平面向量习题及答案
平面向量练习题及答案
平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
高中数学平面向量经典练习题(附答案)
D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3
则
=
。
=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角
平面向量练习题附答案
平面向量练习题一.填空题;1. BA CD DB AC +++等于________.2.若向量a =3,2,b =0,-1,则向量2b -a 的坐标是________.3.平面上有三个点A 1,3,B 2,2,C 7,x ,若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,a +b ⊥2a -b ,则向量a 与b 的夹角为________.5.已知向量a =1,2,b =3,1,那么向量2a -21b 的坐标是_________. 6.已知A -1,2,B 2,4,C 4,-3,Dx ,1,若AB 与CD 共线,则|BD |的值等于________.7.将点A 2,4按向量a =-5,-2平移后,所得到的对应点A ′的坐标是______. 8. 已知a=1,-2,b=1,x,若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则2a-b ·a=______10. 设a=2,-3,b=x,2x,且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v =2,1平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题;1.设平面三点A 1,0,B 0,1,C 2,5.1试求向量2AB +AC 的模; 2试求向量AB 与AC 的夹角; 3试求与BC 垂直的单位向量的坐标.2.已知向量a =θθcos ,sin R ∈θ,b =3,31当θ为何值时,向量a 、b 不能作为平面向量的一组基底2求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b t ∈R 的模取最小值时,1求t 的值2已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA ,试求OD OC OA OD ,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.如图求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使 .,,)3(2y x b t a k y b t a x ⊥+-=-+=且1试求函数关系式k =ft2求使ft >0的t 的取值范围.参考答案1.02.-3,-4°21,321.6.73.7.-3,2.8.-210.31-12. 90°13.2-14.51--或1∵ AB =0-1,1-0=-1,1,AC =2-1,5-0=1,5.∴ 2AB +AC =2-1,1+1,5=-1,7.∴ |2AB +AC |=227)1(+-=50.2∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =-1×1+1×5=4. ∴ cos θ =||||AC AB ACAB ⋅=2624⋅=13132. 3设所求向量为m =x ,y ,则x 2+y 2=1. ①又 BC =2-0,5-1=2,4,由BC ⊥m ,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ 552,-55或-552,55即为所求.13.解1要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底 2)cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.解1由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tbt ∈R 的模取最小值2当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b∴b ⊥a +t b18.解:设020),,(=-=⋅∴⊥=x y OB OC OBOC y x OC ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为x 1,y 1,x 2,y 2,由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将11,y x ,),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为49,21-,即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:1.0)(])3[(.0,2=+-⋅-+=⋅∴⊥b t a k b t a y x y x 即 ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k b a b a 即 2由ft >0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
平面向量经典练习题(含答案)
高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则|BD |的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角;(3)试求与垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==,向量垂直于向量,向量 平行于,试求,=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使 .,,)3(2t k t ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)°(21,321).6.73.7.(-3,2).8.-210.31-12. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7).∴ |2AB +AC |=227)1(+-=50.(2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos=||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 =(2-0,5-1)=(2,4),由⊥,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x Θ ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC Θ 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即Θ ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即Θ (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
(完整版)高中数学平面向量习题及答案
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB =OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
平面向量练习题及答案
平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。
它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。
掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。
本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。
1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。
解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。
所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。
2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。
解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。
所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。
3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。
解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。
所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。
4. 题目:已知向量a = (2, -5),求向量a的模长。
