常用逻辑用语第一节命题

合集下载

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

高二数学选修2-1第一章常用逻辑用语_知识点+习题+答案

第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第一章常用逻辑用语测试题一、 选择题(每道题只有一个答案,每道题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( ) A 、真命题与假命题的个数相同 B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2、下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -123是有理数,则x 是无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是() A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A 、ab =0B 、a +b=0C 、a =bD 、a 2+b 2=0 7、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题() A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、 D 、若x =a 或x =b ,则x 2-(a +b )x +ab =08、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A 、 存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件 11.在下列结论中,正确的是( )①""q p ∧为真是""q p ∨为真的充分不必要条件 ②""q p ∧为假是""q p ∨为真的充分不必要条件 ③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件 A. ①② B. ①③ C. ②④ D. ③④ 12.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5 二、填空题(每道题4分,共16分)13、判断下列命题的真假性: ①、若m>0,则方程x 2-x +m =0有实根 ②、若x>1,y>1,则x+y>2的逆命题③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的否定形式是 否命题是15、若把命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,构成它的两个简单命题分别是_____________________________________。

2018年高中数学 第一章 常用逻辑用语 1.1.1 命题

2018年高中数学 第一章 常用逻辑用语 1.1.1 命题

K12课件
10
判断命题的真假
[典例] 判断下列命题的真假,并说明理由. (1)正方形既是矩形又是菱形; (2)当 x=4 时,2x+1<0; (3)若 x=3 或 x=7,则(x-3)(x-7)=0; (4)一个等比数列的公比大于 1 时,该数列一定为递增数列.
K12课件
11
[解] (1)是真命题,由正方形的定义知,正方形既是矩 形又是菱形.
K12课件
15
[解] (1)若一个数是 6,则它是 12 和 18 的公约数,是 真命题.
(2)若 a>-1,则方程 ax2+2x-1=0 有两个不等实根, 是假命题.
(3)若一个四边形是平行四边形,则它的对角线互相平 分,是真命题.
(4)已知 x,y 为非零自然数,若 y-x=2,则 y=4,x=2, 是假命题.
K12课件
8
判断语句是否是命题的策略 (1)命题是可以判断真假的陈述句,因此,疑问句、 祈使句、感叹句等都不是命题. (2)对于含变量的语句,要注意根据变量的取值范 围,看能否判断其真假,若能,就是命题;若不能,就 不是命题.
K12课件
9
[活学活用] 判断下列语句是否为命题,并说明理由. (1)若平面四边形的边都相等,则它是菱形; (2)任何集合都是它自己的子集; (3)对顶角相等吗? (4)x>3. 解:(1)是陈述句,能判断真假,是命题. (2)是陈述句,能判断真假,是命题. (3)不是陈述句,不是命题. (4)是陈述句,但不能判断真假,不是命题.
()
(2)“x2-3x+2=0”是命题
()
答案:(1)√ (2)×
K12课件
4
2.语句“若 a>b,则 a+c>b+c”

高中数学选修1:知识点总结归纳

高中数学选修1:知识点总结归纳

高中数学选修1-1知识点总结归纳常用逻辑用语1.1命题及其关系1.1.1命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间原命题若p ,则q 逆命题若q ,则p 否命题若p ⌝,则q ⌝逆否命题若q ⌝,则p⌝原命题逆命题否命题逆否命题互为逆否互为逆否互逆互否互否若p ⌝,则q⌝若q ⌝,则p⌝若p ,则q若q ,则p互逆的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系:(1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

常用逻辑用语

常用逻辑用语

第二单元 常用逻辑用语考点要求1.常用逻辑用语 (1)命题及其关系 ① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词 通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义. (3)全称量词与存在量词 ① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义; ② 能正确地对含有一个量词的命题进行否定.第一节 命题与充要条件自主学习1.常用逻辑用语 (1)命题命题:可以判断真假的语句叫命题; 2.四种命题的形式原命题:若p 则q , 逆命题:若q 则p ,否命题: 若p ⌝ 则q ⌝,逆否命题:若q ⌝ 则p ⌝, 3.四种命题之间的关系:注:①原命题为真,但其逆命题不一定真;其否命题不一定为真;其逆否命题为真.②互为逆否命题的两个命题同真同假.③否命题即否定条件又否定结论;命题的否定仅否定结论. 二、充分必要条件:一般地,如果已知p q ⇒,那么就说:p 是q 的充分条件;q 是p 的必要条件. 可分为四类:1. 充分不必要条件,即p q ⇒成立,而q p ⇒不成立;2. 必要不充分条件,即p q ⇒不成立,而q p ⇒成立;3. 既充分又必要条件,即p q ⇒成立,又有q p ⇒成立;4. 既不充分也不必要条件,即p q ⇒不成立,又有q p ⇒不成立.一般地,如果既有p q ⇒,又有q p ⇒,就记作:p q ⇔.“⇔”叫做等价符号.互 逆互 为 为 互否 逆 逆 否互 否互 否互 逆这时p既是q的充分条件,又是q的必要条件,称p是q的充分必要条件,简称充要条件.三、反证法的三步骤:①反设:假设命题的结论不成立,即假设命题的反面成立.②归谬:从假设出发,经过推理论证,得出矛盾.③结论:由矛盾判定假设不成立,从而原命题的结论成立.教材透析逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题.复合命题:由简单命题与逻辑联结词构成的命题.常用小写的拉丁字母p,q,r,s,……表示命题,故复合命题有三种形式:p或q;p且q;非p.(2)复合命题的真值“非p”形式复合命题的真假可以用下表表示:“p且q“p或q“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;③真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容.(3)四种命题如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题.两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假.(5)全称命题与特称命题这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号∀表示。

人教B版高中数学必修一课件 《常用逻辑用语》集合与常用逻辑用语PPT(第1课时命题与量词)

人教B版高中数学必修一课件 《常用逻辑用语》集合与常用逻辑用语PPT(第1课时命题与量词)
23
3.下列不是全称量词命题的是 ( ) A.任何一个实数乘零都得零 B.自然数都是整数 C.高一(1)班绝大多数同学是团员 D.每一个四边形的内角和都是 180° C [“高一(1)班绝大多数同学是团 员”,即“高一(1)班有的同 学不是团员”,不是全称量词命题.]
24
存在量词和存在量词命题
【例 4】 下列命题中存在量词命题的个数是( ) ①至少有一个偶数是质数; ②∃x∈R,x2-1>0; ③有的平行四 边形是菱形.
D [选项D中含有存在量词“存在”,所以根据存在量词命题 的定义知选D.]
42
3.下列命题: ①所有合数都是偶数; ②x∈R,(x-1)2+1≥1; ③有些无理数的平方还是无理数.其中既是全称量词命题,又是真命 题的个数是( )
A.0 B.1 C.2 D.3 B [命题①是假命题;命题②既是全称量词命题,又是真命 题;命题③既是存在量词命题, 又是真命题,故选B.]
4
2.全称量词和全称量词命题 (1)一般地,“ 任意 ”“所有”“每一个”在陈述中表示所述事 物的全体,称为全称量词,并用符号“ ∀”表示. (2)含有 全称量词 的命题叫做全称量词命题,通常将含有变量 x 的语句用 p(x),q(x),r(x),…表示,变量 x 的取值范围用 M 表示, 那么全称量词命题“对 M 中任意一个 x,p(x)成立”可用符号简记为
40
1.下列语句不是命题的有( ) ①若 a>b,b>c,则 a>c;②x>2;③3<7. A.0 个 B.1 个 C.2 个
D.3 个
B [①③是可以判断真假的陈述句,是命题;②不能判断真 假,不是命题.]
41
2.下列命题是存在量词命题的是( ) A.对顶角相等 B.正方形都是四边形 C.不相交的两条直线是平行直线 D.存在实数大于等于 1

高中数学,常用逻辑用语题型归纳(解析版)

高中数学,常用逻辑用语题型归纳(解析版)

第一章常用逻辑用语第一节:简单命题‖知识梳理‖1.命题的概念一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.1.1.对于命题概念的理解(1)并不是任何语句都是命题,一个语句是命题应具备两个条件:①该语句是陈述句;②能够判断真假。

