高中数学第二章统计2-1随机抽样2-1-1简单随机抽样课时作业新人教B版必修3
人教b版数学必修三:2.1.1《简单随机抽样》导学案(含答案)
第二章统计§2.1随机抽样2.1.1简单随机抽样自主学习学习目标1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.自学导引1.总体与个体一般把所考察对象的某一数值指标的________________看作总体,构成总体的____________作为个体,从总体中抽出若干个体所组成的集合叫做________.2.随机抽样在抽样时要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样的条件的抽样是随机抽样.3.简单随机抽样一般地,从元素个数为N的总体中____________抽取容量为n的样本,如果每一次抽取时总体中的各个个体有________的可能性被抽到,这种抽样方法叫做简单随机抽样,这样抽取的样本叫做________________.4.常用的简单随机抽样方法有________和____________.对点讲练知识点一简单随机抽样的概念例1下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.点评判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.变式迁移1下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(3)从一批2 000个灯泡中逐个抽取20个进行质量检查.知识点二抽签法的应用例2某单位支援西部开发,现从报名的18名志愿者中选取6名组成志愿小组到西藏工作3年.请用抽签法设计抽样方案.点评抽签法注意:一是编号;二是搅拌均匀;三是依次抽取.变式迁移2从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.知识点三随机数表法的应用例3设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数表法抽取该样本的步骤.点评利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.变式迁移3要从某汽车厂生产的3 000辆汽车中随机抽取10辆进行测试.请选择合适的抽样方法,并写出抽样过程.抽签法与随机数表法的相同点与不同点相同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个体数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.课时作业一、选择题1.我校期中考试后,为了分析高一年级1 220名学生的学习成绩,从中随机抽取了50名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 220名学生是总体B.每个学生是个体C.50名学生是所抽取的一个样本D.样本容量是502.在简单随机抽样中,某个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样3.下列调查中属于抽样调查的是()①每隔10年进行一次人口普查②某商品的质量优劣③某报社对某个事情进行舆论调查④高考考生的查体A.②③B.①④C.③④D.①②4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从某厂生产的3 000件产品中抽取10件进行质量检验D.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验5.用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②二、填空题6.福利彩票的中奖号码是从1~36中选出7个号码来按规则确定中奖情况,这种从36个中选出7个号码的抽样方法是________.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为________.8.我班有50名学生,学号从01到50,数学老师在上统计课时,运用随机数表法选取5名学生提问.老师首先选定随机数表中的第21行第29个数2开始提问,然后向右走,到头后从下一行返回,即下一行是从左向右,再下一行从右开始,如果不在50以内则跳过去,那么被提问的5名学生是________________.附:随机数表的第21行第21个数开始到第22行的第10个数 (44227884260433460952)68079706577457256576…三、解答题9.现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.10.某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?第二章统计§2.1随机抽样2.1.1简单随机抽样自学导引1.全体构成的集合每一个元素样本2.可能被抽到均等的3.不放回地相同简单随机样本4.抽签法随机数表法对点讲练例1解(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.变式迁移1解(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为它是有放回抽样;(3)满足简单随机抽样的四个特点,故是简单随机抽样.例2解按抽签法的一般步骤进行设计.第一步:将18名志愿者编号,号码为1,2, (18)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将所有号签放入一个箱子中,充分搅匀;第四步:依次取出6个号码,并记录其编号;第五步:将对应编号的志愿小组成员选出.变式迁移2 解 (1)先将20名学生进行编号,从1编到20;(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码对应学生,即得样本.例3 解 其步骤如下:第一步:将100名教师进行编号:00,01,02, (99)第二步:给出的随机数表中是5个数一组,使用各个5位数组的前2位,从各数组中任选一个前2位小于或等于99的数作为起始号码、例如从第1行的第3组数开始.第三步:依次向右读可以得到40,48,60,16,29,61,43,27,26,84,78,39.第四步:以上号码对应的12名教师就是要抽取的对象.变式迁移3 解 第一步:将3 000辆汽车编号,号码是0000,0001,…,2999; 第二步:给出的随机数表中是5个数一组,使用各个5位数组中的前4位,从各数组中任选一个前4位小于或等于2999的数作为起始号码,例如从第二行的第4组数开始;第三步:依次向右读,可以得到2691,2778,2037,2104,1290,2881,1212,2298,1321,2624. 课时作业1.D [总体、个体、样本都是学生的成绩,样本容量为50.]2.B [简单随机抽样每个个体被抽取的可能性相等.]3.A4.B5.B6.抽签法7.120解析 ∵30N=0.25,∴N =120. 8.26 04 33 46 09解析 用随机数法进行抽样,关键是弄清所选定的起始数码和读数的方向,还要弄清编号的位数与随机数表的构成.9.解 (1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签,于是和这5个号签上的号码对应的5名学生就构成了一个样本.10.解 有两种方法:方法一 (抽签法)将100个轴进行编号1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,可将这些号签放在一起,并进行均匀搅拌,接着依次抽取10个号签,然后测量这10个号签对应的轴的直径.方法二 (随机数表法)将100个轴进行编号00,01,…,99,据课本上的随机数表,如取第6行第2组数开始选取10个,13,57,74,32,98,55,42,59,66,36,然后测量这10个编号对应的轴的直径.。
人教版B版数学必修③第二章《简单随机抽样》说课稿
人教版B版数学必修③第二章《简单随机抽样》说课稿各位老师:大家好!我今天说课的题目是《简单随机抽样》,内容选自于新课标实验教材(人教版B版)必修③第二章《统计》的第一课时.下面我将从教材分析、教法分析、学法分析、教学过程分析、教学反思与评价等五大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用(1)“简单随机抽样”是“随机抽样”的基础 ,“随机抽样”又是“统计学”的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础.(2)同时在小学与初中已接触过简单初步的统计知识后在高中再次安排的这一章内容,使学生对统计知识的理解与掌握呈螺旋性上升一个台阶.(3)还有就是课时的增加也映出地位的加强.2.教学目标分析(1)知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)过程与方法:①能够从现实生活中提出具有一定价值的统计问题;②在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)情感,态度和价值观:通过对现实生活中统计问题的提出,体会数学知识与现实生活的紧密联系,认识数学的重要性.3.教学的重点和难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法). 难点:简单随机抽样的定义和特点.二、教法分析1. 为了充分让学生分析、判断、自主学习、合作交流,我采用讨论发现法教学,并对学生渗透“从特殊到一般”的学习方法.2. 由于本节课内容实例多,信息容量大,我采用多媒体辅助教学,节省时间,提高教学效率,也能大大提高学生的学习兴趣.三、学法分析1.建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系.2. 教学过程是教师和每一个学生积极参与下进行集体认识的过程,教为主导,学为主体,因此要启发学生主动学习,启发引导学生实践思维过程,使其自得知识,主动发展思维和能力.四、教学过程分析(一)通过笑话,引出新章妈妈叫小明去买火柴,嘱咐小明说:“你要挑一挑,上次你买的火柴好多划不着。
高中数学必修三习题:第二章2.1-2.1.1简单随机抽样含答案
