2014年重庆中考数学专项训练(第10、17、18、21、22、23、24、25题)(最新最全)
重庆2014中考数学24题专练 . 14
重庆2014中考数学24题专练
1、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
2、如图,在平面直角坐标系中,直线
1
1
2
y x
=+与抛物线3
2-
+
=bx
ax
y交于A、B两点,点A在x
轴上,点B的纵坐标为3。
点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P 作x轴的垂线交直线AB于点C,作PD⊥AB于点C,作PD⊥AB于点D。
(1)求a、b及sin∠ACP的值;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,是否存在合适的m值,使这两个三角形的面积之比为9:10?若存在,直接写m的值;若不存在,说明理由。
A y
D
O
B
x
C。
2014重庆中考数学试卷A
2014中考数学试卷精编word版2014年重庆市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2014重庆市A卷,1,4分)实数-17的相反数是()A.17 B.11 C.-17 D.? 1717642. (2014重庆市A卷,2,4分)计算2x?x的结果是()A.x B.2x C.2x D.2x3(2014重庆市A卷,3,4分)a的取值范围是()A.a?0 B.a?0 C.a?0 D.a?04. (2014重庆市A卷,4,4分)五边形的内角和是()A.180° B.360° C.540° D.600°5. (2014重庆市A卷,5,4分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是()A.北京 B.上海 C.重庆 D.宁夏 224102?1的解是() x?1A.x?4 B.x?3 C.x?2 D.x?1 6(2014重庆市A卷,6,4分)关于x的方程7. (2014重庆市A卷,7,4分)2014年8月26日,第二届表奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲 B.乙 C.丙 D.丁8.(2014重庆市A卷,8,4分)如图,直线AB∥CD,直线EF分别交直线AB、CD于点EF,过点F作FG⊥FE,交直线AB于点G.若∠1=42°,则∠2的大小是()A.56° B.48° C.46° D.40°AC8题图BD精品资源 JSCM中考团队合作共赢。
2014重庆中考数学12、18、23(应用题)、25典型例题及答案(二)
2014重庆中考数学12、18、23(应用题)、25典型例题及答案(二)1.如图,菱形OABC 在直角坐标系中,点A 的坐 标为(5,0),对角线OB=,反比例函数经过点C ,则的值等于( ) A 、12 B 、8 C 、15 D、9 解:过点C 和点B 作X 轴的垂线,令C (a,b ) Ak b a b a b a 选,12,4,3,80)5(,252222====++=+2.如图,直角梯形OABF 中,∠OAB=∠B=90°,A 点在x 轴上,双曲线y=过点F ,与AB 交于E 点,连EF ,若,S △BEF =4,则k= .解:如图,过F 作FC ⊥OA 于C , ∵BF :OA=2:3 ∴OA=3OC ,BF=2OC ∴若设F (m ,n ) 则OA=3m ,BF=2m ∵S △BEF =4 ∴BE=则E (3m ,n ﹣) ∵E 在双曲线y=上 ∴mn=3m (n ﹣) ∴mn=6 即k=6.故答案为:6.54()0,0>≠=x k xky k3.如图, 已知一次函数y=kx+b 与二次函数y=ax2+4ax 在同一平面直角坐标系中的图象交于A,B 两点,点A 在x 轴负半轴上,点B 在第二象限且位于二次函数对称轴右侧,则下列结论正确的是( )A. K<aB. k<-2aC.k<-5aD.k<-6a解:.0,4,042舍去=-==+a a ax ax将A (-4,0)代入一次函数,b=4k,则y=kx+4k 二次函数的对称轴为X=-2,将X=-2分别代入一次函数和二次函数得: 2k<-4k,选B4.如图,四边形OABC 为正方形,点A 在x 轴上,点C 在y 轴上,点B (8,8),点P 在边OC 上,点M 在边AB 上.把四边形OAMP 沿PM 对折,PM 为折痕,使点O 落在BC 边上的点Q 处.动点E 从点O 出发,沿OA 边以每秒1个单位长度的速度向终点A 运动,运动时间为t ,同时动点F 从点O 出发,沿OC 边以相同的速度向终点C 运动,当点E 到达点A 时,E 、F 同时停止运动.(1)若点Q 为线段BC 边中点,直接写出点P 、点M 的坐标;(2)在(1)的条件下,设△OEF 与四边形OAMP 重叠面积为S ,求S 与t 的函数关系式; (3)在(1)的条件下,在正方形OABC 边上,是否存在点H ,使△PMH 为等腰三角形,若存在,求出点H 的坐标,若不存在,请说明理由; (4)若点Q 为线段BC 上任一点(不与点B 、C 重合),△BNQ 的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由.解:(1)∵点Q 为线段BC 边中点,B (8,8), ∴P(0,5),M (8,1);(2)①当0≤t≤5时,S=②当5≤t≤8时,如图,设EF 与PM 交点为R ,作RI⊥y 轴,MS⊥y 轴,∵EO=FO,∴RI=FI,又∵,∴RI=2PI,∴FI=2PI,∴FP=PI,PI=2PF,∴PF=t﹣5,RI=2(t﹣5),∴S=S△OEF﹣S△PRF,=,=;(3)①如图作PM的中垂线交正方形的边为点H1,H2,则PH1=MH1,PH2=MH2,∴点H1,H2即为所求点,设OH1=x,∵PH1=MH1,∴x2+52=(8﹣x)2+12,∴H1(),同理,设CH2=y,∵PH2=MH2,∴32+y2=(8﹣y)2+72,∴H2(),②当PM=PH3时,∵,∴,∴,∴,③当PM=MH4时,∵,∴,∴,∴,综上,一共存在四个点,H 1(),H2(),,;(4)∵∠PQN=90°,∴∠CQP=∠BQN=90°,又∵∠CQP+∠CPQ=90°,∴∠CPQ=∠BQN,又∵∠C=∠B=90°,∴△CPQ∽△BQN,设CQ=m,则在Rt△CPQ中,∵m2+CP2=(8﹣CP)2,∴,∴,又∵△CPQ的周长=CP+PQ+CQ=8+m,∴△BQN的周长=,=16.∴△BQN的周长不发生变化,其值为16.1.某超市第一次用3000元从生产基地购进某品种水果,很快售完,第二次又用2400元购进相同品种的水果,第二次购进水果每千克的进价是第一次的 1.2倍,且重量比第一次少了20千克.(1)求两次购进水果每千克的进价分别是多少元?(2)在这两次购进水果的运输过程中,总重量损失10%,若这两次水果的售价相同,全部售完后超市至少要获得20%的总利润,则该水果的售价最低应定为每千克多少元?(结果保留整数)解:(1)设第一次购进水果单价x元,则第二次购进水果单价1.2x元由题意得3000x-24001.2x=20,解得:x=50,经检验的x=50是原方程的解,而1.2x=60,所以两次购进水果每千克的进价分别是50元、60元.(2)最低应定为每千克y元,购买水果的总质量为:(300050+240060)=100千克,由题意得:100×90%y-3000-2400≥5400×20%,解得:y≥72,答:该水果的售价最低应定为每千克72元.2.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主两次分别购进这种水果多少箱?(2)该水果店主计划第一批水果每箱售价定为40元,第二批水果每箱售价定为50元,每天销售水果30箱.实际销售时按计划售完第一批后发现第二批水果品质不如第一批,必须打折销售才能保证每天销售水果30箱.在销售过程中,该店主每天还需要支出其他费用60元,为了使这两批水果销售完后总利润率不低于30%,那么该店主销售第二批水果时最低可打几折?解:(1)方法1:设第一次购进x箱,则第二次购进x(1-25%)=0.75x箱.依题意可得,第一次每箱的单价就为2400x元,第二次的单价为2700 0.75x元.因为第二批的单价比第一批的每箱多10元,可列得方程2700 0.75x − 2400 x =10解得x=120.经检验,x=120满足题意并且是分式方程的解所以,第一批每箱20元,购进了120箱;第二批每箱30元,购进了90箱.(2)利润率=利润总额÷销售总额×100%,即利润率=(销售总额-成本)÷销售总额×100%经计算,水果店主的在本次销售过程中,共购进了120+90=210箱水果,每天销售30箱,需要7天才能卖完,所以总的成本为:2400+2700+7×60=5520元. 设第二批水果打y 折销售才能满足要求,则有40×120+50×0. y ×90−55202400+2700≥30%解得y ≥41.2所以为了使销售完后利润不低于30%,该店主销售第二批水果时最多打41.2折3.随着城市雾霾的日益严重,人民越来越重视空气质量和呼吸防护.为了确保员工的身心健康,某供电公司决定向户外工作的员工发放防PM 2.5粉尘口罩,应对持续的雾霾天气.经统计,供电公司第一批急需600只口罩.经过A 、B 、C 三个纺织厂的竞标得知,A 、B 两厂的工作效率相同,且都为C 厂的2倍.若由一个纺织厂单独完成,C 厂比A 厂要多用10天.供电公司决定由三个纺织厂同时纺织,要求至多6天完成纺织工作.三个纺织厂都按原来的工作效率纺织2天时,供电公司提出急需第二批口罩360只,为了不超过6天时限,纺织厂决定从第3天开始,各自都提高工作效率,A 、B 厂提高的工作效率仍然都是C 厂提高的2倍,这样他们至少还需要3天才能成整个纺织工作.⑴ 求A 厂原来平均每天纺织口罩的只数;⑵ 求A 厂提高工作效率后平均每天多纺织口罩的只数的取值范围 解:(1)设C 厂平均每天纺织口罩的只数为X 只xx 600102600=+,x=30, 则A 厂为60只。
2014年重庆中考数学专项训练
2014年重庆中考第10题专项训练1.如图,Rt ABC 中,AC BC ⊥,AD 平分BAC ∠交BC 于点D ,DE AD ⊥交A B 于点E ,M 为A E 的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD=3.下列结论①AED ADC ∠=∠;②34DE DA =; ③AC BE 12⋅=;④3BF 4AC =;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD=4,CD=3.下列结论: ①∠AE D=∠ADC ;②DE DA=3 4;③AC •BE=12;④3BF=4AC , 其中结论正确的是①③④(填序号)考点:相似三角形的判定与性质.分析:①∠AED=90°-∠EAD ,∠ADC=90°-∠DAC ,∠EAD=∠DAC ;②易证△ADE ∽△ACD ,得DE :DA=DC :AC=3:AC ,AC 不一定等于4.③当FC ⊥AB 时成立;④连接DM ,可证DM ∥BF ∥AC ,得FM :MC=BD :DC=4:3;易证△FMB ∽△CMA ,得比例线段求解. 解答:解:①∠AED=90°-∠EAD ,∠ADC=90°-∠DAC , ∵∠EAD=∠DAC , ∴∠AED=∠ADC . 故本选项正确;②∵∠EAD=∠DAC ,∠ADE=∠ACD=90°,∴△ADE ∽△ACD ,得DE :DA=DC :AC=3:AC ,但AC 的值未知, 故不一定正确;③由①知∠AED=∠ADC , ∴∠BED =∠BDA , 又∵∠DBE=∠ABD , ∴△BED ∽△BDA ,∴DE:DA=BE:BD,由②知D E:DA=DC:AC,∴BE:BD=DC:AC,∴AC•BE=BD•DC=12.故本选项正确;④连接DM,在Rt△AD E中,MD为斜边AE的中线,则DM=MA.∴∠M D A=∠MAD=∠DAC,∴D M∥BF∥AC,由D M∥B F得FM:MC=BD:DC=4:3;由BF∥AC得△FM B∽△CM A,有BF:AC=F M:MC=4:3,∴3BF=4AC.故本选项正确.综上所述,①③④正确,共有3个.故答案为①③④.点评:此题重点考查相似三角形的判定和性质,解题的关键是注意题目中相等线段的替换,此题综合性强,有一定难度.2.如图,在边长为1的正方形ABCD 中,E 为AD 边上一点,连接BE ,将ABE 沿BE 对折,A 点恰好落在对角线BD 上的点F 处.延长AF ,与CD 边交于点G ,延长FE ,与BA 的延长线交于点H ,则下列说法:①BFH 为等腰直角三角形;②ADF FHA ≅;③60DFG ∠=︒;④2DE =S AEF S DFG =. 其中正确的说法有( )A .1个B .2个C .3个D .4个3.如图,在△ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .下列结论:① 12DE BC =;② 1cos 2BFE ∠=;③EDF FED ∠=∠; ④点F 到ABC ∆三个顶点的距离相等;⑤BE CD BC +=.其中正确的结论有( )个.A .1个B .2个C .3个D .4个①co s ∠BF E =1 2;②AB =BC ;③D E =1 2 BC ;④点F 到△ABC 三边的距离相等;⑤BE+C D=B C .解:(1)∵∠A=60°, ∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB , ∴∠ABD=∠CBD ,∠ACE=∠BCE , ∴∠CBD+∠BCE=60°, ∴∠BFE=60°, ∴①cos ∠BFE =1 2,正确.(2)∵∠ABC ,∠ACB 的平分线分别交AC 、AB 于点D ,E ,CE 、BD 相交于点F , ∴F 为三角形的内心,∴④点F 到△ABC 三边的距离相等正确. (3)在BC 上截取BH=BE , ∵BD 平分∠ABC , ∴∠ABD=∠CBD , ∴△EBF ≌△HBF , ∴∠EFB=∠HFB=60°. 由(1)知∠CFB=120°, ∴∠CFH=60°, ∴∠CFH=∠CFD=60°, 又∵CE 平分∠ACB , ∴∠ACE=∠BCE , ∴△CDF ≌△CHF .∴CD=CH , ∵CH+BH=BC , ∴⑤BE+CD=BC 正确. ②AB=BC ③DE =1 2BC 只有在△ABC 是等边三角形时才成立,现有条件无法证明△ABC 是等边三角形,所以是错误的,因此,①④⑤正确. 故选C .4. 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②∠GDH=∠GHD ③S S CDG DHGE;④图中有8个等腰三角形.其中正确的是( ) A.①③ B.②④ C.①④ D.②③5.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在AD 边上的点B '处,点A 落在点A '处.设AE=a ,AB=b ,BF=c ,下列结论:①B E BF '=;②四边形B CFE '是平行四边形;③222a b c +=;④A B EB CD ''';其中正确的是( ) A.②④ B.①④ C.②③ D.①③6.如图,在正方形ABCD 中 ,AB=1,E ,F 分别是边BC ,CD 上的点,连接EF 、AE 、AF ,过A 作AH ⊥EF 于点H. 若EF=BE+DF ,那么下列结论:其中正确结论的个数是( )个①AE 平分∠BEF ;②FH=FD ;③∠EAF=45°;④EAF ABE ADF S S S ∆∆∆=+; ⑤△CEF 的周长为2.A D CBEFH7.如图,在正方形ABCD 中,点E 是AD 的中点,连接BE 、CE ,点F 是CE 的中点,连接DF 、BF ,点M 是BF 上一点且21=MF BM ,过点M 做BC MN ⊥于点N ,连接FN .下列结论中①CE BE =;②DFE BEF ∠=∠;③AB MN 61=;④61=∆EBNF FMN S S 四边形 其中正确结论的个数是:( )A .1个B .2个C .3个D .4个8.如图,P 、Q 是矩形ABCD 的边BC 和CD 延长上的两点,AP 与CQ 相交 于点E ,且∠PAD =∠QAD 。
