宁夏银川市第一中学2020届高三上学期第五次月考数学(文)试卷
宁夏回族自治区银川市2023届高三下学期学科教学质量检测(一模)数学试卷及答案
银川市2023年普通高中学科教学质量检测理科数学考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{}*5A x x x =∈≤N 且,()(){}130B x x x =+->,则U A C B = ()A .{}1,2B .{}0,1,2C .{}1,2,3D .{}0,1,2,32.在复平面内,已知复数11z i =-对应的向量为1OZ ,现将向量1OZ绕点O 逆时针旋转90°,并将其长度变为原来的2倍得到向量2OZ ,设2OZ 对应的复数为2z ,则21zz =()A .2iB.C .2D.3.a b >的一个充要条件是()A .11a b<B .22ac bc>C .22log log a b >D .1.7 1.7a b>4.已知函数2()121xf x =-+,则()A .()f x 是偶函数且是增函数B .()f x 是偶函数且是减函数C .()f x 是奇函数且是增函数D .()f x 是奇函数且是减函数5.在正方体1111ABCD A B C D -中,E 为1DD 中点,O 是AC 与BD 的交点,以下命题中正确的是()A .1//BC 平面AECB .1B O ⊥平面AECC .1DB ⊥平面AECD .直线1A B 与直线AE 所成的角是60°6.在△ABC 中,90C ∠=︒,2AC BC =,D 是AC 边的中点,点E 满足13BE BA = ,则CE 与BD的夹角为()A .60°B .75°C .90°D .120°7.在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,现将角α的终边绕原点O逆时针方向旋转6π与单位圆交点的纵坐标为35,则2cos 23πα⎛⎫-= ⎪⎝⎭()A .725-B .725C .1825-D .18258.已知圆锥SO ,其侧面展开图是半圆,过SO 上一点P 作平行于圆锥底面的截面,以截面为上底面作圆柱PO ,圆柱的下底面落在圆锥的底面上,且圆柱PO 的侧面积与圆锥SO 的侧面积的比为34,则圆柱PO 的体积与圆锥SO 的体积的比为()A .38B .12C .58D .349.泊松分布是一种描述随机现象的概率分布,在经济生活、事故预测、生物学、物理学等领域有广泛的应用,泊松分布的概率分布列为()(),2,!0,1k P K e k k x λλ-=== ,其中e 为自然对数的底数,λ是泊松分布的均值.当n 很大且p 很小时,二项分布近似于泊松分布,其中np λ=.一般地,当20n ≥而0.05p ≤时,泊松分布可作为二项分布的近似.若随机变量()~1000,0.001X B ,()2P X ≥的近似值为()A .11e-B .21e-C .14e -D .211e -10.已知函数()2sin()(0,2f x x πωϕωϕ=+<>的部分图象如图所示,将()f x 图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象向右平移4π个单位长度得到函数()g x 的图象,则下列判断正确的是()A .()g x 的最小正周期为4πB .()g x 的图象关于直线23x π=对称C .()g x 在区间,66ππ⎡⎤-⎢⎥⎣⎦上单调递增D .()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦11.已知抛物线2:4C y x =的焦点为F ,过原点O 作斜率为()0k k >的直线交C 于点A ,取OA 的中点B ,过点B 作斜率为k -的直线l 交x 轴于点D ,则AF OD -=()A .1B .2C .4D .与k 值有关12.已知函数()f x 的定义域为R ,且(1)(1)2f x f x ++-=,(2)(2)f x f x +=-,()f x 在[]0,1单调递减,则不等式1(1)12f x -<在区间[]8,8-所有整数解的和为()A .10B .12C .14D .16第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.点(),0F c 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆()222:F x c y a -+=与双曲线C 的一条渐近线交于A 、B ,若△ABF 为直角三角形,则双曲线的离心率为________.14.在△ABC 中,120BAC ∠=︒,2AB =,BC =D 为BC 边上一点,且AB AD ⊥,则△ABD 的面积等于________.15.某校在“校园艺术周”活动中,安排了同时进行的演讲、唱歌、跳舞三项比赛,现准备从包括甲在内的五名同学中随机选派三名同学分别参加三项比赛,则甲不能参加演讲比赛的概率为________.16.关于x 的不等式log (01)x a a x a a ≥>≠且恒成立,则实数a 的取值范围是________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)“十四五”时期是我国全面建成小康社会、实现第一个百年奋斗目标之后,开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的第一个五年.“三农”工作重心历史性转向全面推进乡村振兴,加快中国特色农业农村现代化进程.国务院印发《“十四五”推进农业农村现代化规划》制定了具体工作方案和工作目标,提出到2025年全国水产品年产量达到6900万吨.2018年至2021年全国水产品年产量y (单位:千万吨)的数据如下表:年份2018201920202021年份代号x 1234年产量y6.466.486.556.69(1)求y 关于x 的线性回归方程,并预测2025年水产品年产量能否实现目标;(2)为了系统规划渔业科技推广工作,研究人员收集了2019年全国32个地区(含中农发集团)渔业产量、渔业从业人员、渔业科技推广人员的数据,渔业年产量超过90万吨的地区有14个,有渔业科技推广人员高配比(配比=渔业科技推广人员总数:渔业从业人员总数)的地区有16个,其中年产量超过90万吨且高配比的地区有4个,能否有95%的把握认为“渔业科技推广人员配比和年产量”有关系.附:对于一组数据1122(,),(,),,(,)n n x y x y x y ,其回归直线ˆˆˆy x βα=+的斜率和截距的最小二乘法估计分别为121ˆniii nii x ynxy xnx β==-=-∑∑,ˆˆy x αβ=-,22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.841 6.63510.828参考数据 6.545y =4165.83i ii x y==∑18.(本小题满分12分)已知数列{}n a 满足211233333n n n a a a a n -++++=⋅ .(1)求数列{}n a 的通项公式及前n 项和n S ;(2)若________,求数列{}n b 的前n 项和n T .在①2n a n n S b n =+,②1n nb S =,③1(1)2n n n b a -=-⋅这三个条件中任是一个补充在第(2)问中,并求解.注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在四棱锥P ABCD -中,已知PA PC =,AB BC =.(1)求证:PB AC ⊥;(2)若平面PCD ⊥平面ABCD ,//AB CD ,且22AB CD ==,90ABC ∠=︒,二面角P BC D --大小为45°,点E 是线段AP 上的动点,求直线EB 与平面PAD 所成角的正弦值的最小值,并说明此时点E 的位置.20.(本小题满分12分)21()ln (1)2f x ax x a x =+-+.(1)当4a =-时,求()f x 的单调区间与极值;(2)当0a >时,设()()f x g x x=,若()g x 既有极大值又有极小值,求a 的取值范围.21.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b+>>=的两个焦点与短轴的一个端点是直角三角形的三个顶点,且椭圆E 过(2,1)T ,直线:l y x m =+与椭园E 交于A 、B .(1)求椭圆E 的标准方程;(2)设直线TA 、TB 的斜率分别为1k ,2k ,证明:120k k +=;(3)直线l '是过点T 的椭圆E 的切线,且与直线l 交于点P ,定义PTB ∠为椭圆E 的弦切角,PAB ∠为弦TB 对应的椭圆周角,探究椭圆E 的弦切角PTB ∠与弦TB 对应的椭圆周角TAB ∠的关系,并证明你的论.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4—4:坐标系与参数方程(本小题满分10分)在直角坐标系xOy 中,直线l的参数方程12112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 是以(2,)2π为圆心,且过点23M π的圆.(1)求曲线C 的极坐标方程与直线l 的普通方程;(2)直线l 过点(1,1)P 且与曲线C 交于A ,B 两点,求22PA PB +的值.23.选修4—5:不等式选讲(本小题满分10分)已知函数()221f x x x =+--.(1)求不等式()3f x ≥-的解集;(2)若(],,1a b ∈-∞且满足()()f a f b >,记c 是()f x 的最大值,证明:2122()a cb a b +≥+-.银川市2023年普通高中学科教学质量检测理科数学参考答案选择题答案123456789101112C ADCBCAABCAB填空题答案13.621415.4516.1,e e ⎡⎫+∞⎪⎢⎣⎭17.(1)解:由题意知:1(1234) 2.54x =+++=, 6.545y =4165.83iii x y==∑4222221123430ii x==+++=∑所以414221465.834 2.5 6.5450.076304 2.54iii ii x yxyxx β==--⨯⨯===-⨯-∑∑,6.5450.076 2.5 6.35ˆ5ˆay x β-⨯==-=故y 关于x 的线性回归方程为ˆ0.076 6.355yx =+.当8x =时,ˆ0.0768 6.355 6.963 6.9y=⨯+=>6分所以根据线性回归模型预测2025年水产品年产量可以实现目标.(2)列联表渔业年产量超过90万吨的地区渔业年产量不超过90万吨的地区合计有渔业科技推广人员高配比的地区41216没有渔业科技推广人员高配比的地区10616合计141832222()32(461012) 4.571 3.841()()()()16161418n ad bc K a b c d a c b d -⨯⨯-⨯==≈++++⨯>⨯⨯故有95%的把握认为“渔业科技推广人员配比和年产量”有关系.12分18.解:因为211233333n n n a a a a n -++++=⋅ 当2n ≥时2211231333(1)3n n n a a a a n ---++++=-⋅ 相减得11133(1)33(21)n n n n n a n n n ---=⋅--⋅=+得21n a n =+3分当1n =时,13a =满足上式4分综上:21n a n =+22n S n n=+6分(2)选①2n a nn S b n=+解:由(1)可知:21n a n =+22n S n n=+∴2212122222na n n n n S n nb n n n+++=+=+=++∵1231n n nT b b b b b -=+++++ ∴3(32)2(14)(5)8(41)21423n n n n n n n T ++-+-=+=+-12分选②1n nb S =解:由(1)可知:22n S n n=+∴11111((2)22n n b S n n n n ===-++∵1231n n nT b b b b b -=+++++ 111111111111111111()()()(((21322423524621122n T n n n n =-+-+-+-+++-++ 111113111(()212124212n n n n =+--=-+++++12分选③1(1)2n n n b a -=-⋅解:由(1)可知:21n a n =+∴1(1)22n n n n b a n -=-⋅=⋅∵1231n n nT b b b b b -=+++++ 则1231122232(1)22n nn T n n -=⨯+⨯+⨯++-⨯+⨯ 于是得23122232(1)22n n n T n n +=⨯+⨯++-⨯+⨯ 两式相减得231112(12)222222(1)2112n nn n n n T n n n +++--=+++-⋅=-⋅=-⋅-- ,所以1(1)21n n T n +=-⋅+.12分19.(1)证明:取AC 的中点O ,连接OB ,OP∴OP AC ⊥①同理可得,OB AC ⊥②∵平面OP OB O = ,∴AC ⊥平面POB ,∵PB ⊂平面POB ∴PB AC⊥5分(2)以C 为原点,以CD 为x 轴,以CB 为y 轴,建立如图所示的坐标系平面PCD ⊥平面ABCD ,交线为CD ,又90ABC ∠=︒,//AB CD ,所以BC CD ⊥,所以BC ⊥面PCD ,所以BC PC⊥PCD ∠二面角P BC D --的平面角,45PCD ∠=︒,22AB CD ==,所以P (2,0,2),A (2,2,0),B (0,2,0),D (1,0,0)设(),,E x y z ,()0,2,2PA =- ,()2,,2PE x y z =--,设PE PAλ= 解得()2,2,22P λλ-,所以()2,22,22PB λλ=--设平面PAD 的一个法向量为(),,n x y z =()0,2,2PA =- ,()1,2,0PD =22020y z x y -=⎧⎨-=⎩令1y =,∴2x =,1z =()2,1,1n =直线EB 与平面PAD 所成角的正弦值sin cos ,3<>PB n θ===≥,min 2sin 3θ=,此时0λ=,E 与P 重合.12分20.