晶体文献

合集下载

有关半导体的参考文献

有关半导体的参考文献

有关半导体的参考文献参考文献:1. 陶铸, 朱建新. 半导体物理学[M]. 清华大学出版社, 2017.2. 张宇. 半导体器件物理与模拟[M]. 电子工业出版社, 2018.3. 石磊, 朱建新. 半导体器件物理与工艺[M]. 机械工业出版社, 2019.4. 朱建新. 半导体物理与器件[M]. 清华大学出版社, 2020.半导体材料是一类具有特殊电学性质的材料,广泛应用于电子器件和集成电路中。

随着科技的不断进步,半导体物理学和器件工艺也得以迅速发展。

本文将对半导体物理学和器件工艺的一些重要内容进行介绍。

半导体物理学是研究半导体材料的电学性质和输运特性的学科。

《半导体物理学》一书详细介绍了半导体材料的基本性质、能带理论、载流子输运、PN结和二极管、MOS结和MOS场效应晶体管等内容。

通过学习半导体物理学,可以了解半导体材料的结构、能带结构以及载流子的产生、输运和复合过程,为后续学习半导体器件物理和工艺奠定基础。

半导体器件物理与模拟是研究半导体器件的电学特性和模拟方法的学科。

《半导体器件物理与模拟》一书详细介绍了半导体器件的物理效应、载流子输运、PN结和二极管、MOS场效应晶体管、BJT等内容。

通过学习半导体器件物理与模拟,可以了解各种半导体器件的工作原理、特性和模拟方法,为后续设计和优化半导体器件提供理论指导。

半导体器件物理与工艺是研究半导体器件制备工艺和性能改善方法的学科。

《半导体器件物理与工艺》一书详细介绍了半导体器件的制备工艺、薄膜技术、光刻技术、离子注入和扩散技术等内容。

通过学习半导体器件物理与工艺,可以了解各种半导体器件的制备过程和性能改善方法,为实际的半导体器件制造提供技术支持。

半导体物理与器件是综合了半导体物理学和半导体器件物理与工艺的学科。

《半导体物理与器件》一书全面介绍了半导体物理和器件的基本原理和应用。

通过学习半导体物理与器件,可以深入了解半导体材料的物理性质、器件的工作原理和制备工艺,为实际的半导体器件设计和制造提供理论指导和技术支持。

InSeI单晶的制备及其结构与性能研究

InSeI单晶的制备及其结构与性能研究

第49卷第12期人工晶体学报Vol.49No.12 2020年12月JOURNAL OF SYNTHETIC CRYSTALS December,2020 InSei单晶的制备及其结构与性能研究周玄1,2,程国峰2,何代华1(1.上海理工大学材料科学与工程学院,上海200093;2.中国科学院上海硅酸盐研究所,上海200050)摘要:利用化学气相传输法(CVT)制备了InSeI单晶。

该晶体为黄色的针状物,晶体较脆。

在室温下进行X射线衍射分析发现,其属于四方晶系,晶胞参数为a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,空间群为他/a。

紫外可见光吸收光谱、光致发光光谱等结果显示该晶体的禁带宽度是2.48eV,在一定波段光的激发下,InSeI单晶在600nm左右有较宽的发射峰,表明该晶体的发光方式为缺陷态发光。

介电温谱表明InSeI单晶在440K时其四方相的结构发生了相变。

关键词:InSeI;金属基硫卤化合物;化学气相传输法;光致发光;禁带宽度;介电性能中图分类号:O78文献标识码:A文章编号:1000-985X(2020)12-225244 Synthesis,Structure and Properties of InSei Single CrystalsZHOU Xuan1,2,CHENG Guofeng2,HE Daihua1(1.School of Materials Science and Engineering,Lniversity of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai200050,China)Abstract:InSeI single crystals were synthesized by the chemical vapor transport(CVT)method.The crystal is yellow needle­shaped and brittle.X-ray diffraction results at room temperature show the tetragonal system of InSeI,with lattice parameters of a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,and space group is/a.The ultraviolet-visible absorption spectrum,photoluminescence spectrum results show that InSeI has a2.48eV band gap,under the excitation of a certain band of light,InSeI single crystal has a wide emission peak at about600nm,which indicates that the luminescence mode of the crystal is defect state luminescence.The dielectric temperature spectrum indicates that a phase transition happened in the tetragonal structure of InSeI crystals at440K.Key words:InSeI;metal based thiohalide;chemical vapor transport method;photoluminescence;band gap;dielectric property0引言近年来,金属基硫卤化合物MQX[1](M=Ga,In,Sb,Bi;Q=S,Se,Te;X=Cl,Br,I)由于其独特的光电性质如铁电性[2-3]、热电性[4]、光电导性[5]和非线性光学性能[6]等引起了科学界的浓厚兴趣。

化学文献

化学文献

【摘要】众所周知,2011年诺贝尔化学奖实至名归地由以色列化学家Daniel Shechtman获奖,获奖理由是“发现准晶体”。

谢赫特曼发现了准晶体,这种材料具有的奇特结构,推翻了晶体学已建立的概念。

许多年以来,凝聚态物理学家们仅仅关心晶态的固体物质。

然而,在过去的几十年,他们逐渐把注意力转向“非晶”材料,如液体或非晶体,这些材料中的原子仅在短程有序,被称为缺少“空间周期性”。

准晶,这种新的结构因为缺少空间周期性而不是晶体,但又不像非晶体,准晶展现了完美的长程有序,这个事实给晶体学界带来了巨大的冲击,它对长程有序与周期性等价的基本概念提出了挑战。

【关键词】准晶的空间结构准晶的应用前景众所周知,2011年诺贝尔化学奖名至实归的由以色列化学家Daniel Shechtman获奖,获奖理由是“发现准晶体” [1]。

想必诺贝尔奖对一个人的重要性不用在此处赘述了吧,那么就请由我为大家简单的介绍一下诺贝尔奖得主与他的研究成果吧一:什么是准晶准晶是一种介于晶体和非晶体之间的固体。

准晶具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。

准晶体其实发现的时间并不是很早,与1982年才被发现的,因其具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。

目前已知的准晶体都是金属互化物。

2000年以前发现的所有几百种准晶体中至少含有3种金属,如Al65Cu23Fe12,Al70Pd21Mn9等。

但最近发现仅2种金属也可形成准晶体,如Cd57Yb10〔Nature,2000,408:537〕[2]。

由于准晶体的特殊性质,所以长期一来,大多数科学家并不承认其为单独存在的晶体。

2009年,矿物学上的一个发现为准晶是否能在自然条件下形成提供了证据:俄罗斯的一块铝锌铜矿上发现了Al63Cu24Fe13组成的准晶颗粒。

和实验室中合成的一样,这些颗粒的结晶程度都非常好。

(完整版)文献调研报告模板

(完整版)文献调研报告模板

文献综述调研报告课题名称:蓝宝石晶体生产方法的研究涉及的检索词:中文:方法蓝宝石生产原料晶体检索词间的逻辑关系(逻辑式,可以有多个):中文:(蓝宝石+晶体)*(原料+生产)*方法需要的文献类型:期刊文章学位论文年代范围:1979-2010选用的数据库:知网数据库、维普数据库、万方数据库检索方法(用截图方式表现):检索结果:知网数据库:[1]韩杰才, 左洪波,孟松鹤, 张明福, 姚泰, 李长青,许承海, 汪桂根。

泡生法制备大尺寸蓝宝石单晶体[j]. 人工晶体学报, 2005,(01)摘要:为了研究工艺参数对泡生法蓝宝石晶体生长过程及其晶体质量的影响,在自行研制的泡生法蓝宝石晶体生长炉上进行了试验。

调整籽晶热交换器水流量及进水温度,并在等径生长期间采用不同的维持功率下降速度,结果表明:热交换器冷却强度对引晶及放肩阶段晶体生长有显著影响,并逐步减弱;维持功率下降速度直接影响等径生长阶段的晶体生长速度和晶体质量,下降太快将导致晶体缺陷密度增加,严重时形成多晶.在晶体生长过程中,合理调节籽晶热交换器的冷却强度,谨慎操控维持功率下降速度是蓝宝石单晶生长成败的关键。

[2] 姚泰,左洪波,韩杰才,张明福,孟松鹤,姚秀荣,李常青,汪贵根,许承海。

蓝宝石单晶生长过程中应力分布的数值模拟[j]哈尔滨理工大学学报 , 2006,(05)摘要:晶体生长过程中所产生的残余热弹性应力是影响晶体质量的重要因素之一。

用ansys软件为平台,以改进的kyropoulos法制备φ230x200mm大尺寸蓝宝石单晶为例,对所生长单晶体的热应力分布进行了数值模拟.建立了不同外形(放肩角)条件下晶体生长过程中热弹性应力的分布模型。

讨论了不同放肩角对晶体热应力的影响.结果表明,通过改变晶体的外形可以改善热应力的分布,从而在晶体中获得更多的低应力区域.模拟结果和试验结果吻合较好.[3]孙广年,于旭东,沈才卿。

泡生法生长高质量蓝宝石的原理和应用[j]。

晶体制作实验报告范文

晶体制作实验报告范文

晶体制作实验报告范文一、实验目的本实验旨在通过制备晶体来加深对晶体结构及其形成条件的理解,同时培养学生的实验操作能力和科学思维能力。

二、实验原理1. 晶体定义:晶体指具有高度有序、长程排列的物质结构,具有明确的几何外形和规整的表面,由分子、原子或离子构成。

2. 晶体的制备:晶体的制备一般采用溶液结晶方法。

在饱和溶液中逐渐降温或加入引发结晶的物质,使溶质从液相向固相过渡,结晶体逐渐形成。

三、实验步骤1. 实验准备:准备所需试剂和仪器,包括溶液制备容器、加热设备、试管、玻璃棒、滤纸等。

2. 制备溶液:按实验要求准备所需溶液,可根据需要调节溶液浓度。

3. 溶液结晶:将制备好的溶液倒入试管中,逐渐降温或加入引发结晶的物质,观察晶体在溶液中的形成过程。

4. 晶体收集:使用滤纸将晶体与溶剂分离,将晶体取出并用纯净水进行清洗。

5. 晶体观察:观察晶体的形状、颜色、透明度等特征,并进行显微镜观察。

6. 结果记录:记录晶体的制备过程、观察结果和实验数据。

四、实验结果与分析经过实验制备,成功得到了透明、颗粒饱满的晶体。

晶体形状规整,呈现六角柱、长方体等不同形态,颜色鲜艳且均匀。

根据实验中观察到的晶体形状和性质特征,可以推断晶体具有高度有序的分子排列结构。

晶体的形成过程是由于溶液中的溶质逐渐从液相向固相过渡,使分子间的相互作用增强,最终达到稳定状态。

五、实验总结通过本次晶体制作实验,我们进一步了解了晶体的结构和形成条件。

实验中我们掌握了晶体制备的基本步骤和操作技巧,培养了实验操作能力和科学思维能力。

同时,我们也发现在制备晶体的过程中,温度的变化对晶体形成有着重要影响。

适当的温度控制可以促进晶体的形成和生长,而过快或过慢的温度变化则可能导致晶体形态不规则或晶体无法形成。

总的来说,本次实验对我们进一步理解晶体结构和制备方法具有重要意义,为今后的相关研究和应用提供了实验基础。

六、实验中遇到的问题及改进方向在实验过程中,我们发现晶体形成速度较慢,需要相对较长的时间。

常用晶体杂志

常用晶体杂志

ScienceDirect (SD)网址:/(1) Catalysis Communications (催化通讯)(2) Journal of Molecular Catalysis A: Chemical (分子催化A:化学)(3) Tetrahedron (T) (四面体)(4) Tetrahedron: Asymmetry (TA) (四面体:不对称)(5) Tetrahedron Letters (TL) (四面体快报)(6) Applied Catalysis A: General (应用催化A)2. EBSCOhost数据库网址:/(1) Synthetic Communcations (合成通讯)(2) Letters in Organic Chemistry (LOC)(3) Current Organic Synthesis(4) Current Organic Chemistry3. Springer数据库网址:http:// /(1) Molecules (分子)(2) Monatshefte für Chemie / Chemical Monthly (化学月报)(3) Science in China Series B: Chemistry (中国科学B)(4) Catalysis Letts (催化快报)4. ACS Publications (美国化学会)网址:/(1) Journal of the American Chemical Society (JACS) (美国化学会志)(2) Organic Letters (OL) (有机快报)(3) The Journal of Organic Chemistry (JOC) (美国有机化学)(4) Journal of Medicinal Chemistry (JMC) (美国药物化学)(5) Chemical Reiew (化学评论)5. Royal Society of Chemistry (RSC) (英国皇家化学会)网址:/Publishing/Journals/Index.asp(1) Green Chemistry (绿色化学)(2) Chemical Communications (CC) (化学通讯)(3) Chemical Society Reviews (化学会评论)(4) Journal of the Chemical Society (化学会志)Journal of the Chemical Society, Perkin Transactions 1 (1972-2002) Journal of the Chemical Society, Perkin Transactions 2 (1972-2002) Journal of the Chemical Society B: Physical Organic (1966-1971)Journal of the Chemical Society C: Organic (1966-1971)(5) Organic & Biomolecular Chemistry (OBC) (有机生物化学)/publishing/jo ... p?type=CurrentIssue6. Wiley网址:/(1) Advanced Synthesis & Catalysis (ASC) (先进合成催化)(2) Angewandte Chemie International Edition (德国应用化学)(3) Chemistry - A European Journal (欧洲化学)(4) Chinese Journal of Chemistry (中国化学)(5) European Journal of Organic Chemistry (欧洲有机化学)(6) Helvetica Chimica Acta (瑞士化学)(7) Heteroatom Chemistry (杂原子化学)7. Ingent网址:/(1) Journal of Chemical Research (JCR) (化学研究杂志)(2) Canadian Journal of Chemistry (加拿大化学)(3) Current Organic Chemistry(4) Mini-Reviews in Organic Chemistry(5) Phosphorus, Sulfur, and Silicon and the Related Elements (磷、硫、硅和相关元素)(6) Letters in Organic Chemistry8. Taylor & Francis数据库网址:http://www.journalsonline.tandf. ... sp?referrer=default(1) Synthetic Communications(2) Journal of Sulfur Chemistry(硫化学杂志)(3) Phosphorus, Sulfur, and Silicon and the Related Elements9. Thieme数据库网址:/(1) Synlett (合成快报)(2) Synthesis (合成)10. 日本化学会网址:(1) Chem. Lett. (CL) (化学快报)http://www.jstage.jst.go.jp/browse/cl/_vols(2) Bull. Chem. Soc. Jpn. http://www.csj.jp/journals/bcsj/index.html11. 澳大利亚化学会(Australian Journal of Chemistry)http://www.publish.csiro.au/nid/52.htm12.巴西化学会.br/13.Molecules/molecules/14.韩国化学会http://journal.kcsnet.or.kr/15.印度化学会http://www.niscair.res.in/Scienc ... hin.htm&d=test816.国际有机制备和程序(Organic Preparations and Procedures International,OPPI)/17.有机化学/index.htm有机合成:Organic Syntheses(有机合成手册), John Wiley & Sons (免费)/Named Organic Reactions Collection from the University ofOxford (有机合成中的命名反应库) (免费)/thirdyearcomputing/NamedOrganicReac...有机化学资源导航Organic Chemistry Resources Worldwide/有机合成文献综述数据库Synthesis Reviews (免费)/srev/srev.htmCAMEO (预测有机化学反应产物的软件)/products/cameo/index.shtmlCarbohydrate Letters (免费,摘要)/Carbohydrate_Letters/Carbohydrate Research (免费,摘要)/locate/carresCurrent Organic Chemistry (免费,摘要)/coc/index.htmlElectronic Encyclopedia of Reagents for Organic Synthesis (有机合成试剂百科全书e-EROS) /eros/European Journal of Organic Chemistry (免费,摘要)/jpages/1434-193X/Methods in Organic Synthesis (MOS,有机合成方法)/is/database/mosabou.htmOrganic Letters (免费,目录)/journals/orlef7/index.htmlOrganometallics (免费,目录)/journals/orgnd7/index.htmlRussian Journal of Bioorganic Chemistry (Bioorganicheskaya Khimiya) (免费,摘要)http://www.wkap.nl/journalhome.htm/1068-1620Russian Journal of Organic Chemistry (Zhurnal Organicheskoi Khimii) (免费,摘要)http://www.maik.rssi.ru/journals/orgchem.htmScience of Synthesis: Houben-Weyl Methods of Molecular Transformation/Solid-Phase Synthesis database (固相有机合成)/chem_db/sps.htmlSynthetic Communications (免费,摘要)/servlet/product/productid/SCCSyntheticPages (合成化学数据库) (免费)/The Complex Carbohydrate Research Center (复杂碳水化合物研究中心)/合成材料老化与应用 (免费,目录)/default.html金属卡宾络合物催化的烯烃复分解反应 (免费)/html/books/O61BG/b1/2002/2.6%20.htm上海化学试剂研究所/英国化学数据服务中心CDS (Chemical Database Service)/cds/cds.html英国皇家化学会碳水化合物研究组织 (Carbohydrate Group of the Royal Society of Chemistry) /lap/rsccom/dab/perk002.htm有机反应催化学会 (ORCS, Organic Reaction Catalysis Society)/有机合成练习 (免费)/中国科学院成都有机化学研究所:催化与环境工程研究发展中心/MainIndex.htm金属有机及元素有机化学:CASREACT - Chemical Reactions Database(CAS的化学反应数据库)/CASFILES/casreact.html日本丰桥大学 Jinno实验室的研究数据库(液相色谱、多环芳烃/药物/杀虫剂的紫外谱、物性) (免费) http://chrom.tutms.tut.ac.jp/JINNO/ENGLISH/RESEARCH/research...A New Framework for Porous Chemistry (金属有机骨架) (免费)/alchem/articles/1056983432324.htmlActa Crystallographica Section B (免费,摘要)/b/journalhomepage.htmlActa Crystallographica Section E (免费,摘要)/e/journalhomepage.htmlBibliographic Notebooks for Organometallic Chemistryhttp://www.ensc-lille.fr/recherche/cbco/bnoc.htmlBiological Trace Element Research (生物痕量元素研究杂志) (免费,摘要)/JournalDetail.pasp?issn=0163-4984...Journal of Organometallic Chemistry (免费,摘要)/locate/jnlabr/jomOrganic Letters (免费,目录)/journals/orlef7/index.htmlOrganometallics (免费,目录)/journals/orgnd7/index.htmlSyntheticPages (合成化学数据库) (免费)/金属卡宾络合物催化的烯烃复分解反应 (免费)/html/books/O61BG/b1/2002/2.6%20.htm金属有机参考读物:The Organometallic HyperTextBook by Rob Toreki/organomet/index.html金属有机化学国家重点实验室,中国科学院上海有机所/元素有机化学国家重点实验室(南开大学)/在线网络课程:有机金属反应和均相催化机理 (Dermot O'Hare 主讲)/icl/dermot/organomet/药物化学:Fisher Scientific/PubMed: MEDLINE和PREMEDLINE (免费)/PubMed/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community/AIDSDRUGS (艾滋病药物) (免费)/pubs/factsheets/aidsinfs.htmlautodock (分子对接软件) (免费)/pub/olson-web/doc/autodock/DIRLINE (卫生与生物医药信息源库) (免费)/HISTLINE (医药史库) (免费)/TOXNET (化合物毒性相关数据库系列) (免费)/日本药典,第14版 (免费)http://jpdb.nihs.go.jp/jp14e/index.html小分子生物活性数据库ChemBank (免费)/Ashley Abstracts Database (药物研发、市场文献摘要) (免费)/databases/ashley/search.aspBIOSIS/BIOSIS/ONLINE/DBSS/biosisss.html从检索药物交易信息库PharmaDeals (部分免费)/从ChemWeb检索有机药物用途及别名库Negwer: organic-chemical drugs and their synonyms (部分免费) /negwer/negwersearch.html美国常用药品索引库RxList (免费)/美国国家医学图书馆NLM的免费在线数据库 (免费)/hotartcl/chemtech/99/tour/internet.html制药公司目录(Pharmaceutical Companies on Virtual Library: Pharmacy Page)/company.html37℃医学网/AAPS PharmSci (免费,全文)/Abcam Ltd.有关抗体、试剂的销售,抗体的搜索)/Acta Pharmaceutica (免费,摘要)http://public.srce.hr/acphee/Advanced Drug Delivery Reviews (免费,摘要)http://www.elsevier.nl/locate/drugdelivAmerican Journal of Drug and Alcohol Abuse (免费,摘要)/servlet/product/productid/ADAAmerican Journal of Pharmaceutical Education (AJPE) (免费,全文)/Amgen Inc. (医药)/Anita's web picks (药学与药物化学信息导航)http://wwwcmc.pharm.uu.nl/oyen/webpicks.htmlAnnals of Clinical Microbiology and Antimicrobials (免费,全文)/Annual Review of Pharmacology and Toxicology (免费,摘要)/Anti-Cancer Drug Design (免费,摘要)/antcan/生物有机化学:ScienceDirect: 在线访问Elsevier的1100种期刊全文 (免费目录) (免费)/生命、环境科学综合性资源TheScientificWorld (sciBASE)/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community /BIOETHICSLINE (BIOETHICS onLINE) (免费)/BIOME (生命科学资源导航)/browse/Directory of P450-containing Systems(P450酶系目录)http://p450.abc.hu/DIRLINE (卫生与生物医药信息源库) (免费)/百名最佳生物技术网站列表 (Top 100 Biotechnology WWW Sites)/top100.asp从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费)/课程材料:MIT生物学超文本教材http://esg-[url]:8001/esgbio/7001main.html[/url]生物材料网 (Biomaterials Network)/生物信息学资源导航,上海生物化学所/bio/index.htm小分子生物活性数据库ChemBank (免费)/英国剑桥医学研究委员会:分子生物学实验室LMB/biology site of the network./生物有机化学:ScienceDirect: 在线访问Elsevier的1100种期刊全文 (免费目录) (免费)/生命、环境科学综合性资源TheScientificWorld (sciBASE)/生物医药:BioMedNet: The World Wide Club for the Biological and Medical Community /BIOETHICSLINE (BIOETHICS onLINE) (免费)/BIOME (生命科学资源导航)/browse/Directory of P450-containing Systems(P450酶系目录)http://p450.abc.hu/DIRLINE (卫生与生物医药信息源库) (免费)/百名最佳生物技术网站列表 (Top 100 Biotechnology WWW Sites)/top100.asp从ChemWeb检索《化学工程与生物技术文摘》库CEABA (部分免费)/课程材料:MIT生物学超文本教材http://esg-[url]:8001/esgbio/7001main.html[/url]生物材料网 (Biomaterials Network)/生物信息学资源导航,上海生物化学所/bio/index.htm小分子生物活性数据库ChemBank (免费)/英国剑桥医学研究委员会:分子生物学实验室LMB/biology site of the network./。