重庆市2014年中考数学模拟试题(解析)
CA 21B重庆市2014年中考数学模拟试题(解析)一.选择题:(本大题10个小题,每小题4分,共40分) 1.在10,0,-3,-6四个数中,最大的数是( )A. 10B. 0C. -3D. -6 2.计算a a 23-的结果为( )A.1B.aC. 3aD. 2a 3.下列图形中,是轴对称图形的是( )A. B. C. D.4.如图,△ABC 是等边三角形,则=∠+∠21( )A. 60°B.90°C. 120°D.180°5.为了了解2011年参加重庆市市初中联招考试的63279名考生的数学平均成绩,有关部门抽取了其中的3200份试卷,对成绩作了分析,抽样估计全市平均分为96.9分,根据以上信息,以下说法正确的是( ) A.以上通过普查(全面调查)的方式获取了全市的平均分 B.被抽取的3200名学生的数学成绩是总体的一个样本 C.63279名学生是总体 D.每名学生是总体的一个个体6.如图,A D 、是O ⊙上的两个点,BC 是直径,若D 35∠=°, 则OAC ∠等于( )A .65°B .35°C .70°D .55° 7.下列说法中正确..的是( ) A .随机事件发生的可能性是50%B .一组数据2, 2,3,6的众数和中位数都是2C .为了解某市5万名学生中考数学成绩,可以从中抽取10名学生作为样本D .若甲组数据的方差20.31S =甲,乙组数据的方差20.02S =乙, 则乙组数据比甲组数据稳定8.⊙O 的半径为5cm ,点P 与圆心O 的距离为4cm ,则点P 和⊙O 的位置关系为( ) A.点P 在圆上 B. 点P 在圆内 C. 点P 在圆外 D.无法判断9.不等式组⎩⎨⎧≤-->0242x x 的解集为( )A. 2->xB. 22<<-xC.2≤xD. 22≤<-x10.4月20日,重庆一中部分老师乘车前往巴川中学交流学习,车刚离开重庆一中时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约五十分钟后,汽车顺利到达铜梁收费站.经停车交费后,汽车进入通畅的城市道路,一会就顺利到达了巴川中学,在以上描述中,汽车行驶的路程s (千米)与所经历的时间t (小时)之间的大致函数图像是( )A D 、O⊙BCD ∠=°OA∠6题图sotsotsottosA. B. C. D.11.如下图,由小正方形依次排出以下图形,那么第9个图形中共有( )个小正方形A.36B. 81C. 45D.10212.如图,对称轴为直线的抛物线c bx ax y ++=2与坐标轴交于点A 、C 12==OC OA .则下列结论:①当0<x 时,y 随x 的增大而增大;②0124>++b a ;③58<b ;④02<+b a ,其中正确的结论有( )A. 1B. 2C. 3D.4 二.填空题:(本大题6个小题,每小题4分,共24分)13.2011年重庆市人均GDP 达到28000元,将数字28000用科学记数法表示为 。
2014年重庆中考数学应用题22训练及答案
2014年重庆中考数学应用题训练及答案22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.00 0.80[说明:①每户产生的污水量等于该户的用水量;②水费=自来水费+污水处理费]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?22. 为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1) 在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2) 若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?1) 设政策出台前一个月,销售手动型和自动型汽车分别为x、y台依题意得方程组x+y=960 ①1.3x+1.25y=1228 ②由①得x=960-y 代入②得1.3(960-y)+1.25y=1228- 0.05y=-20y=400 x=560所以政策出台前一个月,销售手动型和自动型汽车分别为400、560台(2) 政策出台后一个月销售手动型车 1.3x=520 台销售自动型车 1.25y=700台政府共补贴520×8×0.05+700×9×0.05=208+315=523万元H N禽流感影响,家禽销量大幅下滑。
(完整版)重庆中考数学第18题专题训练(含答案),推荐文档
重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa-+-+=去分母,()()604060406040x a xb x b xa -+=-+去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨., =, 解得x=240.故答案为:240.,由①得,则有:,两式相除得:,商品的销售利润率变成了 .(2)某商品现在的进价便宜20% ,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 。
2014年重庆数学中考试卷+答案
2014年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.实数-17的相反数是( )A.17B.C.-17D.-2.计算2x6÷x4的结果是( )A.x2B.2x2C.2x4D.2x103.在中,a的取值范围是( )A.a≥0B.a≤0C.a>0D.a<04.五边形的内角和是( )A. 80°B.360°C.5 0°D.600°5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-℃、5 ℃、6 ℃、-8 ℃ 当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏=1的解是( )6.关于x的方程-A.x=4B.x=3C.x=2D.x=17.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“ 0米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是( )A.甲B.乙C.丙D.丁8.如图,直线AB∥CD 直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE 交直线AB 于点G.若∠ = ° 则∠ 的大小是( )A.56°B. 8°C. 6°D. 0°9.如图 △ABC的顶点A、B、C均在☉O上,若∠ABC+∠AOC=90° 则∠AOC的大小是( )A.30°B. 5°C.60°D. 0°10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个 … 按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.4012.如图,反比例函数y=-6在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为( )A.8B.10C.12D.24第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分)的解是.13.方程组 3514.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563 000辆,将563 000这个数用科学记数法表示为.15.如图,菱形ABCD中 ∠A=60° BD= 则菱形ABCD的周长为.16.如图 △OAB中 OA=OB= ∠A=30° AB与☉O相切于点C,则图中阴影部分的面积为.(结果保留π)17.从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数y=2x+a 的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率-为.18.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连结BE.过点C作CF⊥BE 垂足是F,连结OF,则OF的长为.三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19.计算:+(-3)2-2 0140×|-4|+6-.20.如图 △ABC中 AD⊥BC 垂足是D,若BC= AD= tan∠BAD=3,求sin C的值.四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.先化简,再求值:÷-x --+,其中x的值为方程2x=5x-1的解.22.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)该镇今年1~5月新注册小型企业一共有家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0),则每户平均集资的资金在150 a%,求a的值.元的基础上减少了 0924.如图 △ABC中 ∠BAC=90° AB=AC AD⊥BC 垂足是D,AE平分∠BAD 交BC于点E.在△ABC外有一点F,使FA⊥AE FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连结MC,交AD于点N,连结ME.求证:①ME⊥BC;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P 在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.26.已知:如图① 在矩形ABCD中,AB=5,AD= 0AE⊥BD 垂足是E.点F是点E关于AB的对称3点,连结AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度),当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图② 将△ABF绕点B顺时针旋转一个角α(0°<α< 80°) 记旋转中的△ABF为△A'BF' 在旋转过程中,设A'F'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.答案全解全析:一、选择题1.A 根据相反数的定义知,-17的相反数为-(-17)=17.故选A.2.B 2x6÷x4=2x2,故选B.3.A 二次根式的被开方数为非负数,即a≥0 故选A.4.C 五边形的内角和为(5- )× 80°=5 0° 故选C.5.D 根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小得-8<- <5<6 ∴气温最低的是宁夏,故选D.6.B 去分母,得x-1=2,解得x=3.经检验,x=3是原分式方程的根,故选B.7.D 方差是描述一组数据波动大小的量,方差越大,数据的波动就越大,甲、乙、丙、丁的成绩的方差最小的是丁,则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是丁.故选D.8.B ∵AB∥CD ∠ = ° ∴∠EFD= °.∵FG⊥EF ∴∠EFG=90° 则∠ = 80°-∠EFD-∠EFG= 8° ∴选B.9.C 根据圆周角定理知 ∠ABC=∠AOC ∵∠ABC+∠AOC=90° ∴∠AOC=60°.故选C.10.C 接到通知后,小华立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变;过了一会儿,小华继续录入并加快了录入速度,函数图象上升,且比开始时上升得快.综合这些信息可知答案为C.11.B 第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个 … 按此规律,第n个图形中面积为1的正方形有 +3+ +…+(n+ )=(3)个,则第(6)个图形中面积为1的正方形的个数为6(63)=27.故选B.评析本题考查了图形的变化规律.探索规律的问题是近几年数学中考的一个“热门”题型.解决这类问题的基本思路是通过观察、分析若干特殊情形,归纳总结出一般性结论,然后验证结论的正确性.12.C 由题意知A(-1,6),B(-3,2),设直线AB的解析式为y=kx+b(k≠0)则- 6-3解得8∴y= x+8 当y=0时,x=-4,即CO=4,∴△AOC的面积为×6× = .故选C.二、填空题13.