PB AP 问2:结合已知条件 AP AB
答1:AP+PB=AB, 即AP+PB=l 设线段AP的长为x, 则线段PB的长为l-x. PB AP 答2:由 AP AB
8
P1
B
线段AP是较长线段还是较短线段不确定, 分析: 所以要分类讨论. 解: (1)当AP>PB时, ∴AP=
5 1 2 AB=
(2)当PB>AP时, ∴AP=
3 5 2 AB=
5 1 ×8= 2
4 5 4 12 4 5
3 5 ×8= 2
A
P1
P2
B
两个 一般地一条线段的黄金分割点有两个
1:已知线段MN的长为2厘米,点P 是线段MN的黄金分割 点,则较长的线段MP的长是 ( 5 1) 厘米,较短的线 段PN的长是 (3 5) 厘米. 2:已知点P是线段AB的黄金分割点,AP>PB, AB=4厘米,那么线段AP、PB的长度分别是 (2 5 2)厘米 和 (6 2 5) 厘米.
短= 3 5 全
5 1 3 5 全= 全 2 2
2
例题1:已知点P是线段AB的黄金分割点,若AB=8,
求较长线段AP和较短线段PB. ? 分析:
? 8
A
P
B
解:∵P是线段AB的黄金分割点, 根据题意AP>PB ∴AP= (或PB=
5 1 2 AB=
PB AB AP 8 (4 5 4) 12 4 5

成比例线段(一)教学设计 (4)

成比例线段(一)教学设计 (4)
(2)说明:①引导学生根据等式的性质从正、反两方面进行证明.②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等积式可得到八种比例式.
2.比例基本性质的应用.
应用(1)判断四条线段是否成比例;将已知四条线的长按大小顺序排列,如a>b>c>d.若最长(a)和最短(d)的两条线段长之积等于其余两条线段长(b,c)之积,则这四条线段a,b,C,d成比识
1.四个数a,b,c,d成比例的定义,比例的项、内项及外项的含义.
2.比例的基本性质的内容.
对基础薄弱生特别强调:如果 ,则 , , ,……
二、类比联想、定义比例线段的有关概念
1.复习两条线段的比的有关知识.
由此引出比例线段的概念.
2.用类比的方法学习比例线段的概念.
情感目标:在数学探索、应用的过程中,逐步形成积极的思想观点,认识数学来源于实践又反过来作用于实践。
重点
比例线段的概念及基本性质的应用;
难点
应用比例的基本性质进行比例变形.
教学方法设计
新课的导入—启发思维—讨论质疑—引导思路—教给方法—梳理规律—归纳结论,分层教学
教学
活动
安排
复习导入---讨论质疑----运用归纳
3.证明猜想,得出合比和等比性质.
优秀学生指导:考虑还有没有别的证明方法?
薄弱生指导:请模仿合比性质证法一,证明
说明:以后两种情况统称合比性质,即
等比性质
四、例题讲解
五、小结
拓展
链接
作业
布置
必做题
(课内外)
课内作业:书本第8页1、2、3、4;
回家作业:练习册第2、3页.
选做题
(课内外)
补充:
已知

24.2比例线段(2)

24.2比例线段(2)
24.4 比例线段(2)
复习:
1、比例线段的性质:
① 外项之积等于 ② 合比性 ③ 等比
内项之积

性质
2、解决比例计算问题常用方法: 设K法
第1页,共8页。
例题讲解:
例1:已知:如图,四边形ABCD的对角线AC、BD交于
点O,
SAOD SBOC
D
C
求证: DO CO
O
OB OA
A
B
结论: 同高或等高的三角形面积之比就等于
DB EC
S S 1,
12
ADE
DBC
S S 求: 和 EDC
ABC