晶体英文文献

晶体英文文献

The quartz crystal model and its frequencies1. IntroductionThe region between F 1 and F 2 is a region of positive reactance, and hence is called the inductive region. For a given AC voltage across the crystal, the net current flow through the crystal is greatest at F 1 and least at F 2. In loose terms, F 1 is referred to as the series-resonant frequency and F 2 is referred to as the parallel-resonant frequency (also called antiresonance).In this note, we present some of the basic electrical properties of quartz crystals. In particular, we present the 4-parameter crystal model, examine its resonant and antiresonant frequencies, and determine the frequency at load capacitance. Our coverage is brief, yet complete enough to cover most cases of practical interest. For further information, the interested reader should consult References [1] and [2]. The model and analysis is applicable to most types of quartz crystals, in particular tuning-fork, extensional-mode, and AT-cut resonators.Likewise, we can express the impedance in terms of its resistance (real part) and reactance (imaginary part) as shown in Figure 2.1.1 OverviewTo begin, let’s look at the impedance of a real 20 MHz crystal around its fundamental mode.Figure 2—Impedance resistance R (log scale) and reactance X versus frequency for the same crystal shown in Figure 1.Frequency [Hz]R e a c t a n c e X [o h m s ]Figure 1—Impedance magnitude |Z| (log scale) and phase θ versus frequency for an approximately 20 MHz crystal. (Scans made with an Agilent 4294A Impedance Analyzer.)In this impedance scan over frequency (Figure 1), we see the following qualitative behavior. There are twofrequencies F 1 and F 2 where the phaseθ is zero. Below and away from F 1, the phase is approximately -90°. Near F 1 the phase makes a fast transition from -90° to +90°. Between F 1 and F 2 the phase remains approximately constant at +90°. Near F 2 the phase makes a fast transition from +90° to -90°. Lastly, above and away from F 2, the phase is again approximately -90°. Further, the impedance of the crystal is least at F 1 and greatest at F 2.Figure 3—Close-up of reactance X near F 1. The reactance iszero at a frequency slightly above 20 MHz.The resistance R is strongly peaked at the frequency F 2. Below F 1, the reactance is negative and increases to zero at F 1 (see Figure 3) and then increases to large positive values as F 2 is approached. At F 2, the1.2.3Frequency at load capacitancereactance quickly decreases to large negative values and then again steadily increases towards zero.Another important crystal frequency is the frequency F L at a load capacitance C L . (See Reference [3] for a full discussion of this concept.) At this frequency, the crystal reactance X is equal to 1.2The crystal frequencies1.2.1The series-resonant frequenciesConsider the frequency F 1. One can define this in at least three ways. One choice is the (lower) frequency F r where the phase of the crystal is zero. At this zero-phase frequency, the crystal is purely resistive (equivalently its reactance is zero). A second choice is the frequency F m of minimum impedance. A third choice is to define this as the series-resonant frequency F s —a frequency whose definition requires the crystal model as discussed in Section 2.LC X ω1=, (4) where ω = 2πF L . Equivalently, at this frequency, the series combination of the crystal and a capacitance C L has zero reactance. (See Figure 4.) Note that as C L → ∞, F L → F r , and that as C L decreases, F L increases towards F p .Table 3—Frequency at load capacitanceTable 1—The series-resonant frequenciesFrequency Description L FrequencyDescriptionF s Series resonant frequency F r Zero-phase frequency (lower) F m Minimum impedance frequencyIt turns out that for most crystals, F s , F r , and F m areall sufficiently close to one another than it is notnecessary to distinguish between them.. (1)m r s F F F ≈≈The resulting relation giving the frequency of a crystal as a function of its parameters and a load capacitance C L is called the crystal-frequency equation and is of prime importance in specifying and understanding the operation of crystals in oscillators. (See References [3] and [4].)CrystalC LSee Section 6.2 for further details. 1.2.2The parallel-resonant frequenciesNext consider the frequency F 2. One can also definethis in at least three ways. One choice is the (upper) frequency F a where the phase of the crystal is zero. At this zero-phase frequency, the crystal is purely resistive (being very high). A second choice is the frequency F n of maximum impedance. A third choice is to define this as the parallel-resonant frequency F p —a frequency whose definition also requires the crystal model as discussed in Section 2.Figure 4—Defining F L at C LAs we shall see, for most applications, the frequency F L at load capacitance C L is well approximated by the expression()++≈L s L C C C F F 0121. (5)1.3 Guide to this noteTable 2—The parallel-resonant frequenciesFrequency Description F p Parallel-resonant frequency F a Zero-phase frequency (upper)F nMaximum-impedance frequency For most crystals, F p , F a , and F n are all sufficiently close to one another than it is not necessary to distinguish between them. . (2)n a p F F F ≈≈Further, they are above F s and are normally wellapproximated by the expression+≈0121C C F F s p . (3) In Section 2, we present and discuss the 4-parametercrystal model. In Section 3, we derive some simple results from this model defining F s and F p . In Section 4, we define the three non-dimensionalquantities r , Q , and M . In Section 5, we present some useful properties of the frequencies F r , F a , F s , and F p . In Section 6, we present approximations for F L and F rthat go beyond the approximations in Section 1.2. In Section 7, we derive the exact expressions for F L and F r . In Section 8, we make a few comments on resistance at resonance and antiresonance. Lastly, Appendix 1 contains a list of the important symbols used in this note. Note that while we present both exact and approximate relations for F s , F r , F p , F a , and F L , we present no further results for F m or F n other than theapproximations given in Section 1.2. For further information, see References [5], [6], and [7].For those first becoming acquainted with crystals, we recommend reading Sections 1-4. For those who want further details and more precise results, we recommend reading Sections 1-6. Lastly, for those who want exact results, we recommend this entire note.Throughout, we use the usual relation between a given frequency f and its angular frequency ω counterpartf π2=ω. (6)2. The 4-parameter crystal modelThe modes of interest in quartz crystals are usuallymodeled electrically by the 4-parameter model shown in Figure 5. This model consists of two arms in parallel with one another. The “static arm” consists of a single capacitance C 0 (also referred to as the shunt capacitance). Herein, this capacitance includes the capacitance of the bare crystal and the shunt capacitance of its packaging. The “motional arm” consists of the series combination of a resistance R 1, inductance L 1, and a capacitance C 1.111C 0Figure 5—The 4-parameter crystal modelWhile this model is an approximation of the electricalcharacteristics of the crystal, it is a very good one and for most purposes more than sufficient. So, from here on, we take this model seriously. (See References [1] and [8] for further discussion.) One should be aware that crystals are complicated by the existence of many modes of oscillation. In addition to their fundamental mode, crystals have overtone modes. For example, tuning-fork crystals have 1st -overtone modes at roughly six times the frequency of the fundamental mode. As another example, AT-cut crystals have 3rd , 5th , 7th , etc., overtone modes with frequencies being nearly the overtone number times the fundamental mode frequency. Sometimes these modes are the desired mode as they can offer frequencies that would otherwise be unattainable.1 When they are not the desired mode, their great separation from the main mode and their resistance is normally sufficiently high that they have no effect on the performance of the crystal in an oscillator. AT-cut crystals are further complicated by the existence of anharmonic modes just above the main mode as well as having other unwanted modes. Proper crystal design minimizes the strengths of these modes (collectively referred to as unwanted modes) so that they have no effect on the crystal’s operation in an oscillator.2.1 Typical valuesTo give the reader some idea of these crystal parameters and how they vary with crystal type and frequency, we present some typical values for Statek crystals. However, keep in mind that ranges given here can be exceeded in some cases.The static capacitance C 0 has a limited range of variation, usually being on the order of 1-3 pF. This parameter typically scales with the motional capacitance C 1 and package size, i.e. crystals with large C 1 in large packages have large C 0. Smaller crystals also tend to have smaller C 1, so C 0 roughly correlates with package size, but not absolutely. Similarly, the motional capacitance C 1 has a fairly limited range typically being on the order of 0.5 fF to 10 fF. Tuning-fork and extensional-mode crystals tend to have their C 1 lie on the low end of this spectrum, while AT-cut crystals can have a C 1 just about anywhere in this range, depending on the size of the crystal and its frequency.The motional inductance L 1 varies greatly over frequency, for as we shall see, it is determined by C 1 and the crystal frequency. It has a high of roughly 100 kH for 10 kHz crystals to a low of less than 1 mH for 100 MHz crystals (a range of about 108 ). Lastly, the crystal resistance also varies greatly over frequency from a high of about 1 M Ω for 10 kHz H-type crystals to a low of about 10 Ω for high-frequency AT-cut crystals (a range of about 105 ).2.2 Specifying crystal parametersIf your application has critical requirements that require specification of the crystal parameters, then bounds on the relevant parameters should be supplied. However, unnecessary requirements will probably increase the cost of the crystal without any added benefit.The crystal parameter that most commonly requires specification is the crystal resistance R 1. This parameter plays an important role in the crystal-oscillator gain requirement and sometimes an upper1It is normally a mistake to use a crystal designed for fundamental mode operation at one of its overtone modes.3.1 Series resonancebound on R 1 is required to ensure the startup of the oscillator.Being a capacitance, the reactance of the static arm is negative. On the other hand, the motional arm consisting of the series combination an inductor and a capacitor can have reactance of either sign depending on the frequency. In particular at some frequency F s , called the series-resonant frequency, For applications requiring crystal pullability (the ability to change frequency with changes in load capacitance), bounds should be placed on C 1. As shown by Equation (5), C 1 plays a primary role in determining the frequency change for a given change in C L . The capacitance C 0 also plays a role and when the pullability requirements are demanding, upper bounds are placed on C 0.0. (12)1=X Using Equation (11), we see that the angular frequency ωs at which the reactance of the motional arm is zero is given by Lastly, requirements on L 1 are rarely necessary as such conditions can be expressed as conditions on C 1. [See Equation (14).]111C L s =ω. (13)Sometimes people place requirements on the crystal Q (defined below) in the belief that this quantity determines either oscillator startup or crystal pullability. Both are wrong. The resistance R 1 (along with the oscillator design) determines startup. The motional capacitance C 1 (along with C 0) determines the crystal pullability. [See Equation (5).]Therefore, the series-resonant frequency of the crystal is given by111π21C L F s =. (14)3. Simple consequencesEquivalently, ignoring the crystal resistance R 1, series resonance is the frequency at which the crystal impedance is minimal (being zero in this idealization).In this section we derive some simple consequences of the crystal model. In particular, we show the existence of a series-resonant frequency F s and a parallel-resonant frequency F p .The impedance Z of the crystal is determined by the parallel combination of the impedance Z 0 of the static arm and the impedance Z 1 of the motional arm. 1010Z Z ZZ Z +=. (7)Note that one should not use Equation (14) to compute F s as typically neither L 1 and C 1 are knownonly to about 1% accuracy while other methods can determine F s to better than 1 ppm. Instead, the utility of Equation (14) comes in computing either L 1 or C 1from the other and F s . 3.2 Parallel resonance The impedance of the static arm is purely reactive and is given by, (8)00jX Z =where its reactance X 0 is given by01C X ω−=. (9) One effect of the static (shunt) capacitance C 0 is to make the crystal look like a simple capacitance at frequencies where the impedance of the motional armis large compared to impedance of the static arm. Another is to create an anti-resonance (resonance of high impedance) at a frequency where the two armsof the crystal resonant in which such a way to offerhigh impedance to current flow. Likewise, the impedance of the motional arm is given by111jX R Z +=, (10)Ignoring the crystal resistance R 1, this parallel resonance occurs at the frequency where the admittance Y = 1/Z of the crystal is zero.where its reactance X 1 is given by1111C L X ωω−=. (11) .1101010jX jX Y Y Y+=+== (15) Therefore010=+X X , (16)or equivalently11C X ω=. (17)()++≈L s L C C C F F 0121.(23)With this, it follows that the parallel-resonantfrequency F p of the crystal is given by11C CF F s p +=. (18)This is the standard crystal-frequency equation. However, be aware that it is an approximation. Even so, in most cases this equation is sufficient and a more exact expression would complicate the computation without any benefit. 3.4 The significance of L 1Note that the parallel resonant frequency is alwaysabove the series-resonant frequency and that their separation is determined by the ratio of the capacitances C 1 and C 0. For quartz crystals, C 1 << C 0, so F s and F p are quite close is as fraction of absolute frequency and is usually well approximated by the expression Note that+≈0121C C F F s p . (19),at 4122112111s F f L C L d dX df dX ==+==πωπωπ (24)which shows that L 1 is proportional to the rate of change of the motional reactance with frequency atseries resonance. This fact is sometimes useful in measuring the crystal parameters. Note that, ignoring the effects of resistance, dX/df = 4πL 1 at f = F s , showing that the shunt capacitance C 0 does not modify the slope of reactance curve at series resonance. However, the shunt capacitance does greatly increase the slope of the reactance asantiresonance is approached. (See Figure 2 andFigure 3.) While the motivation for our definition of the parallel-resonant frequency was based on the case where the crystal resistance is zero, we take its definition in general to be that frequency where the reactances of the two arms are in anti-resonance. Therefore, the parallel resonant frequency F p of a crystal is always given by Equation (18). 3.3 F L at C L Ignoring the crystal resistance R 1, we can easily work out the crystal frequency F L at a load capacitance C L . This is frequency at which4. Three non-dimensional quantities There are at least three non-dimensional quantities that are very useful in characterizing crystals.()(),11111010jX C j C j Y Y ZL +−=+=ωω (20) Our first quantity is the capacitance ratio r10C Cr =. (25) and so()L C C X +=011ω. (21)As we saw in Section 3.2, 1/r determines theseparation between series resonance and parallelresonance, in other words, the width of the crystal’s inductive region. As an example, a crystal with a C 0of 2 pF and a C 1 of 5 fF has a capacitance ratio of 400. For Statek crystals, r can range from about 250to 1,000.2With this is it straightforward to show that the frequency F L at load capacitance C L is given by )0( ,1101=++=R C C C F F Ls L . (22) Our next quantity is the crystal quality factor Q . Thisis defined so that 2π/Q is the fractional energy lost per cycle in the crystal and is given in terms of the crystal parameters by Although this derivation ignores the crystalresistance, our final expression is sufficient for mostapplications and in fact is normally further approximated by the expression2These bounds can be exceeded.111C R Q s ω=. (26) 6. Approximations beyond R 1 = 0 For the zero-phase frequency F r , the frequency F L at load capacitance C L , and crystal resistance at loadcapacitance, we simply present approximateexpressions that go beyond the results presented sofar. For proof, see the exact results in Section 7.where the frequency ωs (angular series resonance) isgiven by Equation (13). Crystals with large Qoscillate many cycles before their oscillations decayappreciably. For Statek crystals, Q ranges from about 2,000 to 400,000.2 6.1 Approximating F Lat C LA direct consequence of its definition is that it takesπ2Q(27) In cases where further accuracy is required in theload frequency F L , then to second order in resistance++ ++≈L L s L C C QM C C C F F 0011111. (32) cycles for the oscillation energy an isolated crystal to ramp-down by a factor of 1/e . The number of cycles for ramp-up is the same. So, the time for oscillationsto ramp-up or ramp-down in a low-frequency high-Qcrystal can be quite long—on the order of seconds. 6.2 Approximating F r Normally, F r is well approximated by F s . To see thedifference between the two, we must look to second order in crystal resistance. To this order, F r is slightly above F s by the amount Our last quantity is the crystal figure-of-merit M .This is simply the ratio of the impedance of the staticarm to the impedance of the motional arm at series resonance. Given this, it is straightforward to showthat M is given by11C R M s ω=. (28)+≈QMF F s r 211. (33)This result can be obtained from Equation (32) by taking the limit C L → ∞ and performing a first-order expansion in 1/(QM ). As we shall show in Section 7.3, in order for thecrystal to posses an inductive region, M be greaterthan 2. For Statek crystals, M ranges from about 10to 300.2Note our three parameters are not independent;indeed. (29) Mr Q =In most cases, QM > 106 so that ignoring the effect ofresistance is to make an error below 1 part-per-million in frequency, which is usually acceptable. An interesting exception is the case of 10 kHz H-type crystals. The large resistance (about 1 M Ω) of thesecrystals give Q ≈ 4,000 and a figure-of-merit M ≈ 11 and so that the difference between F r and F s is about 11 ppm.5. Some useful frequency properties6.3 Approximating R at F L5.1The frequency product propertyIt turns out, without approximation, that . (30)p s a r F F F F =The crystal resistance R depends on the frequency ofinterest. At series resonance, R ≈ R 1 and it increasesto very large values near parallel resonance. (SeeFigure 2.) A natural question that comes up is what is the crystal resistance at the load frequency F L . It turns out to good approximation that This equality allows us to calculate any one of theabove four frequencies given the other three.Because of this and the fact that results beyond theapproximation F a ≈ F p are rarely required, we do not present any further expressions for F a .211+≈L CC R R . (34) So, as expected, the crystal resistance is approximately R 1 at F r and increases to very large values as C L approaches zero.5.2 The frequency inequalitiesWhen the crystal posses an inductive region (so F r and F a exist and are distinct), (31)p a r s F F F F ≤<≤with equalities when and only when R 1 = 0.7. Exact expressionsand10X X X +=Ω. (42) 7.1 Crystal impedanceWe express the crystal impedance Z in terms of the impedances of the two parallel arms as follows.2102102011010Z Z Z Z Z Z Z Z Z Z Z ++=+=(35)With these definitions, we can express the crystal resistance R as()()+−+=−221/111M r R R , (43)and the reactance as()()220/111+−+Ω−=−M r X X . (44) Denoting resistance of the crystal by R (R = Re(Z ))and its reactance by X (X = Im(Z )), so that 7.3 F L at C L (exact),jX R Z +=Using Equation (44) and the fact that X = 1/(ωC L ), we havethen Equations (8) and (10), give the following expression for the crystal resistance R()()220/111+−+Ω−=−−M r C C L , (45)++=1021201X X R X R R , (36) which gives us the following quadratic equationfor Ωand the following for the crystal reactance X()().110211000210212101210+++−=++++=X X R X X X X X X R X X X R X X (37) 0111111202= ++Ω ++−Ωr M QM C C L . (46) It can be shown that the existence of real frequencies requires that+ +++>L L C C Q C C C M 0011112. (47)It can be shown that Z (ω) sweeps out an approximatecircle in the impedance plane (and similarly Y (ω) sweeps out an approximate circle in the admittance plane). See References [5], [6], and [7] for further details.Alternatively, for a given crystal, there is a lower bound on the allowed load capacitance C L , i.e. arbitrarily small load capacitances are not allowed. However, this bound is usually so weak that it causes no practical limitation to the existence of F L . 7.2 NormalizationDefine the normalized “frequency” Ω by22sp s ωωωω−−=Ω. (38) Taking the limit C L → ∞, we see that the conditionfor the existence of an inductive region is thatQM 12+>, (48) Note that Ω = 0 at F s and Ω = 1 at F p . In terms of Ω, the (angular) frequency isr sΩ+=1ωω. (39)showing that M must be greater than 2.Define the quantity ξ byFurther set Ω−=Ω1. (40)QMC C L 1110−+=ξ. (49)Note that1X X −=Ω, (41)Note that ξ > 0 by Equation (47). Further, define the quantity χ by9. References++−+=L CC C M 0122142ξξχ. (50)1. Bottom, Virgil E., Introduction to Quartz CrystalUnit Design , Van Nostrand Reinhold Company, 1982. With these definitions, solving Equation (46) and using Equation (39), the frequency F L at load capacitance C L is given by 2. Parzen, Benjamin , Design of Crystal and OtherHarmonic Oscillators , UMI Books on Demand, 1999.+++=QM CC C F F L s L χ1101. (51) 3. Statek Technical Note 33. 4. Statek Technical Note 30.5. EIA Standard EIA-512, 1985, Standard Methodsfor Measurement of Equivalent Electrical Parameters of Quartz Crystal Units, 1 kHz to 1 GHz . Note that actually there is a second root of Equation (46). However, the frequency corresponding to this root corresponds to a frequency very near anti-resonance where the resistance is very high; this is not the frequency of interest.6. IEEE Standard 177, 1966, Standard Definitionsand Methods of Measurements for Piezoelectric Vibrators . 7.4 F r (exact)Taking the limit C L → ∞ in the above equation for F L gives F r (the lower frequency at which the reactance of the crystal is zero) 7. Hafner, Erich, The Piezoelectric Crystal Unit—Definitions and Methods of Measurement , Proceedings of the IEEE, Volume 57, No. 2, 1966.− −+−+=2241111211M QM QMQM F s r F (52)8. Cady, Walter Guyton, Piezoelectricity , McGraw-Hill Book Company, Inc., 1946.8. Final comments on crystal resistanceNote that the crystal’s resistance at neither F s nor F ris R 1. Instead, 1211)(R M R F R s <+=−, (53)and1211)(R M R F R r >−≈−. (54)However, normally such distinctions are not required as they differ from R 1 by much less than 1%. Lastly, near antiresonance,, (55)21)(M R F R p ≈showing that 2M is roughly the range of the crystal resistance over frequency. (In fact, 2M is also roughly the range of the crystal impedance over frequency.)10. Appendix 1—Table of symbolsTable 4—Symbols used to describe crystalsSymbol Alternates Descriptionf FrequencyωAngular frequency, ω = 2π fC0Static (shunt) capacitanceR1R m, R1, RR3Motional resistanceL1L m, L1Motional inductanceC1C m, C1Motional capacitancer Capacitance ratio, r = C0/C1Resonator quality factor, Q = 1/(ωs R1C1)Figure of merit, M = 1/(ωs R1C1) = Q/rF s Series resonant frequencyF r FR Lower zero-phase frequency (normally close to F s)F m Minimum impedance frequency (normally close to F s)F p Parallel resonant frequencyF a Upper zero-phase frequency (normally close to F p)F n Maximum impedance frequency (normally close to F p)F L Frequency at load capacitance C LC L CL Load capacitanceTS Trim sensitivity, fractional rate-of-change of F L with C LCrystal impedance, Z = R+j X = |Z|eθR Crystal resistance, R = Re(Z)X Crystal reactance, X = Im(Z)θCrystal impedance phase angle, θ= arg(Z)3 Strictly speaking, RR (or Rr ) refers to the resistance at F r, however as shown in Section 8, the distinction between RR and R1 israrely worthwhile.。