一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有字母变量的语句,根据字母的取值范围,若能判断真假,则是命题;若不能判断真假,则不是命题.2.命题的分类判断为真的语句为真命题,判断为假的语句为假命题.3.命题的结构命题的结构形式是“若p,则q”,其中p是条件,q是结论.(1)在数学中,一般用小写字母p,q,r,…等表示命题.如命题p:2是无理数;命题q:π是有理数.(2)常见的命题形式为:“若p,则q”,其中p称为命题的条件,q称为命题的结论.当一个命题不是“若p,则q”的形式时,为了找出命题的条件和结论,可以对命题改写为“若p,则q”的形式.如命题“菱形的对角线互相垂直且平分”,可以改写为:“若一个四边形是菱形,则它的对角线互相垂直且平分”.‖题型归纳‖题型一命题及其真假的判断例题1、判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)垂直于同一直线的两条直线必平行吗?(2)x 2+4x +5>0(x ∈R ); (3)x 2+3x -2=0;(4)一个数不是正数就是负数; (5)4是集合{1,2,3,4}中的元素; (6)求证y =sin 2x 的最小正周期为π. 【解】(1)是疑问句,不是命题.(2)是命题.因为当x ∈R 时,x 2+4x +5=(x +2)2+1>0恒成立,可判断真假,所以是命题,而且是真命题.(3)不是命题.因为语句中含有变量x ,在没给定x 的值之前,无法判断语句的真假,所以不是命题. (4)是命题.因为数0既不是正数也不是负数,所以是假命题. (5)是命题.因为4∈{1,2,3,4},且是真命题. (6)是祈使句,不是命题.练习1、下面命题中是真命题的是( )A .函数y =sin 2x 的最小正周期是2π B .等差数列一定是单调数列 C .直线y =ax +a 过定点(-1,0)D .在△ABC 中,若AB →·BC →>0,则角B 为锐角解析:A 中,y =sin 2x =12-12cos 2x ,周期T =π,A 为假命题;B 中,当公差为0时,等差数列为常数列,B 为假命题;D 中,若AB →·BC →>0,则AB →与BC →的夹角为锐角,角B 为钝角,D 为假命题,故C 正确. 答案:C题型二 命题的结构形式例题2、把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)当x 2-2x -3=0时,x =-1或x =3;(3)有两个内角之和大于90°的三角形是锐角三角形; (4)实数的平方是非负数;(5)平行于同一平面的两条直线互相平行. 【解】(1)若ac >bc ,则a >b ,是假命题.(2)若x 2-2x -3=0,则x =-1或x =3,是真命题.(3)若一个三角形中,有两个内角之和大于90°,则这个三角形是锐角三角形,是假命题. (4)若一个数是实数,则它的平方是非负数,是真命题.(5)若两条直线平行于同一个平面,则它们互相平行,是假命题.练习2、把下列命题改写成“若p,则q”的形式,并判断其真假.(1)能被9整除的数是偶数;(2)当x2+(y-1)2=0时,有x=0,y=1;(3)如果a>1, 那么函数f(x)=(a-1)x是增函数.解:(1)若一个数能被9整除,则这个数是偶数,是假命题.(2)若x2+(y-1)2=0,则x=0,y=1,是真命题.(3)若a>1,则函数f(x)=(a-1)x是增函数,是假命题.‖随堂练习‖1.下列语句为命题的个数有( )①一个数不是正数就是负数;②梯形是不是平面图形呢?③22 019是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.A.1个B.2个C.3个D.4个解析:①④是命题,故选B.答案:B2.下列命题中是假命题的是( )A.若a·b=0,则a⊥b(a≠0,b≠0)B.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析:B中两个向量模相等,方向不一定相同,故B为假命题.答案:B3.已知α,β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是( ) A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m⊂α,n⊂α,l⊥n,l⊥m,则l⊥αC.若m∥α,n⊥β且α⊥β,则m⊥nD.若l⊥α且l⊥β,则α∥β解析:A中,α与β有可能平行,A错;B中,m与n不一定相交,B错;C中,m与n的关系不确定,C错;D中,垂直于同一条直线的两个平面互相平行,D正确.故选D.答案:D4.指出下列命题中的条件p和结论q.(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分. 解:(1)条件p :整数a 能被2整除,结论q :整数a 是偶数.(2)条件p :四边形是菱形,结论q :四边形的对角线互相垂直且平分. 5.把下列命题改写为“若p ,则q ”的形式,并判断其真假.(1)函数y =x 3是奇函数; (2)奇数不能被2整除;(3)与同一直线平行的两个平面平行;(4)已知x ,y 是正整数,当y =x +1时,y =3,x =2. 解:(1)若一个函数是y =x 3,则它是奇函数,它是真命题.(2)若一个数是奇数,则它不能被2整除,它是真命题.(3)若两个平面都与同一直线平行,则这两个平面平行,它是假命题. (4)已知x ,y 是正整数,若y =x +1,则y =3,x =2,它是假命题. 6.已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是( )A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数解析:∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A 正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0]f (x )=cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π4,f (x )在[-π,0]上不单调,D 为假命题,故选D. 答案:D四种命题及其相互关系‖知识梳理‖1.四种命题的概念2.四种命题的相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.4.命题的真假判断一个命题要么是真命题,要么是假命题,不能既真又假,也不能模棱两可,无法判断其真假.判断一个命题为真命题,需要逻辑推理(证明),判断一个命题是假命题,只需举出一个反例即可.在四种命题中,互为逆否的两个命题同真或同假,称为等价命题.原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题中真假命题的个数一定为偶数个.‖题型归纳‖题型一四种命题的概念例题1、写出下列命题的逆命题、否命题、逆否命题.(1)若a<1,则方程x2+2x+a=0有实根;(2)若ab是正整数,则a,b都是正整数;(3)若a+5是有理数,则a是无理数.【解】(1)原命题的逆命题为:若方程x2+2x+a=0有实根,则a<1.否命题为:若a≥1,则方程x2+2x+a=0没有实根.逆否命题为:若方程x2+2x+a=0没有实根,则a≥1.(2)原命题的逆命题为:若a,b都是正整数,则ab是正整数;否命题为:若ab不是正整数,则a,b不都是正整数;逆否命题为:若a,b不都是正整数,则ab不是正整数.(3)原命题的逆命题为:若a是无理数,则a+5是有理数.否命题为:若a+ 5 不是有理数,则a不是无理数.逆否命题为:若a不是无理数,则a+5不是有理数.练习1、“若a≥2,则a2≥4”的否命题是( )A.若a≤2,则a2≤4B.若a≥2,则a2≤4C.若a<2,则a2<4D.若a≥2,则a2<4解析:否命题既否定条件,又否定结论,所以“若a≥2,则a2≥4”的否命题为“若a<2,则a2<4”,故选C.答案:C题型二四种命题的相互关系例题2、下列说法中,不正确的是( )A.“若p,则q”与“若q,则p”互为逆命题B.“若﹁p,则﹁q”与“若q,则p”互为逆否命题C.“若﹁p,则﹁q”是“若p,则q”的逆否命题D.“若﹁p,则﹁q”与“若p,则q”互为否命题【解析】根据四种命题的概念知,A、B、D正确;C错误.【答案】 C练习2、若命题A的否命题为B,命题A的逆否命题为C,则B与C的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:设命题A为:“若p,则q”,依题意得,命题B为:“若﹁p,则﹁q”,命题C为:“若﹁q,则﹁p”,所以B与C为互逆命题.答案:A题型三四种命题的真假判断例题3、有下列四个命题:①“若b2=ac,则a,b,c成等比数列”的否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a,b是非零向量,若a·b>0,则a与b方向相同”的逆否命题;④“若x≤3,则x2-x-6>0”的逆否命题.其中为真命题的个数是( )A.1 B.2C.3 D.4【解析】命题“若b2=ac,则a,b,c成等比数列”的逆命题为:“若a,b,c成等比数列,则b2=ac”,是真命题.因为逆命题与否命题等价,所以①正确;因为②中原命题的逆命题为:“若直线x+y=0与直线2x+my+1=0平行,则m=2”,是真命题,故②正确;对于③可考虑原命题.设a=(0,1),b=(1,1),则a·b=1>0,但a与b不同向,所以原命题为假命题,故③为假命题;④中命题“若x≤3,则x2-x+6>0”的逆否命题为:“若x2-x+6≤0,则x>3”,是假命题,故④为假命题.【答案】 B练习3、下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:A中,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,为真命题;B中,命题“若x>1,则x2>1”的逆命题为“若x2>1,则x>1”,为假命题,所以其否命题为假命题;C中,命题的逆命题为“若x2+x-2=0,则x=1”,为假命题,所以其否命题为假命题;D中,命题“若x2>1,则x>1”为假命题,则逆否命题为假命题,故选A.答案:A题型四、等价命题的应用例题4、判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假.【解】 解法一:原命题的逆否命题:已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.真假判断过程如下:抛物线y =x 2+(2a +1)x +a 2+2开口向上,Δ=(2a +1)2-4(a 2+2)=4a -7. 若a <1,则4a -7<0.所以抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.所以关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故逆否命题为真命题. 解法二:判断原命题的真假.已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集, 则Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,得a ≥74,从而a ≥1成立.所以原命题为真命题.又因为原命题与其逆否命题等价,所以逆否命题为真命题.练习4、已知奇函数f (x )是定义在R 上的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0. 证明:原命题的逆否命题是:若a +b <0,则f (a )+f (b )<0.∵a +b <0,∴a <-b . 又∵f (x )在R 上为增函数, ∴f (a )<f (-b ).又f (x )为奇函数,∴f (-b )=-f (b ). ∴f (a )<-f (b ),即f (a )+f (b )<0. ∴原命题的逆否命题为真命题. 故原命题成立.‖随堂练习‖1.命题“若a >b ,则a -1>b -1”的否命题是( )A .若a >b ,则a -1≤b -1B .若a >b ,则a -1<b -1C .若a ≤b ,则a -1≤b -1D .