答案3解析把x=3代入x+y=5得y=2,所以方程组35的解是3.14.答案 5.63× 05解析563 000是一个6位整数,所以563 000用科学记数法可表示为5.63× 05.评析科学记数法是将一个数写成a× 0n的形式,其中 ≤|a|< 0 n为整数.15.答案28解析∵菱形ABCD中 ∠A=60° ∴△ABD为等边三角形.∵BD= ∴AB= 则菱形ABCD的周长为 × = 8.16.答案43-3π解析设OA,OB分别与☉O交于D,E两点 ∵AB与☉O相切于点C ∴OC⊥AB.∵OA=OB= ∠A=30° ∴∠B=∠A=30° OC= .∴∠AOB= 0° AB= 3.则题图中阴影部分的面积=S△AOB-S扇形ODE=× 3× - 0π360=43-3π.17.答案3解析一次函数y=2x+a的图象与x轴、y轴的交点坐标分别为- 0、(0,a).一次函数的图象与x轴、y轴围成的三角形的面积为,即a2=,解得a=± .使关于x的不等式组-有解的a值为1.所以所求概率为3.18.答案655解析如图,在BE上截取BG=CF,连结OG,∵CF⊥BE ∴∠EBC+∠BCF=90°.又∵∠ECF+∠BCF=90°∴∠EBC=∠ECF∵∠OBC=∠OCD= 5° ∴∠OBG=∠OCF.在△OBG与△OCF中,∠∠∴△OBG≌△OCF(SAS)∴OG=OF ∠BOG=∠COF ∴OG⊥OF.∵BC=DC=6 DE= EC ∴EC=∴BE=C=6=2∵BC2=BF BE∴62=BF 0,解得BF=9 05,∴EF=BE-BF= 05,∵CF2=BF EF∴CF=3 05,∴GF=BF-BG=BF-CF=6 05.在等腰直角△OGF 中,OF 2=GF 2, ∴OF=6 55. 三、解答题19.解析 原式=2+9- × +6(5分) =13.(7分)20.解析 ∵AD⊥BC ∴tan∠BAD=,(1分)∵tan∠BAD=3,AD=12, ∴3=,(2分)∴BD=9.(3分)∴CD=BC -BD=14-9=5,(4分)∴在Rt△ADC 中,AC= C = 5 =13,(6分) ∴sin C= =3.(7分)四、解答题21.解析 原式=÷( - )- - +(1分)=÷- x( - )+(2分)= ( - )( - ) +(4分)= - +(6分)=( )( - )+- ( )( - )=-.(7分)解方程2x=5x-1得x=3,(9分) 当x= 3时,原式=33- =-3.(10分)22.解析 (1)16.(2分)补图如下:今年1~5月各月新注册小型企业数量折线统计图(5分)(2)用A 1,A 2表示餐饮企业,B 1,B 2表示非餐饮企业,画树状图如下:(8分)(8分) 由树状图或列表可知,共有12种等可能情况,其中所抽取的企业恰好都是餐饮企业的有2种..(10分)所以,所抽取的企业恰好都是餐饮企业的概率为P==623.解析(1)设用于购买书桌、书架等设施的资金为x元,由题意,得30 000-x≥3x (3分)解得 x≤ 500.答:最多花7 500元资金购买书桌、书架等设施.(5分)a%=20 000.(8分)(2)由题意,得 00( +a%) 50- 09x=2,整理得,10x2+x-3=0,设x=a%,则3(1+x)- 09解得x1=-0.6(舍),x2=0.5,(9分)∴a%=0.5 ∴a=50.( 0分)24.证明如图.( )∵∠BAC=90° AF⊥AE∴∠ +∠EAC=90° ∠ +∠EAC=90°∴∠ =∠ .( 分)又∵AB=AC∴∠B=∠ACB= 5°.∵FC⊥BC∴∠FCA=90°-∠ACB=90°- 5°= 5°∴∠B=∠FCA ( 分)∴△ABE≌△ACF(ASA).(3分)∴BE=CF.( 分)( )①过E作EG⊥AB于点G.∵∠B= 5° ∴△GBE是等腰直角三角形,∴BG=EG ∠3= 5°.(5分)∵AD⊥BC AE平分∠BAD ∴EG=ED ∴BG=ED.∵BM= ED ∴BM= BG 即G是BM的中点.(6分)∴EG是BM的垂直平分线 ∴EB=EM ∴∠ =∠3= 5°∴∠MEB=∠ +∠3= 5°+ 5°=90° 即ME⊥BC.( 分)②∵AD⊥BC ∴ME∥AD ∴∠5=∠6.∵∠ =∠5 ∴∠ =∠6 ∴AM=EM.∵MC=MC ∴Rt△AMC≌Rt△EMC(HL) (8分)∴∠ =∠8.∵∠BAC=90° AB=AC ∴∠ACB= 5° ∠BAD=∠CAD= 5°∴∠5=∠ = .5° AD=CD.∵∠ADE=∠CDN=90° ∴△ADE≌△CDN(ASA) (9分)∴DE=DN.( 0分)评析本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质定理,构造出等腰直角三角形和全等三角形是解题的关键.五、解答题25.解析(1)对y=-x2-2x+3,令x=0,得y=3,则C(0,3).(1分)令y=0,得-x2-2x+3=0,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(3分)(2)由x=--(- )=-1得抛物线的对称轴为直线x=-1.(4分) 设点M(x,0),P(x,-x2-2x+3),其中-3<x<-1.易知P、Q关于直线x=-1对称,设Q的横坐标为a,则a-(-1)=-1-x ∴a=-2-x,∴Q(-2-x,-x2-2x+3).(5分)∴MP=-x2-2x+3,PQ=-2-x-x=-2-2x,∴周长d=2(-2-2x-x2-2x+3)=-2x2-8x+2.当x=--8(- )=-2时,d取最大值,(6分)此时,M(- 0) ∴AM=-2-(-3)=1.设直线AC解析式为y=kx+b(k≠0) 则30-3解得3∴直线AC的解析式为y=x+3.将x=-2代入y=x+3得y=1,∴E(- ) ∴EM= .( 分)∴S△AEM=AM ME=× × =.(8分)(3)由(2)知,当矩形PMNQ的周长最大时,x=-2,此时点Q(0,3),与点C重合 ∴OQ=3.将x=-1代入y=-x2-2x+3,得y=4,∴D(-1,4).如图,过D作DK⊥y轴于K,则DK=1,OK=4.∴QK=OK-OQ=4-3=1,∴△DKQ是等腰直角三角形,DQ=,(9分)∴FG= =4.(10分)设F(m,-m2-2m+3),G(m,m+3),则FG=(m+3)-(-m2-2m+3)=m2+3m,∵FG= ∴m2+3m=4,解得m1=-4,m2=1.当m=-4时,-m2-2m+3=-(-4)2- ×(-4)+3=-5,当m=1时,-m2-2m+3=-12- × +3=0∴F(-4,-5)或(1,0).(12分)评析本题考查了矩形的性质,一元二次方程的解法,二次函数图象与坐标轴的交点及最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.26.解析(1)AB=5,AD= 03,由勾股定理得BD=A=5 03= 53.(1分)∵ AB AD=S △ABD =BD AE∴ ×5× 03= × 53AE,解得AE=4,(3分)∴BE= -A = 5 - =3.(4分)(2)当点F 在线段AB 上时,m=3;(6分) 当点F 在线段AD 上时,m= 63.(8分)(3)存在.理由如下:①当DP=DQ 时,若点Q 在线段BD 的延长线上,如图①图① 有∠Q=∠则∠ =∠ +∠Q= ∠Q.∵∠3=∠ +∠Q ∠3=∠∴∠ +∠Q= ∠Q ∴∠ =∠Q∴A'Q=A'B=5 ∴F'Q= +5=9.在Rt△BF'Q 中,92+32= 53 DQ , ∴ 53+DQ=±3 ,∴DQ=3 0- 53或DQ=-3 0- 53(舍).(9分)若点Q 在线段BD 上,如图②图②有∠ =∠ =∠ .∵∠ =∠3 ∴∠3=∠∵∠3=∠5+∠A' ∠A'=∠CBD ∴∠3=∠5+∠CBD=∠A'BQ∴∠ =∠A'BQ∴A'Q=A'B=5∴F'Q=5-4=1,∴BQ= 3 = 0.∴DQ= 53- 0.(10分)②当QP=QD 时,如图③ 有∠P=∠图③ ∵∠A'=∠ ∠ =∠3 ∴∠ =∠P∴∠ =∠A' ∴QB=QA'设QB=QA'=x,在Rt△BF'Q 中,32+(4-x)2=x 2, 解得x= 58,∴DQ= 53- 58= 5 .(11分)图④③当PD=PQ 时,如图④ 有∠ =∠ =∠3 ∵∠ =∠A' ∴∠3=∠A' ∴BQ=A'B=5 ∴DQ= 53-5= 03.综上,当△DPQ 是等腰三角形时, DQ 的值为3 0- 53, 53- 0, 5 , 03.(12分)。
重庆市八中初2014级初中毕业考试数学试题汇总
重庆市八中初2014级初中毕业考试数学试题(本试题共五个大题,26个小题,满分150分,时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分) 1.-3的相反数是( ) A .-3B .3C .13 D .13- 2.下列计算正确的是( ) A .235()x x =B . 623x x x ÷= C .235a b ab +=D .339m n mn =3.如图,直线//,100,70AB CD B F ∠=∠=,则E ∠等于( )度。
A .30B .40C . 50D .604.分式方程212x x -=的解为( )A .1B .2C .3D .4 5.下列调查中,适合采用全面调查的事件是( ) A .环境保护部门调查4月长江某水域的水质情况B .了解中央电视台直播节目“舌尖上的中国”在全国的收视率C .调查2014年全国中学生的心理健康情况D .对你所在班级的所有同学的身高的调查6 如图,由小立方体组成的几何体的主视图是( )。
A .B .C .D .7.如图,A 、B 、C 为O 上三点,且∠OAB=55°,则∠ACB 的度数为( )度。
A .30 B .35 C .40D .45第7题图第8题图第9题图8.如图,点D 、E 分别在△ABC 的边BA 、CA 的延长线上,DE ∥BC ,EC =5,EA =2,△ADEFC B E的面积为8,则△ABC 的面积为( )。
A .50B .20C .18D .109.如图,在矩形ABCD 中,AD =10,AB =6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为( )。
A .1 B .2 C .3 D .410.下列图形都是由边长为“1”的小正方形按一定规律组成,其中第1个图形有9个边长为1的小正方形,第2个图形有14个边长为1的小正方形……则第10个图形中边长为1的小正方形的个数为( )……A .72B .64C .54D .5011.2014年3月6日上午9点,重庆南山樱花节开幕。
2014年重庆市中考真题数学
2014年重庆市中考真题数学一、选择题(本大题共12小题,每小题4分共48分)1.(4分)实数-17的相反数是( )A.17B.C. -17D. -解析:实数-17的相反数是17,答案:A.2.(4分)计算2x6÷x4的结果是( )A.x2B. 2x2C. 2x4D. 2x10解析:原式=2x2,答案:B.3.(4分)在中,a的取值范围是( )A. a≥0B.a≤0C.a>0D.a<0解析:a的范围是:a≥0.答案:A.4.(4分)五边形的内角和是( )A.180°B. 360°C. 540°D. 600°解析:(5-2)·180°=540°.答案:C.5.(4分)2014年1月1日零点,北京、上海、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是( )A.北京B.上海C. 重庆D. 宁夏解析:-8<-4<5<6,答案:D.6.(4分)关于x的方程=1的解是( )A. x=4B. x=3C. x=2D. x=1解析:去分母得:x-1=2,解得:x=3,经检验x=3是分式方程的解.答案:B7.(4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( )A.甲B.乙C.丙D. 丁解析:∵甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02,∴丁的方差最小,∴丁运动员最稳定,答案:D.8.(4分)如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是( )A.56°B. 48°C. 46°D. 40°解析:∵AB∥CD,∴∠3=∠1=42°,∵FG⊥FE,∴∠GFE=90°,∴∠2=180°-90°-42°=48°.答案:B.9.(4分)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( )A. 30°B.45°C. 60°D. 70°解析:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°. 答案:C.10.(4分)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )A.B.C.D.解析:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;答案:C.11.(4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A.20B. 27C. 35D. 40解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.答案:B.12.(4分)如图,反比例函数y=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为( )A. 8B. 10C. 12D. 24解析:∵反比例函数y=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3,∴x=-1,y=6;x=-3,y=2,∴A(-1,6),B(-3,2),设直线AB的解析式为:y=kx+b,则,解得:,解得:y=2x+8,∴y=0时,x=-4,∴CO=4,∴△AOC的面积为:×6×4=12.答案:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)方程组的解是.解析:,将①代入②得:y=2,则方程组的解为,答案:.14.(4分)据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为.解析:将563000用科学记数法表示为:5.63×105.答案:5.63×105.15.