CrystGrowthDes晶体生长英文文献

CrystGrowthDes晶体生长英文文献

An Infinite Two-Dimensional Hybrid Water-Chloride Network,Self-Assembled in a Hydrophobic Terpyridine Iron(II)MatrixRicardo R.Fernandes,†Alexander M.Kirillov,†M.Fátima C.Guedes da Silva,†,‡Zhen Ma,†JoséA.L.da Silva,†João J.R.Fraústo da Silva,†andArmando J.L.Pombeiro*,†Centro de Química Estrutural,Complexo I,Instituto Superior Técnico,TU-Lisbon,A V.Ro V isco Pais,1049-001Lisbon,Portugal,and Uni V ersidade Luso´fona de Humanidades e Tecnologias,A V.doCampo Grande,376,1749-024,Lisbon,PortugalRecei V ed October18,2007;Re V ised Manuscript Recei V ed January7,2008ABSTRACT:An unprecedented two-dimensional water-chloride anionic{[(H2O)20(Cl)4]4–}n network has been structurally identified in a hydrophobic matrix of the iron(II)compound[FeL2]Cl2·10H2O(L)4′-phenyl-2,2′:6′,2″-terpyridine).Its intricate relief geometry has been described as a set of10nonequivalent alternating cycles of different sizes ranging from tetra-to octanuclear{[(H2O)x(Cl)y]y–}z(x) 2–6,y)0–2,z)4–6,8)fragments.In contrast to the blooming research on structural characterizationof a wide variety of water clusters in different crystalline materials,1much less attention has been focused on the identification anddescription of hybrid hydrogen-bonded water assemblies with othersolvents,small molecules,or counterions.1c,2In particular,thecombination of chloride ions and water is one of the most commonlyfound in natural environments(e.g.,seawater or sea-salt aerosols),and thus the investigation of water-chloride interactions has beenthe object of numerous theoretical studies.3However,only recentlya few water-chloride associates incorporated in various crystalmatrixes have been identified and structurally characterized,4,5including examples of(i)discrete cyclic[(H2O)4(Cl)]–,4a[(H2O)4(Cl)2]2–,4b and[(H2O)6(Cl)2]2–4c clusters,and(ii)variousone-or two-dimensional(1D or2D)hydrogen-bonded networksgenerated from crystallization water and chloride counterionswith{[(H2O)4(Cl2)]2–}n,5b{[(H2O)6(Cl)2]2–}n,5b[(H2O)7(HCl)2]n,5c{[(H2O)11(Cl)7]7–}n,5d{[(H2O)14(Cl)2]2–}n,5e{[(H2O)14(Cl)4]4–}n,5aand{[(H2O)14(Cl)5]5–}n5f compositions.These studies are alsobelieved to provide a contribution toward the understanding of thehydration phenomena of chloride ions in nature and have importancein biochemistry,catalysis,supramolecular chemistry,and designof crystalline materials.5In pursuit of our interest in the self-assembly synthesis andcrystallization of various transition metal compounds in aqueousmedia,we have recently described the[(H2O)10]n,6a(H2O)6,6b and[(H2O)4(Cl)2]2–4b clusters hosted by Cu/Na or Ni metal-organicmatrixes.Continuing this research,we report herein the isolationand structural characterization of a unique2D water-chlorideanionic layer{[(H2O)20(Cl)4]4–}n within the crystal structure of thebis-terpyridine iron(II)compound[FeL2]Cl2·10H2O(1′)(L)4′-phenyl-2,2′:6′,2″-terpyridine).Although this compound has beenobtained unexpectedly,a search in the Cambridge StructuralDatabase(CSD)7,8points out that various terpyridine containinghosts tend to stabilize water-chloride associates,thus also sup-porting the recognized ability of terpyridine ligands in supra-molecular chemistry and crystal engineering.9,10Hence,the simple combination of FeCl2·2H2O and L in tetrahydrofuran(THF)solution at room temperature provides the formation of a deep purple solid formulated as[FeL2]Cl2·FeCl2·5H2O(1)on the basis of elemental analysis,FAB+-MS and IR spectroscopy.11This compound reveals a high affinity for water and,upon recrystallization from a MeOH/H2O(v/v)9/1)mixture,leads to single crystals of1′with a higher water content,which have been characterized by single-crystal X-ray analysis.12The asymmetric unit of1′is composed of a cationic[FeL2]2+ part,two chloride anions,and10independent crystallization water molecules(with all their H atoms located in the difference Fourier map),the latter occupying a considerable portion of the crystal cell. The iron atom possesses a significantly distorted octahedral coordination environmentfilled by two tridentate terpyridine moieties arranged in a nearly perpendicular fashion(Figure S1, Supporting Information).Most of the bonding parameters within [FeL2]2+are comparable to those reported for other iron compounds*To whom correspondence should be sent.Fax:+351-21-8464455.E-mail: pombeiro@ist.utl.pt.†Instituto Superior Técnico.‡Universidade Luso´fona de Humanidades eTecnologias.Figure 1.Perspective representations(arbitrary views)of hybrid water-chloride hydrogen-bonded assemblies in the crystal cell of1′; H2O molecules and chloride ions are shown as colored sticks and balls, respectively.(a)Minimal repeating{[(H2O)20(Cl)4]4–}n fragment with atom numbering scheme.(b)Nonplanar infinite polycyclic2D anionic layer generated by linkage of four{[(H2O)20(Cl)4]4–}n fragments(a) represented by different colors;the numbers are those of Table1and define the10nonequivalent alternating cycles of different size.2008310.1021/cg7010315CCC:$40.75 2008American Chemical SocietyPublished on Web02/08/2008bearing two terpyridine ligands.13The most interesting feature of the crystal structure of 1′consists in the extensive hydrogen bonding interactions of all the lattice–water molecules and chloride coun-terions (Table S1,Supporting Information),leading to the formation of a hybrid water -chloride polymeric assembly possessing minimal repeating {[(H 2O)20(Cl)4]4–}n fragments (Figure 1a).These are further interlinked by hydrogen bonds generating a nonplanar 2D water -chloride anionic layer (Figure 1b).Hence,the multicyclic {[(H 2O)20(Cl)4]4–}n fragment is con-structed by means of 12nonequivalent O–H ···O interactions with O ···O distances ranging from 2.727to 2.914Åand eight O–H ···Cl hydrogen bonds with O ···Cl separations varying in the 3.178–3.234Årange (Table S1,Supporting Information).Both average O ···O [∼2.82Å]and O ···Cl [∼3.20Å]separations are comparable to those found in liquid water (i.e.,2.85Å)14and various types of H 2O clusters 1,6or hybrid H 2O -Cl associates.4,5Eight of ten water molecules participate in the formation of three hydrogen bonds each (donating two and accepting one hydrogen),while the O3and O7H 2O molecules along with both Cl1and Cl2ions are involved in four hydrogen-bonding contacts.The resulting 2D network can be considered as a set of alternating cyclic fragments (Figure 1b)which are classified in Table 1and additionally shown by different colors in Figure 2.Altogether there are 10different cycles,that is,five tetranuclear,three pentanuclear,one hexanuclear,and one octa-nuclear fragment (Figures 1b and 2,Table 1).Three of them (cycles 1,2,and 6)are composed of only water molecules,whereas the other seven rings are water -chloride hybrids with one or two Cl atoms.The most lengthy O ···O,O ···Cl,or Cl ···Cl nonbonding separations within rings vary from 4.28to 7.91Å(Table 1,cycles 1and 10,respectively).Most of the cycles are nonplanar (except those derived from the three symmetry generated tetrameric fragments,cycles 1,2,and 4),thus contributing to the formation of an intricate relief geometry of the water -chloride layer,possessing average O ···O ···O,O ···Cl ···O,and O ···O ···Cl angles of ca.104.9,105.9,and 114.6°,respectively (Table S2,Supporting Information).The unprecedented character of thewater -chloride assembly in 1′has been confirmed by a thorough search in the CSD,7,15since the manual analysis of 156potentially significant entries with the minimal [(H 2O)3(Cl)]–core obtained within the searching algorithm 15did not match a similar topology.Nevertheless,we were able to find several other interesting examples 16of infinite 2D and three-dimensional (3D)water -chloride networks,most of them exhibiting strong interactions with metal -organic matrixes.The crystal packing diagram of 1′along the a axis (Figure 3)shows that 2D water -chloride anionic layers occupy the free space between hydrophobic arrays of metal -organic units,with an interlayer separation of 12.2125(13)Åthat is equivalent to the b unit cell dimension.12In contrast to most of the previously identified water clusters,1,6water -chloride networks,5,16and extended assemblies,1c the incorporation of {[(H 2O)20(Cl)4]4–}n sheets in 1′is not supported by strong intermolecular interactions with the terpyridine iron matrix.Nevertheless,four weak C–H ···O hydrogen bonds [avg d (D ···A))3.39Å]between some terpyridine CH atoms and lattice–water molecules (Table S1,Figure S2,Supporting Information)lead to the formation of a 3D supramolecular framework.The thermal gravimetric analysis (combined TG-DSC)of 117(Figure S3,Supporting Information)shows the stepwise elimination of lattice–water in the broad 50–305°C temperature interval,in accord with the detection on the differential scanning calorimetryTable 1.Description of Cyclic Fragments within the {[(H 2O)20(Cl)4]4–}n Network in 1′entry/cycle numbernumber of O/Cl atomsformula atom numberingschemegeometry most lengthy separation,Åcolor code a 14(H 2O)4O3–O4–O3–O4planar O3···O3,4.28light brown 24(H 2O)4O6–O7–O6–O7planar O7···O7,4.42light gray 34[(H 2O)3(Cl)]-O2–O4–O3–Cl2nonplanar O4···Cl2,4.66blue 44[(H 2O)3(Cl)]-O6–O7–O9–Cl1nonplanar O7···Cl1,4.61green 54[(H 2O)2(Cl)2]2-O9–Cl1–O9–Cl1planar Cl ···Cl1,4.76pink 65(H 2O)5O2–O4–O3–O10–O8nonplanar O2···O10,4.55red75[(H 2O)4(Cl)]-O1–O5–O7–O9–Cl1nonplanar O7···Cl1,5.25pale yellow 85[(H 2O)4(Cl)]-O1–O5–Cl2–O8–O10nonplanar O10···Cl2,5.29orange 96[(H 2O)4(Cl)2]2-O2–O8–Cl2–O2–O8–Cl2nonplanar Cl2···Cl2,7.12yellow 108[(H 2O)6(Cl)2]2-O1–O10–O3–Cl2–O5–O7–O6–Cl1nonplanarCl1···Cl2,7.91pale blueaColor codes are those of Figure 2.Figure 2.Fragment of nonplanar infinite polycyclic 2D anionic layer in the crystal cell of 1′.The 10nonequivalent alternating water or water -chloride cycles are shown by different colors (see Table 1for color codes).Figure 3.Fragment of the crystal packing diagram of 1′along the a axis showing the intercalation of two water -chloride layers (represented by space filling model)into the metal -organic matrix (depicted as sticks);color codes within H 2O -Cl layers:O red,Cl green,H grey.Communications Crystal Growth &Design,Vol.8,No.3,2008783curve(DSC)of three major endothermic processes in ca.50–170, 170–200,and200–305°C ranges with maxima at ca.165,190, and280°C,corresponding to the stepwise loss of ca.two,one, and two H2O molecules,respectively(the overall mass loss of9.1% is in accord with the calculated value of9.4%for the elimination of allfive water molecules).In accord,the initial broad and intense IRν(H2O)andδ(H2O)bands of1(maxima at3462and1656cm–1, respectively)gradually decrease in intensity on heating the sample up to ca.305°C,while the other bands remain almost unchangeable. Further heating above305°C leads to the sequential decomposition of the bis-terpyridine iron unit.These observations have also been supported by the IR spectra of the products remaining after heating the sample at different temperatures.The elimination of the last portions of water in1at temperatures as high as250–305°C is not commonly observed(although it is not unprecedented18)for crystalline materials with hosted water clusters,and can be related to the presence and extensive hydrogen-bonding of chloride ions in the crystal cell,tending to form the O–H(water)···Cl hydrogen bonds ca.2.5times stronger in energy than the corresponding O–H(water)···O(water)ones.5a The strong binding of crystallization water in1is also confirmed by its FAB+-MS analysis that reveals the rather uncommon formation of the fragments bearing from one tofive H2O molecules.11The exposure to water vapors for ca.8h of an almost completely dehydrated(as confirmed by weighing and IR spectroscopy)product after thermolysis of1(at250°C19for 30min)results in the reabsorption of water molecules giving a material with weight and IR spectrum identical to those of the initial sample1,thus corroborating the reversibility of the water escape and binding process.In conclusion,we have synthesized and structurally characterized a new type of2D hybrid water-chloride anionic multicyclic {[(H2O)20(Cl)4]4–}n network self-assembled in a hydrophobic matrix of the bis-terpyridine iron(II)complex,that is,[FeL2]Cl2·10H2O 1′.On the basis of the recent description and detailed analysis of the related{[(H2O)14(Cl)4]4–}n layers5a and taking into consideration that the water-chloride assembly in1′does not possess strong interactions with the metal-organic units,the crystal structure of 1′can alternatively be defined as an unusual set of water-chloride “hosts”with bis-terpyridine iron“guests”.Moreover,the present study extends the still limited number5of well-identified examples of large polymeric2D water-chloride assemblies intercalated in crystalline materials and shows that terpyridine compounds can provide rather suitable matrixes to stabilize and store water-chloride aggregates.Further work is currently in progress aiming at searching for possible applications in nanoelectrical devices,as well as understanding how the modification of the terpyridine ligand or the replacement of chlorides by other counterions with a high accepting ability toward hydrogen-bonds can affect the type and topology of the hybrid water containing associates within various terpyridine transition metal complexes.Acknowledgment.This work has been partially supported by the Foundation for Science and Technology(FCT)and its POCI 2010programme(FEDER funded),and by a HRTM Marie Curie Research Training Network(AQUACHEM project,CMTN-CT-2003-503864).The authors gratefully acknowledge Prof.Maria Filipa Ribeiro for kindly running the TG-DSC analysis,urent Benisvy,Dr.Maximilian N.Kopylovich,and Mr.Yauhen Y. Karabach for helpful discussions.Supporting Information Available:Additionalfigures(Figures S1–S3)with structural fragments of1′and TG-DSC analysis of1, Tables S1and S2with hydrogen-bond geometry in1′and bond angles within the H2O-Cl network,details for the general experimental procedures and X-ray crystal structure analysis and refinement,crystal-lographic informationfile(CIF),and the CSD refcodes for terpyridine compounds with water-chloride aggregates.This information is available free of charge via the Internet at .References(1)(a)Mascal,M.;Infantes,L.;Chisholm,J.Angew.Chem.,Int.Ed.2006,45,32and references therein.(b)Infantes,L.;Motherwell,S.CrystEngComm2002,4,454.(c)Infantes,L.;Chisholm,J.;Mother-well,S.CrystEngComm2003,5,480.(d)Supriya,S.;Das,S.K.J.Cluster Sci.2003,14,337.(2)(a)Das,M.C.;Bharadwaj,P.K.Eur.J.Inorg.Chem.2007,1229.(b)Ravikumar,I.;Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Cryst.Growth Des.2006,6,2630.(c)Ren,P.;Ding,B.;Shi,W.;Wang,Y.;Lu,T.B.;Cheng,P.Inorg.Chim.Acta2006,359,3824.(d)Li,Z.G.;Xu,J.W.;Via,H.Q.;Hu,mun.2006,9,969.(e)Lakshminarayanan,P.S.;Kumar,D.K.;Ghosh,P.Inorg.Chem.2005,44,7540.(f)Raghuraman,K.;Katti,K.K.;Barbour,L.J.;Pillarsetty,N.;Barnes,C.L.;Katti,K.V.J.Am.Chem.Soc.2003,125,6955.(3)(a)Jungwirth,P.;Tobias,D.J.J.Phys.Chem.B.2002,106,6361.(b)Tobias,D.J.;Jungwirth,P.;Parrinello,M.J.Chem.Phys.2001,114,7036.(c)Choi,J.H.;Kuwata,K.T.;Cao,Y.B.;Okumura,M.J.Phys.Chem.A.1998,102,503.(d)Xantheas,S.S.J.Phys.Chem.1996,100,9703.(e)Markovich,G.;Pollack,S.;Giniger,R.;Cheshnovsky,O.J.Chem.Phys.1994,101,9344.(f)Combariza,J.E.;Kestner,N.R.;Jortner,J.J.Chem.Phys.1994,100,2851.(g)Perera, L.;Berkowitz,M.L.J.Chem.Phys.1991,95,1954.(h)Dang,L.X.;Rice,J.E.;Caldwell,J.;Kollman,P.A.J.Am.Chem.Soc.1991, 113,2481.(4)(a)Custelcean,R.;Gorbunova,M.G.J.Am.Chem.Soc.2005,127,16362.(b)Kopylovich,M.N.;Tronova,E.A.;Haukka,M.;Kirillov,A.M.;Kukushkin,V.Yu.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Eur.J.Inorg.Chem.2007,4621.(c)Butchard,J.R.;Curnow,O.J.;Garrett,D.J.;Maclagan,R.G.A.R.Angew.Chem.,Int.Ed.2006, 45,7550.(5)(a)Reger,D.L.;Semeniuc,R.F.;Pettinari,C.;Luna-Giles,F.;Smith,M.D.Cryst.Growth.Des.2006,6,1068and references therein.(b) Saha,M.K.;Bernal,mun.2005,8,871.(c) Prabhakar,M.;Zacharias,P.S.;Das,mun.2006,9,899.(d)Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Angew.Chem.,Int.Ed.2006,45,3807.(e)Ghosh,A.K.;Ghoshal,D.;Ribas,J.;Mostafa,G.;Chaudhuri,N.R.Cryst.Growth.Des.2006,6,36.(f)Deshpande,M.S.;Kumbhar,A.S.;Puranik,V.G.;Selvaraj, K.Cryst.Growth Des.2006,6,743.(6)(a)Karabach,Y.Y.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich,M.N.;Pombeiro,A.J.L.Cryst.Growth Des.2006,6,2200.(b) Kirillova,M.V.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich, M.N.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Inorg.Chim.Acta2008,doi:10.1016/j.ica.2006.12.016.(7)The Cambridge Structural Database(CSD).Allen, F.H.ActaCrystallogr.2002,B58,380.(8)The searching algorithm in the ConQuest Version1.9(CSD version5.28,August2007)constrained to the presence of any terpyridinemoiety and at least one crystallization water molecule and one chloride counter ion resulted in43analyzable hits from which40compounds contain diverse water-chloride aggregates(there are29and11 examples of infinite(mostly1D)networks and discrete clusters, respectively).See the Supporting Information for the CSD refcodes.(9)For a recent review,see Constable,E.C.Chem.Soc.Re V.2007,36,246.(10)For recent examples of supramolecular terpyridine compounds,see(a)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,456.(b)Zhou,X.-P.;Ni,W.-X.;Zhan,S.-Z.;Ni,J.;Li,D.;Yin,Y.-G.Inorg.Chem.2007,46,2345.(c)Shi,W.-J.;Hou,L.;Li,D.;Yin,Y.-G.Inorg.Chim.Acta2007,360,588.(d)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Neuburger,M.;Price,D.J.;Schaffner,S.CrystEngComm2007,9,1073.(e)Beves,J. E.;Constable, E. C.;Housecroft, C. E.;Neuburger,M.;Schaffner,mun.2007,10,1185.(f)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,353.(11)Synthesis of1:FeCl2·2H2O(82mg,0.50mmol)and4′-phenyl-2,2′:6′,2″-terpyridine(L)(154mg,0.50mmol)were combined in a THF (20mL)solution with continuous stirring at room temperature.The resulting deep purple suspension was stirred for1h,filtered off,washed with THF(3×15mL),and dried in vacuo to afford a deep purple solid1(196mg,41%).1exhibits a high affinity for water and upon recrystallization gives derivatives with a higher varying content of crystallization water.1is soluble in H2O,MeOH,EtOH,MeCN, CH2Cl2,and CHCl3.mp>305°C(dec.).Elemental analysis.Found: C52.96,H3.76,N8.36.Calcld.for C42H40Cl4Fe2N6O5:C52.42,H4.19,N8.73.FAB+-MS:m/z:835{[FeL2]Cl2·5H2O+H}+,816784Crystal Growth&Design,Vol.8,No.3,2008Communications{[FeL2]Cl2·4H2O}+,796{[FeL2]Cl2·3H2O–2H}+,781{[FeL2]Cl2·2H2O+H}+,763{[FeL2]Cl2·H2O+H}+,709{[FeL2]Cl}+,674 {[FeL2]}+,435{[FeL]Cl2}+,400{[FeL]Cl}+,364{[FeL]–H}+,311 {L–2H}+.IR(KBr):νmax/cm–1:3462(m br)ν(H2O),3060(w),2968 (w)and2859(w)ν(CH),1656(m br)δ(H2O),1611(s),1538(w), 1466(m),1416(s),1243(m),1159(w),1058(m),877(s),792(s), 766(vs),896(m),655(w),506(m)and461(m)(other bands).The X-ray quality crystals of[FeL2]Cl2·10H2O(1′)were grown by slow evaporation,in air at ca.20°C,of a MeOH/H2O(v/v)9/1)solution of1.(12)Crystal data:1′:C42H50Cl2FeN6O10,M)925.63,triclinic,a)10.1851(10),b)12.2125(13),c)19.5622(19)Å,R)76.602(6),)87.890(7),γ)67.321(6)°,U)2180.3(4)Å3,T)150(2)K,space group P1j,Z)2,µ(Mo-K R))0.532mm-1,32310reflections measured,8363unique(R int)0.0719)which were used in all calculations,R1)0.0469,wR2)0.0952,R1)0.0943,wR2)0.1121 (all data).(13)(a)McMurtrie,J.;Dance,I.CrystEngComm2005,7,230.(b)Nakayama,Y.;Baba,Y.;Yasuda,H.;Kawakita,K.;Ueyama,N.Macromolecules2003,36,7953.(c)Kabir,M.K.;Tobita,H.;Matsuo,H.;Nagayoshi,K.;Yamada,K.;Adachi,K.;Sugiyama,Y.;Kitagawa,S.;Kawata,S.Cryst.Growth Des.2003,3,791.(14)Ludwig,R.Angew.Chem.,Int.Ed.2001,40,1808.(15)The searching algorithm in the ConQuest Version1.9(CSD version5.28,May2007)was constrained to the presence of(i)at least onetetranuclear[(H2O)3(Cl)]–ring(i.e.,minimal cyclic fragment in our water-chloride network)with d(O···O))2.2–3.2Åand d(O···Cl) )2.6–3.6Å,and(ii)at least one crystallization water molecule andone chloride counter ion.All symmetry-related contacts were taken into consideration.(16)For2D networks with the[(H2O)3(Cl)]–core,see the CSD refcodes:AGETAH,AMIJAH,BEXVIJ,EXOWIX,FANJUA,GAFGIE, HIQCIT,LUNHUX,LUQCEF,PAYBEW,TESDEB,TXCDNA, WAQREL,WIXVUU,ZUHCOW.For3D network,see the CSD refcode:LUKZEW.(17)This analysis was run on1since we were unable to get1′in a sufficientamount due to the varying content of crystallization water in the samples obtained upon recrystallization of1.(18)(a)Das,S.;Bhardwaj,P.K.Cryst.Growth.Des.2006,6,187.(b)Wang,J.;Zheng,L.-L.;Li,C.-J.;Zheng,Y.-Z.;Tong,M.-L.Cryst.Growth.Des.2006,6,357.(c)Ghosh,S.K.;Ribas,J.;El Fallah, M.S.;Bharadwaj,P.K.Inorg.Chem.2005,44,3856.(19)A temperature below305°C has been used to avoid the eventualdecomposition of the compound upon rather prolonged heating.CG7010315Communications Crystal Growth&Design,Vol.8,No.3,2008785。