若a <b ,则a -1<b -1 解析:否命题应同时否定条件和结论. 答案:C2.命题“若p 不正确,则q 不正确”的逆命题的等价命题是( )A .若q 不正确,则p 不正确B .若q 不正确,则p 正确C .若p 正确,则q 不正确D .若p 正确,则q 正确解析:由于原命题的逆命题与否命题互为等价命题,故D 正确. 答案:D3.下列有关命题的说法正确的是( )A .命题“若xy =0,则x =0”的否命题为“若xy =0,则x ≠0”B .“若sin α=12,则α=π6”的逆否命题为真命题C .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题解析:C 中,原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,是真命题. 答案:C 4.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有____________;互为否命题的有____________;互为逆否命题的有____________. 解析:命题③可以改写为:若一个四边形是正方形,则它的四条边相等;命题④可以改写为:若一个四边形是圆内接四边形,则它的对角互补;命题⑤可以改写为:若一个四边形的对角不互补,则它不内接于圆.其中②和④,③和⑥互为逆命题;①和⑥,②和⑤互为否命题;①和③,④和⑤互为逆否命题. 答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤5.写出命题“如果|x -2|+(y -1)2=0,则x =2且y =1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:如果x =2且y =1,则|x -2|+(y -1)2=0.真命题.否命题:如果|x -2|+(y -1)2≠0,则x ≠2或y ≠1.真命题. 逆否命题:如果x ≠2或y ≠1,则|x -2|+(y -1)2≠0.真命题.6.设△ABC 的三边分别为a ,b ,c ,在命题“若a 2+b 2≠c 2,则△ABC 不是直角三角形”及其逆命题中( )A .原命题真,逆命题假B .原命题假,逆命题真C .两个命题都真D .两个命题都假解析:原命题“若a 2+b 2≠c 2,则△ABC 不是直角三角形”是假命题,而逆命题“若△ABC 不是直角三角形,则a 2+b 2≠c 2”是真命题.故选B.充分条件与必要条件‖知识梳理‖1.推出关系一般地,命题“若p,则q”为真,可记作“p⇒q”;“若p,则q”为假,可记作p⇒q2.充分条件与必要条件一般地,如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.若p⇒q,则说p是q的充分条件,所谓“充分”,即要使q成立,有p成立就足够了;q是p的必要条件,所谓“必要”,即q是p成立的必不可少的条件,缺其不可.3.充要条件如果p⇒q且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件,记作p⇔q.同时q也是p 的充要条件.若p⇒q,同时q⇒p,则称p与q互为充要条件,可以表示为p⇔q(p与q等价),它的同义词还有:“当且仅当”、“必须只需”、“…,反过来也成立”.准确地理解和使用数学语言,对理解和运用数学知识是十分重要的.4.充分条件和必要条件的判断①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇒q,且q p,则称p是q的充分不必要条件.③若p q,且q⇒p,则称p是q的必要不充分条件.④若p⇒q,且q⇒p,则称p是q的充要条件.⑤若p q,且q p,则称p是q的既不充分也不必要条件.4.从集合与集合之间的关系看充分条件、必要条件:‖题型归纳‖题型一充分条件、必要条件的判定例题1、指出下列各题中,p是q的什么条件(在充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件中选出一种作答).(1)在△ABC中,p:∠A>∠B;q:BC>AC;(2)设x,y∈R,p:x+y≠8;q:x≠2或y≠6;(3)已知x,y∈R,p:(x-1)(y-2)=0;q:(x-1)2+(y-2)2=0;(4)在△ABC中,p:sin A>sin B;q:tan A>tan B.【解】(1)在△ABC中,有∠A>∠B⇔BC>AC,即p⇔q,所以p是q的充要条件.(2)由已知得﹁p:x+y=8;﹁q:x=2且y=6.易知﹁q⇒﹁p,但﹁p﹁q,等价于p⇒q,且q p,所以p是q的充分不必要条件.(3)由已知得p:A={(x,y)|x=1或y=2};q:B={(1,2)},易知q⇒p,且p q,所以p是q 的必要不充分条件.(4)在△ABC中,取∠A=120°,∠B=30°,则p q;又取∠A=30°,∠B=120°,则q p.所以p是q的既不充分也不必要条件.练习1—1、“a=1”是“直线a2x-y+3=0与x+ay-2=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习1-2、“a=4”是“y=x2-ax+1在(2,+∞)上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:(1)若直线a2x-y+3=0与x+ay-2=0垂直,则a2-a=0,则a=0或a=1,故“a=1”是“直线a2x-y+3=0与x+ay-2=0垂直”的充分不必要条件.(2)若函数y=x2-ax+1在(2,+∞)上是增函数,则a2≤2,即a≤4,故“a=4”是“y=x2-ax+1在(2,+∞)上是增函数”的充分不必要条件.答案:(1)A (2)A题型二充分条件、必要条件的应用例题2、已知命题p:对数log a(-2t2+7t-5)(a>0,a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+(a+2)<0.(1)若命题p为真命题,求实数t的取值范围;(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.【解】 (1)由对数式有意义,得-2t 2+7t -5>0,解得1<t <52,∴若命题p 为真命题,则实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52. (2)不等式t 2-(a +3)t +(a +2)<0, 可化为(t -1)(t -a -2)<0.若p 是q 的充分不必要条件,则1<t <52是不等式解集的真子集.则a +2>52,∴a >12.∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.练习2、已知函数f (x )=x 2-x +a ,集合A ={x |-1≤x ≤1},集合B ={x |f (x )≤0},若x ∈A 是x ∈B 的充分不必要条件,求a 的取值范围. 解:∵x ∈A 是x ∈B 的充分不必要条件,则f (x )≤0,x ∈[-1,1]恒成立, 即x 2-x +a ≤0,x ∈[-1,1]恒成立, 即f (x )max ≤0恒成立,∴⎩⎪⎨⎪⎧1+1+a ≤0,1-1+a ≤0,即a ≤-2.∴a 的取值范围为(-∞,-2].题型三 充要条件的证明例题3、已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.【证明】 证法一:①充分性:由xy >0,及x >y ,得x xy >y xy ,即1y >1x ,即1x <1y. ②必要性:由1x <1y,得1x -1y<0, 即y -xxy<0. ∵x >y ,∴y -x <0,∴xy >0. 由①②知,1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0.故y -xxy <0⇔xy >0. ∴1x <1y ⇔xy >0.即1x <1y的充要条件是xy >0.练习3、求证:关于x 的方程ax 2+bx +c =0有一个根为-1的充要条件是a -b +c =0. 证明:①充分性:∵a -b +c =0,∴a (-1)2+b (-1)+c =0,∴-1是方程ax 2+bx +c =0的一个根. ②必要性:∵ax 2+bx +c =0有一个根是-1, ∴a (-1)2+b (-1)+c =0, 即a -b +c =0.由①②知,方程ax 2+bx +c =0有一根为-1的充要条件是a -b +c =0.题型四 充要条件的探求例题4、设集合A ={x |-2≤x ≤a },B ={y |y =2x +3,x ∈A },M ={z |z =x 2,x ∈A },求使M ⊆B 的充要条件.【解】 ∵A ={x |-2≤x ≤a }.∴B ={y |y =2x +3,x ∈A }={y |-1≤y ≤2a +3}. 当-2≤a <0时,M ={z |a 2≤z ≤4}; 当0≤a ≤2时,M ={z |0≤z ≤4}; 当a >2时,M ={z |0≤z ≤a 2}. 故当-2≤a ≤2时,M ⊆B , 得2a +3≥4,即a ≥12.∴12≤a ≤2. 当a >2时,M ⊆B ,得 2a +3≥a 2,解得-1≤a ≤3. ∴2<a ≤3.综上知,M ⊆B 的充要条件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12≤a ≤3.练习4、直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是________. 解析:∵直线x +y +m =0与圆(x -1)2+(y -1)2=2相切,∴圆心(1,1)到直线x +y +m =0的距离等于2,∴|1+1+m |2=2,∴m =-4或m =0. 当m =-4或m =0时,直线与圆相切. 答案:m =-4或m =0‖随堂练习‖1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由a +b ≥ab +1,得a -1+b -ab ≥0,即(a -1)(1-b )≥0,∴⎩⎪⎨⎪⎧a ≥1,0<b ≤1或⎩⎪⎨⎪⎧0<a ≤1,b ≥1,∴a 2+b2≥1,即a +b ≥ab +1⇒a 2+b 2≥1,但当a =b =2时,有a 2+b 2≥1,而a +b <ab +1.∴“a 2+b 2≥1”是“a +b ≥ab +1”的必要不充分条件,故选B. 答案:B2.已知命题p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,命题q :函数g (x )=log a (x +1)(a >0,且a ≠1)在(-1,+∞)上是增函数,则﹁p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由p 成立,得a ≤1;由q 成立,得a >1,∴当﹁p 成立时,a >1,∴﹁p 是q 的充要条件. 答案:C3.若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若m ⊥α,l ⊥m ,则l ∥α或l ⊂α,反之,若m ⊥α,l ∥α,则l ⊥m ,∴“l ⊥m ”是“l ∥α”的必要不充分条件,故选B. 答案:B4.已知p :函数f (x )=|x -a |在(2,+∞)上是增函数,q :函数f (x )=a x(a >0,且a ≠1)是减函数,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:若p 为真,则a ≤2;若q 为真,则0<a <1.则q ⇒p ,pq ,∴p 是q 的必要不充分条件,故选A. 答案:A5.已知p :x 2-8x -20≤0,q :1-m ≤x ≤1+m (m >0),且p 是q 的充分不必要条件,求实数m 的取值范围.解:由x 2-8x -20≤0,得-2≤x ≤10,又p 是q 的充分不必要条件,∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2,m >0,(等号不能同时成立),解得m ≥9.∴实数m 的取值范围是[9,+∞).6.设x ∈R ,则“0<x <5”是“|x -1|<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:由|x -1|<1,得0<x <2,∴“0<x <5”是“0<x <2”的必要而不充分条件,故选B. 