A3903EEETR-T;中文规格书,Datasheet资料
MAX3232EEAE+T中文资料
Battery-Powered Equipment Cell Phones Cell-Phone Data Cables Notebook, Subnotebook, and Palmtop Computers
Applications
Printers Smart Phones xDSL Modems
MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
EDA9033E智能三相电参数数据综合采集模块使用说明书
EDA9033E智能三相电参数数据综合采集模块使用说明书目录一、产品介绍二、模块的外形图及端子定义三、模块测量精度说明四、EDA9033E模块典型应用接线说明五、EDA9033E模块应用说明六、EDA9033E模块ASCII码通讯指令集及参数计算说明(一)、命令集(二)、EDA9033E-ASCII码指令集及参数计算说明七、EDA9033E模块十六进制LC-02通讯指令集及参数计算说明八、EDA9033E模块广播命令的使用说明EDA9033E模块MODBUS通讯协议说明一、EDA9033E模块Modbus通讯规约简介二、EDA9033E模块Modbus-ASCII通讯协议说明三、EDA9033E模块Modbus-RTU通讯协议说明四、EDA9033E模块Modbus协议的功能码与所对应的数据表五、EDA9033E模块的数据计算六、Modbus通讯规约介绍(一)MODBUS通讯规约简介(二)MODBUS的两种传输方式(三)Modbus消息帧(四)MODBUS通讯错误检测方法EDA9033E 智能三相电参数数据综合采集模块订购指南一、产品介绍EDA9033E系列模块是EDA9033A模块的升级替代产品,增加了四象限有功、无功功率的测量,频率测量,正反向有功无功电能的计量,及显示驱动接口。
EDA9033E模块是一智能型三相电参数数据综合采集模块;三表法准确测量三相三线制或三相四线制交流电路中的三相电流、三相电压(真有效值)、有功功率、无功功率、功率因数、频率、正反向有功电度、正反向无功电度等电参数。
其输入为三相电压(0-500V)、三相电流(0-1000A);输出为RS-485或RS-232接口的数字信号,支持的通讯规约有4种:(ASCII码)研华ADAM兼容通讯协议、十六进制LC-02协议、MODBUS-ASCII、MODBUS-RTU。
EDA9033E模块可广泛应用于各种工业控制与测量系统及各种集散式/分布式电力监控系统。
FJY3002R;中文规格书,Datasheet资料
TinyBoost™ TinyBuck™ ® TinyLogic TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ μSerDes™ ® UHC UniFET™ VCX™ Wire™
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Preliminary Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.
A3 e-tron Specification and Option Sheet MY19说明书
A3 e-tron Specification and Option Sheet MY19A3 e-tronSport TechnicalMaximum Retail Price (MRP) excluding on road costs* and optional extras$69,900 Model Code8VFBPX Petrol engine cubic capacity1,395 Petrol engine power output (kW)110Petrol engine torque output (Nm / rpm)250 / 1,600 - 3,500 Hybrid drive electrical power output (kW)75Hybrid drive electrical torque output (Nm)330 Combined system power output (kW)150 Combined system torque output (Nm)350 Battery type Lithium-ion Battery energy content (kWh)8.8 Battery warranty - 8 years / 160,000km lDrive Train Front Wheel Drive Injection system TFSI (Direct)Transmission 6 speed S tronic with integrated electric motorAcceleration 0-100 km/h (secs) (Hybrid Mode)7.6 Acceleration 0-60 km/h (secs) (Electric Mode) 4.9 Top Speed (km/h) (Hybrid Mode)222 Top Speed (km/h) (Electric Mode)130 Fuel consumption combined in l/100 km (please refer to brochure for further information) 1.7 Trailer load limit on 12% gradient braked / unbraked (kg)1400 / 750 Fuel tank capacity (litre)40 Luggage capacity (litre)280 Vehicle charging socket Type 2 e-tron charging system- Vehicle cable, 2.5m in length- Control unit- Household plug (3 pin, 10 amp)- Industrial plug (single phase, 16 amp) (recommended charging method)- Industrial plug (single phase, 32 amp) (only from 2018 production onwards)- Carry baglElectro - mechanical power steering with speed dependent power assistance l Audi Cover Assistance - 3 Year Cost Free Motoring l12 Year Anti-Corrosion Warranty lExtend the new car manufacturer‘s warranty by a further 2 years / unlimited km. Terms and conditionsapply. Please contact your authorised Audi Dealer for further informationO Safety and SecurityElectronic Stabilisation Control (ESC)l First aid kit l Front driver & passenger airbags with side airbags in the front seats, side guard head airbag anddriver knee airbagl Front passenger airbag deactivation l ISOFIX child seat anchorages front & rear l Anti theft alarm with interior surveillance and vehicle immobiliser l Driver Assistance Systems6K2Audi Pre-Sense City l7X2Audi Parking System Plus - parking aid front and rear l Cruise control with speed limiter lKA2Rear view camera l ExteriorAlloy Wheels 17" alloy wheels in 5-arm designTyres225/45 17Low rolling resistanceBreakdown kit l Auto headlights with rain sensor and coming-home function l Body coloured, heated electrically adjustable exterior mirrors l 8IG Xenon plus headlights l Slimline roof rails BlackA3 e-tron Specification and Option Sheet MY19A3 e-tronSport Seats and Upholstery。
派克核电门户网站产品说明书
10 CFR 50 • AERB • ASME QME-1* • ASME QSC (NCA-3800) • ASME 第 III 部分 • ASME U核级认证核级认证 • ASN • CNSC CRN-N* HAF 604 • IAEA SC-QA 780 298* • IEEE* • ISO 9001: •E 派克核电门户网站无论您是要建新的发电厂,还是要改进现有电厂,派克都会依照行业统一的质量保证计划,使不同部门的各种产品进入核电市场,提高生产率和利润率。
这些产品包括安全专项和安全相关的核级子系统和组件,以及为非管制工厂区提供的优质的“成熟”商品。
派克门户网站是我们投入数百万美元用于核能研究和发展的承诺之一,是我们承诺提获得越来越多在全球供应且通过认证的核能产品的单一途径。
供行业所要求的高效性、可靠性和成本效益的体现。
我们支持单源购买各种产品系列,通过最新的订购方式提高工厂生产率和利润率。
另外,我们在将近 50 个国家拥有 50,000 名员工,因而门户网站产品在全球都有供应。
有关订购门户网站产品的更多信息,请:拨打电话 256 885 3833(销售)、256 885 3880(技术支持)或 发送电子邮件至 ipdusnuclear@parker .com派克核电门户网站是根据派克现行的 NQA- 1 和 10CFR50 附录 B 规定的质量保证计划开发的,并且采用了行业及规范性文件中规定的最佳实3 级阀门的 ASME N 核级认证外,派克核电门户网站上提供的产品符合 10CFR 第 21 部分中对基本组件的规定,按照认可的质保计划或是商品级物项执行。
专项不会提高质量,而是验证并记录专用项目中已有的的质量。
EU PED*HAF 604*IAEA SC-QA KTA 3507NNSANQA-1Parker Hannifin Ltd.Tachbrook Park DriveTachbrook Park,Warwick, CV34 6TU英国电话:+44 (0) 1926 317 878传真:+44 (0) 1926 317 855********************欧洲、中东和非洲AE – 阿联酋,迪拜电话:+971 4 8127100********************AT – 奥地利,维也纳新城电话:+43 (0)2622 23501-0*************************AT – 东欧,维也纳新城电话:+43 (0)2622 23501 900****************************AZ – 阿塞拜疆,巴库电话:+994 50 2233 458****************************BE/LU – 比利时,尼韦尔电话:+32 (0)67 280 900*************************BY – 白俄罗斯,明斯克电话:+375 17 209 9399*************************CH – 瑞士,埃托瓦电话:+41 (0)21 821 87 00*****************************CZ – 捷克共和国,Klecany电话:+420 284 083 111*******************************DE – 德国,卡尔斯特电话:+49 (0)2131 4016 0*************************DK – 丹麦,巴勒鲁普电话:+45 43 56 04 00*************************ES – 西班牙,马德里电话:+34 902 330 001***********************FI – 芬兰,万塔河电话:+358 (0)20 753 2500parker. ****************FR – 法国,Contamine s/Arve电话:+33 (0)4 50 25 80 25************************GR – 希腊,雅典电话:+30 210 933 6450************************HU – 匈牙利,布达佩斯电话:+36 23 885 470*************************IE – 爱尔兰,都柏林电话:+353 (0)1 466 6370*************************IT – 意大利,Corsico (MI)电话:+39 02 45 19 21***********************KZ – 哈萨克斯坦,阿拉木图电话:+7 7273 561 000****************************NL – 荷兰,奥尔登扎尔电话:+31 (0)541 585 000********************NO – 挪威,阿斯克尔电话:+47 66 75 34 00************************PL – 波兰,华沙电话:+48 (0)22 573 24 00************************PT – 葡萄牙,莱萨·达·帕尔梅拉电话:351 22 999 7360**************************RO – 罗马尼亚,布加勒斯特电话:+40 21 252 1382*************************RU – 俄罗斯,莫斯科电话:+7 495 645-2156************************SE – 瑞典,Spånga电话:+46 (0)8 59 79 50 00************************SK – 斯洛伐克,班斯卡·比斯特里察电话:+421 484 162 252**************************SL – 斯洛文尼亚,新梅斯托电话:+386 7 337 6650**************************TR – 土耳其,伊斯坦布尔电话:+90 216 4997081************************UA – 乌克兰,基辅电话:+380 44 494 2731*************************UK – 英国,沃里克电话:+44 (0)1926 317 878********************ZA – 南非,坎普顿公园电话:+27 (0)11 961 0700*****************************北美地区CA – 加拿大,安大略省米尔顿电话:+1 905 693 3000US – 美国,克利夫兰电话:+1 216 896 3000亚太地区AU – 澳大利亚,城堡山电话:+61 (0)2-9634 7777CN – 中国,上海电话:+86 21 2899 5000HK – 香港电话:+852 2428 8008IN – 印度,孟买电话:+91 22 6513 7081-85JP – 日本,东京电话:+81 (0)3 6408 3901KR – 韩国,首尔电话:+82 2 559 0400MY – 马来西亚,莎阿南电话:+60 3 7849 0800NZ – 新西兰,惠灵顿电话:+64 9 574 1744SG – 新加坡电话:+65 6887 6300TH – 泰国,曼谷电话:+662 186 7000-99TW – 台湾,台北电话:+886 2 2298 8987南美AR – 阿根廷,布宜诺斯艾利斯电话:+54 3327 44 4129BR – 巴西,圣若泽杜斯坎普电话:+55 800 727 5374CL – 智利,圣地亚哥电话:+56 2 623 1216MX – 墨西哥,阿波达卡电话:+52 81 8156 6000核电门户网站手册 M&K 12/10 1M派克授权的本地经销商© 2010 派克汉尼汾公司派克全球办事处联系信息欧洲产品信息中心免费电话:00 800 27 27 5374(AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE,IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE,SK, UK, ZA)– 一点的方式。
att7039 用户手册说明书
