差动变压器式位移传感器

合集下载

差动变压器位移传感器的误差与精度研究

差动变压器位移传感器的误差与精度研究

2019年6月差动变压器位移传感器的误差与精度研究韩军浩(陕西东方航空仪表有限责任公司,陕西省汉中市723102)【摘要】现代化生产中,自动化程度不断提升,传感器的应用范围和应用量逐年增加,差动变压器位移传感器具有非常广泛的应用前景,和其他传感器相比,差动变压器位移传感器具有精度更高、动态性好、运行稳定等特点,被广泛应用在航空航天、机械制作、铁路工程等领域,主要用来测量伸长、振动、物体厚度等领域。

但差动变压器位移传感器对运行环境有较大的影响,任何一个环节控制不当,都会引发较大的误差,从而影响测量的精度。

基于此,本文结合理论实践,对差动变压器位移传感器的误差与精度做了分析。

【关键词】差动变压器;位移传感器;误差;精度【中图分类号】TP212.13【文献标识码】A 【文章编号】1006-4222(2019)06-0309-02引言在工业生产中对位移测量有很高的要求。

为节约测量的人力、物力、成本等,传感器的应用越来越普遍,通过差动变压器位移传感器快速测量出位移量,在这样的基础上,开展差动变压器位移传感器的误差与精度的研究,对发挥差动变压器位移传感器的作用有重要意义。

1差动变压器位移传感器工作原理差动变压器位移传感器主要应用在位移测量中,就被称之为差动变压器位移传感器。

根据结构形式的不同,可分有变隙式大差动变压器位移传感器、变面积式的差动变压器位移传感器,具体工作原理图如图1所示。

在图1中,R p 表示初级线圈的损耗电阻,L p 表示初级线圈的自感;R s1和R s2表示两个次级线圈的电阻,L s1和L s2表示次级线圈上的自感。

M 1表示初级线圈上的互感系数,M 2表示次级线圈上的互感系数。

E p 表示初级线圈上的激励电压,E s1和E s2表示两个次级线圈上的感应电动势,而E s 则表示两个感应电动势的差动输出电压[1]。

由于差动变压器位移传感器根据变压器的原理制成的,因此,其工作原理和变压器的原理基本相同,铁芯在初始位置时,该差动变压器上的输出应当为0,如果铁芯偏离了平衡位置,则两个次级线圈上的互感系数,就会发生极性相反的变化,则E s 不等于0,此时在差动变压器上就有电压输出,从而反映出被测物体的位移大小。

LVDT式位移传感器的原理

LVDT式位移传感器的原理

LVDT式位移传感器的原理Linearity Variable Differential Transducers简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性;随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大;差动变压器LVDT的原理比较简单;它就是在一个线圈骨架1上均匀绕制一个一次线圈2作励磁;再在两侧绕制两个二次线圈3与4,与线圈同轴放置一个铁芯5,通过测杆6与可移动的物体连接;线圈外侧还有一个磁罩7作屏蔽,如图1-1示;在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场;交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴当然也是线圈的中心轴分布并与铁芯对称的交变磁场;这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数;如果设计得当,两者可成为线性函数关系;将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1-Es2;这就是LVDT的简单工作原理如图1-2示;LVDT式位移传感器的原理二差动变压器式位移传感器LVDT为电磁感应原理,其结构示意见图一;图一:LVDT工作原理图采用环氧树脂,不锈钢等材料作为线圈骨架,用不同线径的漆包线在骨架上绕制线圈;与传统的电力变压器不同;LVDT是一种开磁路弱磁耦合的测量元件;在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压激励电压时,铁芯在线圈内移动就改变了空间磁场分布从而改变了初,次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁芯位置的不同,互感量也不同,刺激产生的感应电动势也不同,这样就将铁芯的位移量实际的铁芯是通过测杆与被测物保持相接触,也就是被测物体的位移量变成电压信号输出,由于两个次级线圈电压极性相反,所以传感器的输出是两个次级线圈电压之差,其电压差值与位移量成线性关系图二LVDT电原理图当铁芯处在线圈正中间位置时两次级线圈感应电压相等但相位相反,其电压差值为零,当铁芯往右移动时,右边的次级线圈感应的电压大于左边;两线圈输出的电压差值大小随铁芯位移而成线性变化第一象限的实线段部分,这是LVDT有效的测量范围一半;当铁芯继续往右移动时两级线圈输出电压的差值不与铁芯位移成线性关系,此为缓冲,非测量区虚线段;反之,当铁芯自线圈中间位置向左边移动亦然;零点两边的实线段一般是对称的测量范围,只不过两者都是交流信号而相位差180″;。