答案:B简单的逻辑联结词‖知识梳理‖1.逻辑联结词把两个命题联结而成新命题的常用逻辑联结词有“且”、“或”、“非”.2.简单命题与复合命题(1)不含逻辑联结词的命题叫做简单命题.(2)由简单命题和逻辑联结词构成的命题叫做复合命题.复合命题一般有三种类型:①p且q;②p或q;③非p.(3)复合命题的真假①p且q同真才真,其他均假;②p或q同假才假,其他均真;③非p与p真假相反.3.对逻辑联结词“或”的理解“或”与日常生活用语中的“或”意义不同,日常生活用语中的“或”带有“不可兼有”的意思,如工作或休息;而逻辑联结词中“或”含有“同时兼有”的意思,如x<-1或x>2.因此“p或q”的含义有三层意思:①p成立q不成立;②p不成立q成立;③p与q同时成立.4.对逻辑联结词“非”的理解“非”是否定的意思,如“3是非偶数”是对命题“3是偶数”进行否定而得出的新命题.一般地,写一个命题的否定,往往需要对正面叙述的词语进行否定,常用的正面叙述的词语与它的否定如下表:5.逻辑联结词与集合的运算集合中的“交”、“并”、“补”与逻辑联结词“且”、“或”、“非”有密切关系,设集合A={x|p(x)},B={x|q(x)},可有如下关系:A∩B={x|x∈A且x∈B}={x|p∧q};A∪B={x|x∈A或x∈B}={x|p∨q};∁U A={x|x∈U且x∉A}={x|﹁p}.6.命题的否定形式与否命题的关系:命题的否定与否命题都是对关键词进行否定,但有如下区别:(1)定义不同命题的否定是直接对命题的结论进行否定;而否命题则是对命题的条件和结论都否定后组成的新命题.(2)构成形式不同对于“若p,则q”形式的命题,其否定形式为“若p,则﹁q”,即不改变条件,只否定结论;而其否命题的形式为“若﹁p,则﹁q”,即对命题的条件和结论都否定.(3)与原命题的真假关系命题的否定的真假与原命题的真假总是相对的,即一真一假;而否命题的真假与原命题的真假没有必然联系.(4)“p或q”的否定是“非p且非q”,“p且q”的否定是“非p或非q”.‖题型归纳‖题型一命题的构成例题1、分别写出由下列命题构成的“p∧q”,“p∨q”,“﹁p”形式的命题:(1)p:π是无理数,q:e不是无理数;(2)p:12是3的倍数,q:12是4的倍数;(3)p:方程x2-3x+2=0的根是x=1,q:方程x2-3x+2=0的根是x=2.【解】(1)“p∧q”:π是无理数且e不是无理数;“p∨q”:π是无理数或e不是无理数;“﹁p”:π不是无理数.(2)“p∧q”:12是3的倍数且是4的倍数;“p∨q”:12是3的倍数或是4的倍数;“﹁p”:12不是3的倍数.(3)“p∧q”:方程x2-3x+2=0的根是x=1且方程x2-3x+2=0的根是x=2;“p∨q”:方程x2-3x+2=0的根是x=1或方程x2-3x+2=0的根是x=2;“﹁p”:方程x2-3x+2=0的根不是x=1.练习1、试写出下列命题中的p ,q .(1)梯形有一组对边平行且相等;(2)方程x 2+2x +1=0有两个相等的实数根或两根的绝对值相等; (3)一元二次方程至少有三个根. 解:(1)是p 且q 形式的命题.p :梯形有一组对边平行; q :梯形有一组对边相等.(2)是p 或q 形式的命题.p :方程x 2+2x +1=0有两个相等的实数根; q :方程x 2+2x +1=0的两根的绝对值相等.(3)是﹁p 的形式.p :一元二次方程最多有两个根.题型二 复合命题的真假判断例题2、分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题的真假:(1)p :π>3,q :π<2;(2)p :若x ≠0,则xy ≠0,q :若y ≠0,则xy ≠0;(3)p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边; (4)p :函数y =x 12的定义域为R ,q :函数y =x 2是偶函数.【解】 (1)∵p 是真命题,q 是假命题,∴p ∧q 是假命题,p ∨q 是真命题,﹁p 是假命题.(2)∵p 是假命题,q 是假命题,∴p ∧q 是假命题,p ∨q 是假命题,﹁p 是真命题. (3)∵p 是真命题,q 是真命题,∴p ∧q 是真命题,p ∨q 是真命题,﹁p 是假命题. (4)∵p 是假命题,q 是真命题,∴p ∧q 是假命题,p ∨q 是真命题,﹁p 是真命题.练习2—1、命题p :若ac 2>bc 2,则a >b ,命题q :在△ABC 中,若A ≠B ,则sin A ≠sin B ,下列选项正确的是( )A .p 假q 真B .p 真q 假C .“p 或q ”为假D .“p 且q ”为真练习2—2、已知命题p :不等式-x 2+2x <0的解集是{x |x <0或x >2},命题q :在△ABC 中,A >B 是sin A >sinB 的充要条件,则( )A .p 真q 假B .p ∨q 假C .p ∧q 真D .p 假q 真解析:(1)p 为真命题,q 为真命题,∴p 且q 为真,故选D.(2)由-x 2+2x <0,得x >2或x <0,故p 为真命题,在△ABC 中,A >B ⇔sin A >sin B ,故q 为真命题,所以p ∧q 为真,故选C. 答案:(1)D (2)C题型三 命题的否定与否命题例题3、写出下列命题的否定与否命题,并判断真假.(1)若abc =0,则a ,b ,c 中至少有一个为0; (2)若x 2+y 2=0,则x ,y 全为0; (3)等腰三角形有两个内角相等.【解】 (1)命题的否定:若abc =0,则a ,b ,c 中都不为0,为假命题;否命题:若abc ≠0,则a ,b ,c 都不为0,为真命题.(2)命题的否定:若x 2+y 2=0,则x ,y 中至少有一个不为0,为假命题; 否命题:若x 2+y 2≠0,则x ,y 中至少有一个不为0,为真命题. (3)命题的否定:等腰三角形的任意两个内角都不相等,为假命题; 否命题:不是等腰三角形的三角形中任意两个角都不相等,为真命题.练习3、“末位数字是1或3的整数不能被8整除”的否定形式是___________;否命题是___________. 解析:命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,因此否命题是:末位数字不是1且不是3的整数能被8整除. 答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除题型四 逻辑联结词“或”“且”“非”的应用例题4、设命题p :ln a <0;命题q :函数y =ax 2-x +a 的定义域为R .(1)若命题q 是真命题,求实数a 的取值范围;(2)若命题p 或q 是真命题,命题p 且q 是假命题,求实数a 的取值范围. 【解】 (1)对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立.当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立; 当a ≠0时,不等式恒成立的条件是@⎩⎪⎨⎪⎧a >0,Δ=(-1)2-4a ×a ≤0,解得a ≥12.所以命题q 为真命题时,a 的取值集合为Q =⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥12.(2)若命题p 为真,则0<a <1,由“p 或q 是真命题,p 且q 是假命题”可知,命题p ,q 一真一假,当p 真q 假时,由⎩⎪⎨⎪⎧0<a <1,a <12,得0<a <12;当p 假q 真时,由⎩⎪⎨⎪⎧a ≤0或a ≥1,a ≥12,得a ≥1.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫0,12∪[1,+∞).练习4、已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :二次函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围. 解:若函数y =log a (x +1)在(0,+∞)内单调递减,则0<a <1,∴p :0<a <1.若曲线y =x 2+(2a -3)x +1与x 轴交于两点, 则(2a -3)2-4>0,即a <12或a >52.∴q :a <12或a >52.若p ∧q 为假命题,p ∨q 为真命题,则p 与q 一真一假,若p 真q 假,由⎩⎪⎨⎪⎧0<a <1,12≤a ≤52,a >0且a ≠1,得a ∈⎣⎢⎡⎭⎪⎫12,1.若p 假q 真,由⎩⎪⎨⎪⎧a ≤0或a ≥1,a <12或a >52,a >0且a ≠1,得a ∈⎝ ⎛⎭⎪⎫52,+∞.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎭⎪⎫52,+∞.‖随堂练习‖1.已知命题p :x ∈A ∪B ,则﹁p 是( )A .x ∉A ∪B B .x ∉A 或x ∉BC .x ∉A 且x ∉BD .x ∈A ∩B解析:由x ∈A ∪B ,知x ∈A 或x ∈B .﹁p 是:x ∉A 且x ∉B .故选C. 答案:C2.已知p :|x +1|>2,q :x >a ,则﹁p 是﹁q 的充分不必要条件,则a 的取值范围是( )A.a≥1 B.a≤1C.a≥-3 D.a≤-3解析:由|x+1|>2,得x<-3或x>1,∵﹁p是﹁q的充分不必要条件,∴﹁p⇒﹁q,∴q⇒p,∴a≥1,故选A.答案:A3.设p,q是两个命题,若﹁(p∨q)是真命题,那么( )A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题解析:﹁(p∨q)是真命题,则p∨q是假命题,故p,q均为假命题.答案:D4.下列三个结论:①命题“若x-sin x=0,则x=0”的逆否命题为“若x≠0,则x-sin x≠0”;②若p是q的充分不必要条件,则﹁q是﹁p的充分不必要条件;③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件.其中正确结论的个数是( )A.0个B.1个C.2个D.3个解析:命题“若x-sin x=0,则x=0”的逆否命题为“若x≠0,则x-sin x≠0”,即①正确;由p是q的充分不必要条件,可得由p能推出q,但是q不能推出p,所以﹁q能推出﹁p,﹁p不能推出﹁q,故﹁q是﹁p的充分不必要条件,即②正确;若p∧q为真,则p,q都为真,所以p∨q为真;若p∨q为真,则p,q至少有一个为真,所以“p∧q为真”是命题“p∨q为真”的充分不必要条件,即③错误.故选C. 答案:C5.已知命题p:若a>b,则a2>b2,命题q:若a<b,则ac2<bc2,下列命题为真命题的是( ) A.p∧q B.p∧(﹁q)C.p∨(﹁q) D.p∨q解析:若a=-1,b=-2,满足a>b,但a2<b2,∴p为假命题,当c=0,a<b时,但ac2=bc2,q为假命题.∴p∧q为假,p∧(﹁q)为假,p∨q为假,p∨(﹁q)为真,故选C.答案:C6.已知命题p:α,β是第一象限角,则α>β是sin α>sin β的充要条件,命题q:若S n为等差数列{a n}的前n项和,则S m,S2m,S3m(m∈N*)成等差数列,下列命题为真命题的个数是( )①p∨(﹁q) ②(﹁p)∧q③(﹁p)∨(﹁q) ④p∧qA.1个B.2个C.3个D.4个解析:∵p为假命题,q为假命题,∴p∨(﹁q)为真命题,(﹁p)∧q为假命题,(﹁p)∨(﹁q)为真命题,p∧q为假命题.故选B. 答案:B全称量词与存在量词‖知识梳理‖1.全称量词和全称命题2.存在量词和特称命题3.全称命题与特称命题的辨析同一个全称命题或特称命题,由于自然语言的不同,可以有不同的表述方法,在实际应用中可以灵活地选择.有的命题省略全称量词,但仍是全称命题.例如:“实数的绝对值是非负数”,省略了全称量词“任意”.但它仍然是全称命题.因此,要判定一个命题是否是全称命题,除看它是否含有全称量词外,还要结合具体意义去判断.4.全称命题与特称命题的真假要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立;但要判定一个全称命题是假命题,却只需找出集合M中的一个x0,使得p(x0)不成立即可(这就是我们常说的“举出一个反例”).要判定一个特称命题为真命题,只要在限定集合M中,至少能找到一个x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.。