议一议:
同底或等底的两个三角 形面积之比等于什么?
第4页,共8页。
回顾:比例中项
定义:如果比例的两个内项(或外项)相同, 那么这个相同的项叫做比例中项
即: a b b就是a和c的比例中项 b2 ac bc
试一试:已知线段AB=4, CD=9,线段EF是AB、 CD的比例中项,(1)列出比例式 (2)求出EF的长
例2:如图,已知线段AB的长是 如l 果
点P是线段AB的黄金分割点,AP是较长
线段求线段AP的长和AP与AB的比值。
添问: PB与AP的比值是
5 1 2。
5 1
AP与AB的比值 2 叫做 黄金分割数
5 1
简称: 黄金数的倒数是
2叫做
第7页,共8页。
黄金比
想一想:一条线段有几个黄金分割点? 两个
探讨:这条线段长度是 l 这两个黄金分割
所对应的底边之比,反之也成立
一题多变: 条件 SAOD SBOC 改成DC∥AB
第2页,共8页。
发现规律: 平行线 三角形面积相等

和圆有关的比例线段(二)数学教案

和圆有关的比例线段(二)数学教案

和圆有关的比例线段(二)数学教案
标题:和圆有关的比例线段(二)
一、教学目标
1. 让学生理解并掌握与圆相关的比例线段的概念。

2. 培养学生的观察力和分析问题的能力。

3. 提高学生的几何直觉和空间想象能力。

二、教学重点和难点
重点:理解和掌握与圆相关的比例线段的性质和应用。

难点:如何运用这些性质解决实际问题。

三、教学过程
1. 导入新课
通过回顾上节课的内容,引出本节课的主题——与圆相关的比例线段。

2. 新课讲解
(1) 介绍圆的相关概念和性质,如半径、直径、弦、弧等。

(2) 引入比例线段的概念,并举例说明。

(3) 探讨与圆相关的比例线段的性质,如圆周角定理、切割线定理、相交弦定理等。

(4) 通过例题进行演示,让学生理解并掌握这些性质的应用。

3. 练习与讨论
设计一系列的练习题,让学生在实践中加深对所学知识的理解和掌握。

同时,鼓励学生之间的交流和讨论,培养他们的合作精神和团队意识。

四、课堂小结
回顾本节课的主要内容,强调重点和难点,帮助学生巩固所学知识。

五、课后作业
布置一些相关的问题,让学生在课后继续思考和练习,以提高他们独立解决问题的能力。

六、教学反思
在教学过程中,教师应时刻关注学生的学习情况,及时调整教学方法和策略,以达到最佳的教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.2 比例线段(2)—用面积证比例线段
奉教院附中 陈嫚 2016.9.6 教学目标:会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形
的面积比与线段比的转化;理解平行线、三角形等积、比例线段这三者间的联系。

学习重点:让学生通过例题的学习,体验在一定条件下三角形面积比与线段比相互转化的过
程。

学习难点:利用三角形的面积比与线段比的相互转化解题。

教学环节 教学过程
设计意图
一、 知识回顾
1.填空
(1)如图(1),点D 是BC 边的中点,则
=∆∆ACD
ABD
S S ___________. (2)如图(2),点D 是BC 边上一点,且DC:BD=1:2,则=∆∆ABD
ADC
S S . (3)如图(2),若,23=∆∆ABD ABC S S 则BD
BC
= .
要求: ①学生独立完成
②师生共同批阅
③思考:上述过程体现了一个怎样的转化过程?
利用同高的两个三角形
的面积之比
与对应底边
的比相互转化,形成思维基础。

从学生已有的基础出发,引出课题
二、 新课学习
1.如图,在梯形ABCD 中,AB//CD,对角线AC,BD 相交于点O,则图中哪几对三角形的面积相等? 若AD,BC 延长相交于点P,则图中还有面积相等的三角形吗?
将课本例题抽丝剥茧,从学生思维角度入手,锻炼学生的思维能力和探讨交流的好习惯。

思考:你能利用上述面积之比与线段之比可转化的思想方法,证明
OA
CO
OB DO =
吗?
要求:①老师巡视
②同学之间可以小组讨论解决问题
③师生共同解题,板演
变式:已知:在四边形ABCD 中,对角线AC,BD 相交于点O ,
且OA
CO OB
DO =
求证:AB//CD 、AOD BOC S S ∆∆=
要求:学生自主探究,学生板演,写出证明过程.
通过变式的训练让学生对新知的相互转化有更深的理解。