差动变压器式位移传感器参数化仿真及优化的开题报告

差动变压器式位移传感器参数化仿真及优化的开题报告

差动变压器式位移传感器参数化仿真及优化的开题报告一、研究背景差动变压器式位移传感器(LVDT)是一种常见的传感器类型,利用电磁感应原理测量物体的位移。

在工业自动化系统、航空航天、汽车工业等领域都有广泛的应用。

目前,随着科学技术的发展,更高精度和更稳定的LVDT传感器已成为工业制造中不可或缺的工具,为生产过程中的监测、控制和生产调整提供了更详细和准确的数据。

二、研究内容本研究旨在通过参数化仿真和优化,实现LVDT传感器的更精确计量效果。

主要研究内容包括:1. 建立LVDT传感器数学模型2. 对数学模型进行仿真,分析LVDT传感器输出的准确度与响应速度3. 通过仿真的结果,对传感器进行参数优化,提升准确性和稳定性4. 研究分析仿真系统中的误差源,找到误差源并采取相应措施减少影响三、研究意义通过上述研究内容,达到以下研究意义:1. 提高LVDT传感器的计量准确度和稳定性,保证工业自动化系统的生产质量2. 为相关领域的科研提供重要支撑,推进建立更为科学的智能工业制造四、研究方法本研究采用参数化仿真和优化方法,结合MATLAB等工具,通过对LVDT传感器的数学模型建立和仿真,不断优化其参数,逐步实现更高精度和更稳定的LVDT传感器计量效果。

五、研究进展目前,本研究已完成LVDT传感器的基本数学模型建立,并进行了初步的数学模型仿真。

模拟结果表明,其输出响应速度较快,但出现了一定的误差,需进一步优化。

下一步,将逐渐优化传感器参数,达到更加准确和稳定的计量效果。

六、预期成果本研究预期成果为:1. 完成LVDT传感器参数化仿真和优化,实现更高精度和更稳定的计量效果2. 提供有关LVDT传感器计量准确度的实证数据和相关研究文献3. 推进工业自动化系统和相关领域的科学发展七、研究难点在LVDT传感器的参数化仿真和优化过程中,主要研究难点包括:1. 建立合适的数学模型,合理地考虑机械、电学和磁学三方面因素2. 通过仿真结果,识别误差源3. 对误差源采取有效措施八、可行性分析在目前的科技水平下,利用参数化仿真和优化方法研究LVDT传感器的准确度和稳定性是十分可行的。