第二章统计2.1 随机抽样2.1.1 简单随机抽样A级基础巩固一、选择题1.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.答案:D2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )A.总体是240名B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.答案:D3.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36% B.72%C.90% D.25%解析:3640×100%=90%.答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:根据简单随机抽样的定义知个体a两次被抽到的可能性相等,均为110.答案:A5.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①②B.①③C.②③D.③解析:根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.答案:C二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.解析:由抽签法的步骤知,正确顺序为④①③②⑤.答案:④①③②⑤7.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.解析:30个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是___________________________________________________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 3281 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 3596 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 3216 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 7080 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 4982 96 59 26 94 66 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,39三、解答题9.某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解:方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,符号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.B 级 能力提升1.(2015·湖北卷)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石.答案:B2.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.解析:依题意有30N=25%,解得N =120. 答案:1203.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01~30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1~20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
高中数学(新人教A版)必修第二册同步习题:简单随机抽样(同步习题)【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样基础过关练题组一统计学的有关概念1.下列调查中,可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命2.为了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是,样本是,样本量是.3.某学校根据高考考场要求,需要给本校45个高考考场配备监控设备,该校高考前购进45套监控设备,现需要检查这批监控设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.深度解析题组二 简单随机抽样4.下列几个抽样中,简单随机抽样的个数是( )①仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;②某班从50名同学中选出5名数学成绩最优秀的同学代表本班参加数学竞赛;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出7个号签;④为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾.A.0 B .1 C .2 D .35.(2020河南信阳高一下学期第一次月考)用简单随机抽样方法从含有10个个体的总体中抽取一个容量为3的样本,则某一特定个体“第一次被抽到”“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310 6.在总体量为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为25%,则N 的值为 .题组三 抽签法和随机数法7.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验8.为迎接2022年北京冬季奥运会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.9.为检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.试利用随机数法抽取样本,并写出抽样过程.题组四总体平均数与样本平均数10.下列判断正确的是()A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数C.样本平均数一定等于总体平均数D.样本量越大,样本平均数越接近总体平均数11.用抽签法抽取一个容量为5的样本,样本数据分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.612.从有400人参加的某项运动的达标测试中,通过简单随机抽样抽取50人的成绩,统计数据如下表,则这400人成绩的平均数的估计值是.分数54321人数5152055答案全解全析基础过关练1.C A.不能用普查的方式进行调查,因为这种试验具有破坏性;B.用普查的方式进行调查无法完成;C.可以用普查的方式进行调查;D.试验具有破坏性,且需要耗费大量的时间,普查在实际生产中无法实现.2.答案总体;所选30人的会考成绩;30解析为了强调调查目的,由总体、样本、样本量的定义知,70人的会考成绩的全体是总体,样本是所选30人的会考成绩,样本量是30.3.解析必须全部检查,即普查.因为高考是一件非常严肃、责任重大的事情,对高考的要求非常严格,所配设备必须全部合格,且这批设备数量较少,全部检查的方案是可行的,所以应该进行全部检查,这样可确保万无一失.深度剖析全面调查与抽样调查:方法特点全面调查抽样调查优点所调查的结果比较全面、系统1.迅速、及时;2.节约人力、物力和财力缺点耗费大量的人力、物力和财力获取的信息不够全面、系统适用范围1.调查对象很少;2.要获取详实、系统和全面的信息1.大批量检验;2.破坏性试验;3.不需要全面调查等4.B①不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;②不是简单随机抽样,因为每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;③是简单随机抽样,因为总体中的个体数是有限的,且是从总体中逐个进行抽取的,每个个体被抽到的可能性相同;④不是简单随机抽样,因为被抽取的总体中的个体数不确定.综上,只有③是简单随机抽样..5.A简单随机抽样中每个个体被抽取的机会均等,都为1106.答案120=25%=0.25,解得N=120.解析根据题意,得30N7.B A中总体容量较大,样本容量也较大,不适合用抽签法;B中总体容量较小,样本容量也较小,且同厂生产的两箱产品可视为搅拌均匀了,可用抽签法;C中甲、乙两厂生产的两箱产品质量可能差别较大,不能满足搅拌均匀的条件,不能用抽签法;D中总体容量较大,不适合用抽签法.8.解析①将30名志愿者编号,号码分别是1,2, (30)②将号码分别写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签;③将小纸片放入一个不透明的盒里,充分搅拌;④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.9.解析①将800袋袋装牛奶分别编号,为1,2,3, (800)②利用随机数工具产生1~800范围内的整数随机数;③把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需的50袋.10.D由样本平均数的定义可知,样本量越大,其平均数越接近总体平均数.11.C样本的平均数为2+4+5+7+9=5.4.512.答案 3.2解析抽取的50人的成绩的平均数为1×(5×5+4×15+3×20+2×5+1×5)=3.2,所以这50400人成绩的平均数的估计值是3.2.。
高中数学教材人教B版目录(详细版).doc
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
高一数学(2.1.1简单随机抽样)
第四步,按照一定的规则抽取样本. 即抽取的编号为L,精L选+课k件,L+2k,…,L+(n-1)k 19
例:如果用系统抽样从605件产品中抽取 60件进行质量检查,由于605件产品不能 均衡分成60部分,对此应如何处理?
先从总体中随机剔除5个个体,再均衡 分成60部分.
①用分层抽样,②精选用课件简单随机抽样. 37
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
思考:该项调查应采用哪种抽样方法 进行?
思考:按比例,三个年龄层次的职 工分别抽取多少人?
35岁以下25人,35岁~49岁56人,
50岁以上19人. 精选课件
30
思考:简单随机抽样、系统抽样和分 层抽样既有其共性,又有其个性,根 据下表,你能对三种抽样方法作一个 比较吗?
精选课件
31
方法 类别 简单随 机抽样
精选课件
35
例2 某公司共有1000名员工,下设 若干部门,现用分层抽样法,从全体员 工中抽取一个容量为80的样本,已知策 划部被抽取4个员工,求策划部的员工人 数是多少?
50人.
精选课件
36
例3 某公司在甲、乙、丙、丁四个 地区分别有150个、120个、180个、150 个销售点,公司为了调查产品的销售情 况,需从这600个销售点中抽取一个容 量为100的样本,记这项调查为①;在 丙地区中有20个特大型销售点,要从中 抽取7个调查其销售收入和售后服务等 情况,记这项调查为②,完成这两项调 查宜分别采用什么方法?
注意
1.系统抽样也是等概率抽样,即每个
个体被抽到的概率是相等的,从而保
证了抽样的公平性.
人教B版高中数学目录(必修选修)