ATT7039 用户手册版本更新记录文件编号 版本 日期 修订 更改理由主要更改内容 ATT7039用户手册 V0.1 2010/06/25 yyuan 初稿ATT7039用户手册 V0.2 2010/07/10 yyuan 更新 1.更改存储器寻址空间2.添加引脚分布图ATT7039用户手册 V0.3 2010/07/15 yyuan 添加系统框图;更改EMUIE地址 1、在1.4节添加系统框图,修改2.5节模块框图2、将有关EMUIE的地址由0xAD更改为0xAC目 录1总体概况 (9)1.1简介 (9)1.2特点 (9)1.2.1基本特点 (9)1.2.2电能计量 (9)1.2.3处理器及外设 (9)1.3缩略语 (10)1.4 系统框图 (11)1.5引脚分布 (12)1.6引脚定义 (13)2ATT7039构架 (15)2.1概述 (15)2.2存储器 (15)2.2.1概述 (15)2.2.2内部数据存储器 (15)2.3指令系统 (17)2.3.1寻址方式 (17)2.3.2指令集 (18)2.4特殊功能寄存器 (22)2.4.1概述 (22)2.4.2寄存器写保护 (23)2.4.3CPU52寄存器 (24)2.5模块框图 (28)3存储器控制单元 (29)3.1概述 (29)3.2ATT7039F LASH特性 (29)3.3ATT7039存储器映射 (30)3.3.1XRAM (30)3.3.2Info Flash memory (30)3.3.3Code Flash Memory (31)3.3.4Data Flash Memory (31)3.3.5程序拷贝至XRAM执行的方法 (31)3.3.6第一种映射模式 (31)3.3.7第二种映射模式 (32)3.3.8Flash 的写保护 (33)3.3.9Flash 的读保护 (33)3.3.10寄存器 (33)4电源管理单元 (35)4.2详细功能说明 (35)4.2.1电源切换 (35)4.2.2系统工作电压低于阈值时发生复位 (35)4.2.3电池检测功能 (35)4.3寄存器 (36)5HOLD&SLEEP模式 (41)5.1概述 (41)5.2H OLD模式 (41)5.3S LEEP模式 (41)5.4特殊功能寄存器 (42)6时钟管理单元 (46)6.1概述 (46)6.2时钟系统框图 (47)6.3主要功能 (47)6.3.1低频振荡电路 (47)6.3.2高频振荡电路 (47)6.4系统时钟切换方法 (48)6.4.1概述 (48)6.4.2系统时钟fcpu 从低频时钟fosc切换到高频时钟fpll (48)6.4.3系统时钟fcpu 从高频时钟fpll切换到低频时钟fosc (48)6.4.4EMU的时钟是独立设置可控的 (49)6.4.5进入Hold模式 (49)6.4.6进入Sleep模式 (49)6.4.7时钟管理单元内部保护机制 (49)6.4.8外设时钟管理 (49)6.5特殊功能寄存器 (50)7时钟输出模块 (52)7.1概述 (52)7.2功能描述 (52)7.3特殊功能寄存器 (52)8系统复位 (53)8.1概述 (53)8.2功能说明 (53)8.2.1上电复位POR(Power on reset) (53)8.2.2外部引脚复位 /RST(内部上拉30K电阻) (54)8.2.3掉电复位BOR(Brownout Reset)& LBOR (54)8.2.4Watchdog 复位WDTR (55)8.2.5唤醒复位WKR (55)8.2.6软复位 (55)8.4被分级复位的寄存器说明 (56)9WDT (58)9.1概述 (58)9.2工作模式 (58)9.3特殊功能寄存器 (58)10中断系统 (60)10.1概述 (60)10.2中断列表 (60)10.3中断优先级 (60)10.4寄存器 (61)10.4.1中断使能寄存器 (61)10.4.2中断标志寄存器 (63)10.4.3中断优先级寄存器 (63)10.5中断处理 (64)11GPIO (65)11.1概述 (65)11.2寄存器说明 (65)11.2.1GPIO输出复用配置寄存器 (65)11.2.2P0 (69)11.2.3P1 (69)11.2.4P2 (70)11.2.5P3 (71)11.2.6Port A (71)11.2.7Port B (72)11.2.8Port C (72)11.2.9Port D (73)11.2.10Port E (73)12定时器 (75)12.1概述 (75)12.2模块原理框图 (75)12.2.1模式0/1 (75)12.2.2模式2 (76)12.2.3模式3 (77)12.3定时器0详细说明 (77)12.3.1模式0 (77)12.3.2模式1 (78)12.3.3模式2 (78)12.3.4模式3 (78)12.4定时器1详细说明 (79)12.4.1模式0 (79)12.4.2模式1 (79)12.4.3模式2 (79)12.4.4模式3 (80)12.5定时器2详细说明 (80)12.5.1概述 (80)12.5.2接口描述 (80)12.5.3模块结构图 (80)12.5.4定时器/计数器功能 (80)12.5.5比较器功能 (81)12.5.6捕获器功能 (81)12.6特殊功能寄存器 (82)13串口 (88)13.1波特率产生方式 (88)13.2串口0 (89)13.2.1模块框图 (89)13.2.2模式1 (89)13.2.3模式2 (89)13.2.4模式3 (90)13.2.5多处理器通讯 (91)13.3串口1 (91)13.3.1模块框图 (91)13.3.2波特率产生方式 (91)13.3.3模式A (91)13.3.4模式B (92)13.3.5多处理器通讯 (93)13.4特殊功能寄存器 (93)14红外模块 (96)14.1概述 (96)14.2特殊功能寄存器 (96)16电能计量 (97)16.1概述 (97)16.2功能描述 (98)16.2.1模数转换器 (98)16.2.2ADC采样输出和功率波形输出 (98)16.2.3有功功率、无功功率和视在功率 (98)16.2.4电压、电流有效值 (99)16.2.5电压频率输出 (99)16.2.6灵活的潜动/起动设置 (100)16.2.7功率反向指示 (100)16.2.8防窃电 (100)16.2.9直流偏置自动校正和直流偏置校正寄存器 (101)16.2.10能量寄存器和脉冲输出单元 (101)16.2.11中断系统 (102)16.3寄存器 (103)16.3.1特殊功能寄存器 (103)16.3.2间接寄存器 (106)16.4校表过程 (125)17KBI (127)17.1概述 (127)17.2按键中断 (127)17.2.1按键中断产生 (127)17.2.2按键中断清除 (127)17.3低功耗模式 (127)17.3.1Hold模式 (127)17.3.2Sleep模式 (127)17.4特殊功能寄存器 (127)18LCD (130)18.1概述 (130)18.2LCD与GPIO引脚复用 (130)18.3原理框图 (130)18.4输出波形 (131)18.5寄存器 (134)19TBS (138)19.1概述 (138)19.2功能描述 (138)19.3功能详细说明 (138)19.4模块工作模式说明 (139)19.5测量误差 (139)19.5.1IC的温度测量 (139)19.5.2IC的电池电压测量 (139)19.6特殊功能寄存器 (140)20RTC (142)20.1概述 (142)20.2功能描述 (142)20.3时钟校正 (142)20.4时间和万年历 (143)20.5寄存器写保护功能与复位源 (143)20.6中断功能 (144)20.7RTC指示寄存器读取流程 (145)20.8特殊功能寄存器 (146)22I2C (150)22.1概述 (150)22.2结构框图 (151)22.3功能描述 (151)22.3.1操作模式 (151)22.3.2串行时钟生成 (152)22.3.3地址比较器 (152)22.3.4中断生成 (152)22.4特殊功能寄存器 (152)23JTAG (162)23.1概述 (162)23.2介绍 (162)24电气特性 (163)24.1极限参数 (163)24.2DC参数 (164)24.3功耗参数 (164)24.4电能计量参数 (165)24.5ADC指标 (166)24.6ADC基准电压 (166)1总体概况1.1简介ATT7039是ATT7037的精简版本,片内集成单相计量、处理器、电源管理,时钟管理,PLL,JTAG 调试等功能。
ATM030A0X3-SRHZ;中文规格书,Datasheet资料
Monotonic start-up into pre-biased output Output voltage sequencing (EZ-SEQUENCE Remote On/Off Remote Sense Over current and Over temperature protection Parallel operation with active current sharing Wide operating temperature range (-40°C to 85°C) UL* 60950 Recognized, CSA C22.2 No. 60950-00 ‡ rd Certified, and VDE 0805 (EN60950-1 3 edition) Licensed ISO** 9001 and ISO 14001 certified manufacturing facilities
Parameter Input Voltage Continuous Sequencing pin voltage Operating Ambient Temperature (see Thermal Considerations section) Storage Temperature All Tstg -55 125 °C All All40 4.0 4.0 85 Vdc Vdc °C Device Symbol Min Max Unit
(中文版的)RC903-V35FE1(REV.C)用户使用手册200508
RC903-V35FE1V35至成帧E1接口转换器用户使用手册REV.C北京瑞斯康达科技发展有限公司2005年08月安全注意事项在安装和使用本设备之前,请仔细阅读以下事项,瑞斯康达公司不对任何由于违反安全事项而造成的损失承担责任。
RC903-V35FE1设备提供符合ITU标准的V.35同步数据接口,在与转换器连接通电使用之前,必须先连接好V.35电缆。
严厉禁止转换器设备与V.35电缆连通的设备在同时通电的情况下带电插拔V.35电缆,以免损坏V.35数据口。
RC903-V35FE1为集成化设备,内含有精密器件,为避免严重冲击对其构成损害,请避免剧烈振动和碰撞,请勿自行拆卸或维修,需要拆卸或维修设备时必须在我公司技术人员的指导下按照防静电程序进行操作,如遇问题请与瑞斯康达科技发展有限公司联系。
为了保证设备的安全与运行稳定性,在使用本设备时必须提供良好的接地保护;请勿擅自拆卸设备,否则将可能造成不可恢复的损坏,瑞斯康达科技发展有限公司将视擅自拆卸设备为自动放弃保修权利。
目录第一章概述 (3)一、简介 (3)二、主要特点 (3)三、设备编号与对通使用说明 (3)第二章技术指标 (4)一、V.35接口指标 (4)二、E1接口指标 (4)三、使用的电缆类型 (4)四、电源功耗 (4)五、结构特征 (4)六、环境要求 (5)第三章使用方法 (5)一、设备前面板 (5)二、设备后面板 (6)三、设备底面板开关 (8)四、内部跳针定义 (13)五、基本连接方式 (14)第四章设备安装与准备 (15)一、安装准备 (15)二、通电注意事项 (16)三、设备摆放 (16)四、测通 (16)第五章常见故障解答 (17)附录 (18)一、CBL-V35-M34F/M34M-D电缆说明 (18)二、CBL-V35-M34M/M34M-X-D电缆说明 (19)第一章概述一、简介RC903-V35FE1是适用于V.35设备基于E1网络传输的接口转换器。
AS8510 DB;中文规格书,Datasheet资料
AS8510Data Acquisition Device for Battery SensorsDatasheet1 General DescriptionThe AS8510 is a virtually offset free, low noise, two channel measurement device. It is tailored to accurately measure battery current from mA range up to kA range in conjunction with a 100 µΩ shunt resistor in series with the battery rail. Through the second measurement channel it enables capture of, either battery voltage synchronous with the current measurement, or, measure the analog output of an internal or external temperature sensor. Both channels are matched and can either measure small signals up to ±160 mV versus ground, through programmable gain amplifier or larger signals in the 0 to 1V range without the amplifier.After analog to digital conversion and digital filtering, the resulting 16-bit digital words are accessible through 4-wire standard serial interface.The device includes a number of additional features explained in the next section.2 Key Features3.3V supply voltageTwo High resolution 16 bit Σ−Δ A/D convertersProgrammable sampling to enable data throughputs from lessthan 1Hz to 8kHzZero Offset for both channelsIndependent control of data rate on both channels Precision, low noise, programmable gain amplifiers for bothchannels with gains 5, 25, 40, 100 to support wide dynamic ranges.Option for multiplexing either one differentialinput, or two single ended inputs or the internal temperature sensor on one channelProgrammable current source for external temperature sensorconnectable to any of the inputsHigh precision and high stability 1.2V reference voltage source Digital signal processing with filter options for both channels Four operating modes providing-Continuous data acquisition (or)-Periodic single-shot acquisition, (or)-Continuous acquisition on threshold crossing of programmed current levels (or)-A combination of the aboveOn chip high-precision 4MHz RC oscillator or option for external clock-40ºC to +125ºC ambient operation AEC - Q100 automotive qualified Internal chip ID for full traceability SSOP-20 pin package3 ApplicationsThe AS8510 is ideal for shunt based batteries sensor. For high-side current sensing, the input signal may be conditioned usingaustriamicrosystems device AS8525 before applying to this device.Contents1 General Description (1)2 Key Features (1)3 Applications (1)4 Pin Assignments (4)4.1 Pin Descriptions (4)5 Absolute Maximum Ratings (6)6 Electrical Characteristics (7)6.1 Operating Conditions (7)6.2 DC/AC Characteristics for Digital Inputs and Outputs (7)6.3 Detailed System and Block Specifications (8)6.3.1 Electrical System Specifications (8)6.4 Current Measurement Ranges (across 100µΩ shunt resistor) (9)6.4.1 Differential Input Amplifier for Current Channel (10)6.4.2 Differential Input Amplifier for Voltage Channel (11)6.4.3 Sigma Delta Analog to Digital Converter (12)6.4.4 Bandgap Reference Voltage (12)6.4.5 Internal (Programmable) Current Source for External Temperature Measurement (13)6.4.6 CMREF Circuit (VCM) (14)6.4.7 Internal AVDD Power-on Reset (14)6.4.8 Internal DVDD Power-on Reset (14)6.4.9 Low Speed Oscillator (14)6.4.10 High Speed Oscillator (15)6.4.11 External Clock (15)6.4.12 Internal Temperature Sensor (15)6.5 System Specifications (16)7 Detailed Description (17)7.1 Current Measurement Channel (17)7.2 Voltage/Temperature Measurement Channel (17)7.3 Digital Implementation of Measurement Path (18)7.4 Modes of Operation (18)7.4.1 Normal Mode 1 (NOM1) (19)7.4.2 Normal Mode 2 (NOM2) (20)7.4.3 Standby Mode1 (SBM1) (21)7.4.4 Standby Mode2 (SBM2) (21)7.5 Reference-Voltage (22)7.6 Oscillators (22)7.7 Power-On Reset (22)7.8 4-Wire Serial Port Interface (22)7.8.1 SPI Frame (23)7.8.2 Write Command (23)7.8.3 Read Command (24)7.8.4 Timing (25)7.8.5 SPI Interface Timing (26)7.9 Control Register (27)7.9.1 Standby Mode - Power Consumption (38)7.9.2 Initialization Sequence at Power ON (38)7.9.3 Soft-reset Using Bit D[7] of Reset Register 0x09 (39)7.9.4 Reconfiguring Gain Setting of PGA (40)7.9.5 Configuring the Device During Normal Mode (40)7.10 Low Side Current Measurement Application (41)8 Package Drawings and Markings (42)8.1 Recommended PCB Footprint (43)9 Ordering Information (45)4 Pin AssignmentsFigure 2. Pin Assignments (Top View)4.1 Pin DescriptionsTable 1. Pin DescriptionsPin NumberPin Name Pin Type Description1RSHH Analog inputPositive Differential input for current channel 2RSHL Negative differential input for current channel3REFAnalog outputInternal reference voltage to sigma-delta ADC; connect 100nF to AVSS from this pin.4VCM Common Mode voltage to the internal measurement path; connect 100nF to AVSS from this pin.5AVDD Supply pad +3.3V Analog Power-supply 6AVSS 0V Power-supply analog 7ETR Analog input Voltage channel single ended input 8ETS 9VBAT_IN Battery voltage (high) input 10VBAT_GNDBattery voltage (low) input11CS Digital input with pull-up Chip select with an internal pull-up resistor (SPI Interface)12SCLK Digital input Clock signal (SPI Interface)13SDODigital outputSerial Data Input (SPI Interface)14DVSS Supply pad0V Digital Ground 15DVDD+3.3V Digital Supply16CHOP_CLKDigital outputChop Clock used in High side measurements to synchronize external chopper.