动态自稳定高精度差动变压器式位移传感器设计

动态自稳定高精度差动变压器式位移传感器设计
笺藏囊参蠢 拳 篓 露 l 窃
嚣黪囊


度差 动变 A 文章编号 :10 — 8 X 2 1)6 0 0 — 3 0 6 8 3 (0 0 - 0 9 0 0
摘要 :本文根据 作者对数 控车床 转塔型 电动刀架 控制系统 的改进 实践 ,总结 设计 了全新控制 系统 , 彻底解 决刀架上 的刀位开 关的可 靠性和 控制板 电路 的可靠 性的问 题。该系 统经长期 实践验证 ,具有
法 ,实现无接触 高精度 测量 的一种装置 。
以直 螺管形差 动变压器 为例 ,直螺 管形差动 变压器 的结构如 图1( ) a 所示 。 由初级线 圈 L , 它
两 个 次 级 线 圈 L 、L 、插 入 线 圈 中 央 的 圆柱 形 铁 2 3
芯 T和非导磁 触杆 G 组成 。初级线 圈 L均 匀分
的基本结 构和工作 原理 。 差动变 压器式位 移传感 器的工作 原理 ,是利
用 次 级 线 圈 与 初 级 线 圈 的 互 感 量 随 线 圈 中 铁 芯 位 移 的 变 化 而 变 化 的 原 理 ,并 通 过 对 称 式 两 个 线
圈 以差 动 方 式连 接 ,以实 现 消 除静 态偏 差 的方
要的 ,最 理想 的负 反馈信 号是 铁芯在 最左侧 或者 最右侧
位 置 时 的输 出 电压 己 。 ^ 但 传 感 器 的 工 作 往 往 是 铁 芯 位 置 不 定 , 也 可 能 长 期 没 有 机 会 在 最 左 或 者 最 右 , 工 作 中也 可 能 不 允 许 出 现 在 最 左 或 者 最 右 , 所 以 ,铁 芯 在 最 左 侧 或 者 最 右 侧 位 置 时
芯的移动越敏 感 。误 差大小 与偏离标准 工作条件