人教B版高中数学目录(必修+选修) 1.1.1组成空间几何体的大体元素高中数学(B版)必修一 1.1.2棱柱、棱锥和棱台的结构特点第一章集合 1.1.3圆柱、圆锥、圆台和球 1.1 集合与集合的表示方式 1.1.4投影与直观图 1.1.1 集合的概念 1.1.5三视图 1.1.2 集合的表示方式 1.1.6棱柱、棱锥、棱台和球的表面积 1.2 集合之间的关系与运算 1.1.7柱、锥、台和球的体积 1.2.1 集合之间的关系 1.2点、线、面之间的位置关系1.2.2 集合的运算 1.2.1平面的大体性质与推论整合提升 1.2.2空间中的平行关系(第1课时) 第二章函数空间中的平行关系(第2课时) 2.1 函数 1.2.3空间中的垂直关系(第1课时) 2.1.1 函数空间中的垂直关系(第2课时) 2.1.2 函数的表示方式综合测试时期性综合评估检测(一) 2.1.3 函数的单调性第2章平面解析几何初步 2.1.4 函数的奇偶性 2.1平面直角坐标系中的大体公式 2.2 一次函数和二次函数 2.2直线的方程 2.2.1 一次函数的性质与图象2.2.1直线方程的概念与直线的斜率 2.2.2 二次函数的性质与图象2.2.2直线方程的几种形式 2.2.3 待定系数法 2.2.3两条直线的位置关系 2.3 函数的应用(I) 2.2.4点到直线的距离 2.4 函数与方程 2.3 圆的方程 2.4.1 函数的零点 2.3.1圆的标准方程 2.4.2 求函数零点近似解的一种计算方式2.3.2圆的一样方程——二分法2.3.3直线与圆的位置关系整合提升 2.3.4圆与圆的位置关系第三章大体初等函数(I) 2.4空间直角坐标系 3.1 指数与指数函数综合测试 3.1.1 实数指数幂及其运算高中数学(B版)必修三3.1.2 指数函数 3.2 对数与对数函数一章算法初步 3.2.1 对数及其运算 1.1 算法与程序框图 3.2.2 对数函数- 1.1.1 算法的概念 3.2.3 指数函数与对数函数的关系 1.1.2 程序框图 3.3 幂函数 1.1.3 算法的三种大体逻辑结构和框图表示 3.4 函数的应用(Ⅱ) 1.2 大体算法语句整合提升 1.2.1 赋值、输入和输出语句 1.2.2 条件语句高中数学(B版)必修二 1.2.3 循环语句第1章立体几何初步 1.3 中国古代数学中的算法案例 1.1空间几何体单元回眸第二章统计第一章大体初等函数(2) 2.1 随机抽样 1.1 任意角的概念与弧度制 2.1.1 简单随机抽样 1.1.1 角的概念的推行 2.1.2 系统抽样显示全数信息 1.1.2 弧度制和弧度制与角度制的换算第一章算法初步 1.2 任意角的三角函数 1.1 算法与程序框图 1.2.1 三角函数的概念 1.1.1 算法的概念 1.2.2 单位圆与三角函数线 1.1.2 程序框图 1.2.3 同角三角函数的大体关系式 1.1.3 算法的三种大体逻辑结构和框图表示 1.2.4 诱导公式 1.2 大体算法语句 1.3 三角函数的图象与性质 1.2.1 赋值、输入和输出语句 1.3.1 正弦函数的图象与性质 1.2.2 条件语句 1.3.2 余弦函数、正切函数的图象与性质1.2.3 循环语句 1.3.3 已知三角函数值求角 1.3 中国古代数学中的算法案例单元回眸单元回眸第二章平面向量第二章统计 2.1 向量的线性运算 2.1 随机抽样 2.1.1 向量的概念 2.1.1 简单随机抽样2.1.2 向量的加法 2.1.2 系统抽样 2.1.3 向量的减法 2.1.3 分层抽样2.1.4数乘向量 2.1.4 数据的搜集 2.1.5 向量共线的条件与轴上向量坐标运 2.2 用样本估量整体算 2.2.1 用样本的频率散布估量整体的散布 2.2 向量的分解与向量的坐标运算 2.2.2 用样本的数字特点估量整体的数字特2.2.1 平面向量大体定理征 2.2.2 向量的正交分解与向量的直角坐标 2.3 变量的相关性运算 2.3.1 变量间的相关关系 2.2.3 用平面向量坐标表示向量共线条件 2.3.2 两个变量的线性相关 2.3 平面向量的数量积单元回眸 2.3.1 向量数量积的物理背景与概念第三章概率 2.3.2 向量数量积的运算律 3.1 事件与概率2.3.3 向量数量积的坐标运算与气宇公式 3.1.1 随机现象 2.4 向量的应用 3.1.2 事件与大体事件空间 2.4.1 向量在几何中的应用3.1.3 频率与概率 2.4.2 向量在物理中的应用 3.1.4 概率的加法公式单元回眸 3.2 古典概型第三章三角恒等变换 3.2.1 古典概型 3.1和角公式 3.3 随机数的含义与应用 3.1.1 两角和与差的余弦 3.3.1 几何概型 3.1.2 两角和与差的正弦 3.3.2 随机数的含义与应用3.1.3 两角和与差的正切 3.4 概率的应用 3.2 倍角公式和半角公式单元回眸 3.2.1 倍角公式 3.2.2 半角的正弦、余弦和正切 3.3 三角函数的积化和差与和差化积高中数学(B版)必修四单元回眸 1.3.1 推出与充分条件、必要条件 1.3.2 命题的四种形式第1章综合测试题高中数学(B版)必修五第2章圆锥曲线与方程第一章解三角形 2.1 曲线与方程 1.1 正弦定理和余弦定理 2.1.1 曲线与方程的概念 1.1.1 正弦定理 2.1.2 由曲线求它的方程、由方程研究曲线 1.1.2 余弦定理的性 1.2 应用举例 2.2 椭圆温习与小结 2.2.1 椭圆的标准方程第一章综合测试 2.2.2 椭圆的几何性质第二章数列 2.3 双曲线 2.1 数列 2.3.1 双曲线的标准方程 2.1.1 数列 2.3.2 双曲线的几何性质 2.1.2 数列的递推公式(选学) 2.4 抛物线 2.2 等差数列 2.4.1 抛物线的标准方程 2.2.1 等差数列 2.4.2 抛物线的几何性质 2.2.2 等差数列的前n项和 2.5 直线与圆锥曲线 2.3 等比数列第2章综合测试题 2.3.1 等比数列时期性综合评估检测(一) 2.3.2 等比数列的前n项和第3章空间向量与立体几何温习与小结 3.1 空间向量及其运算第二章综合测试3.1.1 空间向量的线性运算第三章不等式 3.1.2 空间向量的大体定理 . 3.1 不等关系与不等式 3.1.3 两个向量的数量积 3.1.1 不等关系3.1.4 空间向量的直角坐标运算 3.1.2 不等式的性质 3.2 空间向量在立体几何中的应用 3.2 均值不等式 3.2.1 直线的方向向量与直线的向量方程 3.3 一元二次不等式及其解法 3.2.2 平面的法向量与平面的向量表示 3.4 不等式的实际应用 3.2.3 直线与平面的夹角 3.5 二元一次不等式(组)与简单的线性规3.2.4 二面角及其气宇划问题3.2.5 距离 3.5.1 二元一次不等式(组)与简单的线性计划问题高中数学(B版)选修1-2 3.5.2 简单的线性计划温习与小结目录:第三章综合测试第一章统计案例 1.1 独立性查验 1.2 回归分析高中数学(B版)选修1-1 单元回眸第1章经常使用逻辑用语第二章推理与证明 1.1 命题与量词2.1 合情推理与演绎推理 1.2 大体逻辑联结词 2.2 直接证明与间接证明 1.3 充分条件、必要条件与命题的四种形式单元回眸第三章数系的扩充与复数的引入 3.2.3 直线与平面的夹角 3.1 数系的扩充与复数的引入 3.2.4 二面角及其气宇 3.2 复数的运算 3.2.5 距离单元回眸第3章综合测试题第四章框图时期性综合评估检测(二) 4.1 流程图 4.2 结构图高中数学人教B选修2-2 单元回眸第一章导数及其应用 1.1 导数高中数学(人教B)选修2-1 1.1.1 函数的平均转变率第1章经常使用逻辑用语 1.1.2 瞬时速度与导数 1.1 命题与量词 1.1.3 导数的几何意义 1.2 大体逻辑联结词 1.2 导数的运算 1.3 充分条件、必要条件与命题的四种形式1.2.1 常数函数与幂函数的导数 1.3.1 推出与充分条件、必要条件 1.2.2 导数公式表及数学软件的应用 1.3.2 命题的四种形式 1.2.3 导数的四那么运算法那么第1章综合测试题 1.3 导数的应用第2章圆锥曲线与方程 1.3.1 利用导数判定函数的单调性 2.1 曲线与方程 1.3.2 利用导数研究函数的极值 2.1.1 曲线与方程的概念 1.3.3 导数的实际应用 2.1.2 由曲线求它的方程、由方程研究曲线1.4 定积分与微积分大体定理的性 1.4.1 曲边梯形面积与定积分 2.2 椭圆 1.4.2 微积分大体定理 2.2.1 椭圆的标准方程本章整合提升 2.2.2 椭圆的几何性质第二章推理与证明 2.3 双曲线 2.1 合情推理与演绎推理 2.3.1 双曲线的标准方程 2.1.1 合情推理 2.3.2 双曲线的几何性质 2.1.2 演绎推理 2.4 抛物线 2.2 直接证明与间接证明 2.4.1 抛物线的标准方程 2.2.1 综合法与分析法 2.4.2 抛物线的几何性质 2.2.2 反证法 .2.5 直线与圆锥曲线 2.3 数学归纳法第2章综合测试题本章整合提升时期性综合评估检测(一)第三章数系的扩充与复数第3章空间向量与立体几何 3.1 数系的扩充与复数的概念 3.1 空间向量及其运算 3.1.1 实数系 3.1.1 空间向量的线性运算 3.1.2 复数的概念 3.1.2 空间向量的大体定理 3.1.3 复数的几何意义 3.1.3 两个向量的数量积 3.2 复数的运算 3.1.4 空间向量的直角坐标运算 3.2.1 复数的加法与减法 3.2 空间向量在立体几何中的应用 3.2.2 复数的乘法 3.2.1 直线的方向向量与直线的向量方程 3.2.3 复数的除法 3.2.2 平面的法向量与平面的向量表示本章整合提升1.2.3 弦切角定理高中数学人教B选修2-3 1.3 圆幂定理与圆内接四边形第一章计数原理 1.3.1 圆幂定理 1.1大体计数原理1.3.2 圆内接四边形的性质与判定 1.2排列与组合本章小结 1.2.1排列阅读与欣赏 1.2.2组合欧几里得 1.3二项式定理 1.3.1二项式定理附录不可公度线段的发觉与逼近法 1.3.2杨辉三角单元回眸第二章圆柱、圆锥与圆锥曲线 2.1 平行投影与圆柱面的平面截线第二章概率 2.1.1 平行投影的性质 2.1离散型随机变量及其散布列 2.1.2 圆柱面的平面截线 2.1.1离散型随机变量 2.2 用内切球探讨圆锥曲线的性质 2.1.2离散型随机变量的散布列 2.2.1 球的切线与切平面 2.1.3超几何散布 2.2.2 圆柱面的内切球与圆柱面的平面截2.2条件概率与事件的独立性线 2.2.1条件概率 2.2.3 圆锥面及其内切球 2.2.2事件的独立性 2.2.4 圆锥曲线的统一概念 2.2.3独立重复实验与二项散布本章小结 2.3随机变量的数字特点阅读与欣赏吉米拉•丹迪林 2.3.1离散型随机变量的数学期望附录 2.3.2离散型随机变量的方差部份中英文辞汇对照表 2.4正态散布跋文单元回眸高中数学(B版)选修4-4 第三章统计案例 3.1独立性查验第一章坐标系 3.2回归分析 1.1 直角坐标系,平面上的伸缩变换单元回眸 1.2 极坐标系本章小结第二章参数方程高中数学(B版)选修4-1 2.1 曲线的参数方程第一章相似三角形定理与圆幂定理 2.2 直线和圆的参数方程 1.1 相似三角形 2.3 圆锥曲线的参数方程 1.1.1 相似三角形判定定理 2.4 一些常见曲线的参数方程 1.1.2 相似三角形的性质本章小结 1.1.3 平行截割定理附录部份中英文辞汇对照表 1.1.4 锐角三角函数与射影定理跋文 1.2 圆周角与弦切角高中数学(B版)选修4-5 1.2.1 圆的切线 1.2.2 圆周角定理第一章不等式的大体性质和证明的大体方式本章小结 1.1不等式的大体性质和一元二次不等式的解法阅读与欣赏 1.2 大体不等式闻名数学家柯西 1.3 绝对值不等式的解法第三章数学归纳法与贝努利不等式 1.4 绝对值的三角不等式 3.1 数学归纳法原理1.5 不等式证明的大体方式 3.2 用数学归纳法证明不等式、贝努利不等本章小结式本章小结第二章柯西不等式与排序不等式及其应阅读与欣赏用完全归纳法和不完全归纳法 2.1 柯西不等式数学归纳法 2.2 排序不等式数学归纳法简史 2.3 平均值不等式(选学)附录部份中英文辞汇对照表 2.4 最大值与最小值问题,优化的数学模型。
人教版高一数学必修三第二章统计全部教案和测试题
人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课) 2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课) 2.3.1变量之间的相关关系(新授课)2.3.2两个变量的线性相关(第一课时)(新授课)2.3.2两个变量的线性相关(第二课时)(新授课)2.3.2生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
数学:2.1.1《简单随机抽样》课件(3)(新人教B版必修3)
阅读第44~ 页内容 页内容, 阅读第 ~48页内容,回答下列问题 :
(1)什么是简单随机抽样? )什么是简单随机抽样? (2)简单随机抽样有几种? )简单随机抽样有几种? (3)简单随机抽样的特点是什么? )简单随机抽样的特点是什么?