常用逻辑用语(命题及其关系)

常用逻辑用语(命题及其关系)

常用逻辑用语(命题及其关系)知识点一、命题定义:一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,为真命题;判断为不正确的命题,为假命题。

辨析:能够分辨哪一个是命题及其真假①判断一个语句是否是命题,关键在于能否判断其真假。

语句可分为疑问句、祈使句、感叹句与陈述句。

一般的,只有陈述句能分辨真假,其他类型的句子无所谓真假,我们把每个能分辨真假的陈述句作为一个命题。

②对于一个句子,有时我们可能无法判断其真假,但对这个句子却是有真假的,如:“太阳系外存在外星人”,对于这个句子所描述的情形,目前确定其真假,但从事物的本质而言,句子本身是可以判断其真假的。

这类语句也称为命题。

语句是不是命题,关键在于能不能判断其真假,也就是判断其是否成立。

③不判断真假的语句,就不能叫命题。

“ X<2”。

知识点二、四种命题1.原命题与逆命题即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,如果原命题是:⑴同位角相等,两直线平行;它的逆命题就是:⑵两直线平行,同位角相等2.否命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.例如,⑶同位角不相等,两直线不平行;⑷两直线不平行,同位角不相等3.原命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.4.四种命题的形式一般到,我们用p和q分别表示原命题的条件和结论,用「种命题的形式就是:原命题:若p则q; 逆命题:若q则p ;否命题:若「p则「q;逆否命题:若「q贝归p.【例1】判断下列命题的真假。