差动变压器式位移传感器的原理

差动变压器式位移传感器的原理

差动变压器式位移传感器的原理“同学们,今天咱们来好好讲讲差动变压器式位移传感器的原理。

”我站在讲台上对学生们说道。

差动变压器式位移传感器是一种常用的测量位移的传感器。

它主要是基于变压器的原理来工作的。

想象一下,有一个初级线圈,就像一个中心轴一样,然后在它的两边对称地放置两个次级线圈。

当有一个可移动的铁芯在这个线圈中间移动时,就会引起磁场的变化。

比如说,我们有一个实际的例子,在工业生产中,需要精确测量某个部件的微小位移。

这时就可以用到差动变压器式位移传感器。

当部件发生位移时,铁芯也跟着移动,这就导致两个次级线圈中的感应电动势发生变化。

通过测量这个变化,我们就能知道位移的大小和方向。

这种传感器有很多优点。

首先,它的测量精度比较高,可以检测到非常微小的位移变化。

其次,它的线性度好,输出信号与位移之间的关系比较简单直接,容易处理和分析。

而且,它的稳定性也不错,在不同的环境条件下都能可靠地工作。

同学们可能会问,那它有没有什么局限性呢?当然有啦。

比如,它对磁场干扰比较敏感,如果周围有强磁场存在,可能会影响测量结果。

还有,它的测量范围相对来说不是特别大,对于一些非常大的位移可能不太适用。

为了让大家更好地理解,我们再来看一个例子。

在汽车制造中,为了确保汽车的质量和性能,需要对一些关键部件的位移进行精确测量。

比如发动机的活塞位移,就可以用差动变压器式位移传感器来监测。

这样就能及时发现问题,保证汽车的正常运行。

在实际应用中,我们还需要注意一些问题。

比如要正确安装传感器,保证铁芯的运动顺畅。

还要对传感器进行定期校准,以确保测量的准确性。

总之,差动变压器式位移传感器是一种非常重要的传感器,在很多领域都有着广泛的应用。

希望同学们通过今天的学习,能对它有更深入的了解。

浅谈差动变压器式传感器及其应用

浅谈差动变压器式传感器及其应用

浅谈差动变压器式传感器及其应用
差动变压器式传感器是一种常用的非接触式传感器,主要用于测量物理量的变化,如位移、压力、力等。

它是由一对相互独立的电路组成,其中一个电路作为输入电路,另一个电路作为输出电路。

差动电路根据输入电路和输出电路的电势差进行测量,从而得出物理量的变化。

差动变压器式传感器的工作原理是输入电路和输出电路同时作用于磁性芯,在信号输入时,由于输入和输出电路的磁场相互作用,使得电路的感应电压发生变化。

这种电压变化的量与输入信号成正比,所以可以通过变压器的变比关系来测量输入物理量的变化。

在实际应用中,差动变压器式传感器的适用范围广泛。

其主要应用在工业自动化、航空航天、科学研究等领域。

具体应用包括以下几个方面:
1.位移测量:差动变压器式传感器可以测量物体的位移,
例如用于汽车的制动离合器,以及用于机械手和机器人系统的控制。

2.压力测量:差动变压器式传感器可以测量液体和气体的
压力,例如用于工业管道和油井等。

3.力测量:差动变压器式传感器可以测量力的大小和方向,例如用于桥梁、建筑和机器等的结构分析。

4.温度测量:差动变压器式传感器可以测量物体的温度、热量、热电势等,例如用于工业加热和冷却系统的控制。

总的来说,差动变压器式传感器具有响应速度快、测量精度高、稳定性好、可靠性高等特点,使其在工程领域中应用广泛。

同时,随着科技的不断发展和创新,差动变压器式传感器也将不断发展和完善。

差动变压器式位移传感器lvdt设计原理

差动变压器式位移传感器lvdt设计原理

[8] ANALOG DEVICES. LVDTsignal conditioner AD598.一、引言差动变压器式传感器的特点是灵敏度高、分辨力大,能测出0.1um更小的机械位移变化;传感器的输出信号强,有利于信号的传输;重复性好,在一定位移范围内,输出特性的线性度好,并且比较稳定,因此广泛应用于压力、位移传感器的设计制造中,尤其在航空、航天等环境恶劣、环境温度高的压力测量方面,也得到了广泛的应用。

二、方案论证1.参数要求给定原始数据及技术要求1).最大输入位移为100mm2)灵敏度不小于80V/m3)非线性误差不大于10%4)零位误差不大于1mv5).电源为9v,400HZ6).最大尺寸结构为160mmX21mm2.方案讨论根据给定技术要求选择电感变换元件的类型及测量电路的形式,如图1所示图1、传感器的组成框图1)传感器电感变换元件类型的选择(1)测量范围小,如位移零点几微米至数百微米,且当线性范围也小时,常用E形或II形平膜硅钢片叠成的电感式传感器或差动变压器。

(2) 螺线管,常用于测量1mm以上至数百毫米的大位移,其线性范围也较大。

2)测量电路的选择测量电路主要依据选定的电感变换器的种类、用途、灵敏度、精度及输出形式等技术要求来确定。

3.螺管型差动变压器的工作原理差动输出电动势为。

所以,差动变压器输出电动势为两副边线圈互感之差的函数。

螺管型差动变压器结构复杂,常用二节式、三节式、一节式的灵敏度高,但三节式的零点较好。

差动变压器的工作原理类似变压器的作用原理。

这种类型的传感器主要包括有衔铁、一次绕组和二次绕组等。

一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。

由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。

图2为三节式螺管型差动变压器的示意图。

图2 三节式差动变压器的结构形式三.螺管型差动变压器的参数计算现以三节式螺管型差动变压器式传感器为例来说明参数的设计计算方法,其结构如图3。

差动变压器式位移传感器的设计与实现

差动变压器式位移传感器的设计与实现
J u n lo W u n En n e i g I tt e o r a f ha gi e r n nsiut
ቤተ መጻሕፍቲ ባይዱ
Vol 2 N 0. 3 4
De e e 0l c mb r 2 l
差 动 变 压 器 式位 移 传 感 器 的设 计 与 实现
陈 贞 李 晓虹 张 键
所示 , 由一个 初级 线 圈、 个 次级 线 圈 、 自 由移 它 两 可
动的杆状铁 芯、 心线 圈骨架、 壳等部 件组成 。 空 外
L T工作 过程 中, 心 的运 动 不 能超 出线 圈的线 VD 铁
应 变式 、 电感 式 、 差动 变压 器式 、 涡流 式 、 尔等 位移 霍
传 感器 来检 测 , 的位 移 常 用 感应 同步 器 、 栅 、 大 光 容
确定 , 因此 AD 9 5 8既 可驱 动 高 达 2 V、 率 范 围 为 4 频
2 Hz 0k 0  ̄2 Hz的 L T 原 边 线 圈 , 可 接 受 最低 VD 又 为 1 0mV 的次 级 输 入 , 以 适 用 于许 多不 同类 型 0 所 的 L VDT。 除 此 之 外 还 有 输 出 放 大 器 和 接 收 L DT 次 级 输 出 的两 个 正 弦 信 号 的输 出 级 、 法 V 除 器、 滤波 器及其 输 出放大 器 。在 A 9 D5 8芯 片 的除法
以获得一 个 与 铁 芯 位 移 成 线 性 函数 关 系 的特 征 曲 线 。当铁 芯处 于两 个 二 次 线 圈 中 间位 置 时 , 两个 次 级线 圈产 生 的感应 电 动 势相 等 , 一E 一0 输 E一 。 ,
1 差 动 变压 器 式位 移 传 感 器
( I VDT) 的工 作 原 理 及 特 点