(As an example, when AS8525 is used to condition the input signal to the input range of AS8510, the chop clock is used by AS8525.)17MENDigital output issued during the Standby Mode (SBM) to signal the short duration of data sampling. This signal is useful in the case of a High Side Measurement application.(For example: This signal is used by AS8525 device to wake-up and enable the measurement path.)18SDI Digital input Data signal (SPI Interface)19CLK Digital I/OBy default this pin is the internal clock output which can be used by a Microcontroller. The internal clock may also be disabled as an output by programming Register 08. To use an external Clock, Register 08 has to be programmed. 20INTDigital outputActive High Interrupt to indicate data is readyTable 1. Pin DescriptionsPin NumberPin Name Pin Type DescriptionDatasheet - A b s o lu t e M a x im u m R a ti n g s5 Absolute Maximum RatingsStresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 7 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Table 2. Absolute Maximum RatingsParameter Min Max Units NotesElectrical ParametersDC supply voltage (AVDD and DVDD)-0.35VInput voltage (V IN)-0.3AVDD + 0.3DVDD + 0.3VInput current (latchup immunity)(I SCR)-100100mA AEC - Q100 - 004 Electrostatic DischargeElectrostatic discharge (ESD) all pins±2kV AEC - Q100 - 002 Continuous Power DissipationTotal power dissipation(all supplies and outputs) (P t)50mW SSOP20 in still air, soldered on JEDEC standard board @ 125º ambient, static operation with no time limitTemperature Ranges and Storage ConditionsStorage temperature (T STRG)-50125ºCJunction temperature (T J)130ºCThermal resistance (R thJC)80K/W JEDEC standard test board, 0 air velocityPackage body temperature (T BODY)260ºCNorm: IPC/JEDEC J-STD-020The reflow peak soldering temperature (body temperature) is specified according IPC/ JEDEC J-STD-020 “Moisture/Reflow Sensitivity Classification for Nonhermetic Solid StateSurface Mount Devices”.The lead finish for Pb-free leaded packages ismatte tin (100% Sn).Humidity non-condensing585%6 Electrical Characteristics6.1 Operating Conditions6.2 DC/AC Characteristics for Digital Inputs and OutputsAll pull-up and pull-down have been implemented with active devices. SDO has been measured with 10pF load.Table 3. Operating Conditions Symbol ParameterConditions Min Max Units AVDD Positive analog supply voltage3.0 3.6V AVSS 0V Ground00V A - D Difference in analog and digital supplies0.1V DVDD Positive digital supply 2.97 3.63V DVSS 0V Digital Ground 00V T AMB Ambient temperature -40125ºC I SUPP Supply current 5.5mA f CLKSystem clock frequency11.Nominal clock frequency from external or internal oscillator.4.096MHzTable 4. INTSymbol Parameter ConditionsMin TypMax Units I LEAK Tri-state leakage current -1+1µA V OH High level output voltage 2.5V V OL Low level output voltage0.4V I OOutput Current4mATable 5. CS InputSymbol Parameter ConditionsMin TypMaxUnits V IH High level input voltage 2.0V V IL Low level input voltage 0.8V I LEAK Input leakage current -1+1µA Ipu Pull up currentCS pulled to DV DD = 3.3V-150-15µATable 6. SDISymbol Parameter ConditionsMin TypMaxUnits V IH High level input voltage 2.0V V IL Low level input voltage 0.8V I LEAKInput leakage current-1+1µATable 7. SDO OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage Isource = 8mA 2.5V V OL Low level output voltage Isink = 8mA 0.4VI o Output Current8mA Table 8. CHOP_CLK OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage 2.5V V OL Low level output voltage0.4VI o Output Current4mA Table 9. CLK I/O with Input Schmitt Trigger and Output BufferSymbol Parameter Conditions Min Typ Max Units V IH High level input voltage DV DD = 3.3V 2.4V V IL Low level input voltage DV DD = 3.3V 1.0VI LEAK Input leakage current-1+1µAI PD Pull down current CLK pulled to DVSS10100µAI o Output Current4mAV OH High level output voltage 2.5V V OL Low level output voltage0.4V Table 10. SCLK with Input Schmitt TriggerSymbol Parameter Conditions Min Typ Max Units V IH High level input voltage DV DD = 3.3V 2.4V V IL Low level input voltage DV DD = 3.3V 1.0VI LEAK Input leakage current-1+1µA Table 11. MEN OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage 2.5V V OL Low level output voltage0.4VI O Output Current2mA6.3 Detailed System and Block Specifications6.3.1 Electrical System Specifications6.4 Current Measurement Ranges (across 100µΩ shunt resistor)Note:The Data Rate at the output can be calculated according to the formula:fsout=2*fchop /R2 (R2 is down sampling ratio taking values 1, 2, 4 up to 32768 as powers of 2)Table 12. Electrical System SpecificationsSymbol ParameterMinTyp Max Units NotesIDD NOM Current consumption normal mode 3 5.5mA IDD SBMCurrent consumption standby mode40µAAverage of NORMAL Mode Power consumption over a period of 10sec when the device is in STANDBY ModeTable 13. Current Measurement RangesSymbol ParameterImax [A]Vsh [mV]PGA Gain Nominal Data Rate (f OUT )V INADC 1[mV]1.V INADC = Vsh * Gain, gain deviations to be considered according to Table 15 and Table 16.PSR 2[dB]2.AVDD, DVDD of 3.3V with ±5% variation.I10 Input current range of 10A in NOM ±10±1100@ 1 kHz ±10060I200Input current range of 200A in NOM ±200±2040@ 1 kHz ±80060I400Input current range of 400A in NOM ±400±4025@ 1 kHz ±100060I1500Input current range of 1500A in NOM ±1500±1505@ 1 kHz ±75060I1Input current range of 1A in SBM33.For low power current monitoring, single shot measurement is performed with internal oscillator.±1±0.1100@ 1 Hz ±1060I10Input current range of 10A in SBM3±10±1100@ 1 Hz ±10060I200Input current range of 200A in SBM3±200±2040@ 1 Hz±80060Table 14. Valid Combinations of the Chopper Clock, Oversampling Clock and Decimation RatiosOver Sampling FrequencyChopper FrequencyDecimation Ratio1MHz 2kHz 642MHz 2kHz 642MHz 2kHz 1282MHz4kHz646.4.1 Differential Input Amplifier for Current ChannelNotes:1. Leakage test accuracy is limited by tester resource accuracy and tester hardware.2. For gain 100 PGA input common mode is 0V and the minimum supply is3.15V.3. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-grammed independently.4. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-teed by design.5. Pole frequency of input amplifier changes with GAIN. The number is valid for the gain at G1, while the bandwidth will be higher for other ranges. This parameter is not measured in production.6. Based on device evaluation. Not tested.7. These offsets are cancelled if chopping enabled (default).8. Noise density calculated by taking system bandwidth as 150Hz.9. Refer to Measurement Ranges shown in Table 13.10. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.11. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of protection diode.Table 15. Differential Input Amplifier for Current ChannelSymbol Parameter Conditions Min Typ Max Units V IN _AMP Input voltage range RSHH and RSHL-160+160mV I IN _AMP Input current1, 11RSHH and RSHL@ +160mV input voltage at 125ºC with PGA-50250nA ICM Absolute input voltage range2-160+300mVG = G1Gain1 3, 4, 9I10100G = G2Gain2 3, 4, 9I20040G = G3Gain3 3, 4, 9I40025G = G4Gain43, 4, 9I15005e Gain deviation i = 1, 2, 3, 40.9 * Gi 1.1 * Gif P _AMP Pole frequency4, 515kHzεT1Gain drift with temperature 6-20ºC to +65ºCGain 5, 25, referenced to roomtemperature±0.3%V OSDRIFT Offset drift with temperature 7, 10350µVVos Input referred offset7, 10After trim,for temperature range -20 to +65ºC350µV Vos_ch Chopping enabled0LSB VNdin Noise density4, 825nV/√Hz THD Total harmonic distortion For 150 Hz input signal 70dB分销商库存信息: AMSAS8510 DB。
泽尔特光电产品说明书