(4分)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为.解析:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∵BD=7,∴AB=BD=7,∴菱形ABCD的周长=4×7=28.答案:28.16.(4分)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为 .(结果保留π)解析:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB-S扇形=×4×2-=4-.答案:4-.17.(4分)从-1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为.解析:当a=-1时,y=2x+a可化为y=2x-1,与x轴交点为(,0),与y轴交点为(0,-1),三角形面积为××1=;当a=1时,y=2x+a可化为y=2x+1,与x轴交点为(-,0),与y轴交点为(0,1),三角形的面积为××1=;当a=2时,y=2x+2可化为y=2x+2,与x轴交点为(-1,0),与y轴交点为(0,2),三角形的面积为×2×1=1(舍去);当a=-1时,不等式组可化为,不等式组的解集为,无解;当a=1时,不等式组可化为,解得,解集为,解得x=-1.使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为P=.答案:.18.(4分)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.解析:如图,在BE上截取BG=CF,连接OG,∵RT△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在△OBG与△OCF中,,∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE===2,∵BC2=BF·BE,则62=BF,解得:BF=,∴EF=BE-BF=,∵CF2=BF·EF,∴CF=,∴GF=BF-BG=BF-CF=,在等腰直角△OGF中OF2=GF2,∴OF=.答案:三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)计算:+(-3)2-20140×|-4|+.解析:分别根据0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.答案:原式=2+9-1×4+6=11-4+6=13.20.(7分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.解析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.答案:∵在直角△ABD中,tan∠BAD==,∴BD=AD·tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC===13,∴sinC==.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)先化简,再求值:÷(-)+,其中x的值为方程2x=5x-1的解.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程的解得到x的值,代入计算即可求出值.答案:原式=÷+=·+=+=,解方程2x=5x-1,得:x=,当x=时,原式=-.22.(10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.解析:(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整;(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.答案:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.树状图如下:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种,∴所抽取的2家企业恰好都是餐饮企业的概率为:=.23.(10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.解析:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000-x)元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的3倍”,列出不等式求解即可;(2)根据“自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,且总集资额为20000元”列出方程求解即可.答案:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000-x)元,根据题意得:30000-x≥3x,解得:x≤7500.答:最多用7500元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1-a%)=20000整理得:a2+10a-3000=0,解得:a=50或a=-60(舍去),所以a的值是50.24.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC 于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.解析:(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF 全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.答案:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°-45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF.(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°-45°-67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)25.(12分)如图,抛物线y=-x2-2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P 在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.解析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周长d=-2m2-8m+2,将-2m2-8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,-n2-2n+3),根据已知若FG=2DQ,即可求得.答案:(1)由抛物线y=-x2-2x+3可知,C(0,3),令y=0,则0=-x2-2x+3,解得x=-3或x=1,∴A(-3,0),B(1,0).(2)由抛物线y=-x2-2x+3可知,对称轴为x=-1,设M点的横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,∴矩形PMNQ的周长=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,∴当m=-2时矩形的周长最大.∵A(-3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=-2时,则E(-2,1),∴EM=1,AM=1,∴S=·AM·EM=.(3)∵M点的横坐标为-2,抛物线的对称轴为x=-1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=-1代入y=-x2-2x+3,解得y=4,∴D(-1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,-n2-2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)-(-n2-2n+3)=4,解得:n=-4或n=1.∴F(-4,-5)或(1,0).26.(12分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E 关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.解析:(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m 的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算. 答案:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD·AE=AB·AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD-B′D=-3=,即m=.(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3-1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9. 在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ-BD=-;②如答图3-2所示,点Q落在BD上,且PQ=DQ,易知∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′-A′Q=4-BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4-BQ)2=BQ2,解得:BQ=,∴DQ=BD-BQ=-=;③如答图3-3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-∠2.∵∠1=∠2,∴∠4=90°-∠1.∴∠A′QB=∠4=90°-∠1,∴∠A′BQ=180°-∠A′QB-∠1=90°-∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q-A′F′=5-4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD-BQ=-;④如答图3-4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD-BQ=-5=. 综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为-、、-或.。
重庆中考数学第18题专题训练(含答案)
重庆中考18题专题训练 1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨. , =, 解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。
2014年重庆中考数学24题__(专题练习+答案详解)2014年重庆中考数学24题__(专题练习+答
重庆中考数学24题专题练习1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:B G=D G+CD.在B G上取BH=AB=CD,连EH,显然△ABE与△CDE全等,则∠ABE=∠DCE,∠AEB=∠DEC又∠BEC=90°=∠BFC,对顶角∠BGE=∠CGF,故∠FBE=∠DCE,所以∠ABE=∠FBE在BF上取BH=AB,连接EH,由BH=AB,∠ABE=∠FBE,BE=BE,故△ABE与△HBE全等故∠AEB=∠HEB,AE=EH而∠AEB+∠DEC+∠BEC=180°,∠AEB=∠DEC,∠BEC=90°所以∠AEB=∠DEC=45°=∠HEB故∠AEH=∠AEB+∠HEB=90°=∠HED同理,∠DEG=45°=∠HEGEH=AE=ED,EG=EG故△HEG与△FEG全等,所以HG=DG即BG=BH+HG=AB+DG=DG+CD④但春天它从来没有错过向花容鸟语发出请柬A试卷试题①②③④???????? B试卷试题②①④2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BC E的面积;(2)求证:B D=E F+CE.4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点EEF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA 的延长线于G,且DG=DE,AB=,CF=6.(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形A BC D的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EF H=∠FH G,求证:HD=B E+BF.7、已知:如图,ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF 的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD 外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.15、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.20、如图,梯形ABCD中,AD∥BC,点E在BC上,A E=B E,且AF⊥A B,连接EF.(1)若EF⊥AF,A F=4,AB=6,求AE的长.(2)若点F是C D的中点,求证:CE=B E﹣AD.21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB 的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.27、已知,如图,AD∥BC,∠A B C=90°,A B=B C,点E是A B上的点,∠E C D=45°,连接ED,过D作D F⊥BC(2)求证:E D=B E+F C.28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.