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。

(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。

2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。

3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。

实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。

3.V/F表调至20V档。

4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。

5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。

6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。

7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。

8.向下每0.5mm读一个数。

项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。

差动变压器式位移传感器静态特性验证实验报告

差动变压器式位移传感器静态特性验证实验报告

差动变压器式位移传感器静态特性验证实验报告实验目的:本实验旨在验证差动变压器式位移传感器的静态特性,包括灵敏度、线性度和稳定性等方面。

实验器材:1.差动变压器式位移传感器2.信号发生器3.示波器4.多用表实验步骤:1.将差动变压器式位移传感器连接至信号发生器和示波器。

确保连接正确并稳定。

2.设置信号发生器的频率为固定值,如100Hz,并逐步增加信号幅度,记录传感器输出电压与输入电压的关系。

3.根据记录的数据绘制传感器的灵敏度曲线。

计算并记录不同输入电压下的输出电压变化率,即灵敏度。

4.改变输入电压的频率,如50Hz、200Hz等,重复步骤2和3,以验证传感器在不同频率下的灵敏度变化情况。

5.将输入信号的幅度设置为固定值,如2V,并逐步改变输入信号的频率,记录传感器输出电压与频率的关系。

6.根据记录的数据绘制传感器的频率响应曲线。

计算并记录不同频率下的输出电压变化率。

7.通过对比不同频率下的输出电压变化率,评估传感器的线性度。

8.持续输入相同信号,观察传感器输出电压的稳定性。

记录并分析传感器输出的波动情况。

实验结果与讨论:根据实验数据绘制的灵敏度曲线表明,在不同输入电压和频率下,差动变压器式位移传感器的灵敏度基本保持稳定。

通过对比不同频率下的输出电压变化率,可以得出传感器具有较好的线性度。

此外,传感器在持续输入相同信号的情况下,输出电压波动较小,表现出较好的稳定性。

结论:差动变压器式位移传感器在静态条件下表现出良好的特性,包括稳定的灵敏度、良好的线性度和稳定性。

这些特性使其在位移测量等领域具有广泛的应用前景。

实验二差动变压器式电感传感器的静态位移性能

实验二差动变压器式电感传感器的静态位移性能

实验二差动变压器式电感传感器的静态位移性能一、实验目的1、了解差动变压器式电感传感器的基本原理及工作情况。

2、了解差动变压器式电感传感器测量系统的组成和作用。

二、基本原理差动变压器的工作原理类似变压器的作用原理。

差动变压器器的结构如图2-1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。

差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移的变化而变化。

由于把二次绕组反相串接(同名端相接),以差动电势输出,所以称为差动变压器式电感传感器。

图2-1 差动变压器结构示意图图2-2 差动变压器等效电路图当差动变压器工作在理想状态下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图2-2所示。

