2020高中数学 第二章 变化率与导数及导数的应用 典型例题导数的概念素材 北师大版选修1-1
导数学生可能存在的问题 典型例题
导数学生可能存在的问题典型例题导数是微积分中的一个重要概念,它与几何、物理等多个领域密切相关。
虽然导数在高中阶段已经开始学习,但是许多学生在学习过程中经常会遇到一些常见的问题。
下面将列举一些导数学生可能存在的问题,并且给出一些解决这些问题的建议。
1.导数的概念理解:许多学生在初学导数时往往对导数的概念和意义理解不深,导致后续的学习困难。
导数可以理解为函数某一点的瞬时变化率,可以用来描述函数曲线在某一点的斜率。
一个典型的例题是给出一个函数,要求计算某一点的导数。
解决建议:在教学中,可以结合具体的实际问题来引入导数的概念。
同时,可以使用图形、几何等方式辅助学生理解导数的意义。
2.导数的计算方法:许多学生在计算导数时容易出错或迷失方向。
导数的计算方法有很多种,包括用定义法、使用公式和规则等。
在实际计算中,可能需要运用到多个方法,例如求导法则、链式法则等。
解决建议:在教学中,可以以简单的函数为例,逐步引导学生掌握不同计算方法。
同时,可以通过大量的练习来加强对计算方法的理解和应用能力。
3.导数应用问题:导数作为一个重要的数学工具,有很多应用领域,例如最值问题、曲线的切线和法线、图形的凸凹性判断等。
但是,许多学生在面对这些应用问题时,往往感到头疼和困惑。
解决建议:在教学中,可以通过引入实际问题的例子来让学生了解导数在不同领域的应用。
并且,可以提供一些辅助工具和方法,例如画图、曲线的性质分析等,帮助学生更好地理解和解决应用问题。
4.极限的理解和运用:导数的概念与极限密切相关,而极限又是许多高阶数学概念的基础。
因此,许多学生在学习导数时也容易困惑极限的理解和运用。
解决建议:在教学中,可以通过引入极限的概念和性质,帮助学生深入理解导数与极限之间的联系。
同时,可以通过大量的例题和练习来加强学生对极限的理解和运用能力。
总结起来,导数学习中的问题主要包括导数的概念理解、计算方法、应用问题和极限的理解和运用。
针对这些问题,教师可以通过选用合适教材和教学方法,引入实际问题和辅助工具,加强学生的练习和实践,帮助学生克服困惑,提高导数的学习效果。
2020年高考数学(文科)复习课件 第二单元 第13讲 变化率与导数、导数的运算
课堂考点探究
考向2 求切点坐标
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������������(x>0)的图像相切,则切 点的横坐标为 ( )
A.2± 2 B.2+ 2 C.2 D.1+ 2
(2)[2018·大连一模] 过曲线 y=ex 上一点 P(x0,y0)作曲
程为 y-1=2(x-0),即 2x-y+1=0.
课前双基巩固
4.[教材改编] 若曲线 y=ax2-ln x 在点(1,a)处
的切线平行于 x 轴,则 a=
.Hale Waihona Puke [答案]1 2[解析] ∵y=ax2-ln x, ∴y'=2ax-1������,∴y' x=1=2a-1=0,∴a=12.
课堂考点探究
考点一
则
e������ ������
=
������,
解得 m=2± 2,故
e������ (������-1) ������ 2
=
1 ������
,
选 A.
课堂考点探究
例 3(1)[2018·衡水武邑中学月考] 已知直线 l:x-ty-2=0(t≠0)与函数 f(x)=e������(x>0)的图像相切,则切
例 1 (1)[2018·咸阳模拟] 已知 f'(x)是函
数 f(x)的导函数,且对任意的实数 x 都有
f'(x)=ex(2x-2)+f(x)(e 是自然对数的底
数),f(0)=1,则 ( )
A.f(x)=ex(x+1) B.f(x)=ex(x-1) C.f(x)=ex(x+1)2 D.f(x)=ex(x-1)2
高中数学导数知识点归纳的总结及例题(word文档物超所值)
为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
高中数学课件第二章第11节《变化率与导数、导数的计算》资料
答案:(1,0)
根据导数的定义求函数y=f(x)在点x0处导数的方法:
1.求函数的增量Δy=f(x0+Δx)-f(x0);
2.求平均变化率 =
;
3.得导数f′(x0)=
.
上述过程可简化为:一差、二比、三极限.
利用导数的定义求函数y= 的导数.
[思路点拨] 按照一差、二比、三极限.
[课堂笔记] ∵Δy=
=
∴
∴
即y′=
.