参考答案1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠B E C=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,∴△BAE≌△CDE,∴BE=CE;(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°∴∠EBF=∠ECH,又∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:∵ED平分∠AEF,∠A=∠DFE=90°,∴AD=DF,∵DF=DC﹣FC,∵△EBH≌△GFC,∴FC=BH=1,∴AD=4﹣1=3.3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.(2)过E点作EM⊥DB于点M,四边形FDME是矩形,FE=DM,∠BME=∠BCE=90°,∠BEC=∠MBE=60°,△BME≌△ECB,BM=CE,继而可证明BD=DM+BM=EF+CE.(1)解:∵AD=CD,∴∠DAC=∠DCA,∵DC∥AB,∴∠DCA=∠CAB,∴,∵DC∥AB,AD=BC,∴∠DAB=∠CBA=60°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°,∴∠BCE=180°﹣∠ACB=90°,∵BE⊥AB,∴∠ABE=90°,∴∠CBE=∠ABE﹣∠ABC=30°,在Rt△BCE中,BE=2CE=2,,∴…(5分)(2)证明:过E点作EM⊥DB于点M,∴四边形FDME是矩形,∴FE=DM,∵∠BME=∠BCE=90°,∠BEC=∠MBE=60°,∴△BME≌△ECB,∴BM=CE,∴BD=DM+BM=EF+CE…(10分)4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.解答:(1)证明:延长EF交AD于G(如图),在平行四边形ABCD中,AD∥BC,AD=BC,∵EF∥CA,EG∥CA,∴四边形ACEG是平行四边形,∴AG=CE,又∵,AD=BC,∴,∵AD∥BC,∴∠ADC=∠ECF,在△CEF和△DGF中,∵∠CFE=∠DFG,∠ADC=∠ECF,CE=DG,∴△CEF≌△DGF(AAS),∴CF=DF,∵四边形ABCD是平行四边形,∴OB=OD,(2)解:如果梯形OBEF是等腰梯形,那么四边形ABCD是矩形.证明:∵OF∥CE,EF∥CO,∴四边形OCEF是平行四边形,∴EF=OC,又∵梯形OBEF是等腰梯形,∴BO=EF,∴OB=OC,∵四边形ABCD是平行四边形,∴AC=2OC,BD=2BO.∴AC=BD,∴平行四边形ABCD是矩形.5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6.(1)求线段CD的长;(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC.(1)解:连接BD,由∠ABC=90°,AD∥BC得∠GAD=90°,又∵BF⊥CD,∴∠DFE=90°又∵DG=DE,∠GDA=∠EDF,∴△GAD≌△EFD,∴DA=DF,又∵BD=BD,∴Rt△BAD≌Rt△BFD(HL),∴BF=BA=,∠ADB=∠BDF又∵CF=6,∴BC=,∴∠ADB=∠CBD , ∴∠BDF=∠CBD , ∴CD=CB=8.(2)证明:∵AD ∥BC , ∴∠E=∠CBF , ∵∠HDF=∠E , ∴∠HDF=∠CBF ,由(1)得,∠ADB=∠CBD , ∴∠HDB=∠HBD , ∴HD=HB ,由(1)得CD=CB ,CBD CDBCBD HDF CDB CBH ∴∠=∠∴∠-∠=∠-∠∠∠∴即BDH=HBD HB=HD∴△CDH ≌△CBH , ∴∠DCH=∠BCH , ∴∠BCH=∠BCD==.6、如图,直角梯形ABCD 中,AD ∥BC ,∠B=90°,∠D=45°.(1)若AB=6cm ,,求梯形ABCD 的面积;(2)若E 、F 、G 、H 分别是梯形ABCD 的边AB 、BC 、CD 、DA 上一点,且满足EF=GH ,∠EFH=∠FHG ,求证:HD=BE+BF .解:(1)连AC ,过C 作CM ⊥AD 于M ,如图, 在Rt △ABC 中,AB=6,sin ∠ACB==,∴AC=10, ∴BC=8,在Rt△CDM中,∠D=45°,∴DM=CM=AB=6,∴AD=6+8=14,∴梯形ABCD的面积=•(8+14)•6=66(cm2);(2)证明:过G作GN⊥AD,如图,∵∠D=45°,∴△DNG为等腰直角三角形,∴DN=GN,又∵AD∥BC,∴∠BFH=∠FHN,而∠EFH=∠FHG,∴∠BFE=∠GHN,∵EF=GH,∴Rt△BEF≌Rt△NGH,∴BE=GN,BF=HN,∴DA=AN+DN=AN+DG=BF+BE.7、已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.8、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE (SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.9、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF 的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.(1)证明:连接PC.∵ABCD是正方形,∴∠ABE=∠ADF=90°,AB=AD.∵BE=DF,∴△ABE≌△ADF.(SAS)∴∠BAE=∠DAF,AE=AF.∴∠EAF=∠BAD=90°.∵P是EF的中点,∴PA=EF,PC=EF,∴PA=PC.又AD=CD,PD公共,∴△PAD≌△PCD,(SSS)∴∠ADP=∠CDP,即DP平分∠ADC;(2)作PH⊥CF于H点.∵P是EF的中点,∴PH=EC.设EC=x.由(1)知△EAF是等腰直角三角形,∴∠AEF=45°,∴∠FEC=180°﹣45°﹣75°=60°,∴EF=2x,FC=x,BE=2﹣x.在Rt△ABE中,22+(2﹣x)2=(x)2解得x1=﹣2﹣2(舍去),x2=﹣2+2.∴PH=﹣1+,FD=(﹣2+2)﹣2=﹣2+4.∴S△DPF=(﹣2+4)×=3﹣5.10、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD=BC,E为CD的中点,交BC的延长线于F;(1)证明:EF=EA;(2)过D作DG⊥BC于G,连接EG,试证明:EG⊥AF.(1)证明:∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE.∵E为CD的中点,∴ED=EC.∴△ADE≌△FCE.∴EF=EA.(5分)(2)解:连接GA,∵AD∥BC,∠ABC=90°,∴∠DAB=90°.∵DG⊥BC,∴四边形ABGD是矩形.∴BG=AD,GA=BD.∵BD=BC,∴GA=BC.由(1)得△ADE≌△FCE,∴AD=FC.∴GF=GC+FC=GC+AD=GC+BG=BC=GA.∵由(1)得EF=EA,∴EG⊥AF.(5分)11、如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.(1)证明:∵△ADF为等边三角形,∴AF=AD,∠FAD=60°(1分)∵∠DAB=90°,∠EAD=15°,AD=AB(2分)∴∠FAE=∠BAE=75°,AB=AF,(3分)∵AE为公共边∴△FAE≌△BAE(4分)∴EF=EB(5分)(2)解:如图,连接EC.(6分)∵在等边三角形△ADF中,∴FD=FA,∵∠EAD=∠EDA=15°,∴ED=EA,∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°,∴BE=BA=6.∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°,∵∠ABC=60°,∴∠GBE=30°∴GE=GB.(8分)∵点G是BC的中点,∴EG=CG∵∠CGE=∠GEB+∠GBE=60°,∴△CEG为等边三角形,∴∠CEG=60°,∴∠CEB=∠CEG+∠GEB=90°(9分)∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2∴CE=,∴BC=(10分);解法二:过C作CQ⊥AB于Q,∵CQ=AB=AD=6,∵∠ABC=60°,∴BC=6÷=4.12、如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:AE=GF;(2)设AE=1,求四边形DEGF的面积.(1)证明:∵AB=DC,∴梯形ABCD为等腰梯形.∵∠C=60°,∴∠BAD=∠ADC=120°,又∵AB=AD,∴∠ABD=∠ADB=30°.∴∠DBC=∠ADB=30°.∴∠BDC=90°.(1分)由已知AE⊥BD,∴AE∥DC.(2分)又∵AE为等腰三角形ABD的高,∴E是BD的中点,∵F是DC的中点,∴EF∥BC.∴EF∥AD.∴四边形AEFD是平行四边形.(3分)∴AE=DF(4分)∵F是DC的中点,DG是梯形ABCD的高,∴GF=DF,(5分)∴AE=GF.(6分)(2)解:在Rt△AED中,∠ADB=30°,∵AE=1,∴AD=2.在Rt△DGC中∠C=60°,并且DC=AD=2,∴DG=.(8分)由(1)知:在平行四边形AEFD中EF=AD=2,又∵DG⊥BC,∴DG⊥EF,∴四边形DEGF的面积=EF•DG=.(10分)13、已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE;(2)若AD=DC=2,求AG的长.解答:(1)证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE,∴AB=AF.∴AE﹣AB=AC﹣AF,即FC=BE;(2)解:∵AD=DC=2,DF⊥AC,∴AF=AC=AE.∴AG=CG,∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴FC=,∵AD∥BC,∴∠ACG=∠FAD=30°,∴CG=2,∴AG=2.14、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;(2)试判断△ABF的形状,并说明理由.(1)证明:∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠ABC=90°,∴∠BAD=∠ABC=90°,∵DE⊥EC,∴∠AED+∠BEC=90°∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,∵∠DAE=∠EBC,AE=BC,∴△EAD≌△EBC,∴AD=BE.(2)答:△ABF是等腰直角三角形.理由是:延长AF交BC的延长线于M,∵AD∥BM,∴∠DAF=∠M,∵∠AFD=∠CFM,DF=FC,∴△ADF≌△MFC,∴AD=CM,∵AD=BE,∴BE=CM,∵AE=BC,∴AB=BM,∴△ABM是等腰直角三角形,∵△ADF≌△MFC,∴AF=FM,∴∠ABC=90°,∴BF⊥AM,BF=AM=AF,∴△AFB是等腰直角三角形.15、(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.解答:(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)∴AD=AE;(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.16、如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.(1)求证:AE⊥BD;(2)若AD=4,BC=14,求EF的长.(1)证明:∵AD∥CB,∴∠ADB=∠CBD,又BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴△ABD是等腰三角形,已知E是BD的中点,∴AE⊥BD.(2)解:延长AE交BC于G,∵BD平分∠ABC,∴∠ABE=∠GBE,又∵AE⊥BD(已证),∴∠AEB=∠GEB,BE=BE,∴△ABE≌△GBE,∴AE=GE,BG=AB=AD,又F是AC的中点(已知),所以由三角形中位线定理得:EF=CG=(BC﹣BG)=(BC﹣AD)=×(14﹣4)=5.答:EF的长为5.17、如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.(1)求证:CD=BE;(2)若AD=3,DC=4,求AE.(1)证明:∵AD∥BC,∴∠DAC=∠BCE,而BE⊥AC,∴∠D=∠BEC=90°,AC=BC,∴△BCE≌△CAD.∴CD=BE.(2)解:在Rt△ADC中,根据勾股定理得AC==5,∵△BCE≌△CAD,∴CE=AD=3.∴AE=AC﹣CE=2.18、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.(1分)∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2(2分)在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴CE=AC﹣AE=.(4分)在Rt△DEC中,∠CED=90°,∴DC==.(5分)19、已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.证明:∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF﹣ED;(2)解:∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA﹣∠BCF=20°.20、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.