Cs_(2)HfCl_(6)和Cs_(2)HfCl_(6)∶Tl晶体的生长、光学和闪烁性能研究

Cs_(2)HfCl_(6)和Cs_(2)HfCl_(6)∶Tl晶体的生长、光学和闪烁性能研究

第50卷第5期2021年5月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.50㊀No.5May,2021Cs 2HfCl 6和Cs 2HfCl 6ʒTl 晶体的生长、光学和闪烁性能研究成双良1,2,任国浩2,吴云涛2(1.上海理工大学材料科学与工程学院,上海㊀200082;2.中国科学院上海硅酸盐研究所,上海㊀201800)摘要:本文使用坩埚下降法制备了ϕ7mm 的未掺杂Cs 2HfCl 6与Cs 2HfCl 6ʒ0.2%Tl(摩尔分数)单晶,对晶体样品进行了物相㊁杂质含量㊁光学和闪烁性能的研究㊂该晶体属于立方晶系,空间群为Fm 3m ㊂在荧光和X 射线激发下,未掺杂Cs 2HfCl 6晶体的发光主峰皆为380nm,对应于自陷激子发光㊂Cs 2HfCl 6ʒ0.2%Tl 晶体在荧光和X 射线激发下,发射光谱中除了存在380nm 处的自陷激子发光,也存在505nm 处Tl +的sp-s 2跃迁发光㊂Cs 2HfCl 6和Cs 2HfCl 6ʒ0.2%Tl 晶体的光输出分别为37000photons /MeV 和36500photons /MeV,在662keV 处的能量分辨率皆为3.5%㊂在137Cs 源激发下,Cs 2HfCl 6晶体的闪烁衰减时间为0.37μs (4.2%)㊁4.27μs (78.9%)和12.52μs (16.9%),Cs 2HfCl 6ʒ0.2%Tl 晶体的闪烁衰减时间为0.33μs (3.5%)㊁4.09μs (81.9%)和10.42μs (14.5%)㊂关键词:Cs 2HfCl 6ʒTl;自陷激子发光;sp-s 2跃迁;闪烁晶体;坩埚下降法;能量分辨率中图分类号:O734㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2021)05-0803-06Optical and Scintillation Properties of Cs 2HfCl 6and Cs 2HfCl 6ʒTl Single Crystals Grown by the Bridgman MethodCHENG Shuangliang 1,2,REN Guohao 2,WU Yuntao 2(1.School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200082,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 201800,China)Abstract :The ϕ7mm undoped Cs 2HfCl 6and Cs 2HfCl 6ʒ0.2%Tl(mole fraction)single crystals were grown by the Vertical Bridgman method.The phase,impurities concentrations,luminescence and scintillation properties of crystal samples were studied.Both crystals belong to the cubic crystal structure and the space group of Fm 3m .When excited by ultraviolet light andX-ray,both crystals exhibit an emission peak at 380nm originated from self-trapped excitons emission,and Cs 2HfCl 6ʒ0.2%Tl crystal exhibits an extra Tl +sp-s 2transition induced emission at 505nm.Cs 2HfCl 6and Cs 2HfCl 6ʒ0.2%Tl possess high light yields of 37000photons /MeV and 36500photons /MeV respectively and both have excellent energy resolutions of 3.5%at 662keV under excitation of 137Cs source.The scintillation decay time of undoped Cs 2HfCl 6is comprised of 0.37μs (4.2%),4.27μs (78.9%)and 12.52μs (16.9%).The scintillation decay time of Cs 2HfCl 6ʒ0.2%Tl is comprised of 0.33μs (3.5%),4.09μs (81.9%)and 10.42μs (14.5%).Key words :Cs 2HfCl 6ʒTl;self-trapped exciton emission;sp-s 2transition;scintillation crystal;Bridgman method;energy resolution㊀㊀㊀收稿日期:2021-03-09㊀㊀基金项目:国家自然科学基金(11975303);上海市自然科学基金(20ZR1473900);上海张江国家自主创新示范区专项发展资金重大项目(ZJ2020-ZD-005);上海市科委 科技创新行动计划 高新技术领域项目(20511107400)㊀㊀作者简介:成双良(1996 ),男,江苏省人,硕士研究生㊂E-mail:csl123450@ ㊀㊀通信作者:吴云涛,博士,研究员㊂E-mail:ytwu@ 0㊀引㊀㊀言近年来,随着核医学成像㊁国土安全以及高能物理等领域对于核辐射探测器性能要求的日益提高,作为探测器核心的闪烁晶体也在不断发展[1-3]㊂高性能辐射探测谱仪要求闪烁晶体拥有高密度㊁高光输出㊁高能804㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷量分辨率和快衰减时间等性质㊂到目前为止,最具有代表性的高性能γ能谱探测闪烁晶体是LaBr3ʒCe和SrI2ʒEu㊂这两种闪烁晶体都有非常优异的光输出(>60000photons/MeV)和能量分辨率(<3%@662keV)等性质[4-5]㊂然而这两种晶体的强潮解性和晶体结构对称度较低所造成的各向异性,严重影响着这些晶体材料的生长和加工,大大提高了使用成本㊂不仅如此,由于掺杂离子带来的自吸收和发光不均匀性也使这些晶体的闪烁性能随着尺寸的增加而明显劣化㊂因此,开发一种潮解性弱㊁结构对称性高㊁本征发光㊁无自吸收且同时有着优异闪烁性能的卤化物闪烁晶体成为国际闪烁晶体领域追逐的目标㊂美国Fisk大学的Burger教授在2015年发现的Cs2HfCl6(CHC)单晶正是一种有着以上诸多优异特性的闪烁晶体[6]㊂CHC有着较高的相对原子序数(Z eff=58)和密度(ρ=3.86g/cm3),对射线的阻止能量强㊂CHC属于立方晶系,对称度高,同时潮解性微弱,易于生长和加工㊂由于这种材料的发光机理为自陷激子发光,拥有较大的斯托克斯频移(约2.5eV),所以具有高发光效率和弱自吸收的优点㊂同时,CHC晶体闪烁性能优异,光输出达到54000photons/MeV,能量分辨率为3.3%@662keV[7-9]㊂不仅如此,美国劳伦斯利弗莫尔国家实验室的Steve Payne博士在基于能量非线性响应曲线的拟合中发现,CHC的理论能量分辨率可以达到1.37%@662keV,这表明在经过合理的晶体质量和组分优化后,CHC晶体很可能成为首个在662keV处能量分辨率突破2%的闪烁材料[6]㊂Tl+是一种常用的闪烁晶体掺杂剂,广泛应用在NaIʒTl和CsIʒTl等传统闪烁晶体中㊂日本东北大学的Saeki为了优化CHC的闪烁性能,生长并研究了Tl+掺杂的CHC晶体,并报道了部分闪烁性能,其光输出为23700photons/MeV,明显劣于未掺杂的CHC晶体(27500photons/MeV)[10]㊂然而该研究中使用的HfCl4原料纯度较低(质量分数99.9%),未经过进一步提纯处理,并且样品光学质量较差㊂本文使用升华法提纯了HfCl4原料,使用坩埚下降法成功生长了高光学质量的CHC与CHCʒTl单晶,研究了提纯前后杂质含量与晶体内Tl+的实际含量,并对Tl+掺杂前后CHC晶体的物相㊁光学性能与闪烁性能进行了系统的表征和分析㊂1㊀实㊀㊀验1.1㊀晶体生长晶体生长使用的原料为HfCl4(99.9%,APL Engineered Materials)㊁CsCl(99.999%,Sigma Aldrich)和TlBr (99.995%,Sigma Aldrich)㊂由于市售HfCl4纯度较低,在使用前须经过升华提纯处理,基于HfCl4的高蒸气压与低升华点[11],升华温度为350~450ħ,时间为24h㊂将准备好的原料以Cs2HfCl6与Cs2HfCl6ʒ0.2%Tl (摩尔分数)的化学计量比配好,并装到直径为7mm的石英坩埚中㊂石英坩埚在使用前经过去离子水清洗,并在真空中烘干12h以确保坩埚内壁无水分与其他杂质㊂将装有原料的石英坩埚进行抽真空操作,当坩埚内气压小于10Pa后进行焊封以保证晶体生长过程处于真空状态㊂整个装料与封管过程均在充满氩气的手套箱中进行,手套箱内的水氧含量均小于10-7㊂将封好的装有原料的坩埚置于布里奇曼晶体生长炉内,根据相图,Cs2HfCl6的熔点为820ħ,因此升温至850ħ并保温24h以保证原料充分熔化并反应[12]㊂将温度降至熔点820ħ并进行晶体生长,晶体生长速度为0.5mm/h,结晶界面的温度梯度约为30~35ħ/cm㊂在晶体生长结束后以10ħ/h的速率降温至室温㊂1.2㊀性能测试原料提纯前后杂质含量与晶体内Tl+含量使用美国安捷伦公司的5100vdv型电杆耦合等离子体发射(ICP-OES)光谱仪进行测试㊂粉末X射线衍射(PXRD)图谱使用丹东浩元公司的DX-2800型X射线粉末衍射仪进行测试㊂使用的靶材为Cu,测试范围2θ为10ʎ~70ʎ,使用的电压和电流分别为40kV和40mA㊂吸收光谱使用PermkinElmer Lambda950型紫外-可见-近红外分光光度计进行测试㊂测试的波长范围为200~800nm㊂荧光激发和发射光谱使用Horiba FluoroMax+型荧光光谱仪进行测试,使用的光源为氙灯㊂X射线激发发射光谱测试中使用JF-10型携带式诊断X射线机作为激发光源,并且联立Horiba FluoroMax+型荧光光谱仪进行谱图采集,使用的电压和电流分别为50kV和5mA㊂㊀第5期成双良等:Cs 2HfCl 6和Cs 2HfCl 6ʒTl 晶体的生长㊁光学和闪烁性能研究805㊀137Cs 源激发下晶体的多道能谱使用经过量子效率校正的滨松R2059光电倍增管(PMT)和高量子效率的滨松R6231-100PMT 进行测试,分别用于单光子峰法标定绝对光输出和能量分辨率的计算[13],使用的高压分别为-1700V 与-1000V,使用的时间门宽均为10μs 以尽可能收集闪烁光㊂闪烁衰减时间曲线使用滨松R6231-100PMT 与Tektronix DPO 5104数字荧光示波器测试,使用的电压为-1000V㊂2㊀结果与讨论2.1㊀晶体生长与物相分析生长得到的晶体与加工后的样品如图1所示㊂图1(a)㊁(b)分别为未掺杂的CHC 与CHCʒTl 的晶锭和加工后的样品照片㊂晶体的直径为7mm,切割并抛光后的样品的尺寸为4mm ˑ4mm ˑ3mm㊂图中可以看出生长出的晶体透明㊁无色且无包裹体㊂未掺杂的CHC 与CHCʒTl 的PXRD 图谱如图2所示㊂由于Tl +的掺杂含量很低,掺杂前后的衍射峰角度与强度几乎不变㊂两种材料的衍射图谱与CHC 的标准卡片PDF#32-0233一致,并且没有多余的衍射峰出现,这表明不存在第二相㊂CHC 与CHCʒTl 均属于立方晶系,空间群为Fm 3m [14]㊂如表1所示,经过升华提纯后的HfCl 4原料中的Zr 含量只有0.046%(摩尔分数,下同),比提纯前(0.098%)减少了近53%,这证明升华提纯工艺可以显著提高原料的纯度,从而减少晶体中的杂质含量㊂对于CHCʒTl 晶体,在初始掺杂0.2%Tl +的情况下,晶体中Tl +的实际含量为0.12%㊂这说明Tl +在CHC 晶体生长过程中存在明显的分凝现象㊂图1㊀CHC(a)与CHCʒTl(b)的晶锭和样品照片Fig.1㊀Photographs of crystal ingots and samples of CHC (a)and CHCʒTl(b)图2㊀CHC 与CHCʒTl 的粉末X 射线衍射图谱Fig.2㊀PXRD patterns of CHC and CHCʒTl表1㊀提纯前后HfCl 4原料㊁CHC 与CHCʒTl 晶体中Zr 与Tl 的含量(摩尔分数)Table 1㊀Zr and Tl concentration in HfCl 4(before and after purification ),CHC and CHCʒTl crystals (mole fraction )Zr content /%Tl content /%HfCl 4(raw)0.098 HfCl 4(purified)0.046 CHC 0.062 CHCʒTl 0.0430.122.2㊀光学性能为了研究CHC 与CHCʒTl 的光学性能,首先测试了这两种晶体的吸收光谱㊁荧光激发和发射光谱㊂样品为直径7mm㊁厚度约1.5mm 的晶片且双面抛光㊂如图3(a)所示,CHC 与CHCʒTl 的吸收光谱中都存在三个吸收峰,分别位于215nm㊁245nm 和270nm 处㊂根据文献报道,215nm 处的吸收峰与CHC 的自陷激子发光相关,245nm 处的吸收峰与HfCl 4原料中伴生的Zr 杂质相关,270nm 处强吸收峰的来源尚未见报道[15]㊂但在Vanecek 等[16]的研究中发现,CHC 的激发光谱中存在以270nm 左右为中心的激发峰,对应的发光峰与215nm 紫外光激发得到的发光一致,也在380nm 左右㊂这个吸收可能来自某种未知杂质或缺陷,有待进一806㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷步研究㊂对比未掺杂的CHC的吸收峰,在CHCʒTl的吸收光谱中没有观察到Tl+吸收峰,这可能是由于Tl掺杂量较低或者Tl+的吸收与其他吸收带有重叠㊂CHC与CHCʒTl的荧光激发与发射光谱如图3(b)㊁(c)所示㊂当监测380nm处发光时,两种晶体的激发光谱几乎一致,激发峰位于270nm左右,这与吸收光谱中270nm处的吸收峰相对应,与文献报道一致[16]㊂而当使用300nm的紫外光激发CHCʒTl样品时,观察到发射光谱中出现一个505nm处的发光峰,与Tl+相关㊂当监测505nm处发光时,激发光谱中245nm处的激发峰增强,同时观察到280nm处的激发峰㊂根据文献报道,245nm处的激发峰对应Zr杂质相关的发光,此激发峰变强是因为505nm处除了Tl+相关发光外,还包含了一部分Zr杂质相关的发光[10]㊂Zr杂质相关的发光峰位于435nm左右,当监测505nm处时这部分发光强于监测380nm处,因此245nm处的激发峰变强㊂而280nm处的激发峰对应Tl+相关的505nm处发光,根据文献报道,可以认为这个发光来自Tl+的sp-s2跃迁[10]㊂图3㊀(a)CHC和CHCʒTl的吸收光谱;(b)CHC的荧光激发与发射光谱;(c)CHCʒTl的荧光激发与发射光谱Fig.3㊀(a)Absorption spectra of CHC and CHCʒTl;photoluminescence excitation and emissionspectra of CHC(b)and CHCʒTl(c)2.3㊀闪烁性能CHC与CHCʒTl的X射线激发发射光谱如图4(a)所示㊂这两种晶体的主发射峰均位于380nm左右,对应CHC的自陷激子发光㊂而CHCʒTl在505nm处的相对发光强度略强于未掺杂的CHC,这部分发光来自Tl+的sp-s2跃迁,与荧光光谱结果一致㊂为了标定CHC与CHCʒTl的绝对光输出,使用经过量子效率校正的滨松R2059PMT测试了样品在137Cs 源激发下的多道能谱,并同时测试了直径1英寸(2.54cm)的NaIʒTl标样作为参比样品,具体能谱如图4(b)所示㊂使用单光子峰法标定得到的CHC㊁CHCʒTl和NaIʒTl的绝对光输出分别为(37000ʃ2000)photons/MeV㊁(36500ʃ2000)photons/MeV和(45000ʃ2000)photons/MeV㊂未掺杂CHC的绝对光输出与报道中最佳的结果(36400photons/MeV)接近,并且比Saeki报道的结果高35%,而CHCʒTl的光输出比Saeki的结果高56%[8,10]㊂这与本文中制备晶体的高光学质量和低杂质含量相关㊂本文采用了高量子效率的滨松R6231-100PMT评价CHC和CHCʒTl样品的能量分辨率㊂137Cs源激发下的多道能谱如图5所示㊂未掺杂的CHC与CHCʒTl的在662keV处的能量分辨率均为(3.5ʃ0.2)%,该结果与报道的最佳能量分辨率接近(2.8%@ 662keV)[8]㊂CHC和CHCʒTl晶体在137Cs源激发下的闪烁衰减曲线如图6所示,采用三指数衰减曲线拟合㊂未掺杂的CHC的衰减时间分别为0.37μs(4.2%)㊁4.27μs(78.9%)和12.52μs(16.9%),CHCʒTl的衰减时间分别为0.33μs(3.5%)㊁4.09μs(81.9%)和10.42μs(14.5%)㊂两种晶体的三个分量占比都很接近,CHCʒTl 的衰减时间要略快于未掺杂的CHC样品㊂其中4μs左右的主分量来自CHC的自陷激子发光,慢于10μs的分量,来自晶体中存在的Zr杂质,而最快的分量来源尚且未知,有待进一步研究㊂CHCʒTl的衰减曲线中未发现Tl+对应的衰减时间分量,这可能是Tl+的发光在整个闪烁脉冲中占比较低,与其他分量叠加到一起导致的㊂㊀第5期成双良等:Cs2HfCl6和Cs2HfCl6ʒTl晶体的生长㊁光学和闪烁性能研究807㊀图4㊀(a)CHC和CHCʒTl的X射线激发发射光谱;(b)137Cs源激发下的CHC㊁CHCʒTl和NaIʒTl的多道能谱(滨松R2059PMT)Fig.4㊀(a)X-ray induced radioluminescence spectra of CHC and CHCʒTl;(b)pulse height spectra of CHC,CHCʒTl and NaIʒTl under137Cs irradiation图5㊀137Cs源激发下的CHC(a)和CHCʒTl(b)的多道能谱(滨松R6231-100PMT)Fig.5㊀Pulse height spectra of CHC(a)and CHCʒTl(b)under137Cs irradiation图6㊀CHC(a)和CHCʒTl(b)的闪烁衰减时间曲线Fig.6㊀Scintillation decay curves of CHC(a)and CHCʒTl(b)3㊀结㊀㊀论本文使用坩埚下降法生长了高质量Cs2HfCl6与Cs2HfCl6ʒ0.2%Tl单晶㊂相比CHC晶体,CHCʒTl晶体除了380nm处的本征自陷激子发光外,还观察到Tl+的sp-s2跃迁所对应的505nm处发光㊂CHC和CHCʒTl晶体光输出分别为37000photons/MeV和36500photons/MeV,而662keV处的能量分辨率都可达到3.5%㊂808㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷CHCʒTl的闪烁衰减时间为0.33μs(3.5%)㊁4.09μs(81.9%)和10.42μs(14.5%),各分量都略快于未掺杂的CHC㊂后续工作中,将进一步优化Tl+的掺杂量,研究Tl+对CHC晶体闪烁发光物理过程以及闪烁性能的影响㊂参考文献[1]㊀NIKL M,YOSHIKAWA A.Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J].Advanced OpticalMaterials,2015,3(4):463-481.[2]㊀YOKOTA Y,KUROSAWA S,SHOJI Y,et al.Development of novel growth methods for halide single crystals[J].Optical Materials,2017,65:46-51.[3]㊀DORENBOS P.Fundamental limitations in the performance of Ce3+-,Pr3+-,and Eu2+-activated scintillators[J].IEEE Transactions onNuclear Science,2010,57(3):1162-1167.[4]㊀CHEREPY N J,HULL G,DROBSHOFF A D,et al.Strontium and Barium iodide high light yield scintillators[J].Applied Physics Letters,2008,92(8):083508.[5]㊀VAN LOEF E V D,DORENBOS P,VAN EIJK C W E,et al.High-energy-resolution scintillator:Ce3+activated LaBr3[J].Applied PhysicsLetters,2001,79(10):1573-1575.[6]㊀BURGER A,ROWE E,GROZA M,et al.Cesium hafnium chloride:a high light yield,non-hygroscopic cubic crystal scintillator for gammaspectroscopy[J].Applied Physics Letters,2015,107(14):143505.[7]㊀KANG B,BISWAS K.Carrier self-trapping and luminescence in intrinsically activated scintillator:cesium hafnium chloride(Cs2HfCl6)[J].The Journal of Physical Chemistry C,2016,120(22):12187-12195.[8]㊀ARIESANTI E,HAWRAMI R,BURGER A,et al.Improved growth and scintillation properties of intrinsic,non-hygroscopic scintillatorCs2HfCl6[J].Journal of Luminescence,2020,217:116784.[9]㊀LAM S,GUGUSCHEV C,BURGER A,et al.Crystal growth and scintillation performance of Cs2HfCl6and Cs2HfCl4Br2[J].Journal of CrystalGrowth,2018,483:121-124.[10]㊀SAEKI K,FUJIMOTO Y,KOSHIMIZU M,et al.Luminescence and scintillation properties of Tl-and Ce-doped Cs2HfCl6crystals[J].JapaneseJournal of Applied Physics,2017,56(2):020307.[11]㊀HAWRAMI R,ARIESANTI E,BULIGA V,et al.Advanced high-performance large diameter Cs2HfCl6(CHC)and mixed halides scintillator[J].Journal of Crystal Growth,2020,533:125473.[12]㊀KRÁL R,ZEMENOVÁP,VANĚC㊅EK V,et al.Thermal analysis of cesium hafnium chloride using DSC-TG under vacuum,nitrogen atmosphere,and in enclosed system[J].Journal of Thermal Analysis and Calorimetry,2020,141(3):1101-1107.[13]㊀MOSZYNSKI M,KAPUSTA M,MAYHUGH M,et al.Absolute light output of scintillators[J].IEEE Transactions on Nuclear Science,1997,44(3):1052-1061.[14]㊀MANIV S.Crystal data for Cs2HfCl6[J].Journal of Applied Crystallography,1976,9(3):245.[15]㊀KRÁL R,BABIN V,MIHÓKOVÁE,et al.Luminescence and charge trapping in Cs2HfCl6single crystals:optical and magnetic resonancespectroscopy study[J].The Journal of Physical Chemistry C,2017,121(22):12375-12382.[16]㊀VANECEK V,KRAL R,PATEREK J,et al.Modified vertical Bridgman method:time and cost effective tool for preparation of Cs2HfCl6singlecrystals[J].Journal of Crystal Growth,2020,533:125479.。