Prism TM seriesdiffuse refl ective sensors, OEM versionModels covered in this manual:8-Inch diffuse reflective modelsDC power with Cable DC power with connectorViewing style:Light operate Dark operate Light operate Dark operateNPN output Forward13156ALN1713156ADN1713156ALN0713156ADN07 Right angle13156RLN1713156RDN1713156RLN0713156RDN07PNP output Forward13156ALP1713156ADP1713156ALP0713156ADP07 Right angle13156RLP1713156RDP1713156RLP0713156RDP07NPN/PNP output Forward13156AL1713156AD1713156AL0713156AD07 Right angle13156RL1713156RD1713156RL0713156RD07 24-Inch diffuse reflective modelsDC power with cable DC power with connectorViewing style:Light operate Dark operate Light operate Dark operateNPN output Forward13157ALN1713157ADN1713157ALN0713157ADN07 Right angle13157RLN1713157RDN1713157RLN0713157RDN07PNP output Forward13157ALP1713157ADP1713157ALP0713157ADP07 Right angle13157RLP1713157RDP1713157RLP0713157RDP07NPN/PNP output Forward13157AL1713157AD1713157AL0713157AD07 Right angle13157RL1713157RD1713157RL0713157RD07a Contact factory for availability on these models.aa a a aa a a aa a a aa a a aa a a aa a aCAUTIONTHESE PRODUCTS ARE NOT DESIGNED, TESTED,OR RECOMMENDED FOR USE IN HUMAN SAFETY APPLICATIONS.MAXIMUM INPUT VOLTAGE FOR DC OPERATION IS30 VDC. APPLYING VOLTAGE ABOVE THIS LIMIT WILL RESULT IN DAMAGE TO THE SENSOR.USE #4 MOUNTING HARDWARE ONLY! LARGER HARDWARE WILL DAMAGE THE SENSOR AND MAY CREATE AN ELECTRICAL SHOCK HAZARD. TIGHTEN THE HARDWARE JUST TO THE SENSOR BODY SO THAT NO DEFLECTION OF THE BODY OCCURS.DO NOT USE TOOLS TO APPLY TORQUE DIRECTLY TO SENSOR BODY. ALIGN SENSOR BY HAND BEFORE TIGHTENING MOUNTING HARDWARE.THE GAIN POT IS A 3/4 TURN POT. ANY RESISTANCE ENCOUNTERED WHILE ADJUSTING THIS POT INDICATES YOU HAVE REACHED THE ADJUSTMENT LIMIT STOP. TURNING PAST THIS STOP WILL DAMAGE THE SENSOR.SHORT CIRCUIT PROTECTION WILL AUTOMATICALLY RESET ONCE SHORT IS REMOVED.IntroductionA diffuse reflective sensor operates by shininga beam of light out through the lens. When an object comes within the sensor’s view, it reflects part of this beam of light back to the sensor causing the sensor to detect the object. The maximum range at which a given object can be detected depends on how well its surface reflects light—the less light it reflects back, the shorter the range. The ability of a surface to reflect light depends primarily upon its material of construc-tion, color, and texture.This manual covers both forward viewing and right angle viewing models. Although the units differ in the location of the lenses, the basic fundamentals of installation, set-up, and operation are nearlyidentical.ForwardviewingMountingMounting location and set-upThe Prism sensor features a threaded housing and includes jam nuts and washers. This allows mounting into any 0.75 inch hole, or optional bracket. Use caution to avoid cross-threading the jam nuts on the sensor body. Tighten nuts to less than 4 N•m (36 in.-lbs. or 3 ft.-lbs.) torque to avoid stripping threads.A second mounting method is to use #4 hardware in the 0.125 inch diameter mounting holes in the flat sides of the sensor. This is ideal for mounting the Prism against a wall, piece of equipment, rail, mounting bracket, etc.Select a mounting location with a clear view of the object to be detected. Avoid direct reflection from a highly reflective background (or darken the background). Mount the sensor so that it points at the most suitable part of the target object.Be sure your power supply is off, then connect the sensor to thecontrol circuit and power lines. Turn the power supply on and place a sample object in the beam. Slowly turn the gain adjustment clockwise (see Warning above concerning pot adjustment) until the LED lights (for light-operate model). Note the position and remove the sample object. Now continue turning the gain setting clockwise to find the position where the LED lights from the background reflec-tion. Reset the gain midway between the two positions. Tighten all mounting screws.ote: N If background reflections are low, it will be possible to achieve a maximum gain setting without the LED lighting; in that case, set the gainmidway between the first setting and maximum (this will prevent a hysteresislatch-up after sensing an object).2Installation Instructions 110210-305Effective January 2017EATON Prism TM seriesdiffuse refl ective sensors, OEM versionetected.SpecificationsDC modelsInput voltage 10 to 30 V DC, reverse polarity protected Power dissipation 1 W maximumOutput type NPN only, PNP only, or NPN and PNP by modelOutput operationDark operate models: ON when beam is blocked; OFF when beam is not blocked Light operate models: ON when beam is not blocked; OFF when beam is blocked Current switching capacity 100 mA maximum Off-state leakage 10 mA maximumOn-state voltage dropNPN: 2.0 V at 100 mA; PNP: 2.5 V at 100 mA Short circuit protection Protected against dead shorts only.Operation: Output is continuously retried at 3 mS intervals and will automatically reset when short is removed (no visual indication of a short circuit condition).CAUTION: will not protect against overloads between 100 mA and 1 A.Response time 1.2 mSLight/dark operation Specified by model numberTemperature range Operating: -25° to 55° C (-13° to 131° F), Storage: -25° to 70° C (-13° to 158° F)Sunlight immunity 1,000 foot-candlesMaterial of construction Lens: Polycarbonate; Cable jacket: PVC; Body: Structural polyurethane foam (do not expose to concentrated acids, alcohols, or ketones)Cable models 6-foot long; 3-wire NPN or PNP models; 4-wire NPN/PNP models Connector models Micro Connector, 4-pin maleVibration and shock Vibration: 30g over 10 Hz to 2 kHz; Shock: 50 g for 10 mS 1/2 sinewave pulse Indicator led Lights steady when output is ON; OFF when output is OFF;OFF when output is in short circuit modeAlarm indicator led ON in condition of low gain or noise interferance; OFF in normal condition Enclosure ratings NEMA 1, 2, 3, 4, 4X, 6, 12, and 13 (See note below)ApprovalsContact factory for latest list of agency approvalsote: N Our products conform to NEMA tests as indicated, however, some severe washdown applications can exceed these NEMA test specifications. If you have questions about a specific application, contact our Applications Department.3Installation Instructions 110210-305Effective January 2017EATON Prism TM series diffuse refl ective sensors, OEM version Wiring diagramsNPN modelsPNP modelsNPN/PNP modelsOptical performanceOptical performance(Shown in inches except where noted)All optical specifications are guaranteed to be the minimum perfor-mance under clean conditions of any product delivered from stock.Typical performance may be higher.Dirt in the environment will affect optical performance by reducingthe amount of light the control receives. For best results, sensorsshould be used at distances where excess gain is higher than 1.5(1.5 times the amount of sensing power required to detect an objectunder ideal conditions). Higher excess gain will allow the sensor toovercome higher levels of contamination on the lens. All ranges andexcess gain graphs are based on a 90% reflectance white card.1315613157Source Infrared, 880 nm Infrared, 880 nmMaximum range8 inches (203 mm)24 inches(609mm)Optimum range0.1-5 inches(3-127 mm)0.1-15 inches(3-381mm)Field of view2 inch (51 mm) diameterat 5 inches (127 mm)6 inches (152 mm) at15 inches (381 mm)Eaton1000 Eaton BoulevardCleveland, OH 44122United States© 1999 EatonAll Rights ReservedEaton is a registered trademark.All other trademarks are propertyof their respective owners. Installation Instructions 110210-305Effective January 2017Prism TM seriesdiffuse refl ective sensors, OEM version。
VNQ830ETR-E;VNQ830E-E;中文规格书,Datasheet资料
May 2010Doc ID 17459 Rev 11/28VNQ830E-EQuad channel high-side driverFeatures■Output current: 9.5A ■CMOS compatible inputs ■On-state open-load detection ■Off-state open-load detection ■Output stuck to V CC detection ■Open drain status outputs ■Undervoltage shutdown ■Overvoltage clamp ■Thermal shutdown ■Current and power limitation■Very low standby current ■Protection against loss of ground and loss of V CC■Reverse battery protection■Very low electromagnetic susceptibility ■Optimized electromagnetic emissionDescriptionThe VNQ830E-E is a quad HSD formed byassembling two VND830E-E chips in the same SO-28 package. The VND830E-E is a monolithic device made using STMicroelectronics™ VIPower™ M0-3 technology.It is intended for driving resistive or inductive loads with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).The device detects open-load condition both in on-state and off-state. Output shorted to V CC is detected in the off-state. Output current limitation protects the device in overload condition. In case of long duration overload, the device limits the dissipated power to safe level up to thermal shutdown intervention. Thermal shutdown with automatic restart allows the device to recover normal operation as soon as fault condition disappears.Type R DS(on)I OUT V CC VNQ830E-E65m Ω(1)1.Per each channel.9.5A (1)36VTable 1.Device summary PackageOrder codesTubeTape and reelSO-28 VNQ830E-EVNQ830ETR-EO b s o l et e Pr o du c t(s ) - O bs o l e t eVNQ830E-E ContentsDoc ID 17459 Rev 12/28Contents1Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.3Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.1GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 183.1.1Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 183.1.2Solution 2: a diode (D GND ) in the ground line . . . . . . . . . . . . . . . . . . . . 