解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。
所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。
5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。
解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。
所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。
平面向量练习题及答案
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
平面向量练习题(附答案)
平面向量练习题(附答案)-CAL-FENGHAI.-(YICAI)-Company One1平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________.6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角;(3)试求与BC 垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==,向量垂直于向量,向量 平行于OA ,试求,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使 .,,)3(2t k t ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)°(21,321).6.73.7.(-3,2).8.-210.31-12. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7).∴ |2AB +AC |=227)1(+-=50.(2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos=||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x ① 又0)1()2(3)2,1(,//=+---+=x y y x 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立,得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即(2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
平面向量习题及答案
平面向量习题及答案平面向量习题及答案引言:平面向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。
通过解决平面向量习题,我们可以加深对平面向量的理解,提高解题能力。
本文将介绍几个常见的平面向量习题,并给出详细的解答过程。
一、向量的加法和减法1. 已知向量a=2i+3j,b=4i-5j,求a+b和a-b。
解答:a+b=(2+4)i+(3-5)j=6i-2ja-b=(2-4)i+(3+5)j=-2i+8j2. 已知向量a=3i+2j,b=-i+4j,求2a-3b。
解答:2a-3b=2(3i+2j)-3(-i+4j)=6i+4j+3i-12j=9i-8j二、向量的数量积和向量积1. 已知向量a=2i+3j,b=-i+4j,求a·b和|a×b|。
解答:a·b=(2)(-1)+(3)(4)=-2+12=10|a×b|=|(2)(4)-(3)(-1)|=|8+3|=112. 已知向量a=3i+2j,b=4i-5j,求a×b的模长和方向角。
解答:a×b=(3)(-5)-(2)(4)=-15-8=-23|a×b|=|-23|=23设a×b与x轴正向的夹角为θ,则cosθ=(4)/√(4^2+(-23)^2)=4/√545θ≈84.3°三、向量的共线与垂直1. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否共线。
解答:若a和b共线,则存在实数k,使得a=kb。
2i+3j=k(-4i-6j)2i+3j=-4ki-6kj2=-4k,3=-6k解得k=-1/2所以,a和b共线。
2. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否垂直。
解答:若a和b垂直,则a·b=0。
a·b=(2)(-4)+(3)(-6)=-8-18=-26-26≠0所以,a和b不垂直。
结论:通过解答上述平面向量习题,我们可以巩固向量的加法、减法、数量积、向量积等基本概念和运算规则。
(完整)高中数学平面向量习题及答案
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =++C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于,BC 共线,=OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
《平面向量》测试题及答案
《平面向量》测试题一、选择题1。
若三点P (1,1),A (2,—4),B (x ,-9)共线,则( )A 。
x=-1B 。
x=3 C.x=29D.x=512。
与向量a=(-5,4)平行的向量是( )A.(-5k,4k) B 。
(-k 5,—k 4) C.(—10,2) D 。
(5k,4k )3。
若点P 分AB 所成的比为43,则A 分BP 所成的比是( )A 。
73 B. 37 C.- 37 D 。
—734。
已知向量a 、b ,a ·b=-40,|a |=10,|b |=8,则向量a 与b 的夹角为( )A 。
60° B.—60° C.120° D 。
—120°5.若|a-b |=32041 ,|a|=4,|b|=5,则向量a ·b=( )A 。
103B 。
-103C 。
102 D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =() A.错误! B 。
错误! C.错误! D.错误!7。
已知向量a=(3,4),b=(2,—1),如果向量(a+x)·b 与b 垂直,则x 的值为( )A 。
323B 。
233C 。
2D 。
—528。
设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,—1) B 。
(-1,0) C.(-∞,0) D 。
(—∞,-21)9.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是( )A 。
平行四边形 B.矩形 C.等腰梯形 D.菱形10。
将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( )A 。
y=x+10 B.y=x-6 C 。
y=x+6 D 。
y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于( )A 。
平面向量经典练习题(含答案)
平面向量经典练习题(含答案)1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是(8,22)。
2、已知向量a与b的夹角为60°,a=(3,4),|b|=1,则|a+5b|=√61.3、已知点A(1,2),B(2,1),若AP=(3,4),则BP=(-1,-1)。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|=2.5、向量a、b满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a与b的夹角为30°。
6、设向量a,b满足|a+b|=10,|a-b|=6,则a·b=7.7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是60°。
8、在△ABC中,D为AB边上一点,AD=2DB,CD=3CA+mCB,则m=1.9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是53.13°。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且AP=2PD,则点C的坐标是(6,-3)。
二、选择题1、设向量OA=(6,2),OB=(-2,4),向量OC垂直于向量OB,向量BC平行于OA,若OD+OA=OC,则OD坐标=(11,6)。
2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标(4,2)。
3、已知向量a,b,若a为单位向量,且|a|=|2b|,则(2a+b)⊥(a-2b),则向量a与b的夹角是30°。
4、已知向量ab的夹角60°,|a|=2,b=(-1,√3),则|2a-3b|=13.5、在菱形ABCD中,∠DAB=60°,|2·0C+CD|=4,则|BC+CD|=2.6、略。
7、略。
8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为2.9、略。
平面向量复习题答案
平面向量复习题答案
1.下列说法正确的是( )
A.零向量没有方向
B.向量就是有向线段
C.只有零向量的模长等于0
D.单位向量都相等
【分析】根据零向量,单位向量、有向线段的定义即可判断出结论.