, ,
,
若将“y= 解:Δy=
”改为“y= ”呢? ,
1.运用可导函数求导法则和导数公式,求函数y=f(x)在开区 间(a,b)内的导数的基本步骤:
(1)分析函数y=f(x)的结构和特征; (2)选择恰当的求导法则和导数公式求导; (3)整理得结果. 2.对较复杂的函数求导时,应先化简再求导,特别是对数函
,即f′(x0)=
(3)导函数 当x变化时,f′(x)称为f(x)的导函数,则f′(x)= y′=
2.导数的几何意义 函数y=f(x)在x=x0处的导数的几何意义,就是曲 线y=f(x)在点P(x0,y0)处的切线的 斜率 ,过点P 的切线方程为:y-y0=f′(x0)(x-x0)
3.基本初等函数的导数公式 原函数
答案:B
4.设f(x)=
+ ,则f′(x)=
.
解析:f′(x)=(
=
=
+ )′=(
)′+( )′= ( )′
答案:
5.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行
于直线3x-y=0,则点P的坐标为
.
解析:由题意知,函数f(x)=x4-x在点P处的切线的斜率 等于3, 即f′(x0)= -1=3,∴x0=1,将其代入f(x)中可得P(1, 0).
2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文
第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。
高中数学函数求导公式的推导及应用实例
高中数学函数求导公式的推导及应用实例一、导数的基本概念在高中数学中,我们学习了函数的概念,函数的导数是函数在某一点处的变化率。
导数的概念是数学中非常重要的概念,它不仅在数学中有广泛的应用,也在其他学科中有着重要的地位。
二、导数的定义函数f(x)在点x处的导数定义为:$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$其中,$\Delta x$表示自变量x的增量。
三、导数的计算为了更方便地计算导数,我们需要推导出一些常用的函数求导公式。
下面,我们将介绍一些常见的函数求导公式及其推导过程。
1. 常数函数对于常数函数f(x) = c,其中c为常数,它的导数为0。
这是因为常数函数在任意一点的变化率都为0。
2. 幂函数对于幂函数f(x) = x^n,其中n为正整数,它的导数为:$$f'(x) = n \cdot x^{n-1}$$这个公式可以通过导数的定义进行推导。
3. 指数函数指数函数f(x) = a^x,其中a为正实数且不等于1,它的导数为:$$f'(x) = a^x \cdot \ln a$$这个公式可以通过对数函数的导数公式进行推导。
4. 对数函数对数函数f(x) = \log_a x,其中a为正实数且不等于1,它的导数为:$$f'(x) = \frac{1}{x \cdot \ln a}$$这个公式可以通过指数函数的导数公式进行推导。
5. 三角函数常见的三角函数有正弦函数、余弦函数和正切函数。
它们的导数公式如下:$$\sin' x = \cos x$$$$\cos' x = -\sin x$$$$\tan' x = \sec^2 x$$这些公式可以通过三角函数的定义和导数的定义进行推导。
四、导数的应用实例导数在数学中有着广泛的应用,下面我们将通过一些实例来说明导数的应用。
高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选
提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.
导数学生可能存在的问题 典型例题
导数学生可能存在的问题典型例题在学习导数的过程中,学生可能会遇到一些问题和困难。
以下是一些常见的问题和典型例题,帮助学生更好地理解和掌握导数的概念和应用。
1.导数的定义和概念理解模糊导数表示函数在某一点变化率的极限,可以理解为函数图像在该点处的切线斜率。
但是,学生可能会对导数的定义和概念有些困惑,特别是对极限的理解可能不够深入。
为了帮助学生理解导数的概念,下面举一个例子:问题:求函数f(x) = x^2的导数。
解析:根据导数的定义,f'(x) = lim(x->a) [f(x)-f(a)] / (x-a)。
代入函数f(x) = x^2,我们有:f'(x) = lim(x->a) [(x^2) - (a^2)] / (x-a)。
利用极限的性质,我们可以将此式分解为两个部分:f'(x) = lim(x->a) [(x+a) * (x-a)] / (x-a) = lim(x->a)(x+a)。
观察到这个极限与a无关,因此我们可以得到:f'(x) = 2a。
这个例子充分说明了导数的概念和计算方法。
通过类似的例子和解析,学生可以更好地理解和掌握导数的定义和计算。
2.导数计算规则不清楚在计算导数时,有许多常见的规则可以应用。
但是,学生可能会混淆或忘记这些规则。
以下是一些典型例子:问题:求函数f(x) = 3x^2 - 2x + 1的导数。
解析:对于多项式函数,我们可以根据导数的性质直接应用规则。
对于f(x) = 3x^2 - 2x + 1,我们可以分别对各项求导数:f'(x) = d/dx (3x^2) - d/dx (2x) + d/dx (1)。
根据多项式的求导规则,我们可以得到:f'(x) = 6x - 2。
这个例子说明了多项式函数求导的基本规则。
学生需要理解这些规则,并正确应用于具体的函数求导过程中。
3.运用导数解决实际问题导数不仅仅是一种数学概念,还有着实际的应用价值。
导数的知识点和典型例题
导数的知识点和典型例题导数的基本概念1. 导数的定义导数是微积分中的重要概念,表示函数在某一点上的变化率。
对于函数f(x),在点x处的导数可以通过以下公式定义:其中,h表示x点附近的一个小增量。
该定义可以简化为下面的形式:2. 导数的几何意义导数的几何意义是切线的斜率。
对于曲线y=f(x),在点(x, f(x))处的导数即为曲线在该点切线的斜率。
导数正值表示曲线逐渐上升,负值表示曲线逐渐下降。
3. 导数的物理意义导数在物理学中具有速度和加速度的物理意义。
对于位移函数s(t),其导数s’(t)表示在时刻t的瞬时速度。
二阶导数s’’(t)则表示在时刻t的瞬时加速度。