答(ቤተ መጻሕፍቲ ባይዱ)简单随机抽样 )
随机数表法设计方案的步骤
第一步:将总体中的所有个体编号( 第一步:将总体中的所有个体编号(每个号码位数 一致); 一致); 第二步:在随机数表中任选一个数作为开始; 第二步:在随机数表中任选一个数作为开始; 第三步:从选定的数开始按一定的方向读下去, 第三步:从选定的数开始按一定的方向读下去,得 到的数码若不在编号中,则跳过;若在编号中, 到的数码若不在编号中,则跳过;若在编号中,则 取出。得到的数码若在前面已经取出,则跳过。 取出。得到的数码若在前面已经取出,则跳过。如 此进行下去,直到取满为止; 此进行下去,直到取满为止; 第四步:根据选定的号码抽取样本。 第四步:根据选定的号码抽取样本。
一般地,用抽签法从容量为 的总体中抽取一个 一般地,用抽签法从容量为N的总体中抽取一个 容量为n的样本的步骤为 的样本的步骤为: 容量为 的样本的步骤为: 第一步:给总体中的所有个体编号( 第一步:给总体中的所有个体编号(号码可以从 1到N; 到 ; 第二步: 个号码写在形状、 第二步:将1~N这N个号码写在形状、大小相同的 这 个号码写在形状 号签上; 号签上; 第三步:将号签放到一个不透明的容器中, 第三步:将号签放到一个不透明的容器中,搅拌 均匀; 均匀; 第四步:从容器中每次抽取一个号签, 第四步:从容器中每次抽取一个号签,并记录其编 连续抽取n次 号,连续抽取 次; 第五步: 第五步:从总体中将与抽到的编号一致的个体取出
2.1.1简单随机抽样2
第四步:以上号码对应的6名同学就是要抽取的对象。
2.1 随机抽样
2.1.2 系统抽样
探究:某学校为了了解高一年级学生对教师教学
的意见,打算从高一年级500名学生中抽取50名进
一般地,在抽样时,将总体分成互不交叉的 层,然后按照一定的比例,从各层独立地抽 取一定数量的个体,将各层取出的个体合在 一起作为样本,这种抽样方法叫作分层抽样。
练习1:一批电视机中,有TCL厂生产的56台,长 虹厂生产的42台,用分层抽样的方法从中抽出一个 容量为14的样本。试确定各厂被抽取电视机的台数。
2.1.3 分层抽样
探究:
例1:假设某地区有高中
近视率/%
生2400人,初中生
80 60
10900人,小学生
40
11000人.
20 0 小学
初中
高中 年级
此地区教育部门为了了解本地区中小学生的近 视情况及其形成原因,要从本地区的中小学生 中抽取1%的学生进行调查,你认为应当怎样抽 取样本?
分层抽样概念:
练习2:要从班里62名同学中抽出12名同学参加 活动,试设计抽样方案。
第一步:将62个个体编号,号码是1,2,…,62;
第二步:用随机数表法随机抽取2个号码,如14,38,将 编号为14,38的2个号码剔除;
第三步:将剩下的60名同学重新编号,号码为1, 2,…, 60,由于 60÷12=5,则间隔为5,将编号按顺序每5个一 段,分成12段;
后勤的人数分别为
、13 4、
。3
3. 在120个零件中,一级品24个,二级品36个,三级 品60个,从全部零件中抽取容量为20的样本,则每
新教材高中数学课时作业11总体与样本简单随机抽样含解析新人教B版必修第二册
总体与样本、简单随机抽样一、选择题1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002,...,100;③00,01,02,...,99;④01,02,03, (100)其中正确的序号是( )A.②③④B.③④C.②③D.①②3.从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量4.总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02D.01二、填空题5.某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为________.6.下列抽样试验中,用抽签法最方便的是________.①从某厂生产的3000件产品中抽取600件进行质量检验②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③从某厂生产的3000件产品中抽取10件进行质量检验7.从30个个体(编号00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选择第12行的第6列和第7列中的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为________.9264 4607 2021 3920 7766 3817 3256 16405858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 38155131 8186 3709 4521 6665 5325 5383 27029055 7196 2172 3207 1114 1384 4359 4488三、解答题8.从30架钢琴中抽取6架进行质量检查,请用抽签法确定这6架钢琴.9.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)8105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623385796357332135 0532547048 9055857518 2846828709 8340125624[尖子生题库]10.为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.课时作业(十一) 总体与样本、简单随机抽样1.解析:对每个选项逐条落实简单随机抽样的特点.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.答案:D2.解析:根据随机数表法的步骤可知,①④编号位数不统一.答案:C3.解析:由题可知在此简单随机抽样中,总体是500名学生的体重,A错误,个体是每个学生的体重,B错误;样本容量为60,D错误.故选C.答案:C4.解析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为02,14,07,01,故第5个数为01.答案:D5.解析:n=(700+600+500)×0.03=54.答案:546.解析:抽签法适于样本总体较小,样本容量较小,且总体中样本差异不太明显的抽样试验,从①②③来看,②最符合.答案:②7.解析:在随机数表中,将处于00~29的号码选出,第一个数76不合要求,第2个63不合要求,满足要求的前4个号码为17,00,02,07.答案:17,00,02,078.解析:第一步,将30架钢琴编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中逐个抽取6个号签,并记录上面的编号;第五步,所得号码对应的6架钢琴就是要抽取的对象.9.解析:找到第8行第7列的数开始向右读,凡不在000~799的跳过去不读,前面读过的也跳过去不读,得到的符合题意的五个数据依次为760,202,051,656,574.答案:760,202,051,656,57410.解析:第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.。
高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)
6. 简单随机抽样的结果( ) A.完全由抽样方式所决定 B.完全由随机性来决定 C.完全由人为因素所决定 D.完全由计算方法所决定 解析:简单随机抽样的结果完全由随机性来决定. 答案:B
7. 为了了解某县中考学生数学成绩的情况,从中抽取20本密封
试卷,每本30份试卷,这个问题中的样本容量是( )
最常用的简单随机抽样方法有两种:
抽签法 随机数法
随机数表法
抽签法
(1)对总体的N个个体进行编号 (2)把N个号码写在同样的号签上 (3)将号签放在一个容器中,搅拌均匀 (4)每次从中抽取一个号签,连续抽取n次 (5)得到一个容量为n的样本 步骤:编号→制签→搅匀→抽签→定样.
例1 某班有50名学生,要从中随机地抽出6人参加一项活动, 请用抽签法进行抽选,并写出过程.