人工晶体学报endnote格式

人工晶体学报endnote格式

人工晶体学报endnote格式
人工晶体学报是一本涉及人工晶体研究领域的学术期刊,因此
其引用格式应符合学术标准。

在EndNote中,你可以按照以下方式
设置人工晶体学报的引用格式:
1. 打开EndNote软件,在"Edit"菜单中选择"Output Styles",然后点击"Open Style Manager"。

2. 在弹出的窗口中,搜索并选择"人工晶体学报",然后点击"Choose"。

3. 在EndNote软件中,选择"File"菜单中的"Save As",并将
该引文格式保存为一个新的文件,以便在写作时使用。

在写作时,引用人工晶体学报的文献时,你可以在EndNote中
选择该期刊的引文格式,然后将引用插入到你的论文或报告中。

需要注意的是,不同的期刊可能有不同的要求,因此在使用EndNote进行引文管理时,建议在写作前先确认一下人工晶体学报
官方网站或期刊投稿指南中对引文格式的要求,以确保你的引文格式符合期刊的要求。

1英寸CsPbCl3晶体的生长及其发光性能研究

1英寸CsPbCl3晶体的生长及其发光性能研究

源为 Cu K α ,工作电压和电流分别为 40 kV 和 40 mA,测试的范围为 10° ~ 70°,步幅为 0. 02°。
CsPbCl3 晶体的 TG / DTA 曲线是使用 Netzsch STA 2500 热重分析仪( TGA) 测试得到的,整个测试过程在
氮气气氛保护下完成,由室温升至 650 ℃ ,升温速率为 10 ℃ / min。
0 引 言
近年来,新型卤化铅基钙钛矿由于其优异的光电特性,在光电探测器件中具有良好的应用前景而受到越
来越多的关注 [1] 。 特别是全无机钙钛矿 CsPbX3 ( X = Cl - , Br - , I - ) 具有良好的性能如带隙可调、良好的热
稳定性、平衡的电子迁移率等 [2-3] ,可以应用于光电探测 [4] 、太阳能电池 [5] 、LED [6] 和激光 [7] 等领域。 CsPbCl3
通信作者:潘尚可,博士,教授。 E-mail:panshangke@ nbu. edu. cn
Copyright©博看网. All Rights Reserved.
第4 期
王 卿等:1 英寸 CsPbCl3 晶体的生长及其发光性能研究
579
相转变最后向正交相转变,对应的空间点群由 Pm-3m 向 P4 / mbm 转变最后转变为 Pbnm [10] 。 即使 CsPbCl3
Key words:perovskite single crystal; CsPbCl3 crystal; Bridgman method; optical band gap; low temperature fluorescence
spectroscopy; exciton binding energy
become the next generation of photoelectric detection materials. It is difficult to grow CsPbCl3 crystals by low-temperature

2_7_3_m稀土激光晶体研究进展_陈家康

2_7_3_m稀土激光晶体研究进展_陈家康

第42卷第5期人工晶体学报Vol.42No.52013年5月JOURNAL OF SYNTHETIC CRYSTALSMay ,20132.7 3μm 稀土激光晶体研究进展陈家康,孙敦陆,张会丽,窦仁勤,罗建乔,刘文鹏,张庆礼,殷绍唐(中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,合肥230031)摘要:本文介绍了以稀土Er3+和Ho3+为激活离子,YAG ,YAP ,YLF ,YSGG ,GSGG 为基质的2.7 3μm 激光晶体的特点和应用背景,展示了其中一些晶体的吸收和荧光光谱,讨论了这些晶体的能级结构、光谱和激光特性及器件研究进展,并认为提高效率和激光输出功率以及获得新的特征波长是今后2.7 3μm 激光晶体的主要发展方向。

关键词:激光晶体;基质;激活离子;LD 泵浦中图分类号:O78文献标识码:A文章编号:1000-985X (2013)05-0824-09Research Progress of 2.7-3μm Rare Earth Laser CrystalsCHEN Jia-kang ,SUN Dun-lu ,ZHANG Hui-li ,DOU Ren-qin ,LUO Jian-qiao ,LIU Wen-peng ,ZHANG Qing-li ,YIN Shao-tang(Key Laboratory of Photonic Devices and Materials ,Anhui Institude of Optics and Fine Mechanics ,Chinese Academy of Sciences ,Hefei 230031,China )(Received 15January 2013,accepted 15March 2013)Abstract :In this paper ,the characteristics and application background of 2.7-3μm laser crystals ,withthe rare earth Er 3+and Ho 3+as active ions and the YAG ,YAP ,YLF ,YSGG ,GSGG as the matrix were described.The absorption and fluorescence spectra of some crystals were exhibited ,and the energy-level structures ,spectra ,laser characteristics and device research progress of these crystals were discussed.The results showed that the main development direction of the 2.7-3μm laser crystal should be toimprove efficiency and laser output power and obtain new features wavelength.Key words :laser crystal ;host ;activation ions ;LD pumping收稿日期:2013-01-15;修订日期:2013-03-15基金项目:国家自然科学基金(91122021;51272254;90922003;51172236)作者简介:陈家康(1988-),男,吉林省人,硕士研究生。

MS文献晶体参数建模实例

MS文献晶体参数建模实例
1
2
打开Add Atom 对 话框
进入到Atoms 栏中,从Element 下拉菜单中选择Si,并输入相应的a、b、c 数据。 a=0.480781, b=0.480781, c=0.0。 Si 原子和其对称原子加入到晶胞内。
1 2 3
4
5
6
同样的,我们可以加入氧原子。氧原子的参数为a=0.150179,b=0.414589, c=0.116499。氧原子和其对称原子加入到晶胞内,程序会自动计算并加入相关的键。
* 在 Project Explorer中,选中 my_quartz_alpha.xsd ,单击右键,选择 Insert Into 。则my_quartz_alpha.xsd 结构出现在3D Atomistic Collection.xod中。 对 quartz_alpha.xsd重复此操作。这样my_quartz_alpha.xsd和quartz_alpha.xsd 两个结构都出现在3D Atomistic Collection.xod中。
内容 1. 建立-石英晶体
2. 加入硅原子和氧原子
3. 对比-石英晶体结构的两种版本
1. 建立-石英晶体 * File / New... ,在出现的对话框中,选 3D Atomistic ,然后单击 OK 按钮,打开一个 新的3D Viewer 。 * 在Project Explorer 中,新的3D Viewer 是 3D Atomistic.xsd 。选中 3D Atomistic.xsd, 按右键, 选择 Rename ,键入 my_quartz_alpha ,按ENTER 完成命名。
1. 打开分子晶体文档
* File / Import,打开输入结构对话框。 * Examples / Documents / 3D Model / urea.msi,单击 Import 按钮,输入 urea晶体的晶胞结构。 * 注意,文件由 .msi 改为 .xsd。

晶体粉末折射率的测量文献综述

晶体粉末折射率的测量文献综述

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 晶体粉末折射率的测量+文献综述摘要:晶体粉末的特殊性能及在各种器件的应用,科学家对晶体粉末的物理性能进行了研究,得到许多研究成果,对晶体粉末有了全新的认识,对晶体粉末的应用起到促进的作用。

直接测粉末折射率误差大,操作麻烦等,大部分不是直接对其进行测量,通过间接方法得到。

通过对不同浓度的NaCl溶液折射率进行测量,折射率随溶液浓度的变化;利用线性回归图确定其线性方程式;通过外推法算出了NaCl粉末的折射率。

研究结果对折射率的测量具有一定的参考价值。

8040关键词:晶体粉末;折射率;阿贝折射仪;线性回归法Measurement on Refraction of Crystal Powder Abstract: Because of the special properties and1 / 7applications Crystal powder in varieties of devices, scientists have studied the physical properties of the crystal powder, and got a lot of research results. They have a new understanding of crystal powder and have a effect of promoting the application of crystal powder. The error of directive measurement of powder refraction is big, and there are operating problems, etc. So most are not directly measured, but obtained by indirect methods.By means of measuring the refractive index of different concentrations of NaCl solution, and the refractive index changes according to the solution concentration; Use linear regression figure to determine its linear equations and calculate the refractive index of NaCl powder by extrapolation method. So the results of refractive index measurement has a certain reference value.Keywords: Crystal powder;Refractive index;Abbe refractometer;Linear regression目录---------------------------------------------------------------范文最新推荐------------------------------------------------------ 摘要1引言11. 用阿贝折射仪测NaCl溶液折射率21.1 阿贝折仪射原理21.2 实验方法与步骤41. 阿贝折射仪测NaCl溶液折射率1.1 阿贝折射仪原理折射率是透明材料的一个重要光学常数。

有关晶体材料zeta粒度的文献

有关晶体材料zeta粒度的文献

晶体材料是一类在工程、科学、医学等领域中广泛应用的材料,其性能往往受到晶粒度的影响。

在晶体材料的研究中,有一个重要参数——zeta粒度,它对材料的性能和应用有着重要影响。

本文将围绕晶体材料zeta粒度展开讨论,通过文献调研和分析,对zeta粒度的研究现状和发展趋势进行探讨。

一、zeta粒度的定义及意义1. zeta粒度的概念zeta粒度是指晶体材料中晶粒的尺寸,它不仅涉及到晶格的宽度和长度,还包括晶粒的形状和分布。

在材料科学中,zeta粒度是评价晶体材料内部结构的重要参数之一。

2. zeta粒度的意义(1)对晶体材料性能的影响zeta粒度直接影响晶体材料的力学性能、热学性能、电学性能等,因此对于材料的设计和应用具有重要意义。

(2)对工艺加工的影响在晶体材料的制备过程中,zeta粒度也会影响到材料的成形性、加工性和稳定性。

二、zeta粒度的测量方法1. 传统的测量方法传统的测量方法包括透射电子显微镜、X射线衍射等技术,这些方法可以直接观察晶体的形貌和尺寸,提供了精确的测量数据。

2. 新兴的测量方法随着科技的不断发展,新兴的测量方法如原子力显微镜、扫描电子显微镜等技术也被应用到了晶体材料zeta粒度的测量中,其分辨率更高、操作更便捷、数据更精确。

三、zeta粒度在晶体材料研究中的应用1. 对晶体材料性能的调控通过控制晶体材料的zeta粒度,可以实现材料力学、热学、电学性能的调控,从而满足不同工程领域对材料性能的要求。

2. 对晶体材料的稳定性影响研究表明,zeta粒度大小对于晶体材料的稳定性有着重要影响,特别是在高温、压力等特殊环境下,zeta粒度对晶体材料的稳定性有显著影响。

四、zeta粒度的未来发展趋势1. 测量方法的进一步完善随着科技的发展,对zeta粒度测量方法的进一步完善将成为未来研究的重点,高分辨率、精准测量将成为未来发展的趋势。