【解答】解:零向量的方向是任意的,故A选项错误;
有向线段只是向量的一种表示形式,两者不等同,故B选项错误;
表达,由D、G、E三点共线,即可得到m和n的
关系.
第14页(共14页)
(2)由三角形面积公式,S ADE= mn,由(1)可知
=3,由消元法n=
,转化为m的函数求最值即可. 【解答】解:(1)如图延长AG交BC与F,∵G为△ABC的中心
∴F为BC的中点,则有
∵
,
,
∴
即
∵D、G、E三点共线
∴
故 =3
,得到三角函数的方
程使之有解,构造t的函数或不等式,从而求出t的范围. 【解答】解:C:x2+y2﹣6x+8=0可化为:(x﹣3)2+y2=1,
第6页(共14页)
故可设P(3+cosθ,sinθ),结合A(﹣t,0),B(t,0)(t>0),
得
•(3+cosθ﹣t,sinθ)
=﹣t2+6cosθ+10=0.
(2)∵△ABC是边长为1的正三角形, ∴|AD|=m,|AE|=n∴S ADE= mn 由 =3,0<m≤1,0<n≤1
∴n=
,
即
.
∴S ADE= mn=
设t=m﹣ 则m=t+ (
)
∴S ADE= mn= (t+ + )
第15页(共14页)
平面向量练习题及答案
1.已知向量a =(1,2),b =(m ,-1),若a ∥b ,则实数m 的值为( ) A.12 B .-12C .3D .-3解析:选B 由题意,得1×(-1)-2m =0,解得m =-12,故选B.2.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=( ) A.26 B .3 2 C.10D. 6解析:选B 因为c =2a -b =2(1,2)-(-1,1)=(3,3), 所以|c |=32+32=3 2.故选B.3.设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.4.在▱ABCD 中,|AB |―→=8,|AD |―→=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( ) A .48 B .36 C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝⎛⎭⎫AB ―→+23 AD ―→ ·⎝⎛⎭⎫12AB ―→-13 AD ―→ =12AB ―→2-29AD ―→2=12×82-29×62=24.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角即为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.7.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,点G 在△ABC 内,且满足GA ―→+GB ―→+GC ―→=0,GA ―→·GB ―→=0,若a 2+b 2=λc 2(λ∈R ),则λ=( )A .-5B .-2C .2D .5解析:选D 设BC 的中点为D ,连接GD (图略),则GB ―→+GC ―→=2GD ―→. 又GA ―→+GB ―→+GC ―→=0,所以2GD ―→=AG ―→, 所以A ,G ,D 三点共线,且AG =2GD .故AG ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→).同理可得BG ―→=13(BA ―→+BC ―→).由GA ―→·GB ―→=0,得19(AB ―→+AC ―→)·(BA ―→+BC ―→)=0,所以(AB ―→+AC ―→)·(AC ―→-2AB ―→)=0, 即|AC ―→|2-2|AB ―→|2-AB ―→·AC ―→=0, 所以b 2-2c 2-bc ·b 2+c 2-a 22bc=0, 化简得a 2+b 2=5c 2.又a 2+b 2=λc 2(λ∈R ),所以λ=5.故选D.8.已知△ABC 的外接圆的圆心为O ,满足:CO ―→=m CA ―→+n CB ―→,4m +3n =2,且|CA ―→|=43,|CB ―→|=6,则CA ―→·CB ―→=( )A .36B .24C .24 3D .12 3解析:选A CO ―→·CA ―→=m CA ―→2+n CA ―→·CB ―→,因为O 为△ABC 的外心,所以12CA ―→2=m CA ―→2+n |CA ―→|·|CB ―→|·cos ∠BCA ,所以24=48m +243n ·cos ∠BCA ,因为4m +3n =2,所以24=12(2-3n )+243n ·cos ∠BCA ,又n ≠0,即cos ∠BCA =32,所以CA ―→·CB ―→=|CA ―→|·|CB ―→|cos ∠BCA =43×6×32=36.9.