当衔铁处于中间位置,两个次级线圈互感相同,因而产生的感应电势相同。

由于二次绕组反相串接,所以差动输出电势为零。

当衔铁移向一侧,这时输出电势不为零,位移越大,输出电动势越大。

当衔铁移向另一侧,由于移动方向改变,所以输出电动势反相。

因此,可以通过差动变压器输出电动势的大小和相位可以知道衔铁位移的大小和方向。

差动变压器的输出特性曲线如图2-3所示。

图中E21、E22分别为两个二次绕组的输出感应电动势,E2 为差动输出电动势,x表示衔铁偏离中心位置的距离。

E2的实线表示理想的输出特性,虚线为实际的输出特性。

E0为零点残余电势。

图2-3 差动变压器输出特性三、所需单元和部件差动变压器式电感传感器、音频振荡器、电桥、差动放大器、相敏检波器、移相器、低通滤波器、V/F表、测微器、双线示波器。

四、注意事项1.音频振荡器的信号必须从“LV”输出端输出。

2.差动变压器的两个次级线圈必须接成差动形式。

3.为了便于观察,实验中需要调节示波器的灵敏度。

4.检查所有处理电路单元的开关按钮在释放位(关状态);5.根据图2-4连接好测量电路后,经同伴检查确认,才可打开电源进行调整及测量工作,以免烧毁仪器元件。

差动变压器式位移传感器 说明书

差动变压器式位移传感器 说明书

2.7 :铁芯导杆有导向结构图示—b
3.8 :铁芯有导向并有回程弹簧结构图示—c
第二位数字
1:表示大量程( ±10mm~±750mm )
2:表示小量程( ±1mm~±6mm )
3:表示高精度传感器
±10mm:代表传感器的线性量程
0.5: 传感器的精度等级
六、传感器产品的成套性
1. 传感器(按合同提供)
E(y) E1
E3 E2
S(mm)
N3 N1
N2 图3
-5-
PDF created with pdfFactory Pro trial version
单方向 LVDT 由于零点迁移后其零点电压一般都较高(可达满量程输出的 10% 左右),因此,要采用外补偿电路来降低零点电压,(如图 4)。
N1
铁芯
E2-1 E1
E2-2
N2- 2
N2— 1 图1
初级绕组接入交流电源后,由于互感作用两个次级绕组分别产生了感应电动势 E2-1 与 E2-2,把两个二次线圈的同名端相接,在另一对同名端就可以获得一个与铁芯 位移成线性函数关系的特性曲线。
当铁芯位于两个二次线圈中间位置时,两个线圈的电动势相等,E2-1— E2-2=0, 输出电压应为 0,把这个电压称之为零点电压或称为残余电压。(由于在制造过程中 的各种因素影响传感器的零点电压不可能为 0)。
-4-
PDF created with pdfFactory Pro trial version
1000mm 的产品。 6. LVDT 灵敏度高,输出信号大,在国家标准中规定: 交流传感器的灵敏度,量程 10mm 以下的应 150mV/ mm/ V,量程 10mm 以上 的应 50mV/ mm/ V。

差动变压器式位移传感器

差动变压器式位移传感器

差动变压器式位移传感器简介差动变压器式位移传感器是用来测量物体位移的一种传感器,其原理是通过差动变压器电路来实现。

它是工业测量和控制领域中常用的一种传感器,用于测量机械或结构的位移变化。

差动变压器电路差动变压器电路由两个相等的线圈组成,它们共同构成了感知单元。

一个线圈通入交流电源,另一个线圈和感测器构成一个变压器,它的输出电压随感知单元的位移发生变化。

当这两个线圈处于相等且相位相同的条件下,恰好产生同相的电磁场;当物体发生位移后,感知单元距离两个线圈都有所改变,会使得线圈的感应电动势发生变化,从而使两个电动势差生变化,也就是常说的“差模信号”。