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2 ,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
系统抽样的特点:
(1) 总体容量较大 (2) 属于不放回抽样 (3) 每个个体被抽到的可能性相同(公平性)
系统抽样的步骤
(1)对总体的N个个体进行编号; (2)确定分段间隔k,对编号进行分段,当N/n是整数时, 取k=N/n;当N/n不是整数时,从总体中随机剔除一些个体, 使剩下的总体中个体的个数N′能被n整除,并将剩下的总体重 新编号、分段; (3)在第一段中用简单随机抽样确定起始的个体编号l; (4)将编号为l+k, l+2k, …, l+(n-1)k的个体抽出。
新人教版高中数学必修第二册《随机抽样》教案
随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y - =1N ∑ki =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y - =y 1+y 2+…+y n n =1n∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x - =x 1+x 2+…+x m m =1m ∑mi =1x i .②第2层的总体平均数和样本平均数分别为Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i,y - =y 1+y 2+…+y n n =1n∑ni =1y i .③总体平均数和样本平均数分别为W - =∑Mi =1X i +∑N i =1Yi M +N ,w - =∑mi =1x i +∑ni =1y i m +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x - +N ×y -M +N =M M +N x - +N M +N y -估计总体平均数W - .(3)在比例分配的分层随机抽样中,m M =n N =m +nM +N ,可得M M +N x - +N M +N y -=m m +n x - +n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w - 估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是()A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.[规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.第四步,把与号码相对应的人抽出,即可得到所要的样本.。
人教B版高中数学必修三第二章《简单随机抽样》说课稿
人教B版高中数学必修三第二章《简单随机抽样》说课稿各位领导、各位同仁大家好:我今天说课的题目是《简单随机抽样》,其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样。
下面我将从教材分析、学情分析、教法与学法分析、教学过程设计等四个方面来阐述我对本节课的设计。
一、教材分析(一)教材中所处的地位和作用本节课是选自人教B版必修三第二章统计的第一节,课时安排一课时。
简单随机抽样属于统计学范畴,统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断。
可见,抽样方法是统计学的基础,而简单随机抽样又是抽样的基础,所以简单随机抽样是重中之重。
简单随机抽样作为一种简单的抽样方法,在其中处于一种非常重要的地位。
它对于学习后面的系统抽样、分层抽样方法及选修2-3中第二章《概率》的学习奠定了基础,因此它起到了承上启下的作用,在教材中占有重要地位。
(二)教学目标:(1)知识与技能目标:学生通过学习理解并掌握简单随机抽样的概念和特点;掌握简单随机抽样的两种方法:抽签法和随机数表法。
(2)过程与方法目标:学生通过对生活中的实例分析、解决、体验简单随机抽样的科学性及其实用性,培养分析问题、解决问题的能力。
(3)情感、态度价值观:利用简单随机抽样的知识解决现实生活中的实际问题,让学生体会数学知识在解决实际生活中的作用,激发学生学习数学的热情。
(三)教学重点、难点:重点:简单随机抽样的定义,简单随机抽样方法:抽签法、随机数表法。
难点:对简单随机抽样中的等可能性和科学性,以及由此推断结论的可靠性的理解。
二、学情分析高一的学生在思维上:有一定分析、解决问题的能力。
在内容上:学生初中已学习了统计的初步知识,但没能从本质上真正理解其相关知识。
本节课通过结合具体的实际问题情景,系统的学习统计的基本方法,从本质上真正理解简单随机抽样。
在心理上:乐于探索,对统计学的学习应该有一定的兴趣。
20xx版优化方案高一数学人教版必修三学案第二章统计2.1.1简单随机抽样
20xx版优化方案高一数学人教版必修三学案第二章统计2.1.1简单随机抽样PAGE2.1 随机抽样2.1.1 简单随机抽样1.问题导航(1)什么叫简单随机抽样?(2)最常用的简单随机抽样方法有哪两种?(3)抽签法是如何操作的?(4)随机数表法是如何操作的?2.例题导读通过教材中的“思考”,我们了解抽签法的优、缺点及适用条件.1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样eq \b\lc\{(\a\vs4\al\co1(抽签法(抓阄法),随机数法)) 3.随机数法的类型随机数法eq \b\lc\{(\a\vs4\al\co1(随机数表法,随机数骰子法,计算机产生的随机数法))1.判断下列各题.(对的打“√”,错的打“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小;( )(2)有同学说:“随机数表只有一张,并且读数时只能按照从左向右的顺序读取,否则产生的随机样本就不同了,对总体的估计就不准确了”.( ) 解析:(1)在简单随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的顺序也是随机的,不同的样本对总体的估计相差并不大.答案:(1)×(2)×2.某校期末考试后,为了分析该校高一年级1 000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A.1 000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100解析:选D.该问题中,1 000名学生的成绩是总体,每个学生的成绩是个体,抽取的100名学生的成绩是样本,样本的容量是100.3.抽签法的优点、缺点各是什么?解:优点:简单易行,当总体个数不多的时候搅拌均匀很容易,每个个体有均等的机会被抽中,从而保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型. 3.简单随机抽样中每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取20个个体作为样本;(2)从50台冰箱中一次性抽取5台冰箱进行质量检查;(3)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽取6个号签.[解] (1)不是简单随机抽样.因为总体的个数是无限的,而不是有限的.(2)不是简单随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简单随机抽样的定义要求的是“逐个不放回地抽取”.(3)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.方法归纳判断一个抽样是否为简单随机抽样的依据是其四个特征1.下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.解:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.抽签法的应用20xx年,某师范大学为了支援西部教育事业,现从报名的18名免费师范毕业生中选取6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤. [解] 抽样步骤是:第一步,将18名志愿者编号,号码是1,2, (18)第二步,将号码分别写在同样大小的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.方法归纳(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应注意以下几点:①编号时,如果已有编号可不必重新编号;②号签要求大小、形状完全相同;③号签要均匀搅拌;④要逐一不放回地抽样.2.某校高一(1)班有学生48人,为了调查某种情况,打算抽取一个样本容量为10的样本,问若采用抽签法抽样将如何进行?解:首先把该校学生都编上号,号码是1,2,3,4,…,48.并制成48个形状、大小相同的号签,然后将这些号签放在一个不透明的容器内,搅拌均匀后,逐个无放回地抽取10个号签,这样就可以得到一个容量为10的样本.随机数表法的应用(20xx·衡阳模拟)已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字,则选出来的第4个个体的编号为( )7816657208026314070243699728019832049234493582003623486969387481A.08 B.07C.02 D.01[解析] 从随机数表第1行的第5列和第6列的数字开始由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,…,其中08,02,14,07,…符合条件,故选B.[答案] B[互动探究] 如将本例中的“从随机数表中第1行的第5列和第6列的数字开始由左到右依次选取两个数字”改为“从随机数表中第1行的倒数第2列和第3列的数字开始由右到左依次选取两个数字”,其他条件不变,则选出来的第4个个体的编号为多少?解:从随机数表中第1行的倒数第2列和第3列的数字开始由右到左依次选取两个数字,依次为91,08,27,99,63,42,07,04,13,…,其中08,07,04,13,…符合条件,故选出来的第4个个体的编号为13.方法归纳利用随机数表法抽样时应注意的问题:(1)编号要求位数相同,若不相同,需先调整到一致后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号,那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.3.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程(随机数表见教材P103附表).解:第一步,将原来的编号调整为001,002, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开始向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为074,100,094,052,080,003,105,107,083,092的机器便是要抽取的对象.易错警示因基本概念不明致误为了了解参加第27届世界大学生冬运会的2 015名运动员的身高情况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的是( )①2 015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤ B.①②③C.①②④⑤ D.①②③④⑤[解析] 抽样的目的是了解参加冬运会的2 015名运动员的身高情况,故总体应该是2 015名运动员的身高,而不是这2 015名运动员,同理,个体应该是每个运动员的身高,样本应该是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[错因与防范](1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,根据有关的概念可得总体、个体与样本的考察对象是相同的.4.(20xx·高考四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.1.一个总体共有15个个体,用简单随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.eq \f(1,3)B.eq \f(1,5)C.eq \f(1,10)D.eq \f(1,15)解析:选 A.简单随机抽样具有等可能性,每个个体被抽到的可能性是eq \f(5,15)=eq \f(1,3).2.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.从20个零件中一次性抽出3个进行质量检查C.某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验解析:选D.根据简单随机抽样的定义及特点可判断D为简单随机抽样.3.在某年的高考中,A省有20万名考生,为了估计他们的数学平均成绩,从中逐个抽取2 015名学生的数学成绩作为样本进行统计分析,请回答以下问题:本题中,总体、个体、样本、样本容量各指什么?