解析:21()ln (1)2f x ax x a x =+-+当4a =-时,2()2ln 3f x x x x=-++所以21431(41)(1)()430x x x x f x x x x x-++---'-++==>=解得1x >所以()f x 在(0,1)上单调递增,在()1,+∞上单调递减所以()f x 在1x =处取得极大值(1)1f =,无极小值.5分()1ln ()(1)2f x xg x ax a x x==+-+有两个极值点,所以22211ln 11ln 2()02ax xx g x a x x +--'=+==有两个不等正根所以21()1ln 02h x ax x =+-=有两个不等正根.211()0ax h x ax x x-'-=>=解得x >所以()f x在上单调递减,在)+∞上单调递增当0h <,即11102a a +-<,解得3a e -<10分当x ∈时,令0min x ⎧⎪=⎨⎪⎩,易知,当0x x <,()0h x >当)x ∈+∞又因为ln 1x x <-,ln 1x x ->-+所以2211()1ln 222h x ax x ax x =>+-+-令2122y ax x =+-,当140a ∆=-≤,21202y ax x =+-≥恒成立所以存在0)x ∈+∞,当0x x >,()0h x >当140a ∆=->,21202y ax x =+-=有根1114a x a =,2114a x a +=所以存在02x x >时,当0x x >,()0h x y >>由零点存在定理,21()1ln 02h x ax x =+-=有两个不等正根.综上30a e -<<12分21.解析:(1)由题意知2b c a ==所以222a b=又椭圆经过T (2,1),所以22411a b+=解得26a =,23b =,所以椭圆方程为22163x y +=2分(2)联立直线与椭圆方程得2226y x mx y =+⎧⎨+=⎩∴222()6x x m ++=,∴2234260x mx m ++-=又因为有两个交点,所以221612(26)0m m ∆=->-,解得33m -<<又1243mx x +=-,212263m x x -=121212121211112222y y x m x m k k x x x x --+-+-+=+=+----1212122121112(1)(2222x m x m m x x x x -++-++=+=+++----1212121212442(1)2(1)(2)(2)2()4x x x x m m x x x x x x +-+-=++=++---++2442(3)32(1)2(1)0264(1)(3)2()433mm m m m m m m --+=++=-+-++--+得证8分(3)椭圆E 的弦切角PTB ∠与弦TB 对应的椭圆周角TAB ∠相等设切线方程为()12y k x -=-221226y kx k x y =+-⎧⎨+=⎩∴222(12)6x kx k ++-=∴222(12)4(12)2(12)60k x k k x k ++-+--=0∆=∴1k =-设切线与x 轴交点为Q ,TA 、TB 分别与x 交于C ,D12 0k k +=,所以TCD TDC ∠=∠,又TQD AMC ∠=∠,TCD TAB AMC ∠=∠+∠,TDC PTB POD ∠=∠+∠所以PTB BAT ∠=∠证毕.12分22.(1)解:∵直线l 的参数方程312112x t y t =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数)∴直线l的普通方程为10x --=由cos x ρθ=,sin y ρθ=得,C (0,2),(M ,半径2CM =∴曲线C 的普通方程为22(2)4x y +-=,即2240x y y +-=故曲线C 的极坐标方程为4sin ρθ=5分(2)由(1)可知:曲线C 的普通方程为2240x y y +-=,将直线l 的参数方程312112x t y t =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数)代入曲线C 的的普通方程为2240x y y +-=整理得21)20t t +--=设A ,B 两点对应的参数分别为1t ,2t,则有121212t t t t +=-=-⎧⎪⎨⎪⎩由参数t的几何意义可得:222222121212()2(12(2)8PA PB t t t t t t +=+=+-=-⨯-=-10分23.(1)解:由题意知:4,2,3,21,4, 1.x x y x x x x -≤-⎧⎪=-<<⎨⎪-+≥⎩作出函数()221f x x x =+--的图象,它与直线3y =-的交点为()1,3--和()7,3-.由图象可知:不等式()3f x ≥-的解集[]1,7-.5分(2)由(1)可知:当1x =时,()y f x =取得最大值3,即3c =∵()y f x =在(],1-∞上单调递增,且()()f a f b >∴a b >,即0a b ->∵2221112(2)2()3()()3()()()a cb a b a b a b a b a b a b +-+=-+=-+-+----30≥-=(当且仅当21()a b a b -=-时取等号)∴2122()a cb a b +≥+-即证之10分银川市2023年普通高中学科教学质量检测文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
2020届宁夏银川一中高三第五次月考数学(文)试题 PDF版
(2)设过 F 的直线交轨迹 E 的弦为 AB,过原点的直线交轨迹 E 的弦为 CD,若 AB//CD,求证: CD 2 为 AB
定值. 21.(12 分)
设 f (x) a b ln x ,其中 a,b R ,函数 f(x)在点(1,f(1))处的切线方程为 y (1 1)x 2 1 ,
方向上的投影为
3,则
a
与
b
的夹角为
A.300
B.600
C.300 或 1500 D.600 或 1200
22 10.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 cos C= 3 ,
bcos A+acos B=2,则△ABC 的外接圆面积为
A. 3
B. 6
C. 9
D.12
18.解析:(1) an1 3an 1
an1
1 2
3(an
1) 2
....................................2
分
所以
an
1 2
是首项为
1
公比为
3
的等比数列........................4
分
(2)
由(1)可知
an
1 2
(3)解 由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC= V = C-AEFD V1,.....................10 分
∴V = BC-AEFD V1,则 VP-ABCD=V1+ V1= V1,
∴
..........................12 分
宁夏银川市贺兰县第一中学2025届高三上学期第一阶段考试数学试卷
宁夏银川市贺兰县第一中学2025届高三上学期第一阶段考试数学试卷一、单选题1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =I ( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}22.函数()3log 14x y x -=+的定义域为( )A .()(),44,1∞--⋃-B .()(),11,4-∞--UC .(),1-∞D .()1,+∞3.函数()f x 是定义在R 上的偶函数,且(1)(1)f x f x +=-,若[]0,1x ∈,()2x f x =,则(2024)f =( )A .4B .2C .1D .04.函数()21xf x x =-的图象大致是( ) A . B .C .D .5.函数()ln cos 4f x x x =-的零点个数为( ) A .2B .3C .4D .56.若0.302a =.,0.20.3b =,0.5log 0.3c =,则a ,b ,c 的大小关系为( ) A .c a b <<B .b a c <<C .a b c <<D .a c b <<7.若命题:“a ∃,R b ∈,使得cos cos a b b a -≤-”为假命题,则a ,b 的大小关系为( ) A .a b <B .a b >C .a b ≤D .a b ≥8.如图,矩形ABCD 的三个顶点A 、B 、C 分别在函数y x=,12y x =,xy =⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为( )A .11,24⎛⎫ ⎪⎝⎭B .11,34⎛⎫ ⎪⎝⎭C .11,23⎛⎫ ⎪⎝⎭D .11,33⎛⎫ ⎪⎝⎭二、多选题9.下列各式正确的是( )A .设0a >54a = B .已知21a b +=,则27333a ba⋅= C .若1122223,49a a a a --+=+= D .1414log 7,log 5a b ==,则351log 2aa b-=+ 10.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,下列有关方程()()0f x k k =<的实数解个数说法正确的是( )A .当实数解的个数为1时,4k <-B .当实数解的个数为2时,30k -<<C .当实数解的个数为3时,43k -<≤-D .当实数解的个数为3时,43k -<<- 11.给出下列命题,其中正确的命题有( )A .函数3()3log f x x x =-+的零点所在区间为(2,3)B .若关于x 的方程||102x m ⎛⎫-= ⎪⎝⎭有解,则实数m 的取值范围是(0,1]C .函数22log y x =与函数22log y x =是相同的函数D .若函数()f x 满足()(1)2f x f x +-=,则1289910101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L三、填空题12.已知幂函数()()257mf x m m x =-+的图象关于y 轴对称,则实数m 的值是.13.已知函数()f x 的定义域是R ,3322f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()()60f x f x +-=,当302x ≤≤时,()242=-f x x x ,则()2024f =.14.已知定义在()0,+∞上的函数331log ,0<3()=log 1,3<94>9x x f x x x x -≤-≤-⎧⎪⎨⎪⎩,设,,a b c 为三个互不相同的实数,满足()()()f a f b f c ==,则abc 的取值范围为.四、解答题15.已知函数()2x f x a -=的图象经过点11,2⎛⎫ ⎪⎝⎭,其中0a >且1a ≠.(1)若()23f t +=,求实数a 和t 的值;(2)设函数()+1,0=1,>0x x x g x a x ≤-⎧⎨⎩,请你在平面直角坐标系中作出()g x 的简图,①并根据图象写出该函数的单调递增区间. ②求()1g x ≤的解集.16.已知定义域为R 的函数2()2x x bf x a-+=+是奇函数.(1)求a ,b 的值.(2)判断函数()f x 的单调性,并用定义证明.(3)当[1,3]∈x 时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.17.已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[﹣1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围.18.设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求,a b 的值; (2)若(1)2f =,①0,0a b >>,求14a b+的最小值;②若()1f x >在R 上恒成立,求实数a 的取值范围. 19.若函数()f x 在定义域内的某个区间I 上是增函数,而()f x y x=在区间I 上是减函数,则称函数()y f x =在区间I 上是“弱增函数”.(1)判断2()42g x x x =++在区间(1,2)上是否是“弱增函数”(不必证明);(2)若函数21()2h x x m x b ⎛⎫=+-+ ⎪⎝⎭(m ,b 是常数)在区间(0,1]上是“弱增函数”,求m 、b 应满足的条件;(3)已知()|1||2||3|f x x x k x =-+-+-(k 是常数且0k ≠),若存在区间I 使得()y f x =在区间I 上是“弱增函数”,求k 的取值范围.。
宁夏银川一中2020届高三数学第五次月考试题理
2
A.
3
4
B.
3
7
C.
3
D. 4
8.若 sin cos
4
,且
3
3 π, π ,则 sin(π ) cos(π ) 4
ห้องสมุดไป่ตู้
A. 2 3
2
B.
3
C. 4 3
4
D.