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为两边的三角形的面积为12,则k 的值为( )A.32B.22C.52D.72解析:选A 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为两边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而将e 3=12e 1+k e 2两边平方得1=14+k 2,解得k =32或k =-32(舍去).10.已知向量a =(2,1),b =(3,m ).若(a +2b )∥(3b -a ),则实数m 的值是________. 解析:a +2b =(2,1)+(6,2m )=(8,1+2m ),3b -a =(9,3m )-(2,1)=(7,3m -1),由(a +2b )∥(3b -a ),得8(3m -1)-7(1+2m )=0,解得m =32.答案:3211.已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.解析:由平面内三个不共线向量a ,b ,c 两两夹角相等,可得夹角均为2π3,所以|a +b+c |2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+9+2×1×1×cos 2π3+2×1×3×cos 2π3+2×1×3×cos 2π3=4,所以|a +b +c |=2.答案:212.如图,已知平面内有三个向量OA ―→,OB ―→,OC ―→,其中OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,且|OA ―→|=|OB ―→|=1,|OC ―→|=2 3.若OC ―→=λOA ―→+μOB ―→(λ,μ∈R ),则λ+μ的值为________.解析:法一:如图所示,作平行四边形OB 1CA 1,则OC ―→=OB ―→1+OA ―→1,因为OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,所以∠B 1OC =90°.在Rt △B 1OC 中,∠OCB 1=30°,|OC |=23,所以|OB 1|=2,|B 1C |=4,所以|OA 1|=|B 1C |=4,所以OC ―→=4OA ―→+2OB ―→,所以λ=4,μ=2,所以λ+μ=6.法二:以O 为坐标原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝⎛⎭⎫-12,32,C (3,3).由OC ―→=λOA ―→+μOB ―→,得⎩⎨⎧3=λ-12μ,3=0+32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6. 答案:6。
初二数学平面向量与向量运算练习题及答案20题
初二数学平面向量与向量运算练习题及答案20题练习题1:已知向量A = (3, 4),向量B = (-1, 2),求向量A+B的结果。
解答:向量A + 向量B = (3-1, 4+2) = (2, 6)。
练习题2:已知向量A = (2, 5),向量B = (-3, 1),求向量A-B的结果。
解答:向量A - 向量B = (2-(-3), 5-1) = (5, 4)。
练习题3:已知向量A = (2, -3),向量B = (4, 6),求向量A·B的结果。
解答:向量A·向量B = 2×4 + (-3)×6 = 8 - 18 = -10。
练习题4:已知向量A = (1, -2),向量B = (-3, 4),求向量A×B的结果。
解答:向量A×向量B = 1×4 - (-2)×(-3) = 4 - 6 = -2。
练习题5:已知向量A = (2, 3),向量B = (-1, 2),求向量A与向量B的夹角的余弦值。
解答:向量A与向量B的夹角的余弦值 = (2×(-1) + 3×2) /(sqrt(2^2+3^2) × sqrt((-1)^2+2^2)) = (4+6) / (sqrt(13) × sqrt(5)) = 10 / (sqrt(13) × sqrt(5))。
练习题6:已知向量A = (1, -2),向量B = (-3, 4),求向量A与向量B的夹角的正弦值。
解答:向量A与向量B的夹角的正弦值 = ((1×4) - (-2)×(-3)) /(sqrt(1^2+2^2) × sqrt((-3)^2+4^2)) = (4-6) / (sqrt(5) × sqrt(25)) = -2 / (5 × 5)。
练习题7:已知向量A = (3, 4),向量B = (2, 1),求向量A的模长。
平面向量专题练习题(附答案)
平面向量练习题一.填空题。