解:总体是指在该年的高考中,A省20万名考生的数学成绩;个体是指在该年的高考中,A省20万名考生中每一名考生的数学成绩;样本是指被抽取的2 015人的数学成绩;样本容量是2 015.[A.基础达标]1.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是( )A.eq \f(1,100)B.eq \f(1,25)C.eq \f(1,5)D.eq \f(1,4)解析:选C.简单随机抽样是等可能性抽样,每个个体被抽到的机率都是eq \f(20,100)=eq \f(1,5).故选C.2.(20xx·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A.①②③④ B.①③④②C.③②①④ D.④③①②解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A、D中个体总数较大,不适合用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( )A.①② B.①③C.②③ D.③解析:选C.根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.5.(20xx·青岛检测)对于简单随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公平性.A.①②③ B.①②④C.①③④ D.①②③④解析:选D.这四点全是简单随机抽样的特点.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.解析:∵eq \f(n,400+320+280)=0.2,∴n=200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11~12列的18开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始(见教材P103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3, (30)②将1~30这30个编号写到大小、形状都相同的号签上;③将写好的号签放入一个不透明的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.能力提升]1.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是( )A.eq \f(1,2)B.eq \f(1,3)C.eq \f(1,6)D.eq \f(1,5)解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是eq \f(1,2),这与第几次抽取无关.2.为了了解全校240名高一学生的体重情况,从中抽取40名学生进行测量.下列说法正确的是( )A.总体是240 B.个体是每一名学生C.样本是40名学生D.样本容量是40解析:选D.本题中的研究对象是学生的体重,而不是学生自身.总体是240名学生的体重,个体是每一名学生的体重,样本是抽取的40名学生的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜采用抽签法.因为它简便易行,可用不同的方式制签,抽签也方便.答案:抽签法4.20xx年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P103附表)解析:从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.6.(选做题)(20xx·洛阳高一检测)现在有一种够级游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机11抽样.12。
高中数学 第二章 统计 2.1 随机抽样教材习题点拨 新人教B版必修3-新人教B版高中必修3数学试题
高中数学第二章统计 2.1 随机抽样教材习题点拨新人教B版必修3练习A1.什么是简单随机抽样?解:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.在一般“调查”时,为什么要进行抽样调查?解:做一般“调查”最好是对每一个个体逐一进行“调查”,但这样做有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.3.如果想了解你所在班上同学喜欢听数学课的比例,计划抽取8名同学做调查.请你用抽签法抽取一个样本.解:(1)将班内60名同学的学号1,2,…,60分别写在相同的60X纸片上.(2)将60X纸片放在一个容器里均匀搅拌之后,就可以抽样.(3)抽出一X纸片,记下上面的,然后均匀搅拌,继续抽取第2X纸片,记下这个,重复这个过程,直到取得8个时终止.(4)于是,和这8个对应的同学就构成了一个简单随机样本.练习B1.某居民区有730户居民,居委会计划从中抽取25户调查其家庭收入状况,你能帮助居委会抽出一个简单随机样本吗?解:随机数表法:(用教材第87页的随机数表)(1)将730户居民编号为001,002, (730)(2)给出的随机数表是5个数一组,使用各个5位数组的后3位,从各个数组中任选一个后3位小于或等于730的数作为起始,如从第2行的第6组开始,取出572作为25户中的第1个代号;(3)继续向右读,每组后3位符合要求的数取出,前面已经取出的跳过,到行末转下一行从左向右继续读,得数据:572,483,459,073,242,372,048,088,600,636,171,247,303,422,421,183,546,385,120,042 ,320,500,219,225,059.编号为以上所选的25个的居户被选中.2.使用计算器或计算机制作一X1 000个一位数的随机数表,并检查0~9这10个数在表中出现的可能性是否相同?解:相同.练习A1.什么是系统抽样?系统抽样有什么优点?解:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.系统抽样的优点:它很好地解决了当总体容量和样本容量都较大时,用简单随机抽样不方便的问题.2.从编号为1~900的总体中用系统抽样的办法抽取一个容量为9的样本.解:按编号顺序分成9组,每组100个号,先在第一组用简单随机抽样方式抽出k(1≤k≤100)号,其余的k+100n(n=1,2,…,8)也被抽到,即可得所需样本.练习B1.某批产品共有1 563件,产品按出厂顺序编号,为从1~1 563.检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案.解:S1 将产品的调整为0001,0002,0003, (1563)S2 从总体中剔除3件产品(剔除方法可用随机数表法),将剩下的1 560件产品重新编号(分别为0001,0002,…,1560),并分成15段;S3 在第一段0001,0002,...,0104,这104个编号中用简单随机抽样抽出一个(如0003)作为起始,则各段对应编号分别为0003,0107,0211, (1459)S4 将编号为0003,0107,0211,…,1459的个体抽出,即得到一个容量为15的样本.2.要考察某商场2003年的日销售额,从一年时间中抽取52天的销售额作为样本,请给出你的系统抽样方案.并说说你的抽样方案的优点和不足.解:S1 用随机数表法从365天中随机剔除1天;S2 将其余的364天编号,为001,002,003,…,364,并将依次分为52段;S3 在第一段001,002,…,007这7个中用抽签法选取一个,如002;S4 将为002,009,016,…,359的日期找出,组成样本.该抽样方案的优点是:抽取的样本能代表总体;缺点是:所抽取的日期与日常用的日期相比规律性差,不便于该方案的操作.练习A1.某校高一学生共500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢数学的人数占40%,介于两者之间的学生占30%.为了考查学生的期中考试的数学成绩,如何用分层抽样抽取一个容量为50的样本.解:由题意知喜欢数学的学生有150人,不喜欢数学的有200人,介于两者之间的有150人.三个层次的学生人数之比为3∶4∶3.所以应抽喜欢数学的学生15人,不喜欢数学的学生20人,介于两者之间的学生15人.用随机数表法抽样分别从对应的部分抽取相应的人数即可.2.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了调查员工的身体健康状况,从中抽取100名员工,用分层抽样应当怎样抽取?解:S1 确定抽样比100500=15,所以不到35岁的应抽取125÷5=25(人),35~49岁的应抽取280÷5=56(人),50岁以上的应抽取95÷5=19(人);S2 用简单随机抽样法或系统抽样法分别抽取不到35岁的25人,35~49岁的56人;50岁以上的19人.这些人便组成了我们要抽取的样本.3.某大学就餐中心为了了解新生的饮食习惯,以分层抽样的方式从1 500名新生中抽取200名进行调查,新生中的南方学生有500名,北方学生有800名,西部地区的学生有200名,应如何抽取?解:由题意知南方学生有500名,北方学生有800名,西部地区的学生有200名.样本容量与总体容量的比为200∶1 500=2∶15.所以应抽取南方学生约67名,北方学生约106名,西部地区的学生约27名.用分层抽样法分别从对应的部分抽取相应的人数即可.练习B某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12 000人,分别来自4个城区,其中东城区2 400人,西城区4 605人,南城区3 795人,北城区1 200人.用分层抽样的方式从中抽取60人参加现场节目,应当如何抽取?解:从12 000人中抽取60人,抽取比例为12 000∶60=200∶1,所以应在东城区抽取 2 400÷200=12(人),在西城区抽取 4 605÷200≈23(人),在南城区抽取 3 795÷200≈19(人),在北城区抽取1 200÷200=6(人).用系统抽样法分别从对应的部分抽取相应的数即可.练习A1.想一想怎样可以得到你所在班级同学的身高数据.解:设计调查问卷请每位同学填写自己的身高,然后汇总即可.2.你还能想到哪些可以得到数据资料的途径?解:如:教材或教材提供的数据;课堂数据(它们是在教室中收集的,主要与班上的学生有关,而不问结论是否对于更大的群体也成立).练习B为了了解中学生如何度过课余时间,请你设计一份关于中学生课余活动的调查问卷,实际调查后写出调查分析报告.解:提示:在设计调查问卷时,设计的题目意思要明确,覆盖面要广,不要有答题倾向即可.习题2-1A1.为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里的总体、个体、样本、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?解:统计的总体是指该地10 000名高一学生的体重;个体是指这10 000名学生中每一名学生的体重;样本是指这10 000名学生中抽出的200名学生的体重;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取机会均等的前提下从总体中抽取部分个体,进行抽样调查.2.要从编号为1~100的100道选择题中随机抽取20道题组成一份考卷,请你用抽签法给出考题的编号.解:(1)编号1~100;(2)制作大小相同的号签,并写上;(3)放入一个大容器,均匀搅拌;(4)依次抽取20个签(注意每次都要均匀搅拌),具有这20个编号的题组成一份考卷.3.某商店有590件货物,要从中选出50件货物做质量检查,请你用随机数表法给出一个抽样方案.解:(1)将590件货物编号为001,002, (590)(2)给出的随机数表是5个数一组,使用各个5位数组的中间3位,从各个数组中任选中间3位小于或等于590的数作为起始,如从第3行的第4列数037开始,取出037作为590件货物中的第1个代号;(3)继续向右读,将每组中间3位符合要求的数取出,已取出重复的跳过,到行末转下一行从左向右继续读,得数据:037,104,460,463,317,290,030,042,142,237,318,154,038,212,404,132,…,编号为以上所选的50个的货物被选中,即得到一个容量为50的样本.4.故宫博物院某天接待游客10 000人(假设把他们编号为0~9 999),如果要从这些游客中随机选出10名幸运游客,请你用系统抽样的方式给出幸运游客的编号.解:按编号顺序分成10组,每组1 000个号,先在第1组用简单随机抽样方式取出k(0≤k≤999)号,其余的k+1 000n(n=1,2,…,9)也被抽到,即可得到所需样本.5.一支田径队中有男运动员56人,女运动员42人,用分层抽样的方式从全队中抽取28名运动员.解:从男运动员中抽16人,女运动员中抽12人.6.某市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了了解商店的销售情况,要从中抽取21家商店进行调查,请你用分层抽样的方式进行抽取.解:大型商店、中型商店、小型商店分别抽取2家、4家、15家.习题2-1B1.某公园为了考察每天游览的人数,从一年中要抽取30天进行统计,请你分别用随机数表法、系统抽样法、分层抽样法给出样本,并根据样本比较这3种抽样方式.解:方法1:随机数表法S1 将一年的365天编号为001,002, (365)S2 在教材第一节提供的随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第1行第6个数“5”,向右读;S3 从数“5”开始,向右读,每次读取3位,凡不在001~365中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到30个符合要求的;S4 以上对应的日期就是抽取的对象.方法2:系统抽样法S1 将365天用随机方式编号;S2 从总体中剔除5天(剔除方法可用随机数表法),将剩下的360天重新编号(分别为001,…,360),并分成30段;S3 在第一段001,…,012这12个编号中用简单随机抽样抽出一个(如003)作为起始;S4 将编号为003,015,027,…,351的日期抽出,组成样本.方法3:分层抽样法S1 将一年分为春、夏、秋、冬四个层次;S2 在每个层次中用随机数表法抽取8天;S3 4×8=32,再用抽签法剔除2天,剩下的30天组成样本.点拨:3种抽样方法的共同点是每个个体被抽到的可能性均相等.2.随着互联网络的发展与普及,网络调查方式的使用越来越多.你能比较一下传统的调查方式与网络调查方式的优劣吗?解:网络调查省时、省力,但有时也不具备代表性.如调查农业方面的问题,应该调查农民,但农民上网的人数很少;传统调查方式虽费时、费力,但针对性强.。