3
9.已知三棱锥 A BCD 中, AB CD 5 , AC BD 2, AD BC 3 ,若该三棱
锥的四个顶点在同一个球面上,则此球的体积为
3 A.
D. 2
4.阿基米德(公元前 287 年—公元前 212 年)不仅是著名的物理学家,也是著名的数学家,
他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积
.若
椭圆 C的焦点在 x 轴上,且椭圆 C的离心率为 7 ,面积为 12 ,则椭圆 C的方程为 4
A. x2 3
y2 1
4
x2 y2
1 拿到试卷:熟悉试卷 刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道 题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施,也从根本上防止了“漏做题”。 2 答题顺序:从卷首依次开始 一般来讲,全卷大致是先易后难的排列。所以,正确的做法是从卷首开始依次做 题,先易后难, 最后攻坚。 但也不是坚决地“依次”做题,虽然考卷大致是先易后难, 但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先 做好有保证的题,才能尽量多得分。 3 答题策略 答题策略一共有三点: 1. 先易后难、先熟后生。先做简单的、熟悉的题,再做综 合题、难题。 2. 先小后大。先做容易拿分的小题,再做耗时又复杂的大题。 3. 先 局部后整体。把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就 能得到一步的分数。 4 学会分段得分 会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分。”不会做的题 目我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对, 立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处。如”果题目 有多个问题,也可以跳步作答,先回答自己会的问题。 5 立足中下题目,力争高水平 考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中 要立足中下题目。中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些 题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。 6 确保运算正确,立足一次性成功 在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。不 能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。试题做完后要认真做好 解后检查,看是否有空题,答卷是否准确,格式是否规范。 7 要学会“挤”分 考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把 要点写清晰,作文尤其要注意开头和结尾。考试时,每一道题都认真思考,能做几步就做 几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。 8 检查后的涂改方式要讲究 发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。如果对现有的题 解不满意想重新写,要先写出正确的,再划去错误的。有的同学先把原来写的题解涂抹了,写 新题解的时间又不够,本来可能得的分数被自己涂掉了。考试期间遇到这些事,莫慌乱!不管 是大型考试还是平时的检测,或多或少会存在一些突发情况。遇到这些意外情况应该怎么办? 为防患于未然,老师家长们应该在考前给孩子讲清楚应急措施,告诉孩子遇事不慌乱,沉重冷 静,必要时可以向监考老师寻求帮助。
宁夏回族自治区银川一中2015届高三上学期第六次月考数学(文)试题
宁夏回族自治区银川一中2015届高三上学期第六次月考数学(文)试题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=I ,}12|{)},1ln(|{)2(<=-==-x x x N x y x M ,则右图中阴影部分表示的集合为A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤2.若复数31412z ii i +=+-,则z =( )A.9+i B .9- i C .2+i D.2-i 3.执行如图所示的程序框图,如果输入的N 是6, 那么输出的p 是( )A .120B .720C .1440D .5040 4.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C . 67.7万元 D . 72.0万元 5.若sin α+cos αsin α-cos α=12,则tan 2α=A .-43B. 43C .-34D. 346.某四面体的三视图如图所示,正视图、侧视图、俯视图都是 边长为1的正方形,则此四面体的外接球的体积为 A .34π B .π3C .π23 D .π7.已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=, 则15793log ()a a a ++的值是A. 15-B. 5C. 5-D. 158.函数2()ln f x x e x =-的零点个数为 A .0B .1C .2D .39.已知抛物线y 2=4x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,且此双曲线的一条渐近线方程为y =2x ,则双曲线的焦距等于 A . 5B .2 5C . 3D .2 310.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为A.B.C.D.11.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π, 且f (-x )=f (x ),则A .f (x )在⎝⎛⎭⎫0,π2单调递减B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增 12.设函数)(x f 在R 上的导函数为)('x f ,且2)(')(2x x xf x f >+,下面的不等式在R 上恒成立的是 A .0)(>x f B .0)(<x f C .x x f >)( D .x x f <)(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为 的学生.14.若向量(1,)a k =- ,(3,1)b = ,且a b +与a 垂直,则实数k 的值为_______. 15.已知[]6,1∈m ,[]6,1∈n ,则函数3213y mx nx =-+在[1,)+∞上为增函数的概率是 ____________.16.椭圆221369x y +=上有动点P ,(3,0)E ,则PE 的最小值为_______.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分12分)设n S 为数列{n a }的前n 项和,已知01≠a ,2n n S S a a ∙=-11,∈n N *(1)求1a ,2a ,并求数列{n a }的通项公式; (2)求数列{n na }的前n 项和. 18.(本小题满分12分)为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人? (2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;(3)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:独立性检验统计量()()()(),2d b c a d c b a bc ad n K ++++-=其中.d c b a n +++=19.(本小题满分12分)如图,四边形ABCD 为矩形,四边形ADEF 为梯形, AD //FE ,∠AFE =60º,且平面ABCD ⊥平面ADEF , AF =FE =AB =12AD =2,点G 为AC 的中点. (1)求证:EG //平面ABF ; (2)求三棱锥B -AEG 的体积;(3)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由. 20.(本小题满分12分)设椭圆222:1(0)2x y C a a+=>的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,2120AF F F ⋅=,坐标原点O 到直线AF 1的距离为11||.3OF(1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过点Q 的直线l 交x 轴于点(1,0)F -,交y 轴于点M ,若||2||MQ QF =,求直线l 的斜率.21.(本小题满分12分)已知1()2(2)ln f x ax a x x=--+(0)a ≥ (1)当a =0时,求f(x)的极值;(2)当a >0时,讨论f(x)的单调性;(3)若对任意的a ∈(2, 3),x 1, x 2∈[1, 3],恒有(m -ln3)a -2ln3>|f(x 1)-f(x 2)|成立,求实数m 的取值范围。
银川市一中2020届高三(上)数学理科第四次月考试卷附答案解析
银川市一中2020届高三(上)第四次月考数学(理)试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+i,则z1z2=()A.10B.﹣10C.﹣9+i D.﹣9﹣i3.(5分)已知向量,若,则x=()A.B.1C.2D.34.(5分)设等差数列{a n}的前n项和为S n,若a3+a6=23,S5=35,则{a n}的公差为()A.2B.3C.6D.95.(5分)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m⊂α,α∥β,则m∥βC.若n⊥β,α⊥β,则n∥αD.若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α⊥β6.(5分)学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演7.(5分)函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.8.(5分)被誉为“中国现代数学之父”的著名数学家华罗庚先生倡导的“0.618优选法”在生产和科研实践中得到了非常广泛的应用,0.618就是黄金分割比的近似值,黄金分割比还可以表示成2sin18°,则=()A.4B.C.2D.9.(5分)已知x,y满足约束条件,若目标函数z=2x﹣y的最大值为3,则实数m的值为()A.﹣1B.0C.1D.210.(5分)如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A.B.8πC.9πD.11.(5分)已知函数f(x)=2sinωx cos2()﹣sin2ωx(ω>0)在区间[]上是增函数,且在区间[0,π]上恰好取得一次最大值,则ω的取值范围是()A.(0,]B.[]C.(]D.()12.(5分)若x,a,b均为任意实数.且(a+2)2+(b﹣3)2=1,则(x﹣a)2+(lnx﹣b)2的最小值为()A.3B.18C.3﹣1D.19﹣6二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若,则b=.14.(5分)已知函数f(x)=ln(x+)+1,若f(a)=2,则f(﹣a)=.15.(5分)已知函数f(n)=n2cos(nπ),且a n=f(n)+f(n+1),则a1+a2+…+a20=.16.(5分)已知四边形ABCD为矩形,AB=2AD=4,M为AB的中点,将△ADM沿DM折起,得到四棱锥A1﹣DMBC,设A1C的中点为N,在翻折过程中,得到如下有三个命题:①BN∥平面A1DM,且BN的长度为定值;②三棱锥N﹣DMC的最大体积为;③在翻折过程中,存在某个位置,使得DM⊥A1C.其中正确命题的序号为.(写出所有正确结论的序号)三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.第17~21题为必考题,第22、23题为选考题.(一)必考题:共60分17.(12分)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.18.(12分)已知数列{a n}满足a1=2,nS n+1=(n+1)S n+2n(n+1).(1)证明数列是等差数列,并求出数列{a n}的通项公式;(2)设,求b n.19.(12分)如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=6.(I)求证:平面ODM⊥平面ABC;(II)求二面角M﹣AD﹣C的余弦值.20.(12分)如图,在四棱锥S﹣ABCD中,侧棱SA⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,且SA=AB=BC=2,AD=1,M是棱SB的中点.(Ⅰ)求证:AM∥平面SCD;(Ⅱ)求平面SCD与平面SAB所成锐二面角的余弦值;(Ⅲ)设点N是线段CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.21.(12分)已知函数f(x)=xe x+a(x+1)2(a∈R).(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题作答,如果多做.则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,已知圆C:(θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.(I)求圆C和直线l的极坐标方程;(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣k|+|x+2|(k∈R),g(x)=|2x+m|(m∈Z).