解:(1)作EM⊥AB,交AB于点M.∵AE=BE,EM⊥AB,∴AM=BM=×6=3;∵∠AME=∠MAF=∠AFE=90°,∴四边形AMEF是矩形,∴EF=AM=3;在Rt△AFE中,AE==5;(2)延长AF、BC交于点N.∵AD∥EN,∴∠DAF=∠N;∵∠AFD=∠NFC,DF=FC,∴△ADF≌△NCF(AAS),∴AD=CN;∵∠B+∠N=90°,∠BAE+∠EAN=90°,又AE=BE,∠B=∠BAE,∴∠N=∠EAN,AE=EN,∴BE=EN=EC+CN=EC+AD,∴CE=BE﹣AD..21、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=(AD+BC);(2)若AC=6,求梯形ABCD的面积.解:(1)证明:过D作DE∥AC交BC延长线于E,(1分)∵AD∥BC,∴四边形ACED为平行四边形.(2分)∴CE=AD,DE=AC.∵四边形ABCD为等腰梯形,∴BD=AC=DE.∵AC⊥BD,∴DE⊥BD.∴△DBE为等腰直角三角形.(4分)∵DH⊥BC,∴DH=BE=(CE+BC)=(AD+BC).(5分)(2)∵AD=CE,∴.(7分)∵△DBE为等腰直角三角形BD=DE=6,∴.∴梯形ABCD的面积为18.(8分)注:此题解题方法并不唯一.22、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∵∠AGD=∠BAD,AG=AD,∴△AGE≌△DAB;(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.23、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)24、如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.(1)证明:△ABE≌△DAF;(2)求∠BPF的度数.解答:(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,∴AB=CD,∵AD=DC,∴BA=AD,∠BAE=∠ADF=120°,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△ABE≌△DAF(SAS).(2)解:∵由(1)△BAE≌△ADF,∴∠ABE=∠DAF.∴∠BPF=∠ABE+∠BAP=∠BAE.而AD∥BC,∠C=∠ABC=60°,∴∠BPF=120°.25、如图,在梯形ABCD中,AD∥BC,AB=AD=DC,BD⊥DC,将BC延长至点F,使CF=CD.(1)求∠ABC的度数;(2)如果BC=8,求△DBF的面积?解答:解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠DBC=∠ABD,∵在梯形ABCD中AB=DC,∴∠ABC=∠DCB=2∠DBC,∵BD⊥DC,∴∠DBC+2∠DBC=90°∴∠DBC=30°∴∠ABC=60°(2)过点D作DH⊥BC,垂足为H,∵∠DBC=30°,BC=8,∴DC=4,∵CF=CD∴CF=4,∴BF=12,∵∠F+∠FDC=∠DCB=60°,∠F=∠FDC∴∠F=30°,∵∠DBC=30°,∴∠F=∠DBC,∴DB=DF,∴,在直角三角形DBH中,∴,∴,∴,即△DBF的面积为.26、如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD于G,且∠AGD=60°,E、F分别为CG、AB 的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.27、已知,如图,AD∥BC,∠ABC=90°,AB=BC,点E是AB上的点,∠ECD=45°,连接ED,过D作DF⊥BC 于F.(1)若∠BEC=75°,FC=3,求梯形ABCD的周长.(2)求证:ED=BE+FC.解:(1)∵∠BEC=75°,∠ABC=90°,∴∠ECB=15°,∵∠ECD=45°,∴∠DCF=60°,在Rt△DFC中:∠DCF=60°,FC=3,∴DF=3,DC=6,由题得,四边形ABFD是矩形,∴AB=DF=3,∵AB=BC,∴BC=3,∴BF=BC﹣FC=3﹣3,∴AD=DF=3﹣3,∴C梯形ABCD=3×2+6+3﹣3=9+3,答:梯形A B CD的周长是9+3.(2)过点C作CM垂直AD的延长线于M,再延长DM到N,使M N=BE,∴C N=CE,可证∠N C D=∠DCE,∵CD=CD,∴△D E C≌△D N C,∴E D=EN,∴E D=B E+F C.28、已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.(1)求证:△BCE≌△AFE;(2)若AB⊥BC且BC=4,AB=6,求EF的长.(1)证明:∵AD∥BC,E是AB的中点,∴AE=BE,∠B=∠EAF,∠BCE=∠F.∴△BCE≌△AFE(AAS).(2)解:∵AD∥BC,∴∠DAB=∠ABC=90°.∵AE=BE,∠AEF=∠BEC,∴△BCE≌△AFE.∴AF=BC=4.∵EF2=AF2+AE2=9+16=25,∴EF=5.29、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.(1)∵DC=BC,∠1=∠2,CF=CF,∴△DCF≌△BCF.(2)延长DF交BC于G,∵AD∥BG,AB∥DG,∴四边形ABGD为平行四边形.∴AD=BG.∵△DFC≌△BFC,∴∠EDF=∠GBF,DF=BF.又∵∠3=∠4,∴△DFE≌△BFG.∴DE=BG,EF=GF.∴AD=DE.(3)∵EF=GF,DF=BF,∴EF+BF=GF+DF,即:BE=DG.∵DG=AB,∴BE=AB.∵C△DFE=DF+FE+DE=6,∴BF+FE+DE=6,即:EB+DE=6.∴AB+AD=6.又∵AD=2,∴AB=4.∴DG=AB=4.∵BG=AD=2,∴GC=BC﹣BG=5﹣2=3.又∵DC=BC=5,在△DGC中∵42+32=52∴DG2+GC2=DC2∴∠DGC=90°.∴S梯形ABCD=(AD+BC)•DG=(2+5)×4=14.30、如图,梯形ABCD中,AD∥BC.∠C=90°,且AB=AD.连接BD,过A点作BD的垂线,交BC于E.(1)求证:四边形ABED是菱形;(2)如果EC=3cm,CD=4cm,求梯形ABCD的面积.解答:解:(1)证明:∵AD∥BC,DE2=CD2+CE2=42+32=25,∴∠OAD=∠OEB,∴DE=5又∵AB=AD,AO⊥BD,∴AD=BE=5,∴OB=OD,∴S梯形ABCD=.又∵∠AOD=∠EOB,∴△ADO≌△EBO(AAS),∴AD=EB,又∵AD∥BE,∴四边形ABCD是平行四边形,又∵AB=AD∴四边形ABCD是菱形.(2)∵四边形ABCD是菱形,∴AD=DE=BE,。
重庆一中初2014级初三下中考二模数学试题(word有答案)
重庆一中初2014级13-14学年度下期第二次定时作业数 学 试 卷 2014.3(本试题共五个大题,26个小题,满分150分,时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.1. 在2,0,31,5.2-这四个数中,是正整数的是( )A. -2.5 B .31c .0 D.22. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3. 计算23)3(a -的结果正确的是( ) A.56a - B. 69a - C. 59a D.69a4. 如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数是( )A .70°B .65° C.60° D .50°(第4题图)(第7题图) (第9题图) 5.函数23-=x y 的自变量x 的取值范围是( )A .2>xB .2≠xC .2≥xD .2≠x 且0≠xF1 A E BC GD 2 B A OC B C A CB A6. 下列说法正确的是( )A .两名同学5次平均分相同,则方差较大的同学成绩更稳定B .一组数据3,4,4,6,8,5的众数为4C .必然事件的概率是100%,随机事件的概率是50%D .为防止H7N9流感,对确诊患者的密切接触者采用抽样调查的方法7. 如图,AC 是电杆AB 的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC 的长为( )米.A.︒52sin 6B.︒52tan 6C.︒52cos 6D.︒⋅52cos 68. 若一个代数式222--a a 的值为3,则a a 632-的值为( )A .9B .3C .15D .59. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切 于C 点,AB=12cm ,AO=8cm ,则OC 长为( )cm A .5 B .4 C .52 D . 7210. 2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财受重大损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离s (千米)与时间t (小时)之间函数关系的大致图象是( )11.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是( )A .18B .19C .21D .2212.如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0), 双曲线x ky =(0>x )经过C 点,且OB ·AC =160,则k 的值为( )A .40B .48C .64D .80二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卷A .B .C .D .……图案① 图案④ 图案③ 图案② 图案⑤OO O S (千米) t (小时) O S (千米) S (千米) S (千米) t (小时) t (小时) t (小时) ((第12题图)A O y xB C相应位置的横线上.13. 五一小长假期间,重庆阴雨天气对市民出游热情虽有一定影响,但全市旅游市场秩序井然有序,旅游接待稳中有升. 全市旅行社共组接团6369个,共组接团191000人. 则数据191000用科学记数法表示为( ) .14. △ABC 与△DEF 是位似比为1:3的位似图形,若4=∆ABC S ,则△DEF 的面积为 ( ) .15. 第十二届全国人大代表选举的基本原则是:城乡同比选举,实现人人平等、地区平等、民族平等. 据新华网2月28日公布,全国5个少数民族自治区的人大代表如下:这五个地区代表人数的中位数是___________.16. 将Rt △ABC 绕顶点B 旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C 、B 、A '在同一条直线上,则阴影部分的面积是 .(左) (右)17. 如图,每个小方格都是边长为1个单位长度的小正方形,将左边8⨯1的矩形随机沿方格竖线剪成三个小矩形(含正方形),三个面积相等的算作同一种剪法(如:面积为1、3、4和面积为3、4、1算同一种剪法),且长宽均为正整数,能恰好拼在右图虚线部分使其成为一个4⨯4的正方形的概率为 ( ) .18. 一换硬币游戏这样规定:有三部自动换币机,其中第一部总是将一枚硬币换成两枚硬币,第二部总是将一枚硬币换成四枚硬币,而第三部总是将一枚硬币换成十枚硬币. 若某人进行了13次换币后,将1枚硬币换成84枚,则他在第三部自动换币机上换了( ) 次.三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 计算:︒+--+-⨯-+--60tan )31(64)2()1(42302013π选区 广西 西藏 新疆 宁夏 内蒙 人数(人) 90 20 60 21 58 A'C'C B A (第16题图) (第17题图)20. 如图,在10⨯10正方形网格中作图:(1)作出△ABC 关于直线l 的轴对称图形△A1B1C1;(2)作出△ABC 绕点O 顺时针旋转90°的图形△A2B2C2.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:22816121(2)224x x x x xx x -+÷---+++,其中x 为不等式组20512(1)x x x -<⎧⎨+-⎩>的整数解.22. 为调动学生学习积极性,某中学初一(1)班对学生的学习表现实行每学月评分制,现对初一上期1—5学月的评分情况进行了统计,其中学生小明5次得分情况如下表所示:时间 第1学月 第2学月 第3学月 第4学月 第5学月 得分 8分 9分 9分 9分 10分O lACBA第22题图学生小刚的得分情况制成了如下不完整的折线统计图:(1)若小刚和小明这5次得分的平均成绩相等,求出小刚第3学月的得分.(2)在图中直接补全折线统计图; (3)据统计,小明和小刚这5学月的总成绩都排在了班级的前4名,现准备从该班的前四名中任选两名同学参加学校的表彰大会,请用列表或画树状图的方法,求选取的两名同学恰好是小明和小刚两人的概率.23.商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销售量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动,童装在4售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?24. 已知:如图,正方形ABCD 中,点E 是BA 延长线上一点,连接DE ,点F 在DE 上且DF=DC ,DG ⊥CF 于G. DH 平分∠ADE 交CF 于点H ,连接BH.(1)若DG=2,求DH 的长; (2)求证:BH+DH=2CH.GHFC D 910 68 4 1 2 2 3 4 5 (分)(学月)五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线y=x2+bx+c 与y 轴交于点C (0,﹣4),与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值.