193.2Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.4Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.5Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.1SO-28 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.1ECOP ACK ® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.2SO-28 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27O b s o l et e Pr o du c t(s ) - O bs o l e t eP ro d u ct(s )List of tables VNQ830E-E3/28Doc ID 17459 Rev 1List of tablesTable 1.Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2.Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6Table 3.Absolute maximum rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 4.Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 5.Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 6.Switching (per each channel) (V CC =13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 7.V CC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 8.Status pin (per each channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 9.Protections (per each channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 10.Logic input (per each channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 11.Open-load detection (per each channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 12.Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 13.Electrical transient requirements on V CC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 14.Electrical transient requirements on V CC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 15.Electrical transient requirements on V CC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 16.Thermal calculation according to the PCB heatsink area. . . . . . . . . . . . . . . . . . . . . . . . . . 22Table 17.Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Table 18.SO-28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Table 19.Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27O b s o l et e Pr o du c t(s ) - O bs o l e t eP ro d u ct(s )VNQ830E-E List of figuresDoc ID 17459 Rev 14/28List of figuresFigure 1.Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 2.Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 3.Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 4.Status timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 5.Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 6.Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 7.Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 8.High level input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 9.Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 10.Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 11.Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 12.Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 13.On-state resistance vs T case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 14.On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 15.Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 16.Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 17.Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 18.Input low level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 19.Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 20.Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 21.Turn-on voltage slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 22.Turn-off voltage slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 23.I LIM vs T case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 24.Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 25.Application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 26.Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 27.Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 28.SO-28 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 29.Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 23Figure 30.SP-28 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 31.Thermal fitting model of a quad channel HSD in SO-28. . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 32.SO-28 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 33.SO-28 tube shipment (no suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 34.SO-28 tape and reel shipment (suffix “13TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26O b s o l et e Pr o du c t(s ) - O bs o l e t eP ro d u ct(s )Doc ID 17459 Rev 15/281 Block diagram and pin descriptionO b s o lDoc ID 17459 Rev 16/28Figure 2.Configuration diagram (top view)Table 2.Suggested connections for unused and not connected pinsConnection / pinStatus N.C.Output Input Floating XX XXT o groundXThrough 10K ΩresistorV CC 1,2GND 1,2INPUT1STATUS1STATUS2V CC 1,2V CC 3,4GND 3,4INPUT3STATUS3V CC 3,4V CC 3,4OUTPUT4OUTPUT4OUTPUT4OUTPUT3OUTPUT2OUTPUT2OUTPUT2OUTPUT1V CC 1,2OUTPUT3OUTPUT3OUTPUT1OUTPUT1INPUT2 STATUS4 INPUT4 1141528O b s o l et e Pr o du c t(s ) - O bs o l e t eP ro d u ct(s )Doc ID 17459 Rev 17/282 Electrical specifications2.1Absolute maximum ratingsStressing the device above the rating listed in T able 3 may cause permanent damage to thedevice. These are stress ratings only and operation of the device at these or any otherconditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.Table 3.Absolute maximum ratingSymbol ParameterValueUnit V CC DC supply voltage 41V- V CC Reverse DC supply voltage -0.3V- I GND DC reverse ground pin current -200mA I OUT DC output currentInternally limitedA - I OUT Reverse DC output current -6A I IN DC input current +/-10mA I STA TDC status current+/-10mAV ESDElectrostatic discharge (Human Body Model: R=1.5K Ω;C = 100pF)- INPUT - ST A TUS - OUTPUT - V CC4000400050005000V V V V E MAX Maximum switching energyL =0.5mH;R L =0Ω; V bat =13.5V; T jstart =150°C; I L =13.5A)64mJ P tot Power dissipation (per island) at T lead =25°C 6.25W T j Junction operating temperature Internally limited °C T c Case operating temperature - 40 to 150°C T stgStorage temperature- 55 to 150°CO b s o l et e Pr o du c t(s ) - O bs o l e te Pr o du ct(s )Doc ID 17459 Rev 18/282.2 Thermal data2.3 Electrical characteristicsValues specified in this section are for 8V < V CC < 36V; -40°C < T j < 150°C, unlessotherwise stated.(Per each channel)Figure 3.Current and voltage conventions1.V Fn = V CCn - V OUTn during reverse battery condition.Table 4.Thermal data (per island)Symbol ParameterValue Unit R thj-lead Thermal resistance junction-lead per chip 20°C/W R thj-amb Thermal resistance junction-ambient(one chip ON)60(1)1.When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick) connectedto all V CC pins. Horizontal mounting and no artificial air flow.45(2)2.When mounted on a standard single-sided FR-4 board with 6cm 2 of Cu (at least 35µm thick) connected toall V CC pins. Horizontal mounting and no artificial air flow.°C/W R thj-ambThermal resistance junction-ambient (two chips ON)46(1)30(2)°C/WTable 5.Power outputSymbol ParameterTest conditionsMin.Typ.Max.Unit V CC (1)Operating supply voltage 5.51336V V USD (1)Undervoltage shutdown 345.5V V OV (1)Overvoltage shutdown36V(1)O b s o l et e Pr o du c t(s ) - O bs o l e t eP ro d u ct(s )Doc ID 17459 Rev 19/28R ONOn-state resistanceI OUT =2A;T j =25°C I OUT =2A;V CC > 8V 65130m Ωm ΩI S (1)Supply currentOff-state; V CC = 13V; V IN = V OUT = 0V Off-state; V CC = 13V; V IN = V OUT = 0V; T j = 25°COn-state; V CC = 13V; V IN = 5V; I OUT = 0A1212540257µAµAmA I L(off1)Off-state output current V IN = V OUT = 0V 050µAI L(off2)Off-state output current V IN = 0V; V OUT = 3.5V-750µA I L(off3)Off-state output current V IN = V OUT = 0V; V CC = 13V; T j = 125°C5µA I L(off4)Off-state output currentV IN = V OUT = 0V; V CC = 13V; T j =25°C3µA1.Per island.Table 6.Switching (per each channel) (V CC =13V)Symbol ParameterTest conditionsMin.Typ.Max.Unit t d(on)T urn-on delay timeR L = 6.5Ω from V IN rising edge to V OUT = 1.3V -50-µs t d(off)T urn-off delay timeR L = 6.5Ω from V IN falling edge to V OUT = 11.7V -50-µs dV OUT /dt (on)T urn-on voltage slopeR L = 6.5Ω from V OUT = 1.3V to V OUT = 10.4V-See Figure 21-V/µs dV OUT /dt (off)T urn-off voltage slopeR L = 6.5Ω from V OUT = 11.7V to V OUT = 1.3V-See Figure 22-V/µsTable 7.V CC - output diodeSymbol Parameter Test conditions Min.Typ.Max.Unit V FForward on voltage- I OUT = 1.2A; T j = 150°C--0.6VTable 5.Power output (continued)Symbol ParameterTest conditionsMin.Typ.Max.UnitO b s o l et e P r odu c t(s ) - O bs o l et e Pr o du ct(s )Doc ID 17459 Rev 110/28Table 8.Status pin (per each channel)Symbol ParameterTest conditions Min.Typ.Max.Unit V STA T Status low output voltage I STAT = 1.6mA 0.5V I LSTA T Status leakage current Normal operation; V ST AT = 5V 10µA C STA T Status pin input capacitance Normal operation; V ST AT = 5V 100pF V SCLStatus clamp voltageI STAT = 1mA I STAT = - 1mA66.8- 0.78V VTable 9.Protections (per each channel)(1)1.To ensure long term reliability under heavy overload or short circuit conditions, protection and relateddiagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.Symbol ParameterTest conditionsMin.Typ.Max.Unit T TSD Shutdown temperature 150175200°CT R Reset temperature 135°C T hyst Thermal hysteresis 715°C t SDL Status delay in overload conditions T j > T TSD20µs I lim Current limitationV CC = 13V5.5V < V CC < 36V9.513.51818A A V demagTurn-off output clamp voltageI OUT =2A;L =6mH V CC -41V CC -48V CC -55VTable 10.Logic input (per each channel)SymbolParameterTest conditionsMin.Typ.Max.Unit V IL Low level input voltage 1.25V V IH High level input voltage 3.25V V I(hyst)Input hysteresis voltage 0.5V I IL Low level input current V IN = 1.5V 1µA I IH High level input current V IN = 3.25V 10µA V ICLInput clamp voltageI IN = 1mAI IN = -1mA66.8- 0.78V VO b s o l et e Pr o du c t(s ) - O bs o l et eP ro d u ct(s )分销商库存信息:STMVNQ830ETR-E VNQ830E-E。