(1)若关于x的不等式g(x)≤1的整数解有且仅有一个值﹣4,当k=2时,求不等式f (x)≤m的解集;(2)若h(x)=x2﹣2x+3,若∀x1∈R,∃x2∈(0,+∞),使得f(x1)≥h(x2)成立,求实数k的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+i,则z1z2=()A.10B.﹣10C.﹣9+i D.﹣9﹣i【分析】由已知条件看求出z2,然后代入z1z2计算得答案.【解答】解:∵复数z1,z2在复平面内的对应点关于虚轴对称,z1=3+i,∴z2=﹣3+i,则z1z2=(3+i)(﹣3+i)=﹣10.故选:B.【点评】本题考查了复数代数形式的乘除运算,是基础题.3.(5分)已知向量,若,则x=()A.B.1C.2D.3【分析】根据平面向量的坐标运算与数量积的定义,列方程求出x的值.【解答】解:向量,若,则•(﹣)=0,即﹣•=0,所以(22+32)﹣(2x+3×4)=0,解得x=.故选:A.【点评】本题考查了平面向量的坐标运算与数量积的计算问题,是基础题.4.(5分)设等差数列{a n}的前n项和为S n,若a3+a6=23,S5=35,则{a n}的公差为()A.2B.3C.6D.9【分析】根据题意,由等差数列的前n项和公式可得S5==5a3=35,解可得a3=7,进而可得a6=16,结合等差数列的通项公式分析可得d==3;即可得答案.【解答】解:根据题意,等差数列{a n}中,S5=35,则有S5==5a3=35,解可得a3=7,又由a3+a6=23,则a6=16,则公差d==3;故选:B.【点评】本题考查等差数列的性质以及应用,涉及等差数列的前n项和公式的应用,属于基础题.5.(5分)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m⊂α,α∥β,则m∥βC.若n⊥β,α⊥β,则n∥αD.若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α⊥β【分析】在A中,m与n相交、平行或异面;在B中,由面面平行的性质定理得m∥β;在C中,n∥α或n⊂α;在D中,α与β不一定垂直.【解答】解:由m,n是空间中两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊂α,n⊂β,α∥β,则m与n相交、平行或异面,故A错误;在B中,若m⊂α,α∥β,则由面面平行的性质定理得m∥β,故B正确;在C中,若n⊥β,α⊥β,则n∥α或n⊂α,故C错误;在D中,若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,故D错误.故选:B.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.6.(5分)学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演【分析】由题意,周一上演《天籁》,周四上演《茶馆》,周三可能上演《雷雨》或《马蹄声碎》,即可得出结论.【解答】解:由题意,周一上演《天籁》,周四上演《茶馆》,周三可能上演《雷雨》或《马蹄声碎》,故选:C.【点评】本小题情境通俗易懂,主要考查逻辑思维和推理能力,难度不大.7.(5分)函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.【分析】判断f(x)的单调性,再根据f(x)在(0,)上的函数值的符号得出答案.【解答】解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.【点评】本题考查了函数图象的判断,只有函数单调性、奇偶性的应用,属于中档题.8.(5分)被誉为“中国现代数学之父”的著名数学家华罗庚先生倡导的“0.618优选法”在生产和科研实践中得到了非常广泛的应用,0.618就是黄金分割比的近似值,黄金分割比还可以表示成2sin18°,则=()A.4B.C.2D.【分析】把m=2sin18°代入,然后结合同角三角函数基本关系式与倍角公式化简求值.【解答】解:由题意,2sin18°=m=,∴m2=4sin218°,则===.故选:C.【点评】本题考查三角函数的恒等变换与化简求值,考查同角三角函数基本关系式与倍角公式的应用,是基础题.9.(5分)已知x,y满足约束条件,若目标函数z=2x﹣y的最大值为3,则实数m的值为()A.﹣1B.0C.1D.2【分析】画出满足条件的平面区域,求出角点的坐标,由z=2x﹣y得:y=2x﹣z,显然直线过A(2﹣m,﹣m)时,z最大,代入求出m的值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(2﹣m,﹣m),由z=2x﹣y得:y=2x﹣z,显然直线过A(2﹣m,﹣m)时,z最大,∴2(2﹣m)+m=3,解得:m=1,故选:C.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.10.(5分)如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A.B.8πC.9πD.【分析】作出几何体的直观图,根据三视图的特点找出外接球球心的位置,利用勾股定理列方程解出球的半径,即可求出该几何体外接球的表面积.【解答】解:该几何体为三棱锥A﹣BCD,设球心为O,O1,O2分别为△BCD和△ABD的外心,依题意,∴球的半径,∴该几何体外接球的表面积为.故选:D.【点评】本题考查了棱锥的结构特征和三视图,棱锥与外接球的关系,作出直观图是解题关键.11.(5分)已知函数f(x)=2sinωx cos2()﹣sin2ωx(ω>0)在区间[]上是增函数,且在区间[0,π]上恰好取得一次最大值,则ω的取值范围是()A.(0,]B.[]C.(]D.()【分析】求出f(x)的含有0的单调增区间和取得最大值时对应的最小正数解,列出不等式组得出ω的值.【解答】解:∵2cos2()=1+cos(ωx﹣)=1+sinωx,f(x)=sinωx(1+sinωx)﹣sin2ωx=sinωx.令ωx=+2kπ可得x=+,∵f(x)在区间[0,π]上恰好取得一次最大值,∴0≤≤π,解得ω≥.令﹣+2kπ≤ωx≤+2kπ,解得:﹣+≤x≤+,∵f(x)在区间[]上是增函数,∴,解得ω≤.综上,.故选:B.【点评】本题考查了三角恒等变换,正弦函数的性质,属于中档题.12.(5分)若x,a,b均为任意实数.且(a+2)2+(b﹣3)2=1,则(x﹣a)2+(lnx﹣b)2的最小值为()A.3B.18C.3﹣1D.19﹣6【分析】由题意可得(a,b)在(﹣2,3)为圆心,1为半径的圆上,(x﹣a)2+(lnx﹣b)2表示点(a,b)与点(x,lnx)的距离的平方,设过切点(m,lnm)的切线与过(﹣2,3)的法线垂直,由两直线垂直的条件:斜率之积为﹣1,解方程求得切点,圆心和切点的距离d,可得距离的最小值为d﹣r,可得所求值.【解答】解:(a+2)2+(b﹣3)2=1,可得(a,b)在(﹣2,3)为圆心,1为半径r的圆上,(x﹣a)2+(lnx﹣b)2表示点(a,b)与点(x,lnx)的距离的平方,设过切点(m,lnm)的切线与过(﹣2,3)的法线垂直,可得•=﹣1,即有lnm+m2+2m=3,由f(m)=lnm+m2+2m在m>0递增,且f(1)=3,可得切点为(1,0),圆心与切点的距离为d==3,可得(x﹣a)2+(lnx﹣b)2的最小值为(3﹣1)2=19﹣6,故选:D.【点评】本题考查两点的距离的运用,圆的方程和运用,考查导数的几何意义,以及转化思想和运算能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若,则b=.【分析】由已知利用同角三角函数基本关系式可求sin A,sin B的值,进而利用正弦定理可求b的值.【解答】解:因为,且A,B为三角形内角;∴sin A==,sin B==;∴由正弦定理可得:b==.故答案为:.【点评】本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的应用,属于基础题.14.(5分)已知函数f(x)=ln(x+)+1,若f(a)=2,则f(﹣a)=0.【分析】设g(x)=ln(x+),结合对数函数的性质,得到g(x)是奇函数,结合函数值的关系进行计算即可.【解答】解:设g(x)=ln(x+),则g(﹣x)+g(x)=ln(﹣x+)+ln(x+)=ln(﹣x+)(x+)=ln(x2+1﹣x2)=ln1=0,则g(﹣x)=﹣g(x),则f(x)=g(x)+1,若f(a)=2,则f(a)=g(a)+1=2,则g(a)=1,则f(﹣a)=g(﹣a)+1=﹣g(a)+1=﹣1+1=0,故答案为:0.【点评】本题主要考查函数值的计算,结合条件构造函数,判断g(x)的奇偶性是解决本题的关键.难度不大.15.(5分)已知函数f(n)=n2cos(nπ),且a n=f(n)+f(n+1),则a1+a2+…+a20=﹣20.【分析】首先求出数列的通项公式,进一步利用裂项相消法求出数列的和.【解答】解:函数f(n)=n2cos(nπ),且a n=f(n)+f(n+1),则:,故:,,…所以:,则:a1+a2+…+a20=1+2﹣2﹣3+3+4+…﹣21﹣20=﹣20 故答案为:﹣20.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.16.(5分)已知四边形ABCD为矩形,AB=2AD=4,M为AB的中点,将△ADM沿DM折起,得到四棱锥A1﹣DMBC,设A1C的中点为N,在翻折过程中,得到如下有三个命题:①BN∥平面A1DM,且BN的长度为定值;②三棱锥N﹣DMC的最大体积为;③在翻折过程中,存在某个位置,使得DM⊥A1C.其中正确命题的序号为①②.(写出所有正确结论的序号)【分析】分别延长DM,CB交于H,连接A1H,由中位线定理和线面平行的判定定理,以及余弦定理可判断①;当平面A1DM⊥平面DMBC时,A1到平面DMBC的距离最大,结合棱锥的体积公式,计算可得所求最大值,可判断②;由线面垂直的判断和性质可判断③.【解答】解:分别延长DM,CB交于H,连接A1H,由M为中点,BM=CD,可得B为CH的中点,可得BN为△A1CH的中位线,可得BN∥A1H,BN⊄平面A1DM,A1H⊂平面A1DM,可得BN∥平面A1DM,且BN=A1H,在△A1DH中,A1M=2,MH=2,∠A1MH=135°,则A1H==2,即有BN=,故①正确;当平面A1DM⊥平面DMBC时,A1到平面DMBC的距离最大,且为,此时N到平面DMBC的距离最大,且为,△DMC的面积为×2×4=4,可得三棱锥N﹣DMC的最大体积为×4×=,故②正确;若DM⊥A1C,又DM=CM=2,CD=4,可得DM⊥MC,则DM⊥平面A1CM,即有DM⊥A1M,这与DM为斜边矛盾,故③错误.故答案为:①②.【点评】本题考查空间线线、线面的位置关系,主要是平行和垂直的判断和性质,考查棱锥的体积的计算,以及化简运算能力和推理能力,属于中档题.三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.第17~21题为必考题,第22、23题为选考题.(一)必考题:共60分17.(12分)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.【分析】(I)由已知函数,我们易求出函数的最小正周期,又由P的坐标为(1,A),我们易构造出一个关于φ的三角方程,结合解三角方程即可求出φ值.(II)根据(I)的结论及R的坐标,和,利用余弦定理我们易构造出一个关于A的方程,解方程即可得到A的值.【解答】解:(I)由题意得,T==6∵P(1,A)在函数的图象上∴=1又∵∴φ=(II)由P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A),结合(I)可知点Q的坐标为(4,﹣A)连接PQ,在△PRQ中,∠PRQ=可得,∠QRX=,作QM⊥X轴于M,则QM=A,RM=3,所以有tan===∴A=【点评】本题考查的知识点是函数y=A sin(ωx+φ)的图象变换,三角函数的周期性及其求法,其中根据已知中条件构造关于参数A,φ是解答本题的关键.18.(12分)已知数列{a n}满足a1=2,nS n+1=(n+1)S n+2n(n+1).(1)证明数列是等差数列,并求出数列{a n}的通项公式;(2)设,求b n.【分析】(1)将等式两边同除以n(n+1),运用等差数列的定义和通项公式,可得所求;(2)求得,运用数列的分组求和,以及等比数列的求和公式,可得所求和.【解答】解:(1)证明:由nS n+1=(n+1)S n+2n(n+1),得,所以数列是首项为2,公差为2的等差数列,所以,即,当n≥2时,,由于a1=2也满足此式,所以{a n}的通项公式a n=4n﹣2;(2)由a n=4n﹣2得,所以b n=a2+a4+a8+…=(23﹣2)+(24﹣2)+(25﹣2)+…+(2n+2﹣2)=(23+24+25+…+2n+2)﹣2n=.【点评】本题考查等差数列的定义和通项公式,等比数列的求和公式,数列的分组求和,化简运算能力,属于中档题.19.(12分)如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=6.(I)求证:平面ODM⊥平面ABC;(II)求二面角M﹣AD﹣C的余弦值.【分析】(Ⅰ)推导出OD⊥AC,DO⊥OM,从而OD⊥面ABC,由此能证明平面ODM ⊥平面ABC.(Ⅱ)由OD⊥OC,OB⊥OC,OB⊥OD,建立空间直角坐标系,利用向量法能求出二面角M﹣AD﹣C的余弦值.【解答】(本小题满分12分)证明:(Ⅰ)∵ABCD是菱形,∴AD=DC,OD⊥AC,△ADC中,AD=DC=12,∠ADC=120°,∴OD=6,又M是BC中点,∴,∵OD2+OM2=MD2,∴DO⊥OM,∵OM,AC⊂面ABC,OM∩AC=O,∴OD⊥面ABC,又∵OD⊂平面ODM,∴平面ODM⊥平面ABC.…(6分)解:(Ⅱ)由题意,OD⊥OC,OB⊥OC,又由(Ⅰ)知OB⊥OD,建立如图所示空间直角坐标系,由条件知:故,设平面MAD的法向量,则,即,令,则x=3,z=9∴由条件知OB⊥平面ACD,故取平面ACD的法向量为所以,由图知二面角M﹣AD﹣C为锐二面角,故二面角M﹣AD﹣C的余弦值为.