这个信号可以通过测量来确定物体的位移。

应用领域差动变压器式位移传感器的应用领域非常广泛,常用于测量结构振动、温度变化以及力学变形等物理量。

它也被广泛应用于高精度工具的制造及人工智能领域的机器人和自动化设备中。

工业制造在工业制造中,差动变压器式位移传感器可以用于检测机器的精度和稳定性,比如进行机床的重量平衡和精度调整。

此外,它也广泛用于非接触式测量机器的运动和振动,比如检测振动传感器和运动控制器等。

人工智能在人工智能和机器人领域,差动变压器式位移传感器也具有重要的应用价值。

例如,在机器人领域,它可以用于控制机器人的运动和位置,提高机器人的各项性能指标,如协作、灵活性和精度。

医疗保健此外,差动变压器式位移传感器还可以应用于医疗保健领域。

它可以用来测量患者的呼吸和心跳等生理指标,以帮助医疗保健机构更好地监护患者的健康状况。

总结差动变压器式位移传感器是一种应用非常广泛的传感器,其原理是通过差动变压器电路来实现对物体位移的测量。

在工业制造、人工智能和医疗保健领域中,它都有着很重要的应用价值。

差动变压器式角位移传感器的应用

差动变压器式角位移传感器的应用

差动变压器式角位移传感器的应用胡彦萍【摘要】角位移传感器是位移传感器的一种,它是把对角度的测量转换成其他物理量的测量的一种检测装置.从工程实际出发,介绍了差动变压器式角位移传感器的安装联接形式和安装联接过程中应注意的事项,对传感器安装后影响传感器信号输出的因素进行了分析,提出了检测传感器信号输出时应注意的问题,为工程设计人员及时解决信号输出问题提供了参考.%Angular displacement sensor is a kind of displacement sensor.It is a kind of measuring device to convert the measurement of angle to other physical quantity.Based on the engineering practice, this paper introduces the installation and connection of the differential transformer type angular displacement sensor, and introduces the matters that should be paid attention to in the process of installation and connection.It analyzes the influence factors on the output signal of the sensor after the installation of sensors, and put forward some problems of sensor signal output, which provides a reference for the engineering design personnel to solve problems of signal output timely.【期刊名称】《兰州石化职业技术学院学报》【年(卷),期】2017(017)001【总页数】3页(P36-38)【关键词】差动变压器式;联轴器;角位移传感器;齿轮啮合【作者】胡彦萍【作者单位】兰州石化职业技术学院机械工程系,甘肃兰州730060【正文语种】中文【中图分类】TP212角位移传感器作为一种典型的测量元件,目前已经得到了较为广泛的应用,角位移传感器的工作原理是:把机械部件的旋转运动传递到角位移传感器的轴上,带动与之相连的扰流片/铁心,改变线圈中的感应电压/电感量,输出与旋转角度成比例的电压/电流信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OP07CP。
OP07的功能介绍:OP07芯片是一种低噪声,非斩波稳零的双极性运算放大
器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),
所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流
低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失
构。
如果输入信号接在7,8两点,这是放大器处于双端输入的差动状态。如果传感器课程设计
7 输入接在8与地之间,而7接地,这是差动放大器处于单端输入的反相状态。把
输入信号接在7与地之间,而8接地,差动放大器处于单端输入的同相状态。
差动放大器实现的功能是将信号放大。其需要的主要芯片是1AC156M
其忽略。另外,根据实验电路产生直流信号影响有用直流信号,可考虑在相敏检
波电路与低通滤波器之间连接一个适当电容,以滤去干扰直流信号)。 传感器课程设计
5
第三章
第三章第三章
第三章差动变压器
差动变压器差动变压器
差动变压器
3.1
传感器结构
式的相敏检波电路就可以直接利用激励信号作为检波的参考信号而且幅值也达
到要求,这样就可以省略方波段的电路,利于生产效益的提高。
传感器课程设计
4 2.2
原理简述
原理简述原理简述
原理简述 由RC振荡器提供激磁电压及通过移相器后给相敏检波电路的参考电压信
号,传感器工作后输出0-40mVp-p的微弱正弦信号。考虑到抑制共模信号,因此
第八章参考文献 ...................................................................................... 19 传感器课程设计
2 第一章
第一章第一章
第一章绪论
绪论绪论
绪论
1.1 概述
5.1 各电路波形 ................................................................................. 14
5.2 位移测量数据拟合 ..................................................................... 17
1.1 概述 ............................................................................................... 2
1.2 设计任务 ....................................................................................... 2
课程设计说明书
课程设计说明书课程设计说明书
课程设计说明书
传感器课程设计
Course-Design of Sensor ——
差动变压器式位移传感器
学院名称
学院名称学院名称
学院名称:
::
:机械工程学院
机械工程学院机械工程学院
机械工程学院
专业班级
专业班级专业班级
专业班级:
::