人教B版数学必修3第二章第一节简单随机抽样教学设计
人教B版数学必修3第二章第一节《简单随机抽样》教学设计《简单随机抽样》,内容选自于新课程人教B版必修3第二章第一节,课时安排为一个课时。
下面我将从教材内容分析、教学目标设置、教法与学法分析和教学过程等几大方面来阐述我对这节课的分析和设计:一、教材内容分析1.教材所处的地位和作用“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学”的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础。
在初中学生已学过相关概念,如“抽样”“总体”、“个体”、“样本”、“样本容量”等,具有一定基础,新教材把“统计”这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位。
2. 本节主要内容是简单随机抽样及其特征;简单随机抽样的常用抽样方法—抽签法、随机数表法;两种抽样方法的步骤;两种抽样方法的相同点及区别;两种抽样方法的应用。
二、.学情分析本节课基于学生日常生活实际,加之初中学过的相关概念,学生对概念方法的理解难度不大,取样中的等概率源于生活中的公平性,学生也能很好理解,例题与实际生活联系紧密,学生本节课学习会很活跃,有利于发现问题,加之计算较少更有利解决问题。
难点是随机数表科学性的理解。
三、.教学目标设置(1)知识与技能目标:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤(2)过程与方法目标:(1)能够发现现实生活或其他学科中简单随机抽样统计问题(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本(3)情感,态度和价值观目标通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.四、教学的重点和难点重点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤难点:抽签法及随机数法两种抽样方法的实际应用五.教法与学法分析由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,紧密联系生活实际,因此,在教法上我采用讨论、发现、归纳法教学;在学法上,运用生活实例,充分让学生自己分析、判断、自主学习开展合作与交流,提高学生分析归纳能力。
新人教A版必修32020-2021学年高中数学第2章统计2_1_1简单随机抽样学案
2.1.1 简单随机抽样1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样方法有两种——抽签法和随机数表法.3.一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.4.随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样.5.简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.判断正误.(正确的打“√”,错误的打“×”)(1)抽签法和随机数表法都适用于总体容量和样本容量较小时的抽样.( )(2)利用随机数表法抽取样本时,选定的初始数是任意的,但读数的方向只能是从左向右读.( )(3)利用随机数表法抽取样本时,若一共有总体容量为100,则给每个个体分别编号为1,2,3,…,100.( )[提示](1)√由简单随机抽样的定义可知其正确.(2)×读数的方向也是任意的.(3)×应编号应为00,01,02, (99)题型一对简单随机抽样的概念的理解【典例1】下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.(4)一彩民选号,从装有36个大小、形状都相同的号签的箱子中无放回的抽取6个号签.[解](1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.(4)是简单随机抽样,因为总体中的个体是有限的,并且是从总体中逐个抽取、不放回的、等可能的抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.[针对训练1] (1)下列抽样方法是简单随机抽样的是( )A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从自然数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下(2)从52名学生中选取5名学生参加“希望杯”全国数学邀请赛,若采用简单随机抽样抽取,则每人入选的可能性( )A.都相等,且为152 B.都相等,且为110C.都相等,且为552D.都不相等[解析](1)A不是简单随机抽样,因为是“一次性”抽取;B不是简单随机抽样,因为是“有放回”抽取;C不是简单随机抽样,因为是“一次性”抽取,且“总体容量无限”;D是简单随机抽样.(2)对于简单随机抽样,在抽样过程中每一个个体被抽取的机会都相等(随机抽样的等可能性).若样本容量为n ,总体的个体数为N ,则用简单随机抽样时,每一个个体被抽到的可能性都是n N ,体现了这种抽样方法的客观和公平性.因此每人入选的可能性都相等,且为552. [答案] (1)A (2)C题型二抽签法的应用【典例2】 2022年第24届冬季奥林匹克运动会将在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.组委会计划从某高校报名的20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.[思路导引] 分析总体的容量为20,抽取的样本容量为5,容量都较小,所以可用抽签法抽取样本.[解] ①将20名志愿者编号,号码分别是01,02, (20)②将号码分别写在20张大小、形状都相同的纸条上,揉成团,制成号签;③将所得号签放在一个不透明的袋子中,并搅拌均匀;④从袋子中依次不放回地抽取5个号签,并记录下上面的编号;⑤所得号码对应的志愿者就是志愿小组的成员.抽签法的应用条件及注意点(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应注意以下几点①分段时,如果已有分段可不必重新分段;②签要求大小、形状完全相同;③号签要均匀搅拌;④要逐一不放回的抽取.[针对训练2] 下列抽样试验中,适合用抽签法的有( )A .从某厂生产的3000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3000件产品中抽取10件进行质量检验[解析] A 、D 两项总体容量较大,不适合用抽签法;对于C 项,甲、乙两工厂生产的产品质量可能差异明显.[答案] B题型三随机数表法的应用【典例3】 (1)要研究某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号______________________(下面抽取了随机数表第1行至第5行).03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 9597 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 7316 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 1012 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 7655 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30(2)假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,应如何操作?[解析](1)由随机数表的第3行第6列得4颗种子的编号依次为:227,665,650,267.(2)第一步,将800袋牛奶编号为000,001, (799)第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7).第三步,从选定的数7开始依次向右读,每次读三位.(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外或重复的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.[答案](1)227,665,650,267 (2)见解析延伸探究1:典例3(1)中利用随机数表法抽取样本,若从第4行第5列开始向右读,则最先检验的4颗种子的编号为________.[答案]668,273,105,037延伸探究2:若典例3(1)中“850颗种子”改为“1850颗种子”,应如何编号?[解]可将1850颗种子依次编号为:0001,0002, (1850)(1)随机数表法抽样的步骤①编号:这里的所谓编号,实际上是新编数字号码.②确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.③获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.(2)利用随机数表法抽样的三个注意点①编号要求号码位数相同.②第一个数字的抽取是随机的.③读数的方向是任意的,且是事先定好的.[针对训练3] 总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )C.02 D.01[解析]由题意知第一个数为65(第1行第5列和第6列),按由左向右选取两位数(大于20的跳过,重复的不选取),前5个个体编号为08,02,14,07,01,故第5个个体编号为01.[答案] D课堂归纳小结1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.3.利用随机数表法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.1.某学校为了了解高一年级800名新入学学生的数学学习水平,从中随机抽取100名学生的中考数学成绩进行分析,在这个问题中,下列说法正确的是( ) A.800名同学是总体 B.100名同学是样本C.每名同学是个体 D.样本容量是100[解析]据题意总体是800名新入学学生的中考数学成绩,样本是抽取的100名学生的中考数学成绩,个体是每名学生的中考数学成绩,样本容量是100,故只有D正确.[答案] D2.下列抽样方法是简单随机抽样的是( )A.从1000个零件中一次性抽取30个做质量检查B.从1000个零件中有放回地抽取30个做质量检查C.从实数集中逐个抽取10个分析奇偶性D .运动员从8个跑道中随机选取1个跑道[解析] A 不符合“逐个抽取”;B 不符合“无放回抽样”;C 中的总体容量是无限的.[答案] D3.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②[答案] B4.某高校一共有10个班,编号为1至10,某项调查要从中抽取3个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次.设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110 [解析] 由简单随机抽样的定义知,每个个体在每次抽取中被抽到的可能性相同,故五班在每次抽样中被抽到的可能性都是110. [答案] D5.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N =________.