(12分)【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、空间思维能力、运算求解能力,考查等价转化思想、数形结合思想,是中档题.20.(12分)如图,在四棱锥S﹣ABCD中,侧棱SA⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,且SA=AB=BC=2,AD=1,M是棱SB的中点.(Ⅰ)求证:AM∥平面SCD;(Ⅱ)求平面SCD与平面SAB所成锐二面角的余弦值;(Ⅲ)设点N是线段CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.【分析】(Ⅰ)以点A为坐标原点,建立空间直角坐标系,利用向量法能证明AM∥平面SCD.(Ⅱ)求出面SCD的一个法向量和平面SAB的一个法向量,利用向量法能求出平面SCD 与平面SAB所成的锐二面角的余弦值.(Ⅲ)求出平面SAB的一个法向量,由平面SCD与平面SAB所成的锐二面角的余弦值为.能求出x=时,sinθ取得最大值,且(sinθ)max=.【解答】证明:(Ⅰ)以点A为坐标原点,建立如图所示的空间直角坐标系,则A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),S(0,0,2),M(0,1,1),∴=(0,1,1),=(1,0,2),=(﹣1,﹣2,0),设平面SCD的一个法向量为=(x,y,z),则,令z=1,得=(2,﹣1,1),∴=0,即⊥,∵AM⊄平面SCD,∴AM∥平面SCD.(Ⅱ)取平面SAB的一个法向量=(1,0,0),则cos<>===,∴平面SCD与平面SAB所成的锐二面角的余弦值为.(Ⅲ)∵直线CD:y=2x﹣2,设N(x,2x﹣2,0),x∈[1,2],则=(x,2x﹣3,﹣1),平面SAB的一个法向量=(1,0,0),∴sinθ=|cos<>|===,当,即x=时,sinθ取得最大值,且(sinθ)max=.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,考查线面角的正弦值的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.(12分)已知函数f(x)=xe x+a(x+1)2(a∈R).(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求出f(x)的导数,讨论当a≥0时,a<0时,由导数大于0,可得增区间;由导数小于0,可得减区间;(2)由(1)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(1)由f(x)=xe x+a(x+1)2,可得f′(x)=(x+1)e x+2a(x+1)=(x+1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>﹣1;由f′(x)<0,可得x<﹣1,即有f(x)在(﹣∞,﹣1)递减;在(﹣1,+∞)递增;②当a<0时,由f'(x)=0得x=﹣1或x=ln(﹣2a);若a=﹣,则f'(x)=(x+1)(e x﹣e﹣1),当x≤﹣1时,f′(x)≥0,当x>﹣1时,f'(x)>0;∴∀x∈R,f'(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,则ln(﹣2a)>﹣1;由f′(x)>0,可得x<﹣1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,﹣1),(ln(﹣2a),+∞)递增;在(﹣1,ln(﹣2a))递减;若0>a>﹣,则ln(﹣2a)<﹣1,由f′(x)>0,可得x<ln(﹣2a)或x>﹣1;由f′(x)<0,可得ln(﹣2a)<x<﹣1.即有f(x)在(﹣∞,ln(﹣2a)),(﹣1,+∞)递增;在(ln(﹣2a),﹣1)递减.(2)①由(1)可得当a>0时,f(x)在(﹣∞,﹣1)递减;在(﹣1,+∞)递增,且f(﹣1)=﹣,f(0)=a,取b满足b<﹣1且b﹣2<ln.则f(b﹣2)>(b﹣2)+a(b﹣1)2=a(b2﹣b)>0,∴f(x)有两个零点;②当a=0时,f(x)=xe x,所以f(x)只有一个零点x=0;③当a<0时,若a<﹣时,由(1)知f(x)在(﹣1,ln(﹣2a))递减,在(﹣∞,﹣1),(ln(﹣2a),+∞)递增,又当x≤﹣1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,由(1)知,f(x)在(﹣1,+∞)单调增,又当x≤﹣1时,f(x)<0,故f(x)不存在两个零点;综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.(二)选考题:共10分.请考生在第22、23两题中任选一题作答,如果多做.则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,已知圆C:(θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.(I)求圆C和直线l的极坐标方程;(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.【分析】(Ⅰ)圆C:(θ为参数),可得直角坐标方程:x2+y2=4,利用互化公式可得圆C的极坐标方程.点P在直线l:x+y﹣4=0上,利用互化公式可得直线l 的极坐标方程.(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),由,又|OP|2=|OR|•|OQ|,即可得出.【解答】解:(Ⅰ)圆C:(θ为参数),可得直角坐标方程:x2+y2=4,∴圆C的极坐标方程ρ=2.点P在直线l:x+y﹣4=0上,直线l的极坐标方程ρ=.(Ⅱ)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),因为,又因为|OP|2=|OR|•|OQ|,即,∴,∴ρ=.【点评】本题考查了参数方程、极坐标方程化为直角坐标方程及其应用,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣k|+|x+2|(k∈R),g(x)=|2x+m|(m∈Z).(1)若关于x的不等式g(x)≤1的整数解有且仅有一个值﹣4,当k=2时,求不等式f (x)≤m的解集;(2)若h(x)=x2﹣2x+3,若∀x1∈R,∃x2∈(0,+∞),使得f(x1)≥h(x2)成立,求实数k的取值范围.【分析】(1)直接利用分类讨论思想对绝对值不等式的解法进行应用.(2)对函数的恒成立问题的应用,求出参数的取值范围.【解答】解:(1)由g(x)≤1有,|2x+ml≤1,整理得:,由题意,,解得7<m<9,因m∈Z,则m=8,当k=2时,.不等式f(x)≤8等价于或或即﹣4≤x<﹣2,或﹣2<x≤2,或2<x≤4,从而可得﹣4≤x≤4,故不等式f(x)≤8的解集为[﹣4,4](2.因为f(x)=|x﹣k|+|x+2|≥|(x﹣k)﹣(x+2)|=|k+2|,h(x)=x2﹣2x+3=(x﹣1)2+2,x∈(0,+∞),则h(x)min=h(1)=2,∀x1∈R,∃x2∈(0,+∞),使得f(x1)≥h(x2)成立,则|k+2|≥2,解得k≤﹣4,或k≥0,故实数k的取值范围为(﹣∞,﹣4]∪[0,+∞)【点评】本题考查的知识要点:绝对值不等式的解法及应用,函数的恒成立问题的应用,主要考察学生的运算能力和转换能力,属于基础题型.。
宁夏回族自治区银川市银川一中2025届高三上学期第一次月考试题 语文(含答案).doc
银川一中2025届高三年级第一次月考语文试卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:习近平总书记指出:在几千年历史长河中,中国人民始终团结一心、同舟共济,建立了统一的多民族国家,发展了56个民族多元一体、交织交融的融洽民族关系,形成了守望相助的中华民族大家庭。
从古至今,各民族都为祖国大家庭的形成和发展贡献了力量。
形成了多元一体的中华民族大家庭是中华文明具有突出的统一性的重要历史表现。
“多元一体”中的“多元”和“一体”深刻反映了中华民族各民族内在的多样性和统一性之间辩证和谐的共同体关系,恰如其分地反映了中华文明起源和发展的模式。
目前我国有56个民族,各民族在漫长的历史进程中形成了各自的文化传统,此为“多元”。
不过,这些民族从来不是以相互隔绝、相互排斥状态出现的,各民族大杂居小聚居,相互嵌入,具有不可分割的内在联系,形成了共同体,此即“一体”,这就是中华民族。
在中华民族共同体中各民族之间你中有我、我中有你,谁也离不开谁,形成了强烈的共同体意识、共同价值追求和文化认同,56个民族这个“多元”在中华民族这个“一体”中得到充分体现。
鸦片战争以后,中国逐步沦为半殖民地半封建社会,国家蒙辱、人民蒙难、文明蒙尘,中国人民遭受了前所未有的劫难。
一部中国近代史就是各族人民团结起来救亡图存的历史。
在外来侵略寇急祸重的严峻形势下,我国各族人民手挽着手、肩并着肩,英勇奋斗,浴血奋战,打败了穷凶极恶的侵略者,捍卫了民族独立和自由,共同书写了中华民族保卫祖国、抵御外侮的壮丽史诗。
在中华民族和中华文明的危急时刻,各民族总是能够同仇敌忾、保家卫国,生动体现了中华文明突出的统一性。
(摘编自邢广程《深刻理解中华文明突出的统一性》)材料二:中华文明突出的统一性,决定了中华民族各民族文化会从多元走向一体。
银川各校考题
宁夏银川一中2011届高三第三次月考(5科6份)宁夏银川一中2012届高三第一次月考数学(理)试题宁夏盐池高中2011-2012学年高三摸底检测理科数学试题宁夏2011年中考数学试题(word版含答案解析)宁夏近6年中考数学试卷中出现的函数试题(无答案)宁夏银川一中2011届高三第三次模拟考试数学(理)试题宁夏银川一中2011届高三第三次模拟考试数学(文)试题石嘴山市2011年高三年级联考(理科)数学试题宁夏银川一中2010-2011学年高二下学期期中考试数学(文)试题宁夏银川一中2010-2011学年高二下学期期中考试数学(理)试题宁夏银川一中2010-2011学年高一下学期期中考试数学试题[名校联盟]宁夏银川一中2011届高三第二次模拟考试数学(文)试题[名校联盟]宁夏银川一中2011届高三第二次模拟考试数学(理)试题名校联盟]宁夏贺兰一中2011届九年级第一次模拟考试数学试题(无答案)[名校联盟]宁夏贺兰一中2011届九年级第二次模拟考试数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年七年级下学期第一次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年八年级下学期第一次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二下学期第一次月考数学(文)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二下学期第一次月考数学(理)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一下学期第一次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2011届高三第一次模拟考试数学(理)试题(无答案)[名校联盟]宁夏贺兰一中2011届高三第一次模拟考试数学(文)试题(无答案)宁夏银川二中2011届高三下学期第一次模拟考试数学(理)试题宁夏银川二中2011届高三下学期第一次模拟考试数学(文)试题宁夏银川一中2011届高三第一次模拟考试数学(文)试题宁夏银川一中2011届高三第一次模拟考试数学(理)试题宁夏银川一中2011届高三第一次模拟(数学理)[名校联盟]宁夏贺兰一中2011届高三第一学期第一次月考数学(文)试题(无答案)[名校联盟]宁夏贺兰一中2011届高三第一学期第一次月考数学(理B)试题(无答案)[名校联盟]宁夏贺兰一中2011届高三第一学期第一次月考数学(理A)试题(无答案)[名校联盟]宁夏贺兰一中2011届九年级第一次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2011届高三上学期期中考试数学(文)试题[名校联盟]宁夏贺兰一中2011届高三上学期期中考试数学(理)试题[名校联盟]宁夏贺兰一中2010-2011学年八年级第一次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二上学期期中考试数学(文)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二上学期期中考试数学(理)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二第三次月考数学(文)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二第三次月考数学(理)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一上学期期中考试数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一第三次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2011届高三上学期期末考试数学(文)试题[名校联盟]宁夏贺兰一中2010-2011学年高二第一次月考数学(文)试题(无答案)[名校联盟]宁夏贺兰一中2011届高三上学期期末考试数学(理)试题[名校联盟]宁夏贺兰一中2010-2011学年高二第一次月考数学(B)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高二第一次月考数学(A)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一上学期期末考试数学(B)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一上学期期末考试数学(A)试题(无答案)[名校联盟]宁夏贺兰一中2011届九年级第三次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