高中数学第一章常用逻辑用语1.1.1四种命题12111数学

高中数学第一章常用逻辑用语1.1.1四种命题12111数学
样的两个命题就叫做互否命题,若把其中一个命
题叫做原命题,则另一个就叫做原命题的否命题.
例如: 原命题是:同位角相等,两直线平行。 否命题(mìng tí)是:同位角不相等,两直线不平行。
第七页,共二十一页。
课中共(zhōnɡ ɡò①nɡ)学如果两个三角形全等,那么它们的面积相等;
④如果两个三角形的面积不相等,那么它们不全等。
逆否命题,并判断各命题的真假。
解 原命题(mìng tí):若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题(mìng tí);
否命题:若a 0,则ab 0 ”是假命题;
逆否命题:若ab 0,则a 0”是真命题;
原命题为真,它的否命题不一定为真;
原命题为真,它的逆否命题一定为真.
逆否命题 是:两直线不平行,同位角不相等。
第八页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)
探究 活动: (tànjiū)
1.探求(tànqiú)四种命题之间的关系,为 什么存在这种关系?
第九页,共二十一页。
课中共学
四种命题间的相互(xiānghù)关系:
原命题(mìng tí) 若p则q
互 否
例如:
原命题(mìng tí)是:同位角相等,两直线平行。 逆命题就是:两直线(zhíxiàn)平行,同位角相等。
第六页,共二十一页。
课中共(zhōnɡ ɡ①ònɡ如)学果两个三角形全等,那么它们的面积相等;
③如果两个三角形不全等,那么它们的面积不相等;
2.在两个命题中,一个命题的条件和结论分别 (fēnbié)是另一个命题的条件的否定和结论的否定,这
第十三页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

逆否命题原命题为:若a,则b。

逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。

原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。

命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。

其实这个东西可以认为是公理。

它和公理“排中律”是等价的。

我们数学的体系就是建立在这些公理之上。

2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。

复合命题是由简单命题通过逻辑连接词互相连接而组成的。

简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。

例如:“我爱你”。

这个句子不能算作命题。

因为是否“爱”的真假没有一个明确的判断标准。

如果“我爱你”是命题,那么它是一个简单命题。

我们可以把它等价转换为“若p,则q”的形式。

再谈论其逆否命题。

(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。

逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。

高二数学说课稿——《命题》

高二数学说课稿——《命题》

高二数学说课稿——《命题》各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢今天我说课的课题是人教版高二选修1—1第一章常用逻辑用语第一节《命题及其关系》的第一课时,现我就教材,教法,学法,教学程序,四个方面进行说明:一.说教材(一)教学内容本节课主要内容是命题的概念,能把命题改写若p则q的形式,渗透由特殊到一般的化归数学思想。

(二)教材的地位作用命题的概念,若p则q形式的命题是本章的重要内容,是后续学习充要条件的基础,这一章我们在初中的基础上学习常用逻辑用语,体会逻辑用语去表达和论证中的作用,他将成为反证法的理论依据,并为进一步学习,特别是培养学生的思维能力,推证能力打基础(三)教学目标1、知识与技能:(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;(2)能把命题改写成“若p,则q”的形式;2、过程与方法:(1)多让学生举命题的例子,培养他们的辨析能力;(2)能把命题改写成“若p,则q”的形式;培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(四)教学重点:命题的概念、命题的构成(五)教学难点:分清命题的条件、结论和判断命题的真假二说教法教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性。

以学生发展为本,有效的渗透数学思想方法,提高学生素质,根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)引导发现法(2)练习巩固法三、说学法教给学生学习方法比教给学生知识更重要,本节课注意调动学生积极思考,主动探索,尽可能地让学生参与到教学活动中,我进行如下学法指导:(1)由特殊到一般的划归方法:学习中学生在教师的引导下,通过具体的案例,让学生去观察、讨论、探索、分析、发现、归纳、概括(2)练习巩固法四、教学过程学生探究过程:1.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)三角形的三个内角之和等于1800(2)如果a,b是任意两个正实数,那么a+b≥2(ab)1/2;(3)如果实数a满足a2=9,则a=3;(4)中学生目前的学业负担过重;(5)中国将在本世纪中叶达到中等发达国家的水平2.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

新教材高中数学第2章常用逻辑用语1命题定理定义2

新教材高中数学第2章常用逻辑用语1命题定理定义2

判断下列各命题中p是q的什么条件: (1)p:x-2=0,q:(x-2)(x-3)=0; (2)p:t≠2,q:t2≠4; (3)p:0<x<3,q:|x-1|<2.
解析 (1)x-2=0⇒(x-2)(x-3)=0, (x-2)(x-3)=0⇒x-2=0或x-3=0. ∴“x-2=0”是“(x-2)(x-3)=0”的充分不必要条件. (2)t≠2 t2≠4(当t=-2时,t2=4), t2≠4⇒t≠2且t≠-2. ∴“t≠2”是“t2≠4”的必要不充分条件. (3)令A={x|0<x<3},B={x||x-1|<2}={x|-1<x<3}. 易知A⫋B,∴p是q的充分不必要条件.
探求充分条件、必要条件的步骤 (1)分清“条件”和“结论”,明确探求的方向; (2)分析题目中的已知条件和隐含条件,进行等价转化,即可得到使结论成立的充要条 件; (3)将得出的充要条件对应的范围扩大或缩小,即可得到结论成立的必要不充分条件 或充分不必要条件.
求方程x2+kx+1=0与x2+x+k=0有一个公共实数根的充要条件. 思路点拨 设两个方程的公共实数根为x0,列方程组求出k的值,再检验k取此值时两个方程是否有 一个公共实数根,从而解决问题.
1 | 命题、定理、定义的概念 1.命题 在数学中,我们将① 可判断真假 的陈述句叫作命题.许多命题可表示为“如果p, 那么q”或“若p,则q”的形式,其中p叫作命题的② 条件 ,q叫作命题的③ 结论 . 2.定理 在数学中,有些已经被证明为真的命题可以作为推理的依据而直接使用,一般称之为 定理. 3.定义 定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.
2 | 充分条件、必要条件的证明与探求

常用逻辑用语.板块一.命题与四种命题.学生版

常用逻辑用语.板块一.命题与四种命题.学生版

题型一:判断命题的真假【例1】 判断下列语句是否是命题: ⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由.(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交;⑵垂直于同一个平面的两个平面互相垂直;⑶每一个周期函数都有最小正周期;⑷两个无理数的乘积一定是无理数;⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根.⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+;⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例5】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个 典例分析板块一.命题与四种命题【例6】 命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( ) A .p 真q 真 B . p 真q 假 C . p 假q 真 D . p 假q 假【例7】 给出下列三个命题:①若1≥a b >-,则11≥a b a b++; ②若正整数m 和n 满足≤m n ()2n m n m -; ③设11(),P x y 为圆221:9O x y +=上任一点,圆2O 以(),Q a b 为圆心且半径为1.当2211()()1a x b y -+-=时,圆1O 与圆2O 相切;其中假命题的个数为( )A .0B .1C .2D .3【例8】 已知三个不等式:000,,c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( )A .0B .1C .2D .3【例9】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( )A .若m n αα∥,∥,则m n ∥B .若αγβγ⊥⊥,,则αβ∥C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例10】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥.其中真命题的个数是( )A .0B .1C .2D .3【例11】 已知三个不等式:0,0,0c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是 ()A. 0B. 1C. 2D. 3【例12】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π.②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象. ⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例13】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例14】 设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是___________.【例16】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换;w .w .w .k .s .5.u .c .o .m ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线.其中真命题是 (写出所有真命题的序号)【例17】 设有两个命题::p 不等式|||1|x x a ++>的解集为R ,命题:q ()(73)x f x a =--在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是 .【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根;其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”:1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=;②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=;③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个 【例20】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).题型二:四种命题之间的关系【例21】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例22】 写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例23】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”;⑶“当0c >时,若a b >,则ac bc >”;⑷“若5x y +=,则3x =且2y =”;【例24】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”;⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”;⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”;⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例25】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ②如果两个三角形不全等,那么它们的面积不相等; ③如果两个三角形的面积不相等,那么它们不全等; ④命题②、③、④与命题①有何关系?【例26】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若3x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例27】 命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠C .若0(),a b a b =≠∈R ,则220a b +≠D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠【例28】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21≥x ,则1≥x 或1≤x -B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1≥x 或1≤x -,则21≥x【例29】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例30】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题;④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( )A .1B .2C .3D .4【例31】 下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为()A .0个B .1个C .2个D .3个【例32】 有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题. 其中真命题为 ( )A .①②B .②③C .①③D .③④【例33】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例34】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例35】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例36】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例37】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例38】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例39】 “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为 ;【例40】 有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例41】 命题“若,x y 是奇数,则x y +是偶数”的逆否命题是 ;它是 命题.【例42】 写出命题“若0m >,则方程20x x m +-=有实数根”的逆否命题,判断其真假,并加以证明.【例43】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列;⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例44】 在平面直角坐标系xOy 中,直线l 与抛物线x y 22=相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.。