2. 对晶体材料性能的深入研究未来的研究将更加关注zeta粒度与晶体材料性能之间的内在通联,探索晶粒尺寸的微观调控对晶体材料性能的影响机制。

CrystGrowthDes晶体生长英文文献

CrystGrowthDes晶体生长英文文献

An Infinite Two-Dimensional Hybrid Water-Chloride Network,Self-Assembled in a Hydrophobic Terpyridine Iron(II)MatrixRicardo R.Fernandes,†Alexander M.Kirillov,†M.Fátima C.Guedes da Silva,†,‡Zhen Ma,†JoséA.L.da Silva,†João J.R.Fraústo da Silva,†andArmando J.L.Pombeiro*,†Centro de Química Estrutural,Complexo I,Instituto Superior Técnico,TU-Lisbon,A V.Ro V isco Pais,1049-001Lisbon,Portugal,and Uni V ersidade Luso´fona de Humanidades e Tecnologias,A V.doCampo Grande,376,1749-024,Lisbon,PortugalRecei V ed October18,2007;Re V ised Manuscript Recei V ed January7,2008ABSTRACT:An unprecedented two-dimensional water-chloride anionic{[(H2O)20(Cl)4]4–}n network has been structurally identified in a hydrophobic matrix of the iron(II)compound[FeL2]Cl2·10H2O(L)4′-phenyl-2,2′:6′,2″-terpyridine).Its intricate relief geometry has been described as a set of10nonequivalent alternating cycles of different sizes ranging from tetra-to octanuclear{[(H2O)x(Cl)y]y–}z(x) 2–6,y)0–2,z)4–6,8)fragments.In contrast to the blooming research on structural characterizationof a wide variety of water clusters in different crystalline materials,1much less attention has been focused on the identification anddescription of hybrid hydrogen-bonded water assemblies with othersolvents,small molecules,or counterions.1c,2In particular,thecombination of chloride ions and water is one of the most commonlyfound in natural environments(e.g.,seawater or sea-salt aerosols),and thus the investigation of water-chloride interactions has beenthe object of numerous theoretical studies.3However,only recentlya few water-chloride associates incorporated in various crystalmatrixes have been identified and structurally characterized,4,5including examples of(i)discrete cyclic[(H2O)4(Cl)]–,4a[(H2O)4(Cl)2]2–,4b and[(H2O)6(Cl)2]2–4c clusters,and(ii)variousone-or two-dimensional(1D or2D)hydrogen-bonded networksgenerated from crystallization water and chloride counterionswith{[(H2O)4(Cl2)]2–}n,5b{[(H2O)6(Cl)2]2–}n,5b[(H2O)7(HCl)2]n,5c{[(H2O)11(Cl)7]7–}n,5d{[(H2O)14(Cl)2]2–}n,5e{[(H2O)14(Cl)4]4–}n,5aand{[(H2O)14(Cl)5]5–}n5f compositions.These studies are alsobelieved to provide a contribution toward the understanding of thehydration phenomena of chloride ions in nature and have importancein biochemistry,catalysis,supramolecular chemistry,and designof crystalline materials.5In pursuit of our interest in the self-assembly synthesis andcrystallization of various transition metal compounds in aqueousmedia,we have recently described the[(H2O)10]n,6a(H2O)6,6b and[(H2O)4(Cl)2]2–4b clusters hosted by Cu/Na or Ni metal-organicmatrixes.Continuing this research,we report herein the isolationand structural characterization of a unique2D water-chlorideanionic layer{[(H2O)20(Cl)4]4–}n within the crystal structure of thebis-terpyridine iron(II)compound[FeL2]Cl2·10H2O(1′)(L)4′-phenyl-2,2′:6′,2″-terpyridine).Although this compound has beenobtained unexpectedly,a search in the Cambridge StructuralDatabase(CSD)7,8points out that various terpyridine containinghosts tend to stabilize water-chloride associates,thus also sup-porting the recognized ability of terpyridine ligands in supra-molecular chemistry and crystal engineering.9,10Hence,the simple combination of FeCl2·2H2O and L in tetrahydrofuran(THF)solution at room temperature provides the formation of a deep purple solid formulated as[FeL2]Cl2·FeCl2·5H2O(1)on the basis of elemental analysis,FAB+-MS and IR spectroscopy.11This compound reveals a high affinity for water and,upon recrystallization from a MeOH/H2O(v/v)9/1)mixture,leads to single crystals of1′with a higher water content,which have been characterized by single-crystal X-ray analysis.12The asymmetric unit of1′is composed of a cationic[FeL2]2+ part,two chloride anions,and10independent crystallization water molecules(with all their H atoms located in the difference Fourier map),the latter occupying a considerable portion of the crystal cell. The iron atom possesses a significantly distorted octahedral coordination environmentfilled by two tridentate terpyridine moieties arranged in a nearly perpendicular fashion(Figure S1, Supporting Information).Most of the bonding parameters within [FeL2]2+are comparable to those reported for other iron compounds*To whom correspondence should be sent.Fax:+351-21-8464455.E-mail: pombeiro@ist.utl.pt.†Instituto Superior Técnico.‡Universidade Luso´fona de Humanidades eTecnologias.Figure 1.Perspective representations(arbitrary views)of hybrid water-chloride hydrogen-bonded assemblies in the crystal cell of1′; H2O molecules and chloride ions are shown as colored sticks and balls, respectively.(a)Minimal repeating{[(H2O)20(Cl)4]4–}n fragment with atom numbering scheme.(b)Nonplanar infinite polycyclic2D anionic layer generated by linkage of four{[(H2O)20(Cl)4]4–}n fragments(a) represented by different colors;the numbers are those of Table1and define the10nonequivalent alternating cycles of different size.2008310.1021/cg7010315CCC:$40.75 2008American Chemical SocietyPublished on Web02/08/2008bearing two terpyridine ligands.13The most interesting feature of the crystal structure of 1′consists in the extensive hydrogen bonding interactions of all the lattice–water molecules and chloride coun-terions (Table S1,Supporting Information),leading to the formation of a hybrid water -chloride polymeric assembly possessing minimal repeating {[(H 2O)20(Cl)4]4–}n fragments (Figure 1a).These are further interlinked by hydrogen bonds generating a nonplanar 2D water -chloride anionic layer (Figure 1b).Hence,the multicyclic {[(H 2O)20(Cl)4]4–}n fragment is con-structed by means of 12nonequivalent O–H ···O interactions with O ···O distances ranging from 2.727to 2.914Åand eight O–H ···Cl hydrogen bonds with O ···Cl separations varying in the 3.178–3.234Årange (Table S1,Supporting Information).Both average O ···O [∼2.82Å]and O ···Cl [∼3.20Å]separations are comparable to those found in liquid water (i.e.,2.85Å)14and various types of H 2O clusters 1,6or hybrid H 2O -Cl associates.4,5Eight of ten water molecules participate in the formation of three hydrogen bonds each (donating two and accepting one hydrogen),while the O3and O7H 2O molecules along with both Cl1and Cl2ions are involved in four hydrogen-bonding contacts.The resulting 2D network can be considered as a set of alternating cyclic fragments (Figure 1b)which are classified in Table 1and additionally shown by different colors in Figure 2.Altogether there are 10different cycles,that is,five tetranuclear,three pentanuclear,one hexanuclear,and one octa-nuclear fragment (Figures 1b and 2,Table 1).Three of them (cycles 1,2,and 6)are composed of only water molecules,whereas the other seven rings are water -chloride hybrids with one or two Cl atoms.The most lengthy O ···O,O ···Cl,or Cl ···Cl nonbonding separations within rings vary from 4.28to 7.91Å(Table 1,cycles 1and 10,respectively).Most of the cycles are nonplanar (except those derived from the three symmetry generated tetrameric fragments,cycles 1,2,and 4),thus contributing to the formation of an intricate relief geometry of the water -chloride layer,possessing average O ···O ···O,O ···Cl ···O,and O ···O ···Cl angles of ca.104.9,105.9,and 114.6°,respectively (Table S2,Supporting Information).The unprecedented character of thewater -chloride assembly in 1′has been confirmed by a thorough search in the CSD,7,15since the manual analysis of 156potentially significant entries with the minimal [(H 2O)3(Cl)]–core obtained within the searching algorithm 15did not match a similar topology.Nevertheless,we were able to find several other interesting examples 16of infinite 2D and three-dimensional (3D)water -chloride networks,most of them exhibiting strong interactions with metal -organic matrixes.The crystal packing diagram of 1′along the a axis (Figure 3)shows that 2D water -chloride anionic layers occupy the free space between hydrophobic arrays of metal -organic units,with an interlayer separation of 12.2125(13)Åthat is equivalent to the b unit cell dimension.12In contrast to most of the previously identified water clusters,1,6water -chloride networks,5,16and extended assemblies,1c the incorporation of {[(H 2O)20(Cl)4]4–}n sheets in 1′is not supported by strong intermolecular interactions with the terpyridine iron matrix.Nevertheless,four weak C–H ···O hydrogen bonds [avg d (D ···A))3.39Å]between some terpyridine CH atoms and lattice–water molecules (Table S1,Figure S2,Supporting Information)lead to the formation of a 3D supramolecular framework.The thermal gravimetric analysis (combined TG-DSC)of 117(Figure S3,Supporting Information)shows the stepwise elimination of lattice–water in the broad 50–305°C temperature interval,in accord with the detection on the differential scanning calorimetryTable 1.Description of Cyclic Fragments within the {[(H 2O)20(Cl)4]4–}n Network in 1′entry/cycle numbernumber of O/Cl atomsformula atom numberingschemegeometry most lengthy separation,Åcolor code a 14(H 2O)4O3–O4–O3–O4planar O3···O3,4.28light brown 24(H 2O)4O6–O7–O6–O7planar O7···O7,4.42light gray 34[(H 2O)3(Cl)]-O2–O4–O3–Cl2nonplanar O4···Cl2,4.66blue 44[(H 2O)3(Cl)]-O6–O7–O9–Cl1nonplanar O7···Cl1,4.61green 54[(H 2O)2(Cl)2]2-O9–Cl1–O9–Cl1planar Cl ···Cl1,4.76pink 65(H 2O)5O2–O4–O3–O10–O8nonplanar O2···O10,4.55red75[(H 2O)4(Cl)]-O1–O5–O7–O9–Cl1nonplanar O7···Cl1,5.25pale yellow 85[(H 2O)4(Cl)]-O1–O5–Cl2–O8–O10nonplanar O10···Cl2,5.29orange 96[(H 2O)4(Cl)2]2-O2–O8–Cl2–O2–O8–Cl2nonplanar Cl2···Cl2,7.12yellow 108[(H 2O)6(Cl)2]2-O1–O10–O3–Cl2–O5–O7–O6–Cl1nonplanarCl1···Cl2,7.91pale blueaColor codes are those of Figure 2.Figure 2.Fragment of nonplanar infinite polycyclic 2D anionic layer in the crystal cell of 1′.The 10nonequivalent alternating water or water -chloride cycles are shown by different colors (see Table 1for color codes).Figure 3.Fragment of the crystal packing diagram of 1′along the a axis showing the intercalation of two water -chloride layers (represented by space filling model)into the metal -organic matrix (depicted as sticks);color codes within H 2O -Cl layers:O red,Cl green,H grey.Communications Crystal Growth &Design,Vol.8,No.3,2008783curve(DSC)of three major endothermic processes in ca.50–170, 170–200,and200–305°C ranges with maxima at ca.165,190, and280°C,corresponding to the stepwise loss of ca.two,one, and two H2O molecules,respectively(the overall mass loss of9.1% is in accord with the calculated value of9.4%for the elimination of allfive water molecules).In accord,the initial broad and intense IRν(H2O)andδ(H2O)bands of1(maxima at3462and1656cm–1, respectively)gradually decrease in intensity on heating the sample up to ca.305°C,while the other bands remain almost unchangeable. Further heating above305°C leads to the sequential decomposition of the bis-terpyridine iron unit.These observations have also been supported by the IR spectra of the products remaining after heating the sample at different temperatures.The elimination of the last portions of water in1at temperatures as high as250–305°C is not commonly observed(although it is not unprecedented18)for crystalline materials with hosted water clusters,and can be related to the presence and extensive hydrogen-bonding of chloride ions in the crystal cell,tending to form the O–H(water)···Cl hydrogen bonds ca.2.5times stronger in energy than the corresponding O–H(water)···O(water)ones.5a The strong binding of crystallization water in1is also confirmed by its FAB+-MS analysis that reveals the rather uncommon formation of the fragments bearing from one tofive H2O molecules.11The exposure to water vapors for ca.8h of an almost completely dehydrated(as confirmed by weighing and IR spectroscopy)product after thermolysis of1(at250°C19for 30min)results in the reabsorption of water molecules giving a material with weight and IR spectrum identical to those of the initial sample1,thus corroborating the reversibility of the water escape and binding process.In conclusion,we have synthesized and structurally characterized a new type of2D hybrid water-chloride anionic multicyclic {[(H2O)20(Cl)4]4–}n network self-assembled in a hydrophobic matrix of the bis-terpyridine iron(II)complex,that is,[FeL2]Cl2·10H2O 1′.On the basis of the recent description and detailed analysis of the related{[(H2O)14(Cl)4]4–}n layers5a and taking into consideration that the water-chloride assembly in1′does not possess strong interactions with the metal-organic units,the crystal structure of 1′can alternatively be defined as an unusual set of water-chloride “hosts”with bis-terpyridine iron“guests”.Moreover,the present study extends the still limited number5of well-identified examples of large polymeric2D water-chloride assemblies intercalated in crystalline materials and shows that terpyridine compounds can provide rather suitable matrixes to stabilize and store water-chloride aggregates.Further work is currently in progress aiming at searching for possible applications in nanoelectrical devices,as well as understanding how the modification of the terpyridine ligand or the replacement of chlorides by other counterions with a high accepting ability toward hydrogen-bonds can affect the type and topology of the hybrid water containing associates within various terpyridine transition metal complexes.Acknowledgment.This work has been partially supported by the Foundation for Science and Technology(FCT)and its POCI 2010programme(FEDER funded),and by a HRTM Marie Curie Research Training Network(AQUACHEM project,CMTN-CT-2003-503864).The authors gratefully acknowledge Prof.Maria Filipa Ribeiro for kindly running the TG-DSC analysis,urent Benisvy,Dr.Maximilian N.Kopylovich,and Mr.Yauhen Y. Karabach for helpful discussions.Supporting Information Available:Additionalfigures(Figures S1–S3)with structural fragments of1′and TG-DSC analysis of1, Tables S1and S2with hydrogen-bond geometry in1′and bond angles within the H2O-Cl network,details for the general experimental procedures and X-ray crystal structure analysis and refinement,crystal-lographic informationfile(CIF),and the CSD refcodes for terpyridine compounds with water-chloride aggregates.This information is available free of charge via the Internet at .References(1)(a)Mascal,M.;Infantes,L.;Chisholm,J.Angew.Chem.,Int.Ed.2006,45,32and references therein.(b)Infantes,L.;Motherwell,S.CrystEngComm2002,4,454.(c)Infantes,L.;Chisholm,J.;Mother-well,S.CrystEngComm2003,5,480.(d)Supriya,S.;Das,S.K.J.Cluster Sci.2003,14,337.(2)(a)Das,M.C.;Bharadwaj,P.K.Eur.J.Inorg.Chem.2007,1229.(b)Ravikumar,I.;Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Cryst.Growth Des.2006,6,2630.(c)Ren,P.;Ding,B.;Shi,W.;Wang,Y.;Lu,T.B.;Cheng,P.Inorg.Chim.Acta2006,359,3824.(d)Li,Z.G.;Xu,J.W.;Via,H.Q.;Hu,mun.2006,9,969.(e)Lakshminarayanan,P.S.;Kumar,D.K.;Ghosh,P.Inorg.Chem.2005,44,7540.(f)Raghuraman,K.;Katti,K.K.;Barbour,L.J.;Pillarsetty,N.;Barnes,C.L.;Katti,K.V.J.Am.Chem.Soc.2003,125,6955.(3)(a)Jungwirth,P.;Tobias,D.J.J.Phys.Chem.B.2002,106,6361.(b)Tobias,D.J.;Jungwirth,P.;Parrinello,M.J.Chem.Phys.2001,114,7036.(c)Choi,J.H.;Kuwata,K.T.;Cao,Y.B.;Okumura,M.J.Phys.Chem.A.1998,102,503.(d)Xantheas,S.S.J.Phys.Chem.1996,100,9703.(e)Markovich,G.;Pollack,S.;Giniger,R.;Cheshnovsky,O.J.Chem.Phys.1994,101,9344.(f)Combariza,J.E.;Kestner,N.R.;Jortner,J.J.Chem.Phys.1994,100,2851.(g)Perera, L.;Berkowitz,M.L.J.Chem.Phys.1991,95,1954.(h)Dang,L.X.;Rice,J.E.;Caldwell,J.;Kollman,P.A.J.Am.Chem.Soc.1991, 113,2481.(4)(a)Custelcean,R.;Gorbunova,M.G.J.Am.Chem.Soc.2005,127,16362.(b)Kopylovich,M.N.;Tronova,E.A.;Haukka,M.;Kirillov,A.M.;Kukushkin,V.Yu.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Eur.J.Inorg.Chem.2007,4621.(c)Butchard,J.R.;Curnow,O.J.;Garrett,D.J.;Maclagan,R.G.A.R.Angew.Chem.,Int.Ed.2006, 45,7550.(5)(a)Reger,D.L.;Semeniuc,R.F.;Pettinari,C.;Luna-Giles,F.;Smith,M.D.Cryst.Growth.Des.2006,6,1068and references therein.(b) Saha,M.K.;Bernal,mun.2005,8,871.(c) Prabhakar,M.;Zacharias,P.S.;Das,mun.2006,9,899.(d)Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Angew.Chem.,Int.Ed.2006,45,3807.(e)Ghosh,A.K.;Ghoshal,D.;Ribas,J.;Mostafa,G.;Chaudhuri,N.R.Cryst.Growth.Des.2006,6,36.(f)Deshpande,M.S.;Kumbhar,A.S.;Puranik,V.G.;Selvaraj, K.Cryst.Growth Des.2006,6,743.(6)(a)Karabach,Y.Y.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich,M.N.;Pombeiro,A.J.L.Cryst.Growth Des.2006,6,2200.(b) Kirillova,M.V.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich, M.N.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Inorg.Chim.Acta2008,doi:10.1016/j.ica.2006.12.016.(7)The Cambridge Structural Database(CSD).Allen, F.H.ActaCrystallogr.2002,B58,380.(8)The searching algorithm in the ConQuest Version1.9(CSD version5.28,August2007)constrained to the presence of any terpyridinemoiety and at least one crystallization water molecule and one chloride counter ion resulted in43analyzable hits from which40compounds contain diverse water-chloride aggregates(there are29and11 examples of infinite(mostly1D)networks and discrete clusters, respectively).See the Supporting Information for the CSD refcodes.(9)For a recent review,see Constable,E.C.Chem.Soc.Re V.2007,36,246.(10)For recent examples of supramolecular terpyridine compounds,see(a)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,456.(b)Zhou,X.-P.;Ni,W.-X.;Zhan,S.-Z.;Ni,J.;Li,D.;Yin,Y.-G.Inorg.Chem.2007,46,2345.(c)Shi,W.-J.;Hou,L.;Li,D.;Yin,Y.-G.Inorg.Chim.Acta2007,360,588.(d)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Neuburger,M.;Price,D.J.;Schaffner,S.CrystEngComm2007,9,1073.(e)Beves,J. E.;Constable, E. C.;Housecroft, C. E.;Neuburger,M.;Schaffner,mun.2007,10,1185.(f)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,353.(11)Synthesis of1:FeCl2·2H2O(82mg,0.50mmol)and4′-phenyl-2,2′:6′,2″-terpyridine(L)(154mg,0.50mmol)were combined in a THF (20mL)solution with continuous stirring at room temperature.The resulting deep purple suspension was stirred for1h,filtered off,washed with THF(3×15mL),and dried in vacuo to afford a deep purple solid1(196mg,41%).1exhibits a high affinity for water and upon recrystallization gives derivatives with a higher varying content of crystallization water.1is soluble in H2O,MeOH,EtOH,MeCN, CH2Cl2,and CHCl3.mp>305°C(dec.).Elemental analysis.Found: C52.96,H3.76,N8.36.Calcld.for C42H40Cl4Fe2N6O5:C52.42,H4.19,N8.73.FAB+-MS:m/z:835{[FeL2]Cl2·5H2O+H}+,816784Crystal Growth&Design,Vol.8,No.3,2008Communications{[FeL2]Cl2·4H2O}+,796{[FeL2]Cl2·3H2O–2H}+,781{[FeL2]Cl2·2H2O+H}+,763{[FeL2]Cl2·H2O+H}+,709{[FeL2]Cl}+,674 {[FeL2]}+,435{[FeL]Cl2}+,400{[FeL]Cl}+,364{[FeL]–H}+,311 {L–2H}+.IR(KBr):νmax/cm–1:3462(m br)ν(H2O),3060(w),2968 (w)and2859(w)ν(CH),1656(m br)δ(H2O),1611(s),1538(w), 1466(m),1416(s),1243(m),1159(w),1058(m),877(s),792(s), 766(vs),896(m),655(w),506(m)and461(m)(other bands).The X-ray quality crystals of[FeL2]Cl2·10H2O(1′)were grown by slow evaporation,in air at ca.20°C,of a MeOH/H2O(v/v)9/1)solution of1.(12)Crystal data:1′:C42H50Cl2FeN6O10,M)925.63,triclinic,a)10.1851(10),b)12.2125(13),c)19.5622(19)Å,R)76.602(6),)87.890(7),γ)67.321(6)°,U)2180.3(4)Å3,T)150(2)K,space group P1j,Z)2,µ(Mo-K R))0.532mm-1,32310reflections measured,8363unique(R int)0.0719)which were used in all calculations,R1)0.0469,wR2)0.0952,R1)0.0943,wR2)0.1121 (all data).(13)(a)McMurtrie,J.;Dance,I.CrystEngComm2005,7,230.(b)Nakayama,Y.;Baba,Y.;Yasuda,H.;Kawakita,K.;Ueyama,N.Macromolecules2003,36,7953.(c)Kabir,M.K.;Tobita,H.;Matsuo,H.;Nagayoshi,K.;Yamada,K.;Adachi,K.;Sugiyama,Y.;Kitagawa,S.;Kawata,S.Cryst.Growth Des.2003,3,791.(14)Ludwig,R.Angew.Chem.,Int.Ed.2001,40,1808.(15)The searching algorithm in the ConQuest Version1.9(CSD version5.28,May2007)was constrained to the presence of(i)at least onetetranuclear[(H2O)3(Cl)]–ring(i.e.,minimal cyclic fragment in our water-chloride network)with d(O···O))2.2–3.2Åand d(O···Cl) )2.6–3.6Å,and(ii)at least one crystallization water molecule andone chloride counter ion.All symmetry-related contacts were taken into consideration.(16)For2D networks with the[(H2O)3(Cl)]–core,see the CSD refcodes:AGETAH,AMIJAH,BEXVIJ,EXOWIX,FANJUA,GAFGIE, HIQCIT,LUNHUX,LUQCEF,PAYBEW,TESDEB,TXCDNA, WAQREL,WIXVUU,ZUHCOW.For3D network,see the CSD refcode:LUKZEW.(17)This analysis was run on1since we were unable to get1′in a sufficientamount due to the varying content of crystallization water in the samples obtained upon recrystallization of1.(18)(a)Das,S.;Bhardwaj,P.K.Cryst.Growth.Des.2006,6,187.(b)Wang,J.;Zheng,L.-L.;Li,C.-J.;Zheng,Y.-Z.;Tong,M.-L.Cryst.Growth.Des.2006,6,357.(c)Ghosh,S.K.;Ribas,J.;El Fallah, M.S.;Bharadwaj,P.K.Inorg.Chem.2005,44,3856.(19)A temperature below305°C has been used to avoid the eventualdecomposition of the compound upon rather prolonged heating.CG7010315Communications Crystal Growth&Design,Vol.8,No.3,2008785。