年七年级第三次月考数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年七年级上学期期中考试数学试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年八年级上学期期中考试数学试题(无答案)[名校联盟]宁夏贺兰一中2011届九年级年级上学期期中考试数学(2)试题(无答案)[名校联盟]宁夏贺兰一中2011届九年级年级上学期期中考试数学(1)试题(无答案)[名校联盟]宁夏贺兰一中2010-2011学年高一第一次月考数学试题(无答案)宁夏银川一中2011届高三第六次月考数学(理)试题宁夏银川一中2011届高三第六次月考数学(文)试题宁夏银川一中2010-2011学年高一上学期期末考试数学试题宁夏银川一中2010-2011学年高二上学期期末考试数学(理)试题宁夏银川一中2010-2011学年高二上学期期末考试数学(文)试题宁夏银川一中2011届高三第五次月考试题全解全析(数学理)宁夏银川一中2011届高三第五次月考试题全解全析(数学文)[名校联盟]宁夏银川市2011届九年级上学期期末考试数学试题[名校联盟]宁夏银川市2010-2011学年七年级上学期期末考试数学试题宁夏普通高中2011年高考模拟试题宁夏银川一中2011届高三第五次月考数学(理)试题宁夏银川一中2011届高三第五次月考数学(文)试题[名校联盟]宁夏银川一中2011届高三上学期第四次月考数学试题(理)[名校联盟]宁夏银川一中2011届高三上学期第四次月考数学试题(文)[名校联盟]宁夏青铜峡市甘城子中心学校2010-2011学年七年级上学期期中考试数学试题[名校联盟]宁夏青铜峡市甘城子中心学校2010-2011学年八年级上学期期中考试数学试题[名校联盟]宁夏青铜峡市甘城子中心学校2011届九年级上学期期中考试数学试题[名校联盟]宁夏银川一中2010-2011学年高二上学期期中考试数学试题[名校联盟]宁夏银川一中2010-2011学年高一上学期期中考试数学试题宁夏银川一中2011届高三10-11学年第一学期第三次月考(数学理)宁夏银川一中2011届高三10-11学年第一学期第三次月考(数学文)[名校联盟]宁夏西吉县回民中学2011届高三第一次月考理科数学试题(无答案)[名校联盟]宁夏西吉县回民中学2010-2011学年高二第一次月考数学试题(无答案)[名校联盟]宁夏西吉县回民中学2010-2011学年高一第一次月考数学试题(无答案)宁夏银川一中2011届高三年级第二次月考理科数学试题宁夏银川一中2011届高三年级第二次月考文科数学试题宁夏银川二中2011届高三第一次月考数学理科试题宁夏银川二中2011届高三第一次月考数学文科试题[名校联盟]宁夏青铜峡市甘城子中心学校2009-2010学年七年级下学期期末考试数学试题[名校联盟]宁夏青铜峡市甘城子中心学校2009-2010学年八年级下学期期末考试数学试题[名校联盟]宁夏青铜峡市甘城子中心学校2010届九年级下学期期中考试数学试题宁夏银川一中2011届高三第一次月考理科数学试题宁夏银川一中2011届高三第一次月考文科数学试题[名校联盟]宁夏西吉县回民中学2009-2010学年高一下学期期末考试数学试题宁夏银川市永宁县闵宁中学2009-2010学年八年级下学期期末考查数学试题宁夏银川市永宁县闵宁中学2009-2010学年七年级下学期期末数学试题[名校联盟]宁夏青铜峡市高级中学2009-2010学年高二下学期期末考试数学理科试题[名校联盟]宁夏青铜峡市高级中学2009-2010学年高二下学期期末考试数学文科试题宁夏银川一中09-10学年度第二学期高一期末考试数学试卷.doc宁夏银川一中2009-2010学年高二下学期期末考试文科数学试题宁夏银川一中2009-2010学年高二下学期期末考试理科数学试题2010年宁夏省各地区中考数学试卷(2份)[名校联盟]宁夏青铜峡市高级中学2009-2010学年高一下学期期末考试数学试题[名校联盟]宁夏中卫第二中学2009-2010学年八年级下学期期末考试数学试题(无答案)[名校联盟]宁夏中卫第二中学2010届九年级二模考试数学试题(无答案)[名校联盟]宁夏中卫第二中学2009-2010学年八年级下学期期中考试数学试题(无答案)[名校联盟]宁夏中卫第二中学2009-2010学年七年级下学期期中考试数学试题(无答案)[名校联盟]宁夏银川市2009-2010学年八年级下学期期末考试数学试题[名校联盟]宁夏银川市2009-2010学年七年级下学期期末考试数学试题2010年吴忠市回民中学八年级数学下学期期末宁夏吴忠市回民中学2010年七年级第二学期期末2010年全国高考数学宁夏卷文科全解析(word版)2010年全国高考数学宁夏卷理科全解析(纯word)2010年宁、陕、辽、吉、黑、琼六省高考数学(文科)试题及答案宁夏银川一中2010届高三第三次模拟考试数学(文)试题宁夏银川一中2010届高三第三次模拟考试数学(理)试题宁夏银川二中2010届高三下学期第二次模拟考试文科数学试题宁夏银川二中2010届高三下学期第二次模拟考试理科数学试题2009--2010年宁夏六盘山高中高一数学(必修2)第二次月考试卷宁夏银川一中2010届高三二模理科数学试题宁夏银川一中2010届高三二模文科数学试题宁夏银川市实验中学2010届高三第一次模拟考试理科数学试题(无答案)宁夏银川市实验中学2010届高三第一次模拟考试文科数学试题(无答案)宁夏银川一中2010届高三第一次模拟考试数学(文)试题宁夏银川一中2010届高三第一次模拟考试数学(理)试题宁夏银川一中2010届高三第六次月考数学(理)试题宁夏银川一中2010届高三第六次月考数学(文)试题宁夏银川一中2009-2010学年高一上学期期末考试数学试题宁夏银川一中2010届高三上学期第五次月考数学(理)试题宁夏银川一中2010届高三上学期第五次月考数学(文)试题宁夏银川一中2010届高三上学期第四次月考数学(文科)试题宁夏银川一中2010届高三上学期第四次月考数学(理科)试题宁夏回族自治区银川一中2009-2010学年度(上)高二期中考试数学试卷(文科)宁夏回族自治区银川一中20092010学年度(上)高二期中考试数学试卷(理科)宁夏银川一中2010届高三第三次月考数学试题(文科)宁夏银川一中2010届高三第三次月考数学试题(理科)宁夏银川一中2010届高三年级第二次月考(数学文)宁夏平罗中学2010届高三第一次月考数学(理科)试卷09年宁夏吴忠数学学科人教版九年级二次根式乘除同步练习宁夏石嘴山市2009——2010学年联考试题【数学】宁夏重点中学09-10学年高一第一次月考宁夏银川一中2010届高三第一次月考文科数学试题及答案银川一中2010届高三年级第一次月考测试数学试卷(理)及答宁夏固原回中2009届高三第七次月考数学理科试题宁夏六盘山高级中学08—09学年高二下学期期末测试卷(理数)宁夏银川一中2008-2009学年高二下学期期末考试数学理科试题宁夏银川一中2008-2009学年高二下学期期末考试数学文科试题宁夏回族自治区2009年初中毕业暨高中阶段招生数学试题宁夏唐徕回中2009届高三三模试卷(文数)宁夏银川一中2009届高三第三次模拟考试文科数学试题(无答案)宁夏银川一中2009届高三第三次模拟考试理科数学试题宁夏石嘴山市2009届高三理科数学小综合专题--解析几何初步(理)宁夏长庆高中2009届高三年级模拟考试(文数,四月)宁夏省中卫市沙坡头区2009届高考第一次模拟考试理科数学试题宁夏省中卫市沙坡头区2009届高考第一次模拟考试文科数学试题宁夏银川一中2009届高三第二次模拟考试数学试题(文)宁夏银川一中2009届高三第二次模拟考试数学试题(理)2009届宁夏银川二中高三第一次模拟(理数,四月).rar2009届宁夏银川二中高三第一次模拟(文数,四月)石嘴山市2009届联考一数学(理科)试题石嘴山市2009年联考一数学(文科)试题2009届宁夏固原市回民中学高三第七次月考(理数)2009届宁夏固原市回民中学高三第七次月考(文数)2009届宁夏高三模拟试题分类汇编(数列、平面向量、不等式、概率统计等7套) 2009届宁夏高三模拟试题分类汇编(集合与简易逻辑\函数(含导数)\ 三角函数) 2009届宁夏高三模拟试题分类汇编(圆锥曲线\立体几何\直线与圆)宁夏银川一中2009届高三第一次模拟考试数学(文)试卷宁夏银川一中2009届高三第一次模拟考试数学(理)试卷宁夏固原市回民中学2009届高三数学(文)第六次月考试题及答案宁夏银川一中2009届高三第六次月考数学(文)试题宁夏银川一中2009届高三第六次月考数学(理)试题银川市2008-2009学年第一学期九年级期末考试-数学宁夏银川市2008—2009学年度第一学期期末检测八年级数学试题宁夏银川一中08-09学年高二上学期期末考试文科数学(选修1-1模块检测)宁夏银川一中08-09学年高二上学期期末考试(数学理)银川一中2008-2009学年度(上)高一期末考试数学试卷宁夏银川一中2009届高三第五次月考数学试题(理科)宁夏银川一中2009届高三第五次月考数学试题(文科)宁夏银川一中2009届高三第四次月考试题数学试卷(理科)宁夏银川一中2009届高三第四次月考试题数学试卷(文科)宁夏银川实验中学2009届高三第三次月考数学试卷宁夏石嘴山市光明中学08-09学年高三第一学期理科期中考试(含答案)宁夏银川一中2009届高三第三次月考数学试卷(文理两套)宁夏银川一中2009届高三第一次月考测试数学试卷宁夏银川一中2008届高三年级第三次模拟考试数学文科宁夏回族自治区2008年初中毕业暨高中阶段招生数学试题(有答案)word宁夏银川一中2008届高三年级第二次模拟考试(数学文理)宁夏2008年中卫一中高考第三次模拟考试(数学文).doc宁夏2008年中卫一中高考第三次模拟考试(数学理).doc宁夏银川一中2008届高三年级第二次模拟考试(数学理)宁夏区2008年普通高等学校招生模拟试题文理科数学2008.03宁夏石嘴山市光明中学2007年高二上学期期中数学考试题2007年普通高等学校招生全国统一考试(宁夏卷)数学模拟样卷(理科)下学期2007宁夏中考数学试题及答案word。
宁夏回族自治区银川一中2020┄2021届高三第一次月考化学试题Word版 含答案
银川一中2021年高三年级第一次月考理科综合化学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅱ卷第33~38题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
第Ⅰ卷(共126分)可能用到的相对原子质量(原子量):H-1 C-12 N-14 O-16 Na-23 Al-27Si-28 S-32 Fe-56 Cu-64 Ba-137一、选择题:本题包括13小题。
每小题6分,共78分,每小题只有一个选项符合题意。
7.化学与生活密切联系。
下列性质与应用对应关系错误的是8A.干冰、盐酸都是电解质B. Na2O2、Fe2O3、CaO既属于碱性氧化物,又属于离子化合物C.有单质参加或有单质生成的反应不一定属于氧化还原反应D.根据是否具有丁达尔效应,可将分散系分为溶液、浊液和胶体9.N A代表阿佛加德罗的值,下列说法正确的是A.在标准状况下,4.48LN2H4中含非极性共价键数目为0.2N AB.32g铜与足量的硫在加热条件下充分反应转移电子数为0.5N AC.常温下,PH=1的H3PO4溶液中含有0.1N A个H+D.28g 30Si中含有16N A个中子10.常温下,下列各组离子在指定条件下一定能大量共存的是A.PH=7的溶液中:Na+、Fe3+、SO42-、NO3-B.加入铝粉能产生H2的溶液中:NH4+、Na+、NO3-、Cl-C.能使甲基橙显红色的溶液中:K+、NH4+、SO42-、AlO2-D.c(H+)/ c(OH-)=1×1012 mol·L-1的澄清透明溶液中:Mg2+、Cu2+、SO42-、Cl-11.用下列装置进行实验能达到相应实验目的的是A.用该装置收集NO B.分离氢氧化铁胶体和氯化钠溶液C.实验室中制取少量蒸馏水 D.配制100 mL 0.10 mol﹒L-1盐酸12.能正确表示下列反应的离子方程式是A.将饱和氯化铁溶液逐滴加入煮沸的蒸馏水中制备氢氧化铁胶体:Fe3+ + 3H2O = Fe(OH)3↓+ 3H+B.向FeBr2溶液中通入过量Cl2:2Fe2+ + 2Br- + 2Cl2 = 2Fe3++ Br2 + 4Cl-C.将NaHCO3溶液与过量的Ca(OH)2溶液混合:HCO3- + OH-+ Ca2+ = CaCO3↓+ H2OD.用KIO3氧化酸性溶液中的KI:5I- + IO3- + 3H2O = 3I2 + 6OH-13.将51.2 g Cu完全溶于适量浓硝酸中,收集到氮的氧化物(含NO、NO2、N2O4)的混合物共0.8 mol,这些气体恰好能被600mL 2.0mol·L—1NaOH溶液完全吸收,溶液中生成NaNO3和NaNO2,则被Cu还原的硝酸的物质的量为A.0.6 mol B.0.8 mol C.1 mol D.1.2 mol26.(15分)已知Na2O2可用作漂白剂和呼吸面具中的供氧剂.(1)写出Na2O2作供氧剂的反应方程式。
【化学】宁夏银川一中2020届高三上学期第一次月考(解析版)
宁夏银川一中2020届高三上学期第一次月考1.下列说法正确的是()A. 冰水混合物、硫酸、氢化钠都是电解质B. 按照性质进行分类将酸分为一元酸,氧化性酸,强酸C. 酸性氧化物都是非金属氧化物D. 两种盐之间相互反应一定生成两种新盐【答案】A【详解】A. 冰水混合物为弱电解质,硫酸、氢化钠是强电解质,A正确;B. 按照性质进行分类将酸分为氧化性酸和非氧化性酸,按照能电离出氢离子的个数可分为一元酸、二元酸和多元酸,按照能否完全电离出氢离子可分为强酸和弱酸,B错误;C. 酸性氧化物不都是非金属氧化物,如Mn2O7是金属氧化物也是酸性氧化物,C错误;D. 两种盐之间发生复分解反应会生成两种新盐,但是发生氧化还原反应不一定生成盐,还有可能生成单质、氧化物等,D错误;故答案选A。
2.中华传统文化中蕴含着诸多化学知识,下列说法正确的是()A. “杨花榆荚无才思”中的“榆荚”主要成分为蛋白质B. “霾尘积聚难见人”,雾和霾是气溶胶,具有丁达尔效应C. “日照香炉生紫烟”中的紫烟指“碘的升华”D. “火树银花不夜天”指的是金属单质的焰色反应【答案】B 【详解】A. “杨花榆荚无才思”中的“榆荚”是植物的种子,主要成分是纤维素,A错误;B. “霾尘积聚难见人”,雾和霾是气溶胶,具有丁达尔效应,B正确;C. “日照香炉生紫烟”中的紫烟是固体颗粒,而碘升华得到的是碘蒸气,C错误;D. “火树银花不夜天”指的是金属元素的焰色反应,而不是金属单质,D错误;故答案选B。