(3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.26. 如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=12,D 、E 分别为边AB 、AC 的中点,连结DE ,点P 从点A 出发,沿折线AE-ED-DB 运动,到点B 停止.点P 在折线AE-ED 上以每秒1个单位的速度运动,在DB 上以每秒5个单位的速度运动. 过点P 作PQ ⊥BC 于点Q , 以PQ 为边在PQ 右侧作正方形PQMN , 使点M 落在线段BC 上.设点P 的运动时间为t 秒(0t ).(第24题图) (第25题图)(1)在整个运动过程中,求正方形PQMN 的顶点N 落在AB 边上时对应的t 的值;(2)连结BE ,设正方形PQMN 与△BED 重叠部分图形的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)当正方形PQMN 顶点P 运动到与点E 重合时,将正方形PQMN 绕点Q 逆时针旋转60°得正方形 P1 Q M1 N1,问在直线DE 与直线AC 上是否存在点G 和点H ,使△GHP1是等腰直角三角形? 若 存在,请求出EG 的值;若不存在,请说明理由.(第26题图)重庆一中2014年第二次模拟试题答案一、选择题(每小题4分,共48分) DADB BBCC DACB二、填空题(每小题4分,共24分)A M (Q )C BD EP N A CBD EACBDE备用图备用图13. 51091.1⨯ 14.36 15. 58 16.32316-π17.53 18.819. 解:原式=39414+-+- …… 6分 20. =32+- ……………… 7分21. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ………(3分) =41)4)(4(2)2()4(2+--++⋅+-x x x x x x x …(4分)=41)4(4+-+-x x x x ……………………(5分) =)4(4+-x x .………………………(6分)由20512(1)x x x -<⎧⎨+-⎩>解得21<<-x .…(8分)∵x 是不等式组的整数解,∴x=1. x=0(舍)…………(9分) 当x=1时,原式=54-.……………………(10分)22. 解:10)10928()10839(=++⨯-++⨯∴小刚第3学月的得分为10分;………………………………………………(2分) 补全折线图如图所示 ………………………………………………(4分)(3)设小明和小刚分别为A 、B ,该班的前四名另两名同学为 C ,D ,画表格如下:共有12种等可能情况,其中恰好是小明和小刚两人有2种,所以选取的两名同学恰好是小明和小刚两人的概率P=61122=. …………………………………………(10分)23. (1)设销售单价为x 则200000.950200007000x x ⎛⎫+=+ ⎪⎝⎭解得x=200A B C DA (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,D ) D (D ,A ) (D ,B ) (D ,C ) lC B A OA1A2B2 B1C2C19 106 84 1 2 2 3 45 (分(学月)总件数20000÷200=100(件),一件利润8000÷100=80元 成本为200-80=120(元),0.8×200-120=40设销售最起码为y 件则40y ≥8000(1+25%)得到y ≥25024. (1)∵DG ⊥CF 且DF =CD∴∠FDG=21∠FDC.................1分∵DH 平分∠ADE∴∠FDH=21∠ADF.................2分∴∠HDG=∠FDG-∠FDH=21∠FDC-21∠ADF =21(∠FDC-∠ADF )=21∠ADC=45°....3分∴△DGH 为等腰直角三角形 ∵DG=2,∴DH =22 .................5分(2)过点C 作CM ⊥CH, 交HD 延长线于点M ∵∠1+∠DCH=∠2+∠DCH=900 ∴∠1=∠2又△DGH 为等腰直角三角形 ∴△MCH 为等腰直角三角形 ∴MC=HC又∵四边形ABCD 为正方形 ∴CD =CB∴△MCD ≌△HCB .................8分 ∴DM =BH又∵△MCH 为等腰直角三角形 ∴DM+DH=2CH∴BH+DH=2CH .................10分25. 解:(1)把点C (0,﹣4),B (2,0)分别代入y=x2+bx+c 中,得,GH FACB DEM1 2解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).26.(1)当点P 在AE 上时, 由△APN ∽△ACB 得BC PNAC AP = ∴1266tt -=∴t=2s ......2分 当点P 在ED 上时,PN=3 ,∴AE+EP=3+6-3=6 ∴t=6s ......3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<-+-≤<-≤<+-=)129(54983)96(88141541)63(8943)30(292381222t t t t t t t t t t t S .................8分(3)在直线DE 与直线AC 上存在点G 和点H ,使△GHP1是等腰直角三角形. 理由如下: 过P1作P1S ⊥AC 于S, P1R ⊥DE 于R, ∵∠P1QS=60°,P1Q=3,∴P1S=RE=323, QS 23=∴P1R=SE=23.当∠P1GH=90°时,可证△P1RG ≌△GEH ,则EG= P1R=23.......9分当∠P1HG=90°时, (如图3、4) 可证△P1SH ≌△HEG ,∴EH=P1S=323,EG=SH, ∴EG=EH+SE=323+23;或EG=EH-SE=323-23; ..........11分③当∠GP1H=90°时,∵P1S ≠ P1R , ∴△P1SH 与△P1RG 不可能全等 ∴P1H ≠ P1G ,∴不成立. .......12分综上,EG=23,323+23,323-23.R S GP1HE Q H G P1SR E Q R P 1S E H GQE P 1G SHR Q图1图2图3图4。
2014年重庆中考数学
2014年重庆中考数学一、选择题(共12小题;共60分)1. 实数的相反数是______A. B. C. D.2. 计算的结果是______A. B. C. D.3. 在中,的取值范围是______A. B. C. D.4. 五边形的内角和是______A. B. C. D.5. 2014 年 1 月 1 日零点,北京、上海、重庆、宁夏的气温分别是、、、,当时这四个城市中,气温最低的是______A. 北京B. 上海C. 重庆D. 宁夏6. 关于的方程的解是______A. B. C. D.7. 2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110跨栏”训练中,每人各跑次,据统计,他们的平均成绩都是秒,甲、乙、丙、丁的成绩的方差分别是、、、.则当天这四位运动员“110跨栏”的训练成绩最稳定的是______A. 甲B. 乙C. 丙D. 丁8. 如图,直线,直线分别交直线、于点、,过点作,交直线于点.若,则的大小是______A. B. C. D.9. 如图,的顶点、、均在上,若,则的大小是______A. B. C. D.10. 2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为,录入字数为,下面能反映与的函数关系的大致图象是______A. B.C. D.11. 如图,下列图形都是由面积为的正方形按一定的规律组成,其中,第(1)个图形中面积为的正方形有个,第(2)个图形中面积为的正方形有个,第(3)个图形中面积为的正方形有个,,按此规律,则第(6)个图形中面积为的正方形的个数为______A. B. C. D.12. 如图,反比例函数在第二象限的图象上有两点、,它们的横坐标分别为、,直线与轴交于点,则的面积为______A. B. C. D.二、填空题(共6小题;共30分)13. 方程组的解是______14. 据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到辆,将这个数用科学记数法表示为______.15. 如图,菱形中,,,则菱形的周长为______.16. 如图,中,,,与相切于点,则图中阴影部分的面积为______.(结果保留)17. 从,,这三个数字中,随机抽取一个数,记为.那么,使关于的一次函数的图象与轴、轴围成的三角形的面积为,且使关于的不等式组有解的概率为______.18. 如图,正方形的边长为,点是对角线、的交点,点在上,且,连接.过点作,垂足为,连接,则的长为______.三、解答题(共8小题;共104分)19. 计算:.20. 如图,中,,垂足是,若,,,求的值.21. 先化简,再求值:,其中的值为方程的解.22. 为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有______ 家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有家是餐饮企业.现从3月新注册的小型企业中随机抽取家企业了解其经营状况,请用列表法或画树状图的方法求出所抽取的家企业恰好都是餐饮企业的概率.23. 为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有户居民自愿参与集资,那么平均每户需集资元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资元.经筹委会进一步宣传,自愿参与的户数在户的基础上增加了(),则每户平均集资的资金在元的基础上减少了,求的值.24. 如图,中,,,,垂足是,平分,交于点.在外有一点,使,.(1)求证:;(2)在上取一点,使,连接,交于点,连接.求证:(i);(ii).25. 如图,抛物线的图象与轴交于、两点(点在点的左边),与轴交于点,点为抛物线的顶点.(1)求点、、的坐标;(2)点为线段上一点(点不与点、重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点,若点在点左边,当矩形的周长最大时,求的面积;(3)在(2)的条件下,当矩形的周长最大时,连接,过抛物线上一点作轴的平行线,与直线交于点(点在点的上方).若,求点的坐标.26. 已知,如图1,在矩形中,,,,垂足是.点是点关于的对称点,连接、.(1)求和的长;(2)若将沿着射线方向平移,设平移的距离为(平移距离指点沿方向所经过的线段长度),当点分别平移到线段、上时,直接写出相应的的值;(3)如图2将绕点顺时针旋转一个角,记旋转中的为,在旋转过程中,设所在的直线与直线交于点,与直线交于点.是否存在这样的、两点,使为等腰三角形?若存在,求出此时的长;若不存在,请说明理由.答案第一部分1. A2. B3. A4. C5. D6. B7. D8. B9. C 10. C11. B 12. C第二部分13.14.15.16.17.18.第三部分19. 原式.20. ,.,,...在中,..原式21.解方程得.当时,原式.22. (1);折现统计图如图所示:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:共有种等可能的结果,甲、乙家企业恰好被抽到的有种,所抽取的家企业恰好都是餐饮企业的概率为.23. (1)设用于购买书桌、书架等设施的资金为元,由题意得解得答:最多花元资金购买书桌、书架等设施.(2)由题意得设,则整理得解得舍,.24. (1),,,,,,.,,,(),.(2)(i)过作于点.,是等腰直角三角形,,.,平分,,.,,即是的中点,是的垂直平分线,,,,即;(ii),,.,(),.,,,,,.,(),.25. (1)对,令,得,则;令,得,解得,,.(2)由,得抛物线的对称轴为直线.设点,,其中.、关于直线对称,设的横坐标为,则,,,,,周长.当时,取最大值.此时,,.设直线解析式为(),则解得直线解析式为将代入.将代入得,,,.(3)由(2)知,当矩形的周长最大时,,此时点,与点重合,.将代入,得,.作轴,则.,是等腰三角形,..设,,则.,,解得.当时,;当时,.或.26. (1)在中,,,由勾股定理得.,.在中,,,由勾股定理得.(2)当点落在上时,;当点落在上时,.(3)存在.理由如下:在旋转过程中,等腰依次有以下种情况:①如图所示:落在延长线上,且,易知.,,,,.在中,由勾股定理得.;②如图所示:落在上,且,易知.,,,则此时点落在边上.,,,.在中,由勾股定理得,即,解得.;③如图所示:落在上,且,易知.,..,,,,,.在中,由勾股定理得,;④如图所示:落在上,且,易知.,,,,.综上所述,存在组符合条件的点、点,使为等腰三角形.的长度分别为、、或.。
2014重庆中考数学试题及答案b卷