ET903-e0三相多功能表说明书
ET903-e0三相多功能表说明书
一、概述ET903-e0三相多功能表是一种新型的在线检测三相电压、电流、功率及电能参数仪表,采用高精度电压电流采样模块及专用测量芯片,采用单片机技术,实现了在线监测。
本产品具有高可靠性、智能化和可编程性等特点而设计的多功能表,广泛应用于工业控制系统中的测量和控制。
二、工作原理及结构该仪表采用高性能单片机进行测量处理;具有自检功能;具有4~20mA模拟量输出以及多种通讯接口。
三、技术参数四、接线方式1.三相交流电压:AC 220V, AC 380/AC380V,三相直流电压:DC (±20) V (或AC380V) ; 5■三相电流电压测量范围(可由用户在面板上设定):AC 0~240V;AC200~240V; 6■允。
MAX3313EEUB-T中文资料
General DescriptionThe MAX3311E/MAX3313E are low-power, 5V EIA/TIA-232-compatible transceivers. All transmitter outputs and receiver inputs are protected to ±15kV using the Human Body Model, making these devices ideal for applications where more robust transceivers are required.Both devices have one transmitter and one receiver.The transmitters have a proprietary low-dropout trans-mitter output stage enabling RS-232-compatible opera-tion from a +5V supply with a single inverting charge pump. These transceivers require only three 0.1µF capacitors and will run at data rates up to 460kbps while maintaining RS-232-compatible output levels.The MAX3311E features a 1µA shutdown mode. In shutdown the device turns off the charge pump, pulls V- to ground, and the transmitter output is disabled.The MAX3313E features an INVALID output that asserts high when an active RS-232 cable signal is connected,signaling to the host that a peripheral is connected to the communication port.________________________ApplicationsDigital Cameras PDAs GPS POSTelecommunications Handy Terminals Set-Top BoxesFeatureso ESD Protection for RS-232-Compatible I/O Pins±15kV—Human Body Modelo 1µA Low-Power Shutdown (MAX3311E)o INVALID Output (MAX3313E)o Receiver Active in Shutdown (MAX3311E)o Single Transceiver (1Tx/1Rx) in 10-Pin µMAX PackageMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX________________________________________________________________Maxim Integrated Products1Pin Configurations19-1910; Rev 0; 1/01Ordering InformationFor price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642,or visit Maxim’s website at .Typical Operating CircuitM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND.............................................................-0.3V to +6V V- to GND................................................................+0.3V to -7V V CC + |V-|............................................................................+13V Input VoltagesTIN, SHDN to GND...............................................-0.3V to +6V RIN to GND......................................................................±25V Output VoltagesTOUT to GND................................................................±13.2V ROUT, INVALID to GND.....................…-0.3V to (V CC + 0.3V)Short-Circuit DurationTOUT to GND.........................................................ContinuousContinuous Power Dissipation10-Pin µMAX (derate 5.6mW/°C above +70°C)..........444mW Operating Temperature RangesMAX331_ECUB.................................................0°C to +70°C MAX331_EEUB..............................................-40°C to +85°C Junction Temperature.....................................................+150°C Storage Temperature Range............................-65°C to +150°C Lead Temperature (soldering, 10s)................................+300°CMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)TIMING CHARACTERISTICSM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 4_______________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, 0.1µF capacitors, transmitter loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)0428612101410001500500200025003000SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )-5-4-3-2-10123456050010001500200025003000TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )010001500500200025003000SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)Detailed DescriptionSingle Charge-Pump Voltage ConverterThe MAX3311E/MAX3313E internal power supply has a single inverting charge pump that provides a negative voltage from a single +5V supply. The charge pump operates in a discontinuous mode and requires a flying capacitor (C1) and a reservoir capacitor (C2) to gener-ate the V- supply.RS-232-Compatible DriverThe transmitter is an inverting level translator that con-verts CMOS-logic levels to EIA/TIA-232 compatible lev-els. It guarantees data rates up to 460kbps with worst-case loads of 3k Ωin parallel with 1000pF. When SHDN is driven low, the transmitter is disabled and put into tri-state. The transmitter input does not have an internal pullup resistor.RS-232 ReceiverThe MAX3311E/MAX3313E receiver converts RS-232signals to CMOS-logic output levels. The MAX3311E receiver will remain active during shutdown mode. The MAX3313E INVALID indicates when an RS-232 signal is present at the receiver input, and therefore when the port is in use.The MAX3313E INVALID output is pulled low when no valid RS-232 signal level is detected on the receiver input.MAX3311E Shutdown ModeIn shutdown mode, the charge pump is turned off, V- is pulled to ground, and the transmitter output is disabled (Table 1). This reduces supply current typically to 1µA.The time required to exit shutdown is less than 25ms.Applications InformationCapacitor SelectionThe capacitor type used for C1 and C2 is not critical for proper operation; either polarized or nonpolarized capacitors are acceptable. If polarized capacitors are used, connect polarity as shown in the Typical Operating Circuit . The charge pump requires 0.1µF capacitors. Increasing the capacitor values (e.g., by a factor of 2) reduces power consumption. C2 can beincreased without changing C1’s value. However, do not increase C1’s value without also increasing the value of C2 and C BYPASS to maintain the proper ratios (C1 to the other capacitors).When using the minimum 0.1µF capacitors, make sure the capacitance does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor ’s equivalent series resis-tance (ESR) usually rises at low temperatures and influ-ences the amount of ripple on V-.To reduce the output impedance at V-, use larger capacitors (up to 10µF).Bypass V CC to ground with at least 0.1µF. In applica-tions sensitive to power-supply noise generated by the charge pump, decouple V CC to ground with a capaci-tor the same size as (or larger than) charge-pump capacitors C1 and C2.Transmitter Output when ExitingShutdownFigure 1 shows the transmitter output when exiting shutdown mode. The transmitter is loaded with 3k Ωin parallel with 1000pF. The transmitter output displays no ringing or undesirable transients as the MAX3311E comes out of shutdown. Note that the transmitter is enabled only when the magnitude of V- exceeds approximately -3V.High Data RatesThe MAX3311E/MAX3313E maintain RS-232-compati-ble ±3.7V minimum transmitter output voltage even atMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX5Figure 1. Transmitter Output when Exiting Shutdown or Powering Up10µs/divSHDNTOUT5V/div1.5V/divTIN = GNDTIN = V CCM A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX 6_______________________________________________________________________________________high data rates. Figure 2 shows a transmitter loopback test circuit. Figure 3 shows the loopback test result at 120kbps, and Figure 4 shows the same test at 250kbps.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The MAX3311E/MAX3313E driver outputsand receiver inputs have extra protection against static discharge. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim ’s E versions keep working without latchup; whereas, competing products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the product family are characterized for protection to ±15kV using the Human Body Model.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 5 shows the Human Body Model, and Figure 6shows the current waveform it generates when dis-charged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing, not just RS-232 inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Figure 4. Loopback Test Results at 250kbps2µs/divTOUTTINROUTFigure 3. Loopback Test Results at 120kbps 5µs/divTOUTTINROUTMAX3311E/MAX3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX_______________________________________________________________________________________7Figure 5. Human Body ESD Test ModelFigure 6. Human Body Current WaveformPin Configurations (continued)Chip InformationTRANSISTOR COUNT: 278M A X 3311E /M A X 3313E±15kV ESD-Protected, 460kbps, 1µA,RS-232-Compatible Transceivers in µMAX Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.______________________________________________________________Pin Description。