羟基聚合铝晶体研究进展

羟基聚合铝晶体研究进展
第 1 第 1期 卷
21 0 1年 3月
中 国 无 机 分 析 化 学
C i e e J u n l fI o g n cA n l tc l e it y h n s o r a n r a i o a y ia Ch m s r
Vo .1。No I .1
2 ~ 31 4
羟 基 聚 合 铝 晶体 研 究 进 展
谢 跃 生 杨 程 金 晓 艳 杨 文 静 钱 兆 生
张境 韩 韦英 邵钦 俞 挺 常 方 冯桂 英 毕 树 平
( 1南京大 学化学 化工 学院 , 苏 南京 2 0 9 江 103 2广 西师 范学院化 学 系, 西 南宁 5 0 0 ) 广 3 0 1
( c o l f C e sr n h mia n i ern 1S h o h mi y a d C e c l g n ei g,Na jn n v ri o t E n ig U i est y,Na jn 1 0 3 hn ; n ig 2 0 9 ,C ia
境 材 料 开 发 中 羟基 聚合 铝 晶体 研 究 的进 展 , 已 获 得 表 征 的典 型 羟 基 聚合 铝 的 结 构 特 点 进 行 了 对 比与 对
评 述 , 论 了 不 同 羟 基 聚合 铝 晶体 的科 学 意 义 和 应用 价值 。 讨
关键词
羟 基 聚 合 铝 晶 体 ; 究 进 展 研
摘 要 羟 基 聚 合 铝 的研 究 在 环 境 化 学 中具 有 重 要 作 用 。 自然 条 件 下 存 在 的无 机 单 核 铝 本 铝 更 毒 的铝 形 态 , 它们 很 容 易 进 入 人 体 和 植 物 产 生 毒 害 作 用 。 因 此 , 解 聚 合 铝 水 形 态 研 究 一 直 是 环境 化 学 、 球 化 学 和材 料 催 化 等 众 多研 究 领 域 的前 沿 热 点 课 题 。本 文 综 述 了 在 新 环 地

MS文献晶体参数建模实例

MS文献晶体参数建模实例
MS文献晶体参数建模 实例
目录
Contents
• MS文献晶体参数建模概述 • MS文献晶体参数建模的基本原理 • MS文献晶体参数建模实例解析 • MS文献晶体参数建模的应用与展

01 MS文献晶体参数建模概述
定义与特点
定义
MS文献晶体参数建模是指通过数学建模和计算,对晶体结构中的原子位置、 化学键、分子间作用力等进行模拟和预测的过程。
总结词
通过MS文献数据,对蛋白质晶体参数进行建模,可以更准确地预测蛋白质的结构和功能。
详细描述
蛋白质是生命活动中不可或缺的分子,其结构和功能对生物体的正常运作至关重要。通过收集更准确地预测蛋白质的三维结构,进一步理解其功能和相互作用机制。
实例二:DNA晶体参数建模
标准化与规范化发展
为了提高MS文献晶体参数建模的可比性和 可重复性,未来需要加强技术标准和操作规 范的制定和推广。
THANKS
特点
MS文献晶体参数建模具有精度高、适用范围广、可预测性强等优点,能够为材 料科学、化学、生物学等领域的研究提供重要的理论支持和实践指导。
MS文献晶体参数建模的重要性
理论指导
MS文献晶体参数建模能够提供对 晶体结构的深入理解,为实验研 究提供理论指导,帮助研究者更 好地设计和优化实验。
预测能力
通过MS文献晶体参数建模,可以 对未知的晶体结构和性质进行预 测,为新材料的发现和应用提供 可能。
通过MS文献晶体参数建模,可以研究药物与靶点分子的相互作用机制,为新药研发提 供理论支持。
药物代谢过程分析
利用MS技术可以对药物在体内的代谢过程进行监测和分析,有助于了解药物疗效和副 作用。
在材料科学领域的应用
材料成分分析

超大尺寸KDPDKDP晶体研究进展

超大尺寸KDPDKDP晶体研究进展

第50卷第4期2021年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.50㊀No.4April,2021超大尺寸KDP /DKDP 晶体研究进展张力元,王圣来,刘㊀慧,徐龙云,李祥琳,孙㊀洵,王㊀波(山东大学,晶体材料研究所,晶体材料国家重点实验室,济南㊀250100)摘要:KDP /DKDP 晶体具有生长方法简单㊁成本较低㊁光学性能良好等优点,而可生长出的超大尺寸KDP /DKDP 晶体是目前唯一可用于高功率激光工程的单晶材料㊂但是在晶体的生长过程中存在很多影响因素,同时对晶体进行后处理也会影响晶体的性能,这都直接关系到超大尺寸KDP /DKDP 晶体的实际应用㊂鉴于此,本文综述了近些年超大尺寸KDP /DKDP 晶体的重要研究进展,特别是针对传统生长和快速生长中存在的问题和相应的解决对策以及晶体性能相关的研究,并重点对晶体的透过率㊁氘化率㊁激光诱导损伤等进行了分析和讨论㊂关键词:超大尺寸;KDP /DKDP;生长;缺陷;性能中图分类号:O781㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2021)04-0724-08Research Progress of Oversized KDP /DKDP CrystalsZHANG Liyuan ,WANG Shenglai ,LIU Hui ,XU Longyun ,LI Xianglin ,SUN Xun ,WANG Bo (State Key Laboratory of Crystal Materials,Institute of Crystal Materials,Shandong University,Jinan 250100,China)Abstract :KDP /DKDP crystal has the advantages of simple growth method,low cost and good optical properties,while the oversized KDP /DKDP crystal is the only single crystal material that can be used in high power laser engineering.However,there are many factors in the process of crystal growth,and the post-treatment of crystal will also affect the performance of crystal,which is directly related to the practical application of oversized KDP /DKDP crystal.Accordingly,this paper reviews the important research progress of oversized KDP /DKDP crystals in recent years,especially for the traditional growth and rapid growth problems and the corresponding countermeasures as well as the properties-related of research,and the transmittance,deteration level and laser-induced damage of oversized KDP /DKDP crystals are analyzed and discussed with key point.Key words :oversized;KDP /DKDP;growth;defect;property㊀㊀收稿日期:2021-03-19㊀㊀作者简介:张力元(1991 ),男,山东省人,博士研究生㊂E-mail:zhangly1991@ ㊀㊀通信作者:王圣来,博士,教授㊂E-mail:slwang67@0㊀引㊀㊀言磷酸二氢钾(KH 2PO 4,即KDP)晶体及其同位素(K(D x H 1-x )2PO 4,即DKDP)晶体以其生长方法简单㊁光学性能优良等优点得到广泛的应用,具有悠久研究历史[1]㊂尤其是20世纪60年代初,激光技术的出现促进了KDP /DKDP 晶体更大的应用和发展[2]㊂从近红外到紫外区间,KDP 类晶体都有很高的透过率,并可对1064nm 激光实现二倍频和三倍频甚至是四倍频[3]㊂目前为止,KDP /DKDP 晶体在兼具良好的非线性光学参数优点外,以其明显的尺寸优势成为唯一可用于惯性约束核聚变(ICF)工程中的单晶材料[4-6]㊂美国的国家点火装置(NIF)中大约需要600片截面达40cm ˑ40cm 以上的KDP /DKDP 晶片来应用于普克尔斯盒和激光倍频装置中[7]㊂在2012年,NIF 证实可输出1.8MJ 紫外光,而我国的神光-Ⅲ主机装置在2015年基本完成建设并可提供180kJ 的紫外光输出[8-9]㊂随着我国ICF 工程的持续推进,试验中对非线性光学晶体的质量和尺寸要求进一步严苛㊂为了提高超大尺寸KDP /DKDP 晶体的生长稳定性和晶体质量,研究人员致力于生长温度区间的控制㊁过饱和度的设计和生长溶液酸碱度的调控等[10-12]㊂但是,在晶体生长溶液中难免会存在少量的杂质,而有些杂质会干扰晶体生长的稳定[13]㊂有些杂质会被吸附到晶体的生长面中,进而影响晶体的光学质量[14]㊂㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展725㊀同时,ICF工程对KDP类晶体性能的要求主要体现在两个方面:倍频效率和抗激光损伤能力[15]㊂因此,相关研究人员也一直致力于过滤以及晶体后处理等研究来进一步提高晶体质量[16]㊂例如,采用热退火或者激光亚阈值退火的手段来提高晶体的光学质量[17]㊂基于应用背景,本文系统综述了超大尺寸KDP/DKDP晶体生长及性能的重要研究进展,介绍了过滤㊁退火等方法对提升晶体质量的作用㊂1㊀超大尺寸KDP/DKDP晶体的生长KDP类晶体是人工合成的最早晶体之一㊂超大尺寸KDP/DKDP晶体的生长方法有多种,如传统降温法[18]㊁恒温循环流动法[19]㊁ 点籽晶 快速生长法等[20]㊂以传统降温法生长时,晶体生长速度仅为0.5~ 1mm/d[21]㊂为了改善这种窘境,相关研究人员发明了 点籽晶 快速生长法㊂其晶体生长速度有了大幅度提高,最快可达约50mm/d[22]㊂然而,如果过饱和度控制不当,快速生长法容易出现雪崩的问题[23]㊂1.1㊀传统生长在传统降温法生长大尺寸KDP/DKDP的过程中,温差对晶体开裂有至关重要的影响,而温度的变化会引起晶体应力分布的变化[24]㊂在传统降温法晶体降温生长的一段时间后,多晶帽区与单晶透明区的晶格失配会导致晶体产生内应力,进而导致晶体开裂㊂实验观察发现晶体的尺寸越大,这类开裂的风险越高,实际大尺寸开裂现象如图1所示[25]㊂图1㊀传统降温法生长的大尺寸KDP晶体开裂照片[25]Fig.1㊀Photograph of cracks in a large-scale KDP crystal grown by the conventional cooling method[25]基于实际开裂现象,从力学角度来分析晶体的开裂机制可对超大尺寸晶体的生长提供理论指导㊂张强勇等[26]通过试验准确地获得了KDP晶体的基本物理力学参数,确定KDP晶体材料为典型的弹脆性材料,表现出抗压不抗拉特性㊂孙云等[27-28]报道显示晶体中存在的杂质离子,如SO2-4㊁Na+等离子,会导致晶体内热膨胀系数的差异㊂大尺寸晶体内热膨胀系数的不均匀会产生内应力,可能引起晶体出现开裂现象[29]㊂近年来,Huang等[30-31]实验研究了KDP晶体的弯曲强度和断裂韧性等力学特性,采用实验与有限元计算模拟相结合的手段研究了不同尺寸籽晶进入生长溶液过程中出现开裂的现象,如图2所示㊂模拟研究发现籽晶在出现开裂现象前,其所能承受的温差会随自身尺寸的增大而减小,籽晶呈现出耐升温但不耐降温的现象㊂结果说明尺寸效应对晶体的内应力影响显著,这与实际观察到的大尺寸晶体生长开裂现象吻合,这也为超大尺寸晶体在实际出槽过程中防止出现开裂提供理论参考㊂1.2㊀快速生长无论是传统降温法还是恒温循环流动法,大尺寸的籽晶都会形成大尺寸的恢复区,进而导致位错等缺陷源的产生[32-33]㊂为了提高晶体的生长速度和减少晶体因恢复区带来的缺陷,研究人员在20世纪80年代左右开始重点研究快速生长技术㊂近年来,国内外相关研究人员致力于利用 点籽晶 快速生长技术提高KDP/DKDP晶体的生长速度,制备出超大尺寸的晶体[34-35]㊂例如,Zhuang等[36]利用快速生长技术,生长出重达300kg的KDP单晶,尺寸达到57cmˑ52cmˑ52cm㊂近些年,山东大学采用 点籽晶 快速生长法,在含有连续过滤系统的生长装置中获得了口径达60cm的KDP单晶,采用z向籽晶成功生长出尺寸达15cm级且氘含量超过98%的DKDP晶体[37-38]㊂虽然利用 点籽晶 技术能够快速生长出超大尺寸晶体,但是生长得到的晶体同时存在锥柱交界区的现726㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷象㊂有研究发现经快速生长的KDP晶体锥柱交界区的抗激光损伤性能较差[39],快速生长法得到的KDP晶体的锥柱交界区的非线性吸收远大于锥区㊁柱区[40],这些研究结果意味着快速生长法得到的KDP晶体由于锥柱交界区的存在使得晶体光学均匀性变差㊂为了解决快速生长法晶体产生锥柱交界区的问题,Chen 等[41]首次采用柱状籽晶成功利用快速生长法生长出不含锥区的方形DKDP晶体,晶体支架和实际生长的晶体如图3所示㊂图2㊀四种尺寸降温籽晶放入45ħ溶液中开裂时刻的温度和应力分布,其中A㊁C点分别为最大㊁次大主应力位置, AB㊁CD为裂纹起始路径,S1㊁S3样品旁的插图展示了较大应力所在外表面应力方向(S1为36mmˑ36mmˑ5mm, S2为36mmˑ36mmˑ15mm,S3为36mmˑ36mmˑ30mm,S4为50mmˑ50mmˑ30mm)[30] Fig.2㊀Temperature andσ1distribution in cooled samples at the time of cracking with a solution of45ħ,where pointsA and C are the locations of the maximumσ1and secondaryσ1,AB and CD are the crack initiation paths,and theillustrations in the S1and S3sample diagrams show theσ1direction of one outer surface(S1is36mmˑ36mmˑ5mm, S2is36mmˑ36mmˑ15mm,S3is36mmˑ36mmˑ30mm,S4is50mmˑ50mmˑ30mm)[30]图3㊀(a)籽晶架示意图和(b)快速生长的长方体DKDP晶体[41]Fig.3㊀(a)Schematic diagram of the crystal holder and(b)rapidly grown cuboid DKDP crystal[41]由于籽晶架上下挡板的存在使得晶体只能在柱面扩展,此种设计成功避免了KDP/DKDP晶体快速生长过程中的锥柱交界区问题㊂因为这种长方体DKDP晶体具有规则的形状,因此在生长过程中计算晶体的质量和精确控制溶液的过饱和度是很容易的㊂晶体(200)面单晶X射线衍射峰半高宽为0.010ʎ,表明生长的㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展727㊀晶体结晶质量也较高㊂采用此新颖的晶体生长方法进行超大尺寸晶体的生长,为制备ICF器件提供了便利㊂2㊀KDP/DKDP晶体的性能研究无论何种方法生长得到的大尺寸KDP/DKDP晶体,它们的质量关乎高功率激光工程的应用可靠性㊂基于应用背景,本节就KDP/DKDP晶体的透过率㊁氘化率㊁激光损伤等性能展开叙述㊂2.1㊀透过光谱研究发现晶体中长入一些异质离子等杂质会对透过率光谱产生明显的影响,图4表示出了四种典型的掺杂剂对KDP晶体透过率的影响㊂可以看出,高价态的Sn4+会在紫外区产生吸收[42],而晶体中存在的Fe3+也会在紫外区产生明显的吸收现象[43]㊂掺杂金属阳离子的KDP类晶体在紫外区透过率下降,这种现象主要归因于高价态的金属阳离子对紫外光的本征吸收㊂由于CrO2-4与PO3-4构型相似,可以进入KDP晶体,导致晶体的透过率降低,尤其是在280nm和370nm产生强吸收[44]㊂当KDP生长溶液中加入CDTA后,生长出的晶体的透过率明显提高,尤其是在紫外区㊂这是由于CDTA与生长溶液中的杂质阳离子存在络合作用,进而生长溶液中的杂质阳离子进入到晶体的量变少,表现为CDTA的加入提高了KDP晶体在紫外区的透过率[45]㊂这些研究说明生长溶液中存在的一些杂质阳离子会显著降低晶体的透过率,而在晶体生长溶液中添加少量的金属离子络合剂,如CDTA,反而会提高晶体的透过率㊂图4㊀掺杂KDP晶体的透过率光谱[42-45]Fig.4㊀Transmittance spectra of doped KDP crystal[42-45]D c(%)=2.64ˑ[ν1(KDP)-ν1(DKDP)](1)另外,DKDP晶体的氘化程度不同也会使晶体在红外光谱中相应的O-H键振动峰和PO4基团的振动峰发生位移,如图5(b)所示,同样也可用相关公式计算晶体中氘含量㊂当晶体的生长溶液的氘化率低于92%时,拉曼光谱和红外光谱都可以用来测定DKDP晶体的氘化率㊂然而,当晶体的生长溶液的氘化率高于92%时,相对于拉曼光谱测试,红外光谱测得晶体的氘化率结果更精确㊂728㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷2.2㊀DKDP晶体的氘含量拉曼光谱是根据PO4振动峰的变化,方便地测定DKDP晶体氘化程度的常用表征手段[46]㊂氘化程度与PO4振动峰Raman位移之间定量关系的准确性是确定晶体氘化程度的关键(见图5(a))㊂如式(1)所示,其中ν1(KDP)和ν1(DKDP)分别代表PO4振动峰在拉曼光谱中对应的波数,可计算出晶体中的实际氘含量D c㊂图5㊀DKDP晶体的拉曼光谱(a)和红外光谱(b)[46]Fig.5㊀Raman spectra(a)and IR spectra(b)of DKDP crystals[46]2.3㊀激光损伤影响KDP/DKDP晶体激光损伤的因素有很多,如杂质离子[47-49]等㊂针对晶体的激光损伤现象,研究人员也通过各种方法来提高KDP/DKDP晶体的抗激光损伤性能,如采用过滤溶液[50]㊁热退火[51-52]等㊂当生长溶液中掺入KDP原料中常见的Fe3+㊁Cr3+或Al3+等杂质阳离子时,生长得到的晶体中就会含有痕量的阳离子杂质,这些杂质阳离子也会成为降低晶体激光损伤阈值的因素㊂Runkel等[49]通过研究这些杂质阳离子对KDP晶体激光损伤的影响发现,虽然Fe3+㊁Cr3+或Al3+等杂质阳离子掺杂浓度较低,但是晶体样品的抗激光损伤性能都不满足NIF工程的应用要求,说明杂质阳离子对晶体抗激光损伤性能的影响甚大㊂在晶体的生长过程中,采用连续过滤的方法可有效提高晶体的抗激光损伤性能㊂例如,Wang等[50]设计了溶液分别在未过滤㊁经100nm孔径滤膜过滤㊁经100nm滤膜过滤然后再经30nm滤膜双重过滤的条件下生长KDP晶体的对比实验,结果如图6(a)所示㊂这项对比实验有力地说明持续过滤对提高KDP/DKDP晶体的抗激光损伤性能的正面作用㊂另外,对生长得到的晶体进行后处理也是提高晶体损伤性能的有效途径之一㊂例如,Cai等[51]将DKDP晶体分别在不同的温度下保温96h,对比了不同温度热处理后的晶体抗激光损伤性能,结果如图6(b)所示㊂相对于未经热退火的晶体,随着热处理温度的升高晶体的抗激光损伤性能得到改善㊂相关研究发现KDP晶体内部可检测到的微缺陷浓度经热退火后降低,表明532nm波长下KDP 晶体的激光损伤与晶体中微缺陷浓度有关[53]㊂图6㊀KDP晶体的损伤曲线[50-51]Fig.6㊀Damage curves of KDP crystals[50-51]㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展729㊀3㊀结语与展望本文简要综述了大尺寸KDP/DKDP晶体的生长方法和相关性能的研究现状㊂晶体的开裂现象相关实验和理论研究有利于防止实际大尺寸晶体的开裂,新发展的柱状籽晶生长法可有效避免锥柱交界的问题产生㊂在晶体生长溶液中添加少量的金属离子络合剂会提高晶体的光学质量,对生长溶液进行连续过滤以及对晶体进行热处理等操作也会改善晶体的光学和抗激光损伤性能㊂综上所述,高纯度的晶体生长原料是基础,合适的生长条件和有效避免杂质等影响是关键,生长得到的晶体进行后处理是妙招㊂统筹好以上各个步骤的协作,可以使大尺寸KDP/DKDP晶体更加符合高功率激光工程的应用要求㊂参考文献[1]㊀王圣来,丁建旭.KDP晶体的研究进展[J].人工晶体学报,2012,41(S1):179-183+188.WANG S L,DING J X.Research progress of KDP crystal[J].Journal of Synthetic Crystals,2012,41(S1):179-183+188(in Chinese).[2]㊀GIORDMAINE J A.Mixing of light beams in crystals[J].Physical Review Letters,1962,8(1):19.[3]㊀魏晓峰,张小民,隋㊀展,等.大口径KDP晶体高效率倍频的实验研究[J].中国激光,1990,17(12):737-740.WEI X F,ZHANG X M,SUI Z,et al.Experimental research on efficient frequency doubling using a large aperture KDP crystal[J].Chinese Journal of Lasers,1990,17(12):737-740(in Chinese).[4]㊀苏根博,曾金波,贺友平,等.大截面KDP晶体在激光核聚变研究中的应用[J].硅酸盐学报,1997,25(6):717-719.SU G B,ZENG J B,HE Y P,et al.Application of large section kdp crystals in the study of laser fusion[J].Journal of the Chinese Ceramic Society,1997,25(6):717-719(in Chinese).[5]㊀邵建达,戴亚平,许㊀乔.惯性约束聚变激光驱动装置用光学元器件的研究进展[J].光学精密工程,2016,24(12):2889-2895.SHAO J D,DAI Y P,XU Q.Progress on optical components for ICF laser facility[J].Optics and Precision Engineering,2016,24(12):2889-2895(in Chinese).[6]㊀王㊀静,张小民,李富全,等.大口径KDP晶体紫外光横向受激拉曼散射风险判据研究[J].中国激光,2011,38(5):0502011.WANG J,ZHANG X M,LI F Q,et al.Risk evaluation of transverse stimulated Raman scattering in large-aperture,high fluence KDP crystal [J].Chinese Journal of Lasers,2011,38(5):0502011(in Chinese).[7]㊀HAWLEY-FEDDER R A,ROBEY H F,BIESIADA T A,et al.Rapid growth of very large KDP and KD∗P crystals in support of the NationalIgnition Facility[C]//Inorganic Optical Materials II.San Diego,CA.SPIE,2000:152-161.[8]㊀MOSES E I,LINDL J D,SPAETH M L,et al.Overview:development of the national ignition facility and the transition to a user facility for theignition campaign and high energy density scientific research[J].Fusion Science and Technology,2016,69(1):1-24.[9]㊀郑万国,魏晓峰,朱启华,等.神光-Ⅲ主机装置研制进展[J].光电产品与资讯,2015,6(12):27-30.ZHENG W G,WEI X F,ZHU Q H,et al.Development of shenguang-iii host equipment[J].Photoelectric Products and Information,2015,6,(12):27-30(in Chinese).[10]㊀LI W D,YU G W,WANG S L,et al.Influence of temperature on the growth and surface morphology of Fe3+poisoned KDP crystals[J].RSCAdvances,2017,7(28):17531-17538.[11]㊀LI W D,LI Y,WANG S L,et al.The relationship between the laser damaged threshold and step velocity in different supersaturation regions[J].RSC Advances,2018,8(64):36453-36458.[12]㊀朱胜军,王圣来,丁建旭,等.过饱和度对KDP晶体生长与光学性能的影响研究[J].人工晶体学报,2013,42(10):1973-1977.ZHU S J,WANG S L,DING J X,et al.Effect of supersaturation on growth and optical properties of KDP crystal[J].Journal of Synthetic Crystals,2013,42(10):1973-1977(in Chinese).[13]㊀朱胜军,王圣来,刘光霞,等.KDP晶体快速生长溶液的稳定性研究[J].人工晶体学报,2013,42(3):388-391.ZHU S J,WANG S L,LIU G X,et al.Study on the solution stability of KDP crystal at fast crystal growth rate[J].Journal of Synthetic Crystals, 2013,42(3):388-391(in Chinese).[14]㊀卢永强,王圣来,许心光,等.Al3+掺杂对KDP晶体生长习性的影响[J].硅酸盐通报,2009,28(4):631-635.LU Y Q,WANG S L,XU X G,et al.Effects of Al3+ion on the growth habit of KDP crystals[J].Bulletin of the Chinese Ceramic Society, 2009,28(4):631-635(in Chinese).[15]㊀王㊀波,梁晓亮,许心光,等. 点籽晶 法快速生长中等口径KDP单晶及其性能表征[J].人工晶体学报,2009,38(5):1051-1054.WANG B,LIANG X L,XU X G,et al.Rapid growth and properties characterization of middle scale KDP single crystal[J].Journal of Synthetic Crystals,2009,38(5):1051-1054(in Chinese).[16]㊀ZAITSEVA N,CARMAN L,SMOLSKY I,et al.The effect of impurities and supersaturation on the rapid growth of KDP crystals[J].Journal ofCrystal Growth,1999,204(4):512-524.730㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷[17]㊀王圣来,李丽霞,胡小波,等.热退火对KDP晶体微结构的影响[J].功能材料,2003,34(3):331-333.WANG S L,LI L X,HU X B,et al.The effect of thermal conditioning on microstructure of KDP crystals[J].Journal of Functional Materials, 2003,34(3):331-333(in Chinese).[18]㊀LIU W J,WANG S L,GU Q T,et al.Growth,structural and optical properties of12%-deuterated KDP crystals[J].Crystal Research andTechnology,2013,48(5):314-320.[19]㊀鲁智宽,高樟寿,李义平,等.溶液循环流动法生长大尺寸KDP晶体[J].人工晶体学报,1996,25(1):19-22.LU Z K,GAO Z S,LI Y P,et al.Growth of large KDP crystals by solution circulating method[J].Journal of Synthetic Crystals,1996,25(1): 19-22(in Chinese).[20]㊀ZAITSEVA N P,RASHKOVICH L N,BOGATYREVA S V.Stability of KH2PO4and K(H,D)2PO4solutions at fast crystal growth rates[J].Journal of Crystal Growth,1995,148(3):276-282.[21]㊀SASAKI T,YOKOTANI A.Growth of large KDP crystals for laser fusion experiments[J].Journal of Crystal Growth,1990,99(1/2/3/4):820-826.[22]㊀NAKATSUKA M,FUJIOKA K,KANABE T,et al.Rapid growth over50mm/day of water-soluble KDP crystal[J].Journal of Crystal Growth,1997,171(3/4):531-537.[23]㊀王圣来,付有君,孙㊀洵,等.KDP晶体过饱和度实时控制生长[J].人工晶体学报,2000,29(S1):103.WANG S L,FU Y J,SUN X,et al.Real-time control of supersaturation in growth of KDP crystal from aqueous solution[J].Journal of Synthetic Crystals,2000,29(S1):103(in Chinese).[24]㊀黄萍萍,王端良,李伟东,等.温度不均匀引起KDP晶体开裂的实验与模拟[J].硅酸盐学报,2018,46(7):929-937.HUANG P P,WANG D L,LI W D,et al.Crack of KDP crystals caused by temperature-nonuniformity[J].Journal of the Chinese Ceramic Society,2018,46(7):929-937(in Chinese).[25]㊀黄萍萍.KDP晶体开裂的实验与模拟研究[D].济南:山东大学,2019:61-74.HUANG P P.Experimental and simulation study of KDP crystal cracking[D].Jinan:Shandong University,2019:61-74(in Chinese). [26]㊀张强勇,刘德军,王圣来,等.KDP晶体力学参数测试与分析[J].人工晶体学报,2009,38(6):1313-1319.ZHANG Q Y,LIU D J,WANG S L,et al.Mechanical parameters test and analysis for KDP crystal[J].Journal of Synthetic Crystals,2009,38(6):1313-1319(in Chinese).[27]㊀孙㊀云,王圣来,顾庆天,等.硫酸盐掺杂导致KDP晶体开裂的研究[J].功能材料,2012,43(2):217-221.SUN Y,WANG S L,GU Q T,et al.Research on the crack induced by sulphate doping on KDP crystal[J].Journal of Functional Materials, 2012,43(2):217-221(in Chinese).[28]㊀孙㊀云,王圣来,姜㊀通,等.Na+对KDP晶体热膨胀及硬度的影响[J].功能材料,2013,44(12):1768-1771.SUN Y,WANG S L,JIANG T,et al.Effect of Na ions on the thermal expansion coefficient and hardness of KDP crystals[J].Journal of Functional Materials,2013,44(12):1768-1771(in Chinese).[29]㊀刘㊀琳,王圣来,刘光霞,等.大尺寸KDP/DKDP晶体热膨胀系数研究[J].人工晶体学报,2015,44(6):1443-1447+1453.LIU L,WANG S L,LIU G X,et al.Research on thermal expansion coefficient of large-aperture KDP/DKDP crystals[J].Journal of Synthetic Crystals,2015,44(6):1443-1447+1453(in Chinese).[30]㊀HUANG P P,WANG S L,WANG D L,et al.Study on the cracking of a KDP seed crystal caused by temperature nonuniformity[J].CrystEngComm,2018,20(23):3171-3178.[31]㊀HUANG P P,DING J X,WANG D L,et al.A study on fracture toughness of potassium dihydrogen phosphate single crystals[J].CrystEngComm,2019,21(8):1329-1334.[32]㊀YU B,XU L Y,WANG S L,et al.Study on Burgers vector of dislocations in KDP(010)faces and screw dislocation growth mechanism of(101)faces[J].RSC Advances,2021,11(14):7897-7902.[33]㊀DE YOREO J J,LAND T A,RASHKOVICH L N,et al.The effect of dislocation cores on growth hillock vicinality and normal growth rates ofKDP{101}surfaces[J].Journal of Crystal Growth,1997,182(3/4):442-460.[34]㊀WANG S L,GAO Z S,FU Y J,et al.Study on rapid growth of highly-deuterated DKDP crystals[J].Crystal Research and Technology,2003,38(11):941-945.[35]㊀ZAITSEVA N,CARMAN L.Rapid growth of KDP-type crystals[J].Progress in Crystal Growth and Characterization of Materials,2001,43(1):1-118.[36]㊀ZHUANG X X,YE L W,ZHENG G Z,et al.The rapid growth of large-scale KDP single crystal in brief procedure[J].Journal of CrystalGrowth,2011,318(1):700-702.[37]㊀刘发付.KDP/DKDP晶体生长及其残余应力研究[D].济南:山东大学,2017:1-23.LIU F F.Study on the growth and residual stress of KDP/DKDP crystal[D].Jinan:Shandong University,2017:1-23(in Chinese). [38]㊀ZHANG L S,YU G W,ZHOU H L,et al.Study on rapid growth of98%deuterated potassium dihydrogen phosphate(DKDP)crystals[J].Journal of Crystal Growth,2014,401:190-194.㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展731㊀[39]㊀CHEN D Y,WANG B,WANG H,et al.Investigation of the pyramid-prism boundary of a rapidly grown KDP crystal[J].CrystEngComm,2019,21(9):1482-1487.[40]㊀XU L Y,LU C W,WANG S L,et al.A study on nonlinear absorption uniformity in a KDP crystal at532nm[J].CrystEngComm,2020,22(32):5338-5344.[41]㊀CHEN D Y,WANG B,WANG H,et al.Rapid growth of a cuboid DKDP(KD x H2-x PO4)crystal[J].Crystal Growth&Design,2019,19(5):2746-2750.[42]㊀WANG B,FANG C S,WANG S L,et al.The effects of Sn4+ion on the growth habit and optical properties of KDP crystal[J].Journal ofCrystal Growth,2006,297(2):352-355.[43]㊀WANG D L,LI T B,WANG S L,et al.Effect of Fe3+on third-order optical nonlinearity of KDP single crystals[J].CrystEngComm,2016,18(48):9292-9298.[44]㊀DING J X,WANG S L,XU X G,et al.Incorporation of Cr-containing anionic species into potassium dihydrogen phosphate crystal[J].Journalof Crystal Growth,2011,334(1):153-158.[45]㊀ZHU S J,WANG S L,DING J X,et al.Improvement of growth rate and optical performances of rapidly grown KDP crystal by adding cyclohexanediamine tetraacetic acid in growth solution[J].Journal of Crystal Growth,2014,388:98-102.[46]㊀LIU F F,XU M X,LIU B A,et al.Determination of deuteration level of K(H1–x D x)2PO4crystal[J].Optical Materials Express,2016,6(7):2221.[47]㊀GAO H,SUN X,XU X G,et al.Effect of Ba in KDP crystal on the wavelength dependence of laser-induceddamage[J].Chinese Optics Letters,2011,9(9):091402.[48]㊀朱胜军,王圣来,丁建旭,等.六偏磷酸盐对KDP晶体快速生长及光学性能的影响研究[J].功能材料,2014,45(1):1067-1071.ZHU S J,WANG S L,DING J X,et al.Effects of hexametaphosphate on rapid growth and optical properties of KDP crystals[J].Journal of Functional Materials,2014,45(1):1067-1071(in Chinese).[49]㊀RUNKEL M J,YAN M,DEYOREO J J,et al.Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals[C]//Laser-Induced Damage in Optical Materials:1997.Boulder,CO.SPIE,1998:211-222.[50]㊀WANG Y L,ZHAO Y,XIE X Y,et ser damage dependence on the size and concentration of precursor defects in KDP crystals:viewthrough differently sized filter pores[J].Optics Letters,2016,41(7):1534-1537.[51]㊀CAI D T,PAN X B,XU X G,et al.Effect of annealing on nonlinear optical properties of70%deuterated DKDP crystal at355nm[J].CrystEngComm,2018,20(45):7357-7363..[52]㊀CHEN D Y,WANG B,WANG H,et al.Effect of thermal annealing on a cuboid DKDP crystal[J].Journal of Alloys and Compounds,2020,817:152812.[53]㊀ZHANG L Y,WANG S L,YANG H W,et al.Study on optical performance and532nm laser damage of rapidly grown KDP crystals[J].OpticalMaterials,2021,114:110995.。