2014重庆中考数学试题及答案b卷一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,则下列不等式中一定成立的是()A. a+b>cB. a+c>bC. b+c>aD. a-b>c2. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. ab+bc+ac>0B. ab+bc+ac<0C. ab+bc+ac=0D. ab+bc+ac≤03. 已知a、b、c是实数,且a+b+c=0,下列式子中不一定成立的是()A. a^2+b^2+c^2>0B. a^2+b^2+c^2=0C. a^2+b^2+c^2<0D.a^2+b^2+c^2≥04. 若a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. a^3+b^3+c^3=3abcB. a^3+b^3+c^3=-3abcC. a^3+b^3+c^3=0D.a^3+b^3+c^3≠05. 已知a、b、c是实数,且a+b+c=0,下列式子中不一定成立的是()A. a^3+b^3+c^3-3abc=0B. a^3+b^3+c^3-3abc>0C. a^3+b^3+c^3-3abc<0 D. a^3+b^3+c^3-3abc≠06. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. a^2+b^2+c^2≥ab+bc+acB. a^2+b^2+c^2≤ab+bc+acC.a^2+b^2+c^2<ab+bc+ac D. a^2+b^2+c^2>ab+bc+ac7. 若a、b、c是实数,且a+b+c=0,则下列式子中不一定成立的是()A. a^2+b^2+c^2≥ab+bc+acB. a^2+b^2+c^2≤ab+bc+acC.a^2+b^2+c^2=ab+bc+ac D. a^2+b^2+c^2≠ab+bc+ac8. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. (a-b)^2+(b-c)^2+(c-a)^2≥0B. (a-b)^2+(b-c)^2+(c-a)^2≤0C. (a-b)^2+(b-c)^2+(c-a)^2<0D. (a-b)^2+(b-c)^2+(c-a)^2=09. 若a、b、c是实数,且a+b+c=0,则下列式子中不一定成立的是()A. (a-b)^2+(b-c)^2+(c-a)^2≥0B. (a-b)^2+(b-c)^2+(c-a)^2≤0C. (a-b)^2+(b-c)^2+(c-a)^2=0D. (a-b)^2+(b-c)^2+(c-a)^2<010. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)B. (a-b)^3+(b-c)^3+(c-a)^3=-3(a-b)(b-c)(c-a) C. (a-b)^3+(b-c)^3+(c-a)^3=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年重庆中考第10题专项训练1.如图,Rt ABC 中,AC BC ⊥,AD 平分BAC ∠交BC 于点D ,DE AD ⊥交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD=4,CD=3.下列结论①AED ADC ∠=∠;②34DE DA =; ③AC BE 12⋅=;④3BF 4AC =;其中结论正确的个数有( )A .1个B .2个C .3个D .4个2.如图,在边长为1的正方形ABCD 中,E 为AD 边上一点,连接BE ,将ABE 沿BE 对折,A 点恰好落在对角线BD 上的点F 处.延长AF ,与CD 边交于点G ,延长FE ,与BA 的延长线交于点H ,则下列说法:①BFH 为等腰直角三角形;②ADF FHA ≅;③60DFG ∠=︒;④2DE =S AEF S DFG =.其中正确的说法有( )A .1个B .2个C .3个D .4个3.如图,在△ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .下列结论:① 12DE BC =;② 1cos 2BFE ∠=;③EDF FED ∠=∠; ④点F 到ABC ∆三个顶点的距离相等;⑤BE CD BC +=.其中正确的结论有( )个.A .1个B .2个C .3个D .4个4. 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②∠GDH=∠GHD ③S S CDG DHGE =;④图中有8个等腰三角形.其中正确的是( ) A.①③ B.②④ C.①④ D.②③5.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在AD 边上的点B '处,点A 落在点A '处.设AE=a ,AB=b ,BF=c ,下列结论:①B E BF '=;②四边形B CFE '是平行四边形;③222a b c +=;④A B EB CD ''';其中正确的是( ) A.②④ B.①④ C.②③ D.①③6.如图,在正方形ABCD 中 ,AB=1,E ,F 分别是边BC ,CD 上的点,连接EF 、AE 、AF ,过A 作AH ⊥EF 于点H. 若EF=BE+DF ,那么下列结论:其中正确结论的个数是( )个①AE 平分∠BEF ;②FH=FD ;③∠EAF=45°;④EAF ABE ADF S S S ∆∆∆=+; ⑤△CEF 的周长为2.A D CBEFH7.如图,在正方形ABCD 中,点E 是AD 的中点,连接BE 、CE ,点F 是CE 的中点,连接DF 、BF ,点M 是BF 上一点且21=MF BM ,过点M 做BC MN ⊥于点N ,连接FN .下列结论中①CE BE =;②DFE BEF ∠=∠;③AB MN 61=;④61=∆EBNF FMN S S 四边形 其中正确结论的个数是:( )A .1个B .2个C .3个D .4个8.如图,P 、Q 是矩形ABCD 的边BC 和CD 延长上的两点,AP 与CQ 相交 于点E ,且∠PAD =∠QAD 。
则 ① DQ = DE ②∠BAP=AQE ;③AQ ⊥PQ ;④EQ = 2CP ;⑤ABCD APQ S S 矩形=∆下列四个结论中正确的是( ) A.①②⑤ B.①③⑤ C.①②④ D.①②③④9.如图,点E 是正方形ABCD 的边BC 上一点,将△ABE 绕着顶点A 逆时针旋转90°,得△ADF ,连接EF ,P 为EF 的中点,则下列结论正确的是( )①sin AEF 2∠=②EF=2EC ③∠DAP=∠CFE ④∠ADP=45° ⑤PD//AF A. ①②③ B. ①②④ C. ①③④ D. ①③⑤10.如图,在正方形ABCD 的对角线上取点E ,使得∠BAE=︒15,连结AE ,CE .延长CE 到F ,连结BF ,使得BC=BF .若AB=1,则下列结论:①AE=CE ,②F 到BC 的距离为22;③BE+EC=EF ;④8241+=∆AED S ;⑤123=∆EBF S .其中正确的个数是( )A .2个B .3个C .4个D .5个11.如图,正方形ABCD 的边长为4,F 为BC 的中点, 连接BD 、AF 、DF ,AF 交BD 于点E ,连接CE 交DF 于点G ,下列结论:①ABE CBE ∆≅∆;②DF DE ⊥;③DE DC = ④34ABE BDF S S ∆∆=;⑤CDEF 20=3S 四边形其中正确的结论个数是( )12.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC, E 为AB 边上一点,∠BCE =15°,AE =AD .连接DE 交对角线AC 于H ,连接BH . 下列结论:①△ACD ≌△ACE ; ②△CDE 为等边三角形;③EH 2BE =;④S S AEH DHC DHCH∆∆=.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个A BCD EFBACDGFE13.在等腰Rt ABC ∆中,∠A=90°,AC=AB=2,D 是BC 边上的点且13BD CD =,连接AD.把AD绕着点A 顺时针旋转90°得到线段AE , 连接BE.下列结论:① ADC AEB ∆≅∆;②BE CB ⊥;② ③点B 到直线AD④四边形AEBC2;⑤=2S 四边形ADBE 其中正确的有( )A .4个B .3个C .2个D .1个14.如图,E 为边长为1的正方形ABCD 的对角线BD 上一点,且BE BC =,P 为CE 上任一点,PQ BC ⊥于Q ,PR BE ⊥于R 。
有下列结论:①PCQPER ∆∆;②24DCE S ∆-=;③tan 1DCE ∠=④2PQ PR +=.其中正确的结论的个数是( )A.1个B.2个C.3个D.4个EDCBA中考专项训练——计算题1、计算:38211-+-)( 2.计算:错误!未找到引用源。
3.计算:2×(-5)+23-3÷12 . 4. 计算:22+(-1)4+(5-2)0-|-3|;5. 计算:︒+-+-21999)2(20. 6、计算:()()022161-+--7.、计算错误!未找到引用源。
,8、计算:(3)0- (12 )-2 +()21- 9、 计算:()()0332014422---+÷-解方程或不等式组1、解方程x 2﹣4x+1=0 2. 解分式方程2322-=+x x3、解方程:3x = 2x -1 . 4. 已知|a ﹣1|+错误!未找到引用源。
=0,求方裎错误!未找到引用源。
+bx=1的解.5. 解方程:x 2+4x -2=0 6.解方程:x x -1 - 31-x= 21.解不等式组,并写出不等式组的整数解.2.解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x3.解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x .4.求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1)的解集,并写出它的整数解.5.解不等式:3﹣2(x ﹣1)<1.6. 解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x8.解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x 9. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
10. 解不等式组:102(2)3x x x -≥⎧⎨+>⎩ 11. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数解.重庆市中考数学专项训练分式化简求值题专练1. 先化简,再求值:,2222444222-+÷⎪⎪⎭⎫ ⎝⎛--+--a aa a a a a 其中3-=a2. 先化简,再求值:11)1211(2+÷---+a a a a ,其中13+=a .3. 先化简,再求值:2244(1),442x x x x-÷--+-其中222-=x4. 先化简,再求值:222222,1121a a aa a a a ---÷+--+其中a =5. 先化简,再求值:12413123+--÷⎪⎭⎫ ⎝⎛--+x x x x x x ,其中2=x ;6. 先化简,再求值)21(222222ab b a abb a b a +-÷+-,其中1-=a ,2=b .7. 先化简,再求值2235(2),22a a aa a a a -÷--++其中 3.a =8. 先化简,再求值:xx xx x x --÷--+224)1151(,其中43-=x .9. 先化简,再求值:2234(1),121x x x x -+÷--+其中 3.x =10. 先化简,再求值:22221,369x y x y x y x xy y +--÷--+其中2,x y11. 先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a是方程2702x x --=的解.12. 先化简,再求值:222222,1121a a a a a a a ---÷+--+ 其中tan60;a =13. 先化简,再求值:2222(2),442x x x x x x x -÷---+- 其中 2.x =-14. 先化简,再求值:121,x xxx x--⎛⎫÷-⎪⎝⎭其中 1.x=M HG B F E D C A重庆市中考数学专项训练几何专练(第24小题)1. 如图,在正方形ABCD 中,E 、F 分别为BC 、AB 上两点, 且BE =BF ,过点B 作AE 的垂线交AC 于点G ,过点G 作CF 的垂线交BC 于点H ,延长线段A E 、GH 交于点M . (1)求证:∠BFC =∠BEA ; (2)求证:A M =B G +G M .2.如图,ABC ∆是等边三角形,过点C 作CD CB ⊥交CBA ∠的外角平分线于点D ,连结AD ,过点C 作,BCE BAD ∠=∠交AB 的延长线于点E . (1)求证:BD BE =;(2)若4,5,CD BE ==求AD 的长.3如图,在直角梯形ABCD 中,,//,AD DC AB DC ⊥,AB BC =AD 与BC 延长线交于点,F G是DC 延长线上一点,AG BC ⊥于.E(1)求证:;CF CG =(2)连接,DE 若4,2,BE CE CD ==求DE 的长.4. 如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ; 求证:(1)△BCQ ≌△CDP; (2)OP=OQ.PA BC DEFG5. 如图正方形A BC D 中,E 为AD 边上的中点,过A 作AF ⊥BE ,交C D 边于F ,M 是AD 边上一点,且有B M =D M +C D .⑴求证:点F 是CD 边的中点; ⑵求证:∠M B C =2∠AB E .6. 如图,梯形ABCD 中,//,,,30.AB CD AD CD AC AB DAC ⊥=∠= 点E F 、是梯形ABCD 外的两点,且 30,,=∠∠=∠∠=∠CEB FBE ABC FCB EAB . (1)求证:;BE BF =(2)若5,4,CE BF ==求线段AE 的长.M FECDBA7. 如图,直角梯形ABCD 中,∠DAB=90°,AB ∥CD ,AB=AD,∠ABC=60°.以AD 为边在直角梯形ABCD 外作等边三角形ADF ,点E 是直角梯形ABCD 内一点,且∠EAD=∠EDA=15°,连接EB 、EF.(1)求证:EB=EF ; (2)延长FE 交BC 于点G ,点G 恰好是BC 的中点,若AB=6,求BC 的长.8 如图,在直角梯形ABCD 中,//,AD BC 90,ABC ∠=,BD BC =E 为CD 的中点,AE 交BC 的延长线于;F (1)证明:;EF EA =(2)过D 作DG BC ⊥于,G 连接,EG 试证明:.EG AF ⊥ABCDFEGABC DEFABC DEFG9 如图,直角梯形ABCD 中,//,AD BC 90,BCD ∠=2,CD AD =tan 2,ABC ∠=过点D 作//,DE AB 交BCD ∠的平分线于点,E 连接.BE(1)求证:;BC CD =(2)延长BE 交CD 于点.P 求证:P 是CD 的中点.10如图,正方形ABCD 的对角线交于点0,点E 是线段0D 上一点, 连接EC ,作BF ⊥CE 于点F ,交0C 于点G . (1)求证:BG=CE;(2)若AB=4 BF 是∠D B C 的角平分线,求OG 的长.A B CDE。