常用逻辑用语

常用逻辑用语

常用逻辑用语一、充分条件与必要条件1.1、命题的定义在数学中,命题是用来判断一件事情的句子。

这些句子用语言、符号或数学式子来表达,并且能够明确地判断为真或假。

数学命题是数学推理和证明的基础,它们构成了数学理论的基石。

注意:命题的明确性和可判断性。

1.2、真命题与假命题真命题:定义:如果一个命题在特定条件下为真,即它所陈述的内容在逻辑上是成立的,那么该命题被称为真命题。

举例说明:如“两直线平行,则它们不会相交”是一个真命题。

假命题:定义:如果一个命题在特定条件下为假,即它所陈述的内容在逻辑上是不成立的,那么该命题被称为假命题。

举例说明:如“所有的质数都是奇数”是一个假命题,因为存在反例(如2是质数但它是偶数)。

1.3、数学命题的一般形式数学命题经常以“若p,则q”的形式出现,其中p被称为命题的条件,q被称为命题的结论。

这种形式是数学推理和证明中常用的结构。

条件(p):命题的前提或假设部分,是推理的起点。

结论(q):在条件成立的情况下,必然为真的部分,是推理的终点。

示例:命题“若一个数是偶数,则它能被2整除”中,“一个数是偶数”是条件p,“它能被2整除”是结论q。

根据整数的性质,这个命题是真命题。

1.4、充分条件和必要条件的背景在探索世界的奥秘时,人们常常需要判断事物之间的因果关系或逻辑关系。

充分条件和必要条件作为逻辑学中的核心概念,为我们提供了一种分析和理解这些关系的工具。

从古代的哲学思考到现代的科学研究,充分条件和必要条件始终扮演着重要角色。

1.5、充分条件和必要条件定义(1)、充分条件定义:如果条件A成立,那么结果B一定成立,即A是B的充分条件。

换句话说,A的发生足以保证B的发生,但B的发生不一定只由A导致。

实例:假设“下雨”是“地面湿润”的充分条件。

当天空下雨时,地面一定会变得湿润;但地面湿润的原因可能还有其他,如洒水、河流泛滥等。

需要着重记忆和理解的地方:充分条件强调的是“足够性”,即A足够导致B,但B的发生不一定仅由A引起。

常用逻辑用语知识点

常用逻辑用语知识点

二、常用逻辑用语知识点一、命题、定理、定义1.命题定义:将可判断真假的陈述句叫作命题.数学中,许多命题可表示为“如果p,那么q”或“若p,则q”的形式.其中p叫做命题的条件,q叫做命题的结论.注意:判断一个语句是否为命题,关键有两点:①是否为陈述句(其他语句如疑问句、祈使句、感叹句等一般都不是命题);②能否判断真假(如“x≥29”等都不能判断真假,故都不是命题.).2.定理和定义的概念(1)有些已经被证明是真的命题可作为推理的依据而直接使用,称之为定理.(2)定义是对某些对象标明符号,指明称谓,或者揭示所研究问题中对象的内涵.3.如何判断命题的真假?在判断命题是真命题时,要进行证明;要说明命题是假命题,只需找出一个反例.二、充分条件、必要条件、充要条件1、充分条件、必要条件概念和判断如果p⇒q,那么称p是q的充分条件,也称q是p的必要条件.如果p q,那么p不是q的充分条件,q不是p的必要条件.注意:(1)“若p,则q”是真命题;p ⇒q;p 是q 的充分条件;q 是p 的必要条件,这四种说法是等价的.(2)要判断p 是不是q 的充分条件,就是看p 能否推出q,即判断“若p,则q”这一命题是否为真命题.(3)要判断q 是不是p 的必要条件,就是看p 能否推出q,即判断“若p,则q”这一命题是否为真命题.(4)充分条件、必要条件的判断方法:除了定义法,有时也可以利用集合间的包含关系进行判断,也就是小范围推出大范围.2、充要条件概念和判断:如果“若p 则q”和它的逆命题“若q 则p”均为真命题,即既有p q ⇒又有q p ⇒就记作p q ⇔,此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称为充要条件。

注意:(1)如果p 是q 的充要条件,那么q 也是p 的充要条件.(2)要判断p 是q 的充分必要条件,既要判断p 是q 的充分条件又要判断p 是q 的必要条件,二者缺一不可。

高二数学选修1-1第一章常用逻辑用语

高二数学选修1-1第一章常用逻辑用语

常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。

1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。

2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。

(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。

2. 推断下列语句是不是命题。

(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。

(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。

高中数学第一章常用逻辑用语1命题及其关系23四种命题四种命题间的关系2课件新人教A版选修2

高中数学第一章常用逻辑用语1命题及其关系23四种命题四种命题间的关系2课件新人教A版选修2

1.若q,则p 若綈p,则綈q 若綈q,则綈p
自 2.(1)逆命题 我 (2)否命题 校 (3)逆否命题 对 3.(1)相同
(2)没有关系
自测自评
1.命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减 函数,则loga2<0”的逆否命题是( )
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域 内不是减函数
-a>-b>0, 若a<b<0,则1b<1a<0,
-a>-b>0, 则-1b>-1a>0,
故ab>ba.
故这是一个假命题.
【答案】 ②⑤
规律技巧 在判断原命题及其逆命题、否命题、逆否命题 真假时,要灵活应用“原命题与逆否命题”同真假,否命题与 逆命题同真假.
二 等价命题的应用 【例3】 证明:若p2+q2=2,则p+q≤2. 【分析】 将“若p2+q2=2,则p+q≤2”视为原命题,
中,真命题的个数可以是( )
A.1或2或Βιβλιοθήκη 或4 B.1或3C.0或4
D.0或2或4
答案 D
3.若命题p的逆命题是q,q的逆否命题是r,则命题r是命
题p的( )
A.逆命题
B.否命题
C.逆否命题 D.等价命题
答案 B
4.命题:“设a,b,c∈R,若ac2>bc2,则a>b”及其逆
命题、否命题、逆否命题中真命题共有( )
A.3个
B.2个
C.1个
D.0个
答案 B
名师讲解
1.四种命题之间的真假关系. 一般地,一个命题的真假与其他三个命题的真假有如下三 种关系: (1)原命题为真,它的逆命题不一定为真. (2)原命题为真,它的否命题不一定为真. (3)原命题为真,它的逆否命题一定为真.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故原命题的逆否命题为真.
法二 先判断原命题的真假.
12分
因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0 的解集不是空集,
所以Δ=(2a+1)2-4(a2+2)≥0, 即4a-7≥0, 7 解得 a≥ . 4
7 因为 a≥ ,所以 a≥1,所以原命题为真. 4
4分
8分
又因为原命题与其逆否命题等价,所以逆否命题为真.
例1:若整数a是质数,则a是奇数.
注(1)p,q既可以表示命题的条件、结论,也可以 表示为命题。 (2) “若p则q”形式的命题是命题的一种形式而不 是唯一的形式,也可写成“如果p,那么q” “只要p,就 有q”等形式。
例 2 把下列命题改写成“若 p,则 q”的形式: (1)各位数数字之和能被 9 整除的整数,可以被 9 整除; (2)斜率相等的两条直线平行; (3)能被 6 整除的数既能被 3 整除也能被 2 整除;
若 p, 若 q, 若┐p, 若┐q,
则 q 则 p 则┐q 则┐ p
1:要写出一个命题的另外三个命题关键是分清命题的题设 和结论(即把原命题写成“若P则q”的形式)
注意:三种命题中最难写 的是否命题。
2:(1)“或”的否定为“且”,(2)“且”的否 定为“或”, (3)“都”的否定为“不都”。
例1 写出下列命题的逆命题、否命题和逆否命题,并判 断它们的真假:
∴f(a)+f(b)<f(-a)+f(-b), 即逆否命题为真命题.
§1命题
(一)命题的定义:一般地,我们把用文字或符号表述的, 可以判断真假的陈述句叫做命题.
判断 一个语句是不是命题,关键判断: (1)是否为陈述句; (2)能否判断真假。
• 判断为真的语句叫做真命题。 • 判断为假的语句叫做假命题。
本 专 题 栏 目 开 关
例 1 判断下列语句是否是命题, 若是, 判断其真假, 并说明理由. 解 (1)是祈使句,不是命题. (1)求证 3是无理数. (2)x2+4x+4=(x+2)2≥0, 可以判断真假,是命题, (2)若 x∈R,x2+4x+4≥0. 且是真命题. (3)是疑问句,不是命题. (3)你是高一的学生吗?
否命题:若m>0且n>0, 则m+n>0.
逆否命题:若m+n>0, 则m>0且n>0.
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
跟踪训练 1 分别写出下列命题的逆命题、否命题、逆否命 题,并判断它们的真假: (1)实数的平方是非负数; (2)若 x、 y 都是奇数,则 x+ y 是偶数.
跟踪训练 1 判断下列语句中哪些是命题, 是真命题还是假 命题? (1)末位是 0 的整数能被 5 整除; (2)平行四边形的对角线相等且互相平分;
本 专 题 栏 目 开 关
(3)两直线平行,则斜率相等; (4)△ABC 中,若∠A=∠B,则 sin A=sin B; (5)余弦函数是周期函数吗?
本 专 题 栏 目 开 关