三、 新知检测
1. 已知:如图,四边形ABCD 的对角线AC 与BD 相交于点O.
求证:
.AOB COB
AOD COD
S S S S ∆∆∆∆=
2.已知,AD,BE 是△ABC 的两条高.求证:
BC BE
AC AD
=
.
3.如图,在△ABC 中,AD 平分∠BAC,请利用线段之比可转化为面积之比的思想方法,求证:
AC
AB
DC BD =
.
检测同学们对“同高的两个三角形的面积之比与对应底边的比的相互转化”的掌握程度。

能够初步利用面积解决简单的问题。

要求:①学生独立完成
②老师巡视并请部分学生板书
四、
课堂小结
今天你学到了什么?还有什么疑问吗?
五、
学习检测1、如图,已知在△ABC中,点E为AB的中点,作□BCDE,由点C向AB、DE做垂线CF、CG,垂足分别是点F、G;
求证:BC CG AE CF
=
2、如图,设△ABC的面积为1,点D是边AB上的一点,

1
3
AD
AB
=,若在边AC上取一点E,使四边形DECB的面
积为3
4
,求
CE
EA
的值。

3、如图,梯形ABCD,BC//AD,BC=3AD,点E在边AD上,

1
4
AE
BE
=,求△BEC的面积与四边形AECD的面积之比。

4、如图,在□A BCD中,P为对角线BD上一点,且
PE AB
⊥,PF BC
⊥,垂足分别为E、F
求证:AB PF BC PE
=
六、
作业布置练习册
阅读:课本56页漫谈“出入相补原理”
A
E
D
B C
教案设计说明
本节课是24.2比例线段的第2节课—用面积证比例线段,是在学习了比例线段的相关概念及性质后,对比例线段的相关应用学习。

利用面积进行相关几何题的证明在之前学生也略有涉及,往往面积法会给我们提供一个全新的思路,但一般比较难想到,学生也没有系统的学习面积法在证明题中的具体用法,同高(或等高)的两个三角形的面积比,可以转化为相关的线段比,在今后的有关证明中还要用到。

所以,用面积证比例线段的学习有其重要性和必要性。

下面我就本节课的教案设计简要说明如下:
一、以已有知识为基础,逐层深入
本节课虽没有新的定理或概念的学习,但数学方法的学习,解题思路的扩展尤为重要。

本节课通过三个小填空题作为引入,利用同高的两个三角形的面积之比与对应底边的比相互转化,形成思维基础。

本节课课本内容上只有例2,但如果将例2直接抛给学生,学生将无从下手,因此,在例题的教学中将例题抽丝剥茧,逐层深入,由学生熟悉的从梯形中找面积相等的三角形问题逐步到证明比例线段问题;同时通过将题目的条件结论互换,更进一步让学生体会“同高(或等高)的两个三角形的面积比与相关的线段比”的相互转化。

二、关注数学思想方法在解决问题过程中的价值
数学的学习除了基本知识、基本概念的学习之外,更重要的是数学思想方法的学习
三、多给学生训练的时间
数学的学习总是伴随着数字之间的运算,这一节课也不例外,每一个环节,新课的引入,新课的自学检测等等都是以题目的形式出现的,法则的学习最终都是以正确的计算为目的的,所以通过计算以及知识的辨别与分析来掌握学生的认知程度是一个比较有效的方法。

最后对本节课更加是对本章课知识的一个掌握通过学习检测来判断,同时也可以及时发现学生中的问题,并进行一对一的辅导。

从而使班中绝大多数同学都能够对二次根式的混合运算有一个很好的掌握。

4、课堂教学中的板书呈现以下两个设计思想∶①板书应切实反映本节课的教学重难点,并向学生渗透重要的数学思想;②学生板书演示,注重推理表达书写规范和严密性,旨在对学生几何学习的“双基”的夯实。

相关文档
最新文档