[解析] 由30N=0.25,得N =120. [答案] 120课后作业(十)(时间45分钟)学业水平合格练(时间25分钟)1.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本[解析]5000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量,故选A.[答案] A2.抽签法中确保样本代表性的关键是( )A.制签 B.搅拌均匀C.逐一抽取 D.抽取不放回[解析]逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.[答案] B3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的分段方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①② B.①③ C.②③ D.③[解析]根据随机数表的要求,只有分段时数字位数相同,才能达到随机等可能抽样.[答案] C4.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第5列数字开始由左向右依次选取两个数字,则选出来的第6个红色球的编号为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A.23 B.20 C.04 D.17[解析]根据随机数表法的定义,从第1行的第5列数字开始由左向右选取两个数字43开始,凡不在01~33内的跳过,得到17,23,20,24,06,04,则第6个红色球的编号为04.[答案] C5.某班有34位同学,座位号记为01,02,…,34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座位号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座位号是( )49 54 43 54 82 17 37 93 23 78 87 35 2096 43 84 26 34 91 64 57 24 55 06 88 7704 74 47 67 21 76 33 50 25 83 92 12 06A.23 B.09 C.02 D.16[解析]从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的分段依次为21,32,09,16,其中第4个为16,故选D.[答案] D6.某中学高一年级有1400人,高二年级有1320人,高三年级有1280人,从该中学学生中抽取一个容量为n 的样本,每人被抽到的机会为0.02,则n =________.[解析] 三个年级的总人数为1400+1320+1280=4000,每人被抽到的机会均为0.02,∴n =4000×0.02=80.[答案] 807.为了检验某种产品的质量,决定从1001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.[解析] 由于所分段码的位数和读数的位数要一致,因此所分段码的位数最少是四位.从0000到1000,或者是从0001到1001.[答案] 四8.用简单随机抽样的方法从含n 个个体的总体中,逐个抽取一个容量为3的样本,对其中个体a 在第一次就被抽取的机率为18,那么n =________. [解析] 由3n =18,得n =24. [答案] 249.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.[解] 第一步:先确定艺人:①将30名内地艺人从1到30分段,然后用相同的纸条做成30个号签,在每个号签上写上这些分段,然后放入一个不透明小筒中摇匀,从中依次抽出10个号签,则相应分段的艺人参加演出;②运用相同的方法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.10.某班共有60名学生,现领到10张听取学术报告的入场券,用抽签法和随机数表法把10张入场券分发下去,试写出过程.[解] (1)(抽签法):①先将60名学生编号为1,2, (60)②把号码写在形状、大小均相同的号签上;③将这些号签放在同一个不透明箱子里进行均匀搅拌,抽签时每次从中抽出一个号签,连续抽取10次,根据抽到的10个号码对应10名同学,10张入场券就分发给了10名同学.(2)(随机数表法):①先将60名学生编号,如编号为01,02, (60)②在随机数表中任选一个数作为开始,从选定的数可向任意方向读,如果读到的数小于或等于60,将它取出,如果读到的数大于60,则舍去,前面已读过的也舍去,直到已取满10个小于或等于60的数为止,说明10个样本号码已取满.③根据号码对应的编号,再对应抽出10名同学,10张入场券就分发给了10名被抽到的同学.应试能力等级练(时间20分钟)11.从一群玩游戏的小孩中随机抽出k 人,一人分一个苹果后,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn m B .k +m -n C.km nD .不能估计 [解析] 设参加游戏的小孩有x 人,则k x ≈n m ,∴x ≈km n.[答案] C12.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的可能性为13,则在整个抽样过程中,每个个体被抽到的可能性为( )A.13B.514C.14D.1027[解析] 由题意知9n -1=13,即n =28,即每个个体被抽到的可能性为1028=514. [答案] B13.一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.[解析] 一个总体含有100个个体,某个个体被抽到的概率为1100,故以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1100×5=120. [答案] 120 14.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________(填写序号).①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥每个运动员被抽到的机会相等.[解析]①2000名运动员不是总体,2000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.故①②③均错误,正确说法是④⑤⑥.[答案]④⑤⑥15.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 39 49 54 43 54 82 17 37 93 23 7887 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 7512 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 6290 52 84 77 27 08 02 73 43 28[解]解法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.解法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数5开始;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34,至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.最新Word。
新人教版高中数学必修第二册统计全套PPT课件
9 .1.1 简单随机抽样
新课程标准 1.通过实例,了解简单随机抽样的含义及其解决问题的过
程,掌握两种简单随机抽样方法:抽签法和随机数法. 2.会计算样本均值和总体均值,了解样本与总体的关系.
新学法解读 1.熟练掌握简单随机抽样的两种方法之间的差异分
析与优缺点判断. 2.通过设计抽签法或随机数法完成抽样,体会简单随
2.抽签法与随机数法的异同点 ①都属于简单随机抽样,并且要求被抽取样本的总
相同点 体的个体数有限; ②都是从总体中逐个不放回地进行抽取 ①抽签法比随机数法操作简单; ②随机数法更适用于总体中个体数较多的时候,而
不同点 抽签法适用于总体中个体数较少的情况,所以当总 体中的个体数较多时,应当选用随机数法,可以节 约大量的人力和制作号签的成本
用样本平均数估计总体平均数
[例 3] 某校为调查全校学生的睡眠时间,从全体学生中用随
机数法抽取了一个容量为 100 的简单随机样本,他们的睡眠时间
如下表(单位:h):
睡眠
合
[6,6.5) [6.5,7) [7,7.5) [7.5,8) [8,8.5) [8.5,9)
时间
计
人数 5
17
33
37
6
2 100
0702 3623 B.07 D.01
4369 4869
9728 6938
0198 7481
解析:从随机数表第 1 行的第 5 列和第 6 列数字开始由左 到右一次选取两个数字开始向右读,第一个数为 65,不 符合条件,第二个数为 72,不符合条件,第三个数为 08, 符合条件,以下符合条件的数字依次为 02,14,07,01,故第 5 个数为 01.故选 D.
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 2.1 2.1.1简单随机抽样
A 级 基础巩固
一、选择题
1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居名的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是导学号 95064309( A )
A .总体
B .个体
C .样本容量
D .从总体中抽取的一个样本
[解析] 由条件知,5 000名居民的阅读时间的全体是总体,其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200,故选A .
2.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 为导学号 95064310( D )
A .150
B .200
C .100
D .120 [解析] 由30N
=0.25得N =120.故选D . 3.下列抽样实验中,适合用抽签法的有导学号 95064311( B )
A .从某厂生产的3 000件产品中抽取600件进行质量检验
B .从某厂生产的两箱(每箱15件产品中取6件进行质量检验
C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D .从某厂生产的3 000件产品中抽取10件进行质量检验
[解析] A 、D 中个体的总数较大,不适于用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均了.
4.高三某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号为导学号 95064312( D )
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
A.23 B.09
C.02 D.16
[解析] 从随机数表第一行的第6列和第7列数字35开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,第四个志愿者的座号为16.
二、填空题
5.从个体数为N的总体中抽取一个容量为n的样本,采用简单随机抽样的方法,当总体中的个体数不多时,一般采用__抽签法__(填“抽签法”或“随机数表法”)进行抽样.导学号 95064313
[解析] 当总体中的个体数不多时,制作号签比较方便,也利于“搅拌均匀”,所以一般采用抽签法进行抽样.
6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,则样本的容量是__100__.导学号 95064314
[解析] 样本容量是指样本中个体的个数.
三、解答题
7.某省环保局有各地市报送的空气质量材料15份,为了了解全省的空气质量,要从中抽取一个容量为5的样本,试确定用何种方法抽取,请具体实施操作.导学号 95064315 [解析] 总体容量小,样本容量也小,可用抽签法.
步骤如下:
(1)将15份材料用随机方式编号,号码是1、2、3、 (15)
(2)将以上15个号码分别写在15张相同的小纸条上,揉成团,制成号签;
(3)把号签放入一个不透明的容器中,充分搅拌均匀;
(4)从容器中逐个抽取5个号签,每次抽取后要再次搅拌均匀,并记录上面的号码;
(5)找出和所得号码对应的5份材料,组成样本.
8.某车间工人加工了一批零件共40件,为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本?写出抽样步骤.导学号 95064316 [解析] 抽样步骤是:
第一步,先将40件零件编号,可以编为00,01,02,…,38,39.
第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数5开始.为便于说明,我们将随机数表中的第6行至第10行摘录如下:。