(1)原命题是真命题.
逆命题:若一个数的平方是非负数,则这个数是实数.真命 题. 否命题:若一个数不是实数,则它的平方不是非负数.真命 题. 逆否命题:若一个数的平方不是非负数,则这个数不是实 数.真命题.
跟踪训练 1 分别写出下列命题的逆命题、否命题、逆否命 题,并判断它们的真假: (2)若 x、y 都是奇数,则 x+y 是偶数.
注意:写原命题的其他三种命题时,大前提保持不变。
命题及四种命题 小结
一、命题的定义:一般地,我们把用语言、符号或式子表达 的,可以判断真假的陈述句叫做命题. 判断 一个语句是不是命题,关键判断: (1)是否为陈述句;(2)能否判断真假。 二 、四种命题 1、四种命题形式: • 原命题: 若 p, 则 q 逆命题: 若 q, 则 p • 否命题: 若┐p, 则┐q 逆否命题: 若┐q, 则┐p 2、怎样写出四个命题 (1):要写出一个命题的另外三个命题关键是分清命题的 题设和结论(即把原命题写成“若P则q”的形式) (2):(1)“或”的否定为“且”,(2)“且” 的否定为“或”, (3)“都”的否定为“不都”。
┐p ┐q
原命题:若p,则q 否命题:若┐p,则┐q
例如,命题“同位角相等,两直线平行”的否命 题是“ ”。 同位角不相等,两直线不平行
观察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数; q p 4. 若f(x)不是周期函数,则f(x)不是正弦函数. ┐q ┐p
12分
【题后反思】 由于原命题和它的逆否命题有相同的真假 性,即互为逆否命题的命题具有等价性,所以我们在直接 证明某一个命题为真命题有困难时,可以通过证明它的逆 否命题为真命题,来间接地证明原命题为真命题.
【变式 3】 例 3 证明:已知函数 f(x)是(-∞,+∞)上的增函数, a、
b∈ R,若 f(a)+f(b)≥f(-a)+ f(-b),则 a+ b≥0.
1)原命题:若x=2或x=3, 则x2-5x+6=0。 逆命题:若x2-5x+6=0, 则x=2或x=3。 否命题:若x≠2且x≠3, 则x2-5x+6≠0 。 逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 2)原命题:若a=0, 则ab=0。 (真 ) (假 ) 逆命题:若ab=0, 则a=0。 否命题:若a≠ 0, 则ab≠0。 (假 ) 逆否命题:若ab≠0,则a≠0。 (真 ) 3) 原命题:若a > b, 则 ac2>bc2。 (假) (真) 逆命题:若ac2>bc2,则a>b。 (真) 否命题:若a≤b,则ac2≤bc2。 (真 ) (真 ) (真 ) (真 )
互为逆否命题:如果一个命题的条件和结论分别是另 一个命题的结论的否定和条件的否定,那么这两个命 题叫做互为逆否命题。
原命题: 若p, 则q
逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 “ 两直线不平行,同位角不相等 ”。
原命题,逆命题,否命题,逆否命题
四种命题形式: • 原命题: • 逆命题: • 否命题: • 逆否命题:
证明 方法一
本 专 题 栏 目 开 关
原命题的逆否命题为“已知函数 f(x)是
(-∞,+∞)上的增函数,a,b∈R,
若 a+b<0,则 f(a)+f(b)<f(-a)+f(-b).” 若 a+b<0,则 a<-b,b<-a, 又∵f(x)在(-∞,+∞)上是增函数, ∴f(a)<f(-b),f(b)<f(-a).
逆否命题:若ac2≤bc2,则a≤b。
得到其他三种命题的方法?
(假)
一般地,四种命题的真假性,有而且仅有下面四种 情况:
原命题 逆命题 否命题 逆否命题

真 假 假

假 真 假

假 真 假

真 假 假
四种命题的真假性关系如下: 1.两个命题互为逆否命题,它们有相同的真假性; 2.两个命题为互逆命题或互否命题,它们的真假性没 有关系。
四种命题之间的关系
原命题 若 p则 q 互 否 命 题 真 假 无 关 否命题 若﹁ p则﹁ q 逆命题 若q则p 互 否 命 题 真 假 无 关 逆否命题 若﹁ q则﹁p
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
本 专 题 栏 目 开 关
(2)原命题是真命题. 逆命题:若 x+ y 是偶数,则 x、 y 都是奇数,是假命题; 否命题:若 x、 y 不都是奇数,则 x+ y 不是偶数,是假命 题; 逆否命题:若 x+ y 不是偶数,则 x、 y 不都是奇数,是真 命题.
跟踪训练2:已知命题:在三角形ABC中。若 A=B,则sinA=sinB.写出该命题的逆命题、否 命题、逆否命题。
重点题型
等价命题的应用
【例3】 (12分)判断命题“已知a,x为实数,若关于x的不等式 x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否 命题的真假.
审题指导 本题的命题意图是考查逆否命题的应用.由于
原命题与它的逆否命题同真同假,所以可写出原命题的逆 否命题,再判断其真假,或者由判断原命题的真假得出逆 否命题的真假.
[规范解答] 法一
原命题的逆否命题:
3分 6分 9分
已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2 +2≤0的解集为空集.真假判断如下:
∵抛物线y=x2+(2a+1)x+a2+2开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7, 若a<1,则4a-7<0. 即抛物线y=x2+(2a+1)x+a2+2与x轴无交点. 所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
(4)是真命题,有的人喜欢 (4)并非所有的人都喜欢苹果. 苹果,有的人不喜欢苹果.
(5)60x+9>4.
(5)不是命题,这种含有未知数 的语句,未知数的取值能否使 不等式成立,无法确定.
小结 判断一个语句是否是命题关键看它是否符合两个条 件:“是陈述句”和“可以判断真假”,而祈使句、疑问 句、感叹句等都不是命题.
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数; p f(x)是正弦函数; q (2)若f(x)是周期函数,则
互逆命题:一个命题的条件和结论分别是另一个命题的 结论和条件,这两个命题叫做互逆命题。 原 命 题:其中一个命题叫做原命题。 逆 命 题:另一个命题叫做原命题的逆命题。 即 原命题:若p,则q 逆命题:若q,则p 例如,命题“同位角相等,两直线平行” 的逆命题是 两直线平行,同位角相相等 “ ”。
相关文档
最新文档