导数的计算方法1. 基本函数的导数以下是一些常见的函数的导数公式:•常数函数:常数函数的导数为0。
•幂函数:幂函数f(x)=x n的导数为f’(x)=nx(n-1)。
•指数函数:指数函数f(x)=a x的导数为f’(x)=a x * ln(a),其中ln(a)表示以e为底a的对数。
•对数函数:对数函数f(x)=log_a(x)的导数为f’(x)=1/(x * ln(a)),其中ln(a)表示以e为底a的对数。
•三角函数:三角函数的导数公式如下:–sin(x)的导数为cos(x)。
–cos(x)的导数为-sin(x)。
–tan(x)的导数为sec^2(x)。
•反三角函数:反三角函数的导数公式如下:–arcsin(x)的导数为1/sqrt(1-x^2)。
–arccos(x)的导数为-1/sqrt(1-x^2)。
–arctan(x)的导数为1/(1+x^2)。
2. 导数的基本运算法则导数具有一些基本的运算法则,便于计算更复杂函数的导数:•常数因子法则:对于函数y=c f(x),其中c为常数,f(x)为可导函数,其导数为y’=c f’(x)。
•和差法则:对于函数y=f(x)±g(x),其中f(x)和g(x)均为可导函数,其导数为y’=f’(x)±g’(x)。
2020年高考数学(理)函数与导数 专题12 导数的概念及运算(解析版)
函数与导数12 导数及其应用 导数的概念及运算一、具体目标:1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2y x =,1y x=的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 【考点透析】 【备考重点】(1) 熟练掌握基本初等函数的导数公式及导数的四则运算法则; (2) 熟练掌握直线的倾斜角、斜率及直线方程的点斜式. 二、知识概述: 1.由0()()'()limx f x x f x f x x∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限.2.基本初等函数的导数公式及导数的运算法则原函数导函数 f (x )=c (c 为常数)f ′(x )=0()()Q n x x f n ∈= ()1-='n nx x f()x x f sin = ()x x f cos =' ()x x f cos =()x x f sin -=' ()x a x f =()a a x f x ln ='【考点讲解】1)基本初等函数的导数公式2)导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)(4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.函数()y f x =在0x x =处的导数几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.()x e x f = ()x e x f ='()x x f a log =()a x x f ln 1=' ()x x f ln =()xx f 1='2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.1. 【2019年高考全国Ⅲ卷】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D2.【2019年高考全国Ⅱ卷】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【解析】本题要注意已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.【真题分析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【答案】C3.【2018年高考全国Ⅰ卷】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D. 【答案】D4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )【解析】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 【答案】D5.【2019年高考全国Ⅰ卷】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【答案】30x y -=6.【变式】【2018年理数全国卷II 】曲线()1ln 2+=x y在点()00,处的切线方程为__________. 【解析】本题主要考查导数的计算和导数的几何意义,先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.由题中条件可得:12+='x y ,所以切线的斜率为2102=+=k ,切线方程为()020-=-x y ,即x y 2=.【答案】x y 2=7.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=. 【答案】220x y +-=8.【2018年高考天津文数】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 【解析】由函数的解析式可得,则.即的值为e.【答案】e9.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y , 则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)10.【2018年全国卷Ⅲ理】曲线()()x e ax x f 1+=在点()10,处的切线的斜率为2-,则=a ________.【解析】本题主要考查导数的计算和导数的几何意义,并利用导数的几何意义求参数的值.由题意可知:()()x x e ax ae x f 1++=',则()210-=+='a f ,所以3-=a ,故答案为-3.【答案】3-【变式】已知函数错误!未找到引用源。
高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业
导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。