RO3300E;中文规格书,Datasheet资料
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.Notes:Electrical Characteristics CharacteristicSymNotesMinimumTypicalMaximumUnitsCenter Frequency (+25 °C)Absolute Frequency f C 2,3,4,5403.475403.625MHz Tolerance from 403.55 MHzΔf C ±75kHz Insertion Loss IL 2,5,6 1.0 2.0dBQuality Factor Unloaded Q Q U 5,6,7811750 Ω Loaded Q Q L 768Temperature StabilityTurnover Temperature T O 6,7,8102540°C Turnover Frequencyf O f C Frequency Temperature CoefficientFTC 0.032ppm/°C 2Frequency AgingAbsolute Value during the First Year |f A |1≤10ppm/yr DC Insulation Resistance between Any Two Terminals5 1.0M ΩRF Equivalent RLC ModelMotional Resistance R M 5, 7, 910.5ΩMotional Inductance L M 33.5µH Motional Capacitance C M 4.6fF Shunt Static CapacitanceC O 5, 6, 9 4.2pF Test Fixture Shunt InductanceL TEST2, 736.9nHLid Symbolization (in addition to Lot and/or Date Codes)719 // YWWSStandard Reel Quantity Reel Size 7 Inch 10500 Pieces/Reel Reel Size 13 Inch 3000 Pieces/Reel•Ideal for European 403.55MHz Transmitters •Very Low Series Resistance •Quartz Stability•Complies with Directive 2002/95/EC (RoHS)The RO3300E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 403.55MHz. This SAW is designed specifically for remote-control and wireless security transmitters operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.Absolute Maximum Ratings RatingValueUnitsInput Power Level 0dBm DC voltage12VDC Storage Temperature Range -40 to +125°C Operating Temperature Range-40 to +105°C Soldering Temperature (10 seconds / 5 cycles max.)260°C403.55 MHzSAW ResonatorRO3300E1.Frequency aging is the change in f C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperaturesabove +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.2.The center frequency, f C , is measured at the minimum insertion loss point, IL MIN , with the resonator in the 50Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L TEST , is tuned for parallel resonance with C O at fC . Typically, f OSCILLATOR or f TRANSMITTER is approximately equal to the resonator f C .3.One or more of the following United States patents apply: 4,454,488 and 4,616,197.4.Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.5.Unless noted otherwise, case temperature T C =+25°C±2°C.6.The design, manufacturing process, and specifications of this device are subject to change without notice.7.Derived mathematically from one or more of the following directly measured parameters: f C , IL, 3dB bandwidth, f C versus T C , and C O .8.Turnover temperature, T O , is the temperature of maximum (or turnover) frequency, f O . The nominal frequency at any case temperature, T C , may be calculated from: f =f O [1-FTC (T O -T C )2]. Typically oscillator T O is approximately equal to the specified resonator T O .9.This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. Themeasurement includes parasitic capacitance with "NC” pads unconnected. Case parasitic capacitance is approximately 0.05pF. Transducer parallel capacitance can by calculated as: C P ≈C O -0.05pF.10.Tape and Reel Standard Per ANSI / EIA 481.PbEquivalent LC ModelTemperature CharacteristicsThe curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.PinConnection1NC 2Terminal 3NC 4NC 5Terminal 6NCPower TestElectrical ConnectionsThe SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NCindicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.Typical Test CircuitThe test circuit inductor, L TEST , is tuned to resonate with the static capacitance, C O , at F C .Electrical TestTypical Application CircuitsCase Dimensions Dimensionmm InchesMinNomMaxMinNomMaxA 2.87 3.0 3.130.1130.1180.123B 2.87 3.0 3.130.1130.1180.123C 1.12 1.25 1.380.0440.0490.054D 0.770.90 1.030.0300.0350.040E 2.67 2.80 2.930.1050.1100.115F 1.47 1.6 1.730.0580.0630.068G 0.720.850.980.0280.0330.038H 1.37 1.5 1.630.0540.0590.064I 0.470.600.730.0190.0240.029J1.171.301.430.0460.0510.056分销商库存信息: RFMRO3300E。
ET903操作说明书
ET903操作说明书一、功能说明1、双排显示室内/冰箱内部温度,显示范围:-50℃~120℃(-58℉~248℉)2、解析度:0.1℃(℉)3、准确度:0℃(32℉)<温度<70℃(158℉)时±1℃(±2℉),其他温度±2℃(±5℉)4、温度测量取样周期:10秒5、可记录最高/最低的室内/冰箱内温度,并可清除记录6、温度可切换显示℃/℉7、当温度超出测量范围时,显示---.-℃(℉)10、工作电压:1.5V AAA,刚上电时,LCD会全部显示2秒左右二、按钮功能A、高/低温度报警相关的按键:SET:1、按SET按钮切换显示高/低报警温度,顺序依次为正常显示→室内高温→室内低温→冰箱内高温→冰箱内低温→正常显示2、按住2S进入设置高/低报警温度UP:1、在设置模式下是加1功能,如果连按2S快加(每次加5)2、不在设置时,开启/关闭报警功能B、只与最高/最低温度记录相关的按键:MEM:切换显示最高/最低温度,按住2S清除最高/最低温度记录C、只与切换显示℃/℉相关的按键:℃/℉:切换显示℃/℉℃/℉:在任何时候,按此按键可清除高低温报警设置,连同其标志也清除三、操作说明1、温度高/低温报警功能a、按SET切换显示高/低温警报,顺序依次为:→冰箱内低温→正常显示b、按SET键2S进入设置,按UP增加设置的温度值,达到设定值后再按SET键确认设定值。
c、设置完后按UP开启/关闭警报d、当实际温度到达设定值(高温或低温)后,发出报警声音同时符号闪烁,直至实际温度低于设定值,上下箭头闪烁符号消失。
2、最高/最低温度记录按MEM查看双排最高/最低温度记录:最高→最低→正常按住MEM键2S清除最高/最低温度记录3、切换显示℃/℉按℃/℉键可切换显示℃/℉温度显示注:1、在各界面查看或在项目设置状态下,15S无按键操作自动返回正常温度显示界面。
2、温度报警音为:哔-哔。
3、温度的警报声音时间为30S(在无任何按键按下时)。
T-903产品介绍
T-903电力电缆故障测距仪§1 概述传统的模拟式电缆故障测距仪器利用普通荧光屏或储存管式荧光屏显示低压脉冲反射波形或记忆一段时间的故障点放电产生的电压波形,没有数据处理的能力,需要人工观察理解屏幕上的波形来估计故障距离,使用不方便、精度不高,此外仪器还存在着抗干扰能力差、易损坏、体积大、携带不方便等缺陷。
T-903电力电缆故障测距仪(以下简称T-903)是采用现代微电子技术研制成功的智能化电力电缆故障测距仪器。
该仪器具有低压脉冲反射和脉冲电流两种工作方式。
低压脉冲反射工作方式用于检测电缆的低电阻与断线故障,以及测量各种电缆的长度或波速度。
脉冲电流工作方式用于电缆的高阻与闪络型故障测距。
独特的软件与硬件设计,使得T-903有以下特点:1.智能化程度高。
能自动判断故障点是否放电,计算并显示故障距离;有波形存储、比较、放大及操作提示等功能;并可根据不同的电缆绝缘介质整定波速度;提供两个可移动光标,可测量波形上任意两点之间的距离。
2.采用线性电流耦合器测量流过地线的脉冲电流信号,与传统的闪测仪利用电阻电容分压器测量脉冲电压信号的方法相比,接线简单、方便;把仪器与高压回路从电气上隔离开来,安全性特别好。
3.采用可充电电池供电,体积小、重量轻、携带方便。
避免了传统的闪测仪中存在的因与高压回路共用交流电源造成的干扰问题,保证了仪器在强电磁干扰环境下,在高压回路的球间隙击穿或故障点放电时可靠地工作。
4.采用大屏幕点阵式液晶显示器,显示出的波形及故障距离等信息稳定清晰,可调节对比度,并具有背光功能,以在不同的外部光线条件下,获得最佳显示效果。
5.测量精度高,在被测电缆长度小于1000m时绝对误差小于±1m;在电缆长度大于1000m时,相对误差小于0.5%。
6.测量盲区小,能测定出电缆出头10m处的故障。
7.配有微型打印机接口,可以方便地打印出屏幕显示的波形、数据等信息,便于保存资料。
T-903采用的低压脉冲反射法与脉冲电流法原理在第三章与第四章已介绍过。
ETTO903-E系列+V1版本协议(modbus)V1.02+20180511(1)
0.01kWh
RO
0.01kWh
RO
0.01kWh
RO
0.01kvarh RO
起始地址 xxxx
第 6 页 共 22 页
数据 xxxx
字节数
1
子机错误应答
数据含义 字节数
电力智能测控仪表专家 电力测控领域专业制造商
2
2
功能码 0x86
1
异常码列表 xx 1
5.3 与功能码 10 对应的数据区格式:
主机发送
数据含义 字节数
功能码 起始地址 寄存器个数 数据字节数
0x10 xxxx N 个寄存器
0x80AA 0x80AC 0x80AE 0x80B0 0x80B2 0x80B4 0x80B6 0x80B8 0x80BA 0x80BC 0x80BE 0x80C0 0x80C2 0x80C4 0x80C6
B 相反向有功总电能 B 相组合无功 1 总电能 B 相组合无功 2 总电能 B 相一象限无功总电能 B 相二象限无功总电能 B 相三象限无功总电能 B 相四象限无功总电能 B 相正向视在总电能 B 相反向视在总电能
保留 保留 保留 保留
B 相组合有功总电能 B 相正向有功总电能
RO
2
0.01kvarh RO RO RO RO RO
I32 2 2 2 2 2
0.01kvarh RO RO RO RO RO
I32 2 2 2 2 2
0.01kVAh RO I32 2
RO
2
RO
2
RO
2
RO
2
0.01kVAh RO I32 2
RO
2
RO
2
RO