3.设N A表示阿伏加德罗常数的值,下列说法正确的是()A. 0.5 mol雄黄( As4S4,结构为)中含有N A个S-S键B. 在1mol /L的NH4NO3溶液滴加氨水使溶液呈中性,则1L该溶液中NH4+的数目为N AC. 标准状况下,33.6 L氟化氢中含有氟原子的数目为1.5N AD. 常温下,将1 mol CH 4与1 mol Cl 2混合光照,使其充分反应后,生成气体的分子数为N A【答案】B【详解】A. As 4S 4中,As 为第V A 族元素,S 为第VIA 族元素,As 成三个键,S 成两个键,故白球为S ,所以雄黄中不包含S-S 键,A 错误;B. 在1mol /L 的NH 4NO 3溶液滴加氨水,由电荷守恒可知43()()()()c NH c H c OH c NO ++--+=+,因为溶液呈中性,则()()c H c OH +-=,所以43()()c NH c NO +-=,则1L 该溶液中NH 4+的数目与硝酸根相同为N A ,B 正确;C. 标准状况下,氟化氢为非气态,因此无法求算,C 错误;D. 在光照条件下,将1molCH 4与1molCl 2混合充分反应后,由于氯气不足,可发生多步取代反应,生成物有CH 3Cl 、CH 2Cl 2、CHCl 3、CCl 4、HCl 等,故无法确定生成的气体分子数,D 错误;故答案选B 。
2020届高三数学第一次月考试题 文(含解析)新 人教
2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。
【名师解析】宁夏银川市银川一中2014届高三上学期第五次月考数学(文)试题 Word版含解析
2014届高三年级第五次月考数 学 试 卷(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a =( )A .1B .0C .-2D .-32.设复数Z 满足i Z i 2)3(=⋅-,则|Z |=( )A B C .1 D .23.设,αβ为两个不同平面,m 、 n 为两条不同的直线,且,,βα⊂⊂n m 有两个命题:P :若m ∥n ,则α∥β;q :若m ⊥β, 则α⊥β. 那么( )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题 【答案】D【解析】试题分析:若//m n ,则面,αβ也可能相交,故命题p 是假命题,因为,m m βα⊥⊂,故αβ⊥,则命题q 是真命题,所以“非p 且q ”是真命题.考点:1、面面平行的判定;2、面面垂直的判定;3、复合命题的真假.4.在平面直角坐标系中,已知向量),3,(),1,3(21),2,1(x ==-=若c b a //)2(+,则x=( ) A .-2 B .-4 C .-3D .-15.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =( ) A .24 B .48C .66D .1326.在⊿ABC 中,三边,,a b c 所对的角分别为A ,B ,C ,若222a b c +=+,则角C 为( ) A .30° B .45° C .150° D .135°7.若将函数y=tan 4x πω⎛⎫+ ⎪⎝⎭ (ω>0)的图象向右平移π6个单位长度后,与函数y=tan(x+)6πω的图象重合,则ω的最小值为( )A .16B .14C .13D .128.设偶函数()f x 满足()()240f x x x =->,则不等式()20f x ->的解集为( )A .{|2x x <-或4}x >B .{|0x x <或4}x >C .{|0x x <或6} x >D .{|2x x <-或2}x >9.如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如 图,则该几何体的全面积为( )A .2+342π+B .2+242π+C .8+523π+D .6+323π+【答案】A【解析】试题分析:由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积121422(1)2S ππ=⨯⨯++3422π=+.考点:1、三视图;2、几何体的全面积.10.若关于直线,m n 与平面,αβ,有下列四个命题:①若//m α, //n β,且//αβ,则//m n ;②若m α⊥, n β⊥,且αβ⊥,则m n ⊥;③若m α⊥,//n β,且//αβ,则m n ⊥;④若//m α,n β⊥,且αβ⊥,则//m n ;其中真命题的序号( )A .①②B .③④C .②③D .①④11.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA ,则该三棱锥外接球的表面积为( )A .5πB C .20π D .4π【答案】A【解析】试题分析:求几何体外接球半径时,往往会用到补体的办法,将所求几何体置于一个规则的几何体中,便于求其外接球半径,如图所示,三棱锥外接球相当于长方体的外接球,其半径为R =,故表面积为5π. 考点:1、三棱锥的外接球;2、球的表面积.12. 设方程ln x x =-与方程x e x =- (其中e 是自然对数的底数)的所有根之和为m ,则( )A .0m < B. 0m = C. 01m << D. 1m >考点:1、指数函数和对数函数的图象和性质;2、反函数.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.与直线xy -1=0垂直的直线的倾斜角为________. 【答案】3π 【解析】试题分析:所求直线的斜率tan k α==3πα=.考点:1、平面内两条直线的位置关系;2、斜率的定义.14. 已知关于x, y 的二元一次不等式组24120x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则3x-y 的最大值为__________【答案】5【解析】15.如图,在三角形ABC 中,AD ⊥AB ,3,||1,BC BD AD AC AD ==∙=则 ________.【解析】试题分析:()AC AD AB BC AD ⋅=+⋅,且=0AB AD ⋅,则AC AD BC AD ⋅=⋅,设,BD k =,则BC =,∴AC AD ⋅11k=⨯⨯= 考点:1、向量共性定理;2、向量运算. 16. 数列{}n a 的通项为(1)sin 12nn n a n π=-⋅⋅+ 前n 项和为n S , 则100S =_________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设31323log log log n n b a a a ⋯=+++,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.考点:1、等比数列的通项公式;2、等比数列的性质;3、数列求和.18.已知函数()2(2)3f x cos x sin x π=++. (1)求函数()f x 的单调递减区间及最小正周期;(2)设锐角△ABC 的三内角A ,B ,C 的对边分别是a b c ,,,若1cosB=3,1f()=24C ,求.b19.已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1,求三棱锥B1-A1DC的体积.【答案】(1)详见解析;(2)详见解析;(3)1.20. “地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似的表示为:3221x 80x 5 040x,x 120,144)3y ,1x 200x 80 000,x 144,500)2⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩[[且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1)不能获利,政府每月至少补贴5 000元;2、每月处理量为400吨时,平均成本最低.【解析】试题分析:(1)该项目利润S 等于能利用的生物柴油价值与月处理成本的差,当[]x 200,300∈时,21.已知函数()ax f x a x =++21,()ln g x a x x =-(0a ≠).(1)求函数()f x 的单调区间;(2)求证:当0a >时,对于任意(]12,0,e x x ∈,总有12()()g x f x <成立.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB ,⊙O 交直线OB 于E 、D ,连结EC 、CD. (Ⅰ)求证:直线AB 是⊙O 的切线;(Ⅱ)若tan ∠CED=21,⊙O 的半径为3,求OA 的长.23.已知直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值.24.(1)解关于x 的不等式31≤-+x x ;(2)若关于x 的不等式a x x ≤-+1有解,求实数a 的取值范围.。
宁夏银川一中2021届高三上学期第二次月考数学(文)试题+Word版含答案
银川一中2021届高三年级第二次月考文 科 数 学命题人:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1A x x B x x =-≤≤=≤,则AB =A .{}02x x <≤B .{}12x x -≤≤C .{}12x x ≤≤D .{}03x x <≤ 2.如果42ππα<<,那么下列不等式成立的是A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<3.如图在边长为1的正方形组成的网格中,平行四边形ABC D 的顶点D 被阴影遮住,则 AB →·A D →=A .10B .11C .12D .13 4.若cos ⎝⎛⎭⎫π4-α=35,则sin 2α= A .725 B .15C .-15D .-7255.如图所示的曲线图是 2020年1月25日至 2020年2月12日陕 西省及西安市新冠 肺炎累计确诊病例 的曲线图,则下列 判断错误的是A .1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B .1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C .2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D .2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率6.正三角形ABC 中,D 是线段BC 上的点,6AB =,2BD =,则AB AD ⋅= A .12B .18C .24D .307.1626年,阿贝尔特格洛德最早推出简写的三角符号:sin 、tan 、sec (正割),1675年,英国人奥屈特最早推出余下的简写三角符号:cos 、cot 、csc (余割),但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来,其中1sec cos θθ=,1csc sin θθ=.若(0,)a π∈,且322csc sec αα+=,则tan α= A .513B .1213C .0D .125-8.设f (x )=lg(21-x +a )是奇函数,且在x =0处有意义,则该函数是A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数9.将函数f (x )=sin x 的图象向右平移4π个单位长度后得到函数y =g (x )的图象, 则函数y =f (x )•g (x )的最大值为 A .422+ B .422- C .1 D .21 10.△ABC 中三个内角为A ,B ,C ,若关于x 的方程x 2-x cos A cos B -cos 2C2=0有一根为1,则△ABC 一定是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形11.函数f (x )是偶函数,对于任意的x ∈R ,都有f (x +2)=1f (x );当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1) 12.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos ,4,cos a c Cb b B-== 则ABC ∆的面积的最大值为A .3B .3C .2D 3二、填空题:(本大题共4小题,每小题5分,共20分)13.已知扇形AOB 面积为π34,圆心角AOB 为︒120,则该扇形的半径为_________. 14.若)1,1(-=a ,2b =,且()-⊥a b a ,则a 与b 的夹角是_______________. 15.已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ 的部分图象如图所示,则函数的解析式为_______________. 16.对于任意实数12,x x ,当120x x e <<<时,有122121ln ln x x x x ax ax ->-恒成立, 则实数a 的取值范围为___________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
宁夏银川市第一中学2014届高三上学期第三次月考数学试卷(文)