学生姓名
学生姓名学生姓名
学生姓名:
::

学号
学号学号
学号:
::

指导教师姓名
指导教师姓名指导教师姓名
指导教师姓名:
::

指导教师职称
指导教师职称指导教师职称
2.2 原理简述 ....................................................................................... 4
第三章差动变压器 .................................................................................... 5
第四章单元电路的分析 ............................................................................ 6
4.1 差动放大电路 ............................................................................... 6
4.4 低通滤波电路 ........................................................................... 112
第五章电路测试及波形 .......................................................................... 14
我们必须明白对传感器激磁电压的选择是有要求的,首先它的频率必须够高
一般选择3KHz~10MHz,其次它的电压要达到相应的幅值,交流一般在20V以
上(因为设计要求的是正弦激励信号)而相敏检波电路的参考信号一般要将高频
的信号处理为方波信号,这样可以更稳定,利于提高检波的精度;但若采用相加
处理后才能送入后续电路,至于是什么样的处理电路,就必须考虑对位移方向的
鉴别问题了,可以选择相敏检波电路,也就因此排除了对象为不敏感的包络检波
电路,实现了相敏检波电路后按设计任务的要求必须化成直流信号,可以还必须
对解调信号进行直流放大和低通滤波,只有这样才能得到调制信号的变化情况,
这样也就可以接数显部分进行显示了。
劣。
所以,学习并领悟测控技术就显得十分重要了,《测试技术》是我们测控技
术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的
方方面面问题也应该是本专业学生的基本素质,也鉴于这些要求,做一些测控方
面的课程设计就会让我们加深对传感器技术的理解和运用,也正是因为对一些实
第六章心得体会 ...................................................................................... 18 第七章参考文献
...................................................................................... 19
指导教师职称:
::
:教授
教授教授
教授
2012
年 01月传感器课程设计
1 目录 第一章绪论
................................................................................................ 2
传感器的输出电压u就随铁芯位移x成线性的增加。如果以适当的方法测量u,
就可以得到与x成比例的线性读数。这就是差动变压器式传感器的工作原理。
第四章
第四章第四章
第四章单元电路的分析
单元电路的分析单元电路的分析
单元电路的分析
4.1 差动放大电路
差动放大电路差动放大电路
4.2 移相电路 ....................................................................................... 9
4.3 相敏检波电路 ............................................................................. 10
传感器结构传感器结构
传感器结构
3.2
工作原理
工作原理工作原理
工作原理 差动变压器主要是由一个线框和一个铁芯组成,在线框上绕有一组初级线圈作为
输入线圈(或称一次线圈),在同一线框上另绕两组次级线圈作为输出线圈(或称
二次线圈),并在线框中央圆柱孔中放入铁芯,当初级线圈加以适当频率的电压激
第二章方案论证及选择 ............................................................................ 3
2.1 ........................................................... 3
3.1 传感器结构 ................................................................................... 5
3.2 工作原理 ....................................................................................... 5
出测试结果。 传感器课程设计
3
第二章
第二章第二章
第二章方案论证及选择
方案论证及选择方案论证及选择
方案论证及选择
2.1 方案论证
方案论证方案论证
方案论证 差动传感器输出的是0~40mvVp-p的正弦信号,第一是比较微弱的,第二不
能用直流表测量,因为这样不能反应位移的正负。因此必须对这些信号进行放大
差动放大电路
差动放大器是一种零点漂移十分微小的直流放大器,它常作为直流放大器的
前置级,用以放大微小的直流信号或缓慢变化的交流信号。
相关文档
最新文档