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A3903DescriptionThe A3903 is a low voltage bidirectional DC motor driver with a typical input voltage range of 3 to 5.5 V and output currents up to 500 mA. The unique output full-bridge incorporates source-side linear operation to allow a constant voltage across the motor coil. This regulated output minimizes motor voltage change due to I × R DS(on) variation and battery voltage tolerance.Logic input pins are provided to control the motor direction of rotation, brake, and standby (< 500 nA supply current) modes and to allow optional PWM of the sink drivers. Internal protection circuitry includes thermal shutdown, undervoltage lockout, and crossover current (shoot-through) protection.The A3903 is supplied in a 2 mm x 2 mm, 0.55 mm nominal height, 8-lead DFN package, with exposed thermal pad (package suffix EE). This small footprint package is lead (Pb) free, with 100% matte tin leadframe plating.Applications include:▪ Robotic actuators and pumps ▪ Portable printers/scanners ▪ Camera lens/shutter control ▪ Battery powered toys and games▪ Low noise test instrumentation systemsFeatures and Benefits▪ Constant voltage operation (adjustable)▪ 500 mA output peak rating ▪ Low power standby mode▪ Small 2 mm × 2 mm, 0.55 mm nominal height DFN package▪ Typical input voltage range of 3 to 5.5 V▪ Adjustable constant voltage or PWM operation ▪ Less than 500 nA standby mode current ▪–40 to 85 operating temperature rangePackage: 8 Contact DFN (suffix EE)Typical ApplicationLow V oltage DC Motor DriverSelection GuidePart Number PackingA3903EEETR-T Tape and reel, 3000 pieces/reelAbsolute Maximum RatingsParameter Symbol Conditions Min.Typ.Max.Units Supply Voltage V DD––6V Logic Input Voltage Range V IN–0.3–6V Output Current I OUT500mA Junction Temperature T J––150°C Storage Temperature Range T stg–40–150°C Operating Temperature Range T A Range E–40–85°CFunctional Block DiagramOUTB GND VDD OUTA IN2IN1VREF VSET12348765Terminal DiagramNumberName Description1OUTB Motor terminal 2GND Ground3VDD Input supply 4OUTA Motor terminal5VSET Select source-side output voltage 6VREF Bandgap reference 7IN1Control logic input 8IN2Control logic inputR2R1(Top View)THERMAL CHARACTERISTICSCharacteristicsSymbol Test ConditionsRating Unit Package Thermal Resistance *R θJAMeasured on 4-layer board based on JEDECstandard49°C/W*Additional thermal information is available on the Allegro Web site.ELECTRICAL CHARACTERISTICS at T A =25°C, and V DD = 3 to 5.5 V, unless otherwise notedCharacteristics Symbol Test Conditions Min.Typ.Max.UnitsSupply CurrentI DD –0.52mA I DDSTB Standby mode ––500nA UVLO Enable Threshold V DDUVLO V DD rising–– 2.6V UVLO HysteresisV UVHYS –120–mV Thermal Shutdown Temperature T JTSD Temperature increasing.–165–°C Thermal Shutdown Hysteresis T JHYS Recovery = T JTSD – T JHYS –15–°C Logic Input Low Level V IL ––V DD x0.3V Logic Input High Level V IH V DD x 0.7––V Input Hysteresis V HYS –V DD x 7%–mV Logic Input Current I INV IN = 0 to 5 V–101μA Output DriverSink Driver Output Resistance R DS V DD = 5 V, I OUT = 500 mA –0.6–ΩV DD = 3 V, I OUT = 500 mA –0.8–ΩSource Driver On Resistance R DS(on)V DD = 5 V, I OUT = 500 mA –0.6–ΩV DD = 3 V, I OUT = 500 mA–0.65–ΩBandgap ReferenceVBG1.235 1.285 1.335V V OUT Accuracy (V OUTA –V OUTB )V OUTV SET = 1.2 V4.608 4.8 4.992V V SET = 825 mV 3.135 3.3 3.465V V SET = 500 mV1.8422.16VFunctional DescriptionVoltage Regulation The A3903 regulates the voltage across the motor coil. The voltage across the OUTA and OUTB terminal is sensed and compared to an internal threshold voltage. The high-side switch will be driven in linear mode to keep the applied voltage maintained at the calculated level, as follows:V OUT = 4 × V REF (R2 / [R1+R2]) ,where V REF (VBG) is 1.285 V typical.Then, for forward mode:V OUT = V OUTA – V OUTB ,and for reverse mode:V OUT = V OUTB – V OUTA .The alternative method is to provide a tightly regu-lated voltage to the motor supply pin and run the source and sink drivers as switches. The voltage drop across these switches will vary linearly with tempera-ture and current, therefore the voltage across the motor coil also will vary. The A3903 will eliminate these sources of error for a system where controlling the motor voltage is the optimum means of control. Thermal Shutdown The A3903 will disable the out-puts if the junction temperature, T J , reaches 165°C. There is 15°C of hysteresis, so when the junction temperature drops below 150°C, the device will begin to operate normally. Dropout Mode The source and sink drivers have a total R DS(on) of approximately 1.2 Ω total. When the motor supply voltage, V DD, drops too low compared to the regulated value, the IC enters dropout mode. In this case, the voltage across the motor coil will be:V MOTOR = V DD – I LOAD (R DS(sink) + R DS(src))Brake Mode When both inputs are high, the A3903 goes into high-side brake mode (turns on both source drivers). There is no protection during braking, so care must be taken to ensure that the peak current does not exceed the absolute maximum current, I OUT. Standby Mode To minimize battery drain, standby mode will turn off all of the circuitry and draw typi-cally less than 100 nA from the VDD line. There will be a very short delay, approximately 2 μs, before enabling the output drivers after release of standby mode.Power Dissipation. Power can be approximated based on the below three components:P D(src) = I LOAD (V DD –V REG) ,P D(sink) = I LOAD × R DS(sink) , andP bias = V DD × I DD.Control Logic TableSettingsResulting Mode IN1IN2OUTA OUTB00Off Off Standby01Low V REG Reverse10V REG Low Forward11High High BrakeApplication InformationA3903 Evaluation BoardLayoutThe printed circuit board should use a heavy ground-plane for optimum thermal performance. The A3903 must be soldered directly onto the board. On the underside of the A3903 package is an exposed pad, which provides a path for enhanced thermal dissipa-tion. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias are used to transfer heat to other layers of the PCB. Thermal vias should not have any thermal relief and should be con-nected to internal layers, if available, to maximize the dissipation area.Grounding In order to minimize the effects of groundbounce and offset issues, it is important to have a low impedance, single-point ground, known as a star ground , located very close to the device. By making the connection between the exposed thermal pad and the groundplane directly under the A3903, that area becomes an ideal location for a star ground point. A low impedance ground will prevent ground bounceR1CVDD 10 M Fduring PWM operation and ensure that the supply voltage remains stable at the input terminal. Bulk capacitance is often located at a non-ideal distance from the device. If the recommended capacitance of 10 μF cannot be located very close to the supply ter-minal on the A3903, it is recommended that a 0.1 μF capacitor be placed as close to the VDD terminal as possible to provide a path for transient currents.PWM OperationIn some applications current control may be desired. Pulse width modulating the inputs will allow the output current to be regulated. When external PWM control is used, the VREF pin should be connected directly to the VSET pin. This effectively disables voltage control on the source driver, and allowsmaximum current to flow through the driver. Currentis then controlled using enable chopping , described below.Enable Chopping By PWMing the logic inputsbetween enable and brake modes, the current in the motor winding can be controlled. It is accomplished by holding one input high while PWMing the other input. During the on-cycle, current flows in the bridge consistent with the direction programmed on the input pins. During the off-cycle, the A3903 enters brake mode. Enable chopping is illustrated in figure 1. Current in the motor winding is controlled by chang-ing the duty cycle on the PWM input. As shown in figure 2, the average current is still positive but, because the duty cycle is less, the average current is much lower.Figure 1. Enable chopping. Forward direction, output duty cycle 90%.Figure 2. Enable chopping. Forward direction, output duty cycle 20%.Symbol Parameter Units/DivisionC1V IN1 2 V C2V IN2 2 V C3I OUT 100 mA t time 20 μs tC3V IN1C1C2V IN2I OUTSymbol Parameter Units/DivisionC1V IN1 2 V C2V IN2 2 V C3I OUT 100 mA t time 20 μstC1C2V IN1C3V IN2I OUTPackage EE, 8-contact DFNA Terminal #1 mark areaB Exposed thermal pad (reference only, terminal #1identifier appearance at supplier discretion)All dimensions nominal, not for tooling use(reference JEDEC MO-229UCCD)Dimensions in millimetersExact case and lead configuration at supplier discretion within limits shownC Reference land pattern layout (reference IPC7351SON50P200X200X100-9M);All pads a minimum of 0.20 mm from all adjacent pads; adjust asnecessary to meet application process requirements and PCB layouttolerances; when mounting on a multilayer PCB, thermal vias at theexposed thermal pad land can improve thermal dissipation (referenceEIA/JEDEC Standard JESD51-5)PCB Layout Reference ViewC0.900.325 ±0.050D Coplanarity includes exposed thermal pad and terminalsCopyright ©2007-2010, Allegro MicroSystems, Inc.The products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such de p ar t ures from the detail spec i f i c a t ions as may be required to per-mit improvements in the per f or m ance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro’s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.The in f or m a t ion in c lud e d herein is believed to be ac c u r ate and reliable. How e v e r, Allegro MicroSystems, Inc. assumes no re s pon s i b il i t y for its use; nor for any in f ringe m ent of patents or other rights of third parties which may result from its use.For the latest version of this document, visit our website:分销商库存信息: ALLEGROA3903EEETR-T。