宁夏银川市第一中学2014届高三上学期第三次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(2)12i i i+-等于A .iB .i -C .1D .—12.设全集U =R ,集合A ={x |12x x +-0≥},B ={x |1<2x<8},则(C U A )∩B 等于A .[-1,3)B .(0,2]C .(1,2]D .(2,3)3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨4.设{n a }是公比为正数的等比数列,若a 3=4,a 5=16,则数列{n a }的前5项和为A .41B .15C .32D .315.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥- ,则=λA .4-B .3-C .2-D .-16.函数321()2f x x x =-+的图象大致是7.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a a a a ++等于( )A.21+B.21-C.223+D.223-xyOA. BCD xyOxyO xyO 18.曲线ln y x x =在点),(e e 处的切线与直线1x ay +=垂直,则实数a 的值为A .2B.-2C.12D.12-9.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为 A .2sin 2cos 2αα-+B .sin 3αα+C .3sin 1αα+D .2sin cos 1αα-+10. 函数()412x xf x +=的图象( ) A. 关于原点对称 B. 关于直线y =x 对称 C. 关于x 轴对称 D. 关于y 轴对称11. ABC ∆的外接圆的圆心为O ,半径为2,=++且||||=,则向量在CB 方向上的投影为A.3B. 3C. 3-D. 3-12.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在..零点的是 A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知数列{a n }满足a 1=33, a n+1-a n =2n ,则a n = .14.在ABC ∆中,BC =52,AC =2,ABC ∆的面积为4,则AB 的长为 。
宁夏银川市第一中学2020届高三数学上学期第三次月考试题理
宁夏银川市第一中学2020届高三数学上学期第三次月考试题 理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}05|2>-=x x x A ,则C R A = A .{}50|≤≤x xB .{}0|<x xC .{}5|>x xD .{}05|≤≤-x x2.设i 是虚数单位,如果复数2a ii-+的实部与虚部是互为相反数,那么实数a 的值为 A .3B .13C .13-D .3-3.若向量m =(0,-2),n =(3,1),则与n m +2共线的向量可以是 A .(3,-1) B .(-1,3) C .(3-,-1) D .(3,1--)4.设a ,b R ∈,那么“1ab>”是“0a b >>”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 A .2 B .C .D .6.等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,则当*n N ∈时,1n nS S -的最小值与最大值的比值为 A .125-B .107-C .109D .1257.某汽车公司的A ,B 两个装配厂可装配甲、乙两种不同型号的汽车,若A 厂每小时可装配1辆甲型车和2辆乙型车,B 厂每小时可装配3辆甲型车和1辆乙型车.现要装配40辆甲型车和40辆乙型车,若要使所费的总工作时数最少,则这两个装配厂的工作时数分别为A .16,8B .15,9C .17,7D .14,108.已知正数,x y 满足1=+y x ,则141x y++的最小值为A .5B .314 C .92D .29.已知函数()cos f x x x =+,把函数()f x 的图象向右平移3π个单位,再把图象的横坐标缩小到原来的一半,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x k -=有两个不同的实根,则实数k 的取值范围为 A.⎡⎣B.)2C .[]1,2D .[)1,210.执行如图所示的程序框图,输出的S 值为A .12017-B .12018-C .12019-D .12020-11.甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是 A .甲是教师,乙是医生,丙是记者 B .甲是医生,乙是记者,丙是教师 C .甲是医生,乙是教师,丙是记者 D .甲是记者,乙是医生,丙是教师 12.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是 A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数b x ab ax x f --+=)1()(2,如果不等式()0f x >的解集为()1,3-,那么不等式开始n =1,s =011+++=n n s sn =n +1n <2019? 否是输出S 结束()20f x -<的解集为________________.14.观察下列各式:31=1,3321+2=3,33321+2+3=6,333321+2+3+4=10,…,由此推得:33331+2+3+n = .15.若函数()sin()(0,0)6f x A x A πωω=->>如图所示,则图中的阴影部分的面积为 . 16.底面半径为1cm 的圆柱形容器里放有四个半径为21cm 使水面恰好浸没所有铁球,则需要注水体积为 cm 3.三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.第17~21题为必考题,第22、23题为选考题. (一)必考题:共60分 17.(12分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *. (1)求通项公式a n .(2)求数列{a n -n-2}的前n 项和.18.(12分)某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km )的关系为)80(53≤≤+=x x kp ,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f (x )为建造宿舍与修路费用之和.(1)求f (x )的表达式(2)宿舍应建在离工厂多远处,可使总费用f (x )最小并求最小值.19.(12分)如图,在四边形ABCD 中,,2,AC CD AD ==2.3ADC π∠=(1)求CAD ∠的正弦值;(2)若2BAC CAD ∠=∠,且△ABC 的面积是△ACD 面积的4倍,求AB 的长.20.(12分)各项均为正数的等比数列{}n a 中,已知152,512,n a a T ==是数列{}2log n a 的前n 项和.(1)求数列{}n a 的通项公式; (2)求n T ; (3)求满足20131011)11()11)(11(32>---n T T T 的最大正整数n 的值. 21.(12分)已知函数()ln 3f x a x ax =-- (0)a ≠. (1)讨论()f x 的单调性;(2)若()(1)40f x a x e +++-≤对任意2[,]x e e ∈恒成立,求实数a 的取值范围(e 为自然常数);(3)求证:22221111ln(1)ln(1)ln(1)...ln(1)1234n++++++++<*(2,)n n N ≥∈. (二)选考题:共10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏银川市第一中学2020届高三上学期第五次月考数学(文)试卷
学校:___________
一、选择题
1.已知集合{}0,1,2,3,4,5,6,7,8U =,{}1,3,4,6A =,{}0,1,2,5,7,8B =,则()U A C B =( )
A .{}3,4,6
B .{}1,3,6
C .{}3,4,5
D .{}1,4,6
1.答案:A 解析:
2.已知(,)a bi a b +∈R 是
1i
i
+的共轭复数,则a bi +=( )
A .1
B .
12
C
D .
2
2.答案:D 解析:
3.下列说法中,正确的是( )
A .命题“若22am bm <,则a b <”的逆命题是真命题
B .命题“0x R ∃∈,2
000x x ->”的否定是“x R ∀∈,20x x -≤”
C .命题“p 且q ”为假命题,则命题“p ”和命题“q ”均为假命题
D .已知x R ∈,则“2x > 是4x >”的充分不必要条件 3.答案:B 解析:
4.已知双曲线()2222100x y a b a b
-=>>的一个焦点与圆()2
2525x y -+=的圆心重合,且双曲线
)
A .
22
1520
x y -= B .
22
12520x y -= C .
22
1205x y -= D .
22
12025
x y -= 4.答案:A 解析:
5.若πsin 23
α⎛⎫+
= ⎪
⎝
⎭,则cos2α=( )
A .
1
3
B .
2
3
C .13
-
D .23
-
5.答案:C
解析:∵πsin 2a ⎛⎫
+=
⎪⎝⎭
∴cos 3
α=
∴2
2
11cos 22cos 12133αα⎛⎫
=-=⨯-=- ⎪⎝⎭
6.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )
A .2744
n n
+ B .2533n n
+ C .2324
n n
+
D .2n n +
6.答案:A
解析:设数列{}n a 的公差为d , 则根据题意得()()2
22225d d +=⋅+, 解得1
2
d =
或0d = (舍去), 所以数列{}n a 的前n 项和()211722244
n n n n n
S n -=+⨯=+
7.已知椭圆2222:1(0)y x C a b a b
+=>>双曲线222x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )
A .221128y x +=
B .221126y x +=
C .221164
y x += D .221205y x +=
7.答案:D 解析:
8.执行如图所示的程序框图,若输入10n =,则输出的S 的值是( )
A .910
B .1011
C. 1112
D .922
8.答案:B 解析: 9.已知向量(
)
3,3a =在向量(),1b n =方向上的投影为3,则a 与b 的夹角为( )
A .30︒
B .60︒
C .30︒或150︒
D .60︒或120︒
9.答案:A 解析:
10.ABC ∆的内角,,A B C 的对边分别为,,a b c
,若cos cos cos 23
C b A a B =+=,则ABC ∆的外接圆的面积为( ) A. 3π B. 6π
C. 9π
D. 12π
10.答案:C
解析:∵cos cos 2b A a B +=,∴222222
222b c a a c b b a bc ac
+-+-⋅
+⋅=, ∴2c =
,由cos 3C =
,得1sin 3C =,∴2
26,31
sin 3
c R R C ====, 239S ππ=⨯=,故选C
11.已知直线()200kx y k k -+=>与抛物线2
:8C y x =相交于A 、B 两点,F 为C 的焦点,若
2FA FB =,则k =( )
A .13
B
C .23
D
11.答案:D
解析:由题意,联立()
282y x
y k x ⎧=⎪⎨=+⎪⎩,得()22224840k x k x k +-+=
设()()11221212,,,,0,0,0,0A x y B x y x x y y >>>> ∴124x x = ○
1 由抛物线的定义,122,2FA x FB x =+=+ ∵2FA FB = ∴1222x x =+ ○
2 由○
1○2解得21x =
∴(1,B ,代入()2y k x =+,得k =
12.已知对任意的[1,e]x ∈,总存在唯一的[1,1]y ∈-,使得2ln e 0y
x y a +-=成立,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .[1,e] B .1
(1,e 1)e
+
+ C .1(,1e]e
+
D .1(1,e]e
+
12.答案:D
解析:由2ln 0y
x y e a +-=成立,解得2ln y
y e a x =-,
∴对任意的1[]x e ∈,,总存在唯一的1[]1y ∈-,,使得2ln 0y
x y e a +-=成立,
∴21
11a e --≥
-(),且2101a e -≤⨯,解得11a e e +≤≤,其中1
1a e
=+时,y 存在两个不同的实数,因此舍去,a 的取值范围是11,e e ⎛
⎫+
⎪⎝⎭
. 二、填空题
13.已知()f x 是定义在R 上的周期为2的偶函数,当[2,0]x ∈-时,()2x
f x =-,则(5)f =__________.
13.答案:21
-
解析:∵()f x 是定义在R 上的周期为4的偶函数, 当[]
2,0x ∈-时,()2x
f x =-,
∴()()()1151122
f f f -==-=-=-。
14.实数,x y 满足2025040x y x y x y -+≥⎧⎪
--≤⎨⎪+-≥⎩
,则2z x y =+的最大值是______________.
14.答案:25 解析:
15.过点()6,1A )作直线与双曲线22416x y -=相交于两点,B C ,且A 为线段BC 的中点,则直线的方程(表示为一般式)为 . 15.答案:32160x y --=
解析:
16.表面积为20π的球面上有四点,,,,S A B C 且ABC △
是边长为 若平面SAB ⊥平面ABC ,则三棱锥S ABC -体积的最大值是__________. 16.
答案:解析:取AB 中点D 连结SD,设球O 半径为r,则24π20πr =,
解得r △ABC
是边长为
,3,AB CD AD === 过S 作ABC 的垂线,垂足是AB 的中点时,
所求三棱锥的体积最大,此时△SAB 与△ABC 全等,SD=3,
三棱锥S−ABC
体积(
211333SAB V S CD =⋅=⨯=△
故答案为:三、解答题
17.已知函数()2πcos 2cos 132
x f x x ⎛⎫=-
+- ⎪⎝
⎭. (1)求()f x 的最大值并求取得最大值时x 的集合;
(2)记ABC ∆的内角A 、B 、C 的对边长分别为a ,b ,c ,若(
)1,f B b c ===a 的值.。