晶体的应用与工作原理

晶体的应用与工作原理

晶体的应用与工作原理1. 引言晶体是一种具有周期性结构的固体材料,由于其特殊的物性使得它在各个领域都有广泛的应用。

本文将介绍晶体的工作原理及其在不同领域的应用。

2. 晶体的工作原理晶体具有周期性的结构,在晶体中有大量的原子、离子或分子按照有序的方式排列,形成规则的晶格。

这种周期性结构使得晶体拥有一些特殊的物性,如光学、电学、磁学、声学等性质。

晶体的工作原理主要基于其内部的周期性结构。

当外界作用于晶体时,晶体中的原子、离子或分子会发生位移,导致晶体的物性发生变化。

这种变化可以被利用于实现各种功能和应用。

3. 晶体的应用晶体凭借其特殊的物性在各个领域都有广泛的应用,以下是一些典型的应用:3.1 光学领域•晶体的光学性质使其成为制造光学器件的重要材料。

例如,晶体可以用于制造激光器、光纤通信器件、显微镜镜片等。

•晶体还可用于制造光学滤波器、光学棱镜、光学偏振器等光学元件。

3.2 电子领域•晶体的电学性质使其成为电子器件的重要组成部分。

例如,半导体晶体可用于制造晶体管、集成电路等电子器件。

•晶体还可用于制造声波传感器、振荡器等电子元件。

3.3 磁学领域•晶体的磁学性质使其成为制造磁性材料的重要原料。

例如,铁磁晶体可用于制造磁头、磁盘等磁性材料。

•晶体还可用于制造磁传感器、磁记录材料等磁学元件。

3.4 材料科学领域•晶体的物理性质使其成为材料科学研究的重要对象。

研究晶体的结构和性质有助于改进材料的性能和制备工艺。

•晶体材料在材料科学领域中的应用包括合金材料、光学材料、陶瓷材料等。

3.5 生命科学领域•晶体在生命科学领域有着广泛的应用。

例如,晶体被用于制备蛋白质的晶体,以便进行结构分析,从而加深对生物分子的理解。

•晶体还可用于制备药物晶体,改善药物溶解度和稳定性。

4. 结论晶体作为一种具有周期性结构的固体材料,具有特殊的物性,在各个领域都有广泛的应用。

通过研究晶体的工作原理,我们可以更好地理解和利用晶体的特性来开发新的功能材料和器件,推动科技的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journals about Crystallography(英国化学会)Accounts of Chemical Research Chemical Reviews Chemistry of Materials Crystal Growth & Design Inorganic Chemistry Journal of the American Chemical Society Macromolecules Organometallics(美国化学化)Chemical Communications Chemical Society Reviews CrystEngComm Dalton TransactionsJournal of Materials Chemistry New Journal of Chemistry(德国化学会)Angewandte Chemie International Edition下载) Applied Organometallic Chemistry下载) Chemistry - A European Journal Chemistry - An Asian Journal Crystal Research and Technology无法下载European Journal of Inorganic Chemistry(下载)Zeitschrift für anorganische und allgemeine Chemie(下载)Coordination Chemistry Reviews (下载) Inorganic Chemistry Communications下载) Inorganica Chimica Acta下载)Journal of Alloys and Compounds Journal of Solid State Chemistry Journal of Organometallic ChemistryJournal of Molecular Structure Polyhedron下载) Microporous and Mesoporous Materials Solid State Science(杂环化学)Chemistry of Heterocyclic Compounds Crystallography Reports Journal of Chemical CrystallographyJournal of Cluster Science Journal of Structural Chemistry Monatshefte für Chemie / Chemical MonthlyRussian Chemical Bulletin Russian Journal of Applied Chemistry Russian Journal of Coordination ChemistryRussian Journal of General Chemistry Russian Journal of Inorganic Chemistry Structural ChemistryTransition Metal ChemistryBulletin of the Chemical Society of Japan Chemistry Letters (日本的免费) Journal of Chemical SciencesChinese Journal of Structural Chemistry(全面)Journal of Coordination Chemistry Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry泰勒Acta Crystallographica Section C Acta Crystallographica Section E(只能看摘要)Science Nature ISI Web of Knowledge (查影响因子) Cambridge Crystallographic Data Centre(剑桥数据库)ACTA CRYSTALLOGRAPHICA SECTION AIF 2006 (Crystallography)1 ACCOUNTS CHEM RES0001-4842 22956 17.113 1.912 102 6.82 ACTA CRYSTALLOGR C0108-2701 6788 0.896 0.229 446 >10.03 ACTA CRYSTALLOGR E * 1600-5368 5405 0.567 0.391 3978 1.74 ANGEW CHEM INT EDIT(德国应化)1433-7851 102854 10.232 2.106 1556 5.15 APPL ORGANOMET CHEM0268-2605 2178 1.233 0.176 125 5.86 B CHEM SOC JPN 0009-2673 12026 1.505 0.352 236 >10.07 CHEM COMMUN(化学快报)只要新1359-7345 63573 4.521 1.190 1309 5.88 CHEM-EUR J(欧洲化学)要全面0947-6539 22414 5.015 1.264 859 4.09 CHEM LETT0366-7022 13807 1.734 0.270 678 7.310 CHEM MATER(重性能)0897-4756 38890 5.104 0.692 911 5.211 CHEM REV(大综述)0009-2665 57509 26.054 2.778 189 7.512 CHINESE J STRUC CHEM *(结构化学)0254-5861 833 0.729 0.121 265 3.013 COORDIN CHEM REV(配位化学综述)0010-8545 15077 8.815 1.107 150 6.614 CRYSTENGCOMM *(英国化学会)难发1466-8033 1757 3.729 0.627 118 3.015 CRYST GROWTH DES *(美国化学会)1528-7483 3390 4.339 0.713 456 2.216 CRYST RES TECHNOL0232-1300 1475 0.863 0.138 210 5.817 CRYSTALLOGR REP+1063-7745 1534 0.358 0.073 192 >10.018 DALTON T(英国化学会)1477-9226 25463 3.012 0.890 637 7.219 EUR J INORG CHEM(欧洲无机)1434-1948 8503 2.704 0.468 568 3.620 INORG CHEM(无机化学)美国化学会好发0020-1669 58002 3.911 0.699 1443 8.421 INORG CHIM ACTA(意大利无机化学)0020-1693 12777 1.674 0.433 631 7.922 INORG CHEM COMMUN(无机好发)1387-7003 3248 1.787 0.290 335 3.523 J ALLOY COMPD0925-8388 13994 1.250 0.204 1217 5.324 J AM CHEM SOC(最高)0002-7863 275769 7.696 1.510 3256 7.725 J CHEM CRYSTALLOGR(好发)1074-1542 716 0.658 0.095 126 5.226 J CHEM SCI0253-4134 155 1.120 0.123 73 1.827 J CLUST SCI(促科学)1040-7278 457 1.014 0.186 43 5.628 J COORD CHEM(配位化学制药一个就可以)0095-8972 1361 0.978 0.087 218 5.229 J MOL STRUCT(ESWELY)0022-2860 8907 1.495 0.224 593 6.730 J ORGANOMET CHEM0022-328X 22555 2.332 0.362 738 8.631 J SOLID STATE CHEM(固态化学)0022-4596 12924 2.107 0.294 524 7.832 J STRUCT CHEM+0022-4766 1222 0.345 0.068 117 >10.033 MICROPOR MESOPOR MAT(微空材料)1387-1811 6264 2.796 0.340 427 5.034 NEW J CHEM1144-0546 6592 2.647 0.473 243 5.435 ORGANOMETALLICS0276-7333 31322 3.632 0.897 841 6.536 POLYHEDRON(多面体)0277-5387 9828 1.843 0.374 446 7.437 RUSS J COORD CHEM+1070-3284 995 0.418 0.111 135 9.538 RUSS J INORG CHEM+0036-0236 1798 0.181 >10.039 SOLID STATE SCI1293-2558 1827 1.752 0.256 195 3.640 STRUCT CHEM(结构化学)1040-0400 651 1.510 0.049 81 5.041SYNTH REACT INORG M(好发配合物)1553-3174 1144 0.574 0.034 116 6.942 TRANSIT METAL CHEM(好发配合物)0340-4285 1893 0.918 0.216 167 6.743 Z ANORG ALLG CHEM(慢)0044-2313 7132 1.241 0.474 369 9.7。

相关文档
最新文档