1. +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.7.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC + 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 1.0 2.(-3,-4) 3.7 4.90° 5.(21,321). 6.73. 7.(-3,2). 8.-2 9.12 10.31-11.0 12. 90° 13.2- 14.51--或二.解答题。
平面向量练习题大全及答案
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
职高数学第七章平面向量习题及答案
职高数学第七章平面向量习题及答案化简下列向量的表达式:1)2(a+b)-3(2a-3b)2)3(2a-3b)+4(3a-4b)-2(5a-2b)参考答案:1、2b-4a+6b=8b-4a2、6a-9b+12a-16b-10a+4b=8a-21b1、(1)平行(2)不平行2、由AB∥a可知,向量a与向量AB平行,即a=k(2,5),代入a的横纵坐标可得k=1,y=5,所以a=(1,5)。
3、可以计算向量AB和向量BC,发现它们是共线的,即AB=kBC,代入点坐标可得k=2,所以A,B,C三点共线。
1、因为(-1)×(-15)-3×5=12,所以向量a和向量b平行;因为2×3-(-1)×(-5)=1≠0,所以向量e和f不平行。
2、由已知条件得AB=(0,4)-(-2,-1)=(2,5),因为AB∥a,所以1×5-2×y=0.解得y=2.3、由已知条件得AB=(0,1)-(-2,-3)=(2,4),AC=(2,5)-(-2,-3)=(4,8)。
因为2×8-4×4=0,所以AB∥AC,又线段AB和AC有公共点A,所以A,B,C三点共线。
练7.3.11.已知|a|,|b|,‹a,b›,求a·b:1) |a|=7,|b|=12,‹a,b›=120°;a·b=|a||b|cos120°=-42.2) |a|=8,|b|=4,‹a,b›=π;a·b=|a||b|cosπ=-32.2.已知|a|,|b|,a·b,求‹a,b›:1) |a||b|=16,a·b=-8;cos‹a,b›=a·b/|a||b|=-(1/2),所以‹a,b›=120°。
2) |a||b|=12,a·b=63.cos‹a,b›=a·b/|a||b|=21/24=7/8,所以‹a,b›=30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量习题及答案【篇一:平面向量练习题集答案】>典例精析题型一向量的有关概念【例1】下列命题:①向量ab的长度与ba的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量ab与向量cd是共线向量,则a、b、c、d必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;ab与cd是共线向量,则a、b、c、d可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=a?a;②(a?b) ?c=a? (b?c);③oa-ob=ba;④在任意四边形abcd中,m为ad的中点,n为bc的中点,则ab +=2;其中正确的个数为( )a.1b.2c.3d.4【解析】选d.| a|=a?a正确;(a?b) ?c≠a? (b?c); oa-ob=ba 正确;如下图所示,mn=++且mn=++,两式相加可得2mn=ab+dc,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点m在线段do上,且=,点n在线段oc上,且=,设=a, =b,试用a、b表示,,1313.【解析】在?abcd中,ac,bd交于点o,111所以==(-)a-b),222=2=2(+)=2(a+b).11又=,=, 331所以=ad+=b+ 31115=b(a-b)=a, 3266111=+=+3 4412==(a+b)a+b). 3323所以=- 21511=(a+b)-+)=a. 36626【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.所以? (+)=?0=0,故填0.题型三向量共线问题【例3】设两个非零向量a与b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:a,b,d三点共线;(2)试确定实数k,使ka+b和a+kb共线. 1【解析】(1)证明:因为=a+b,=2a+8b,=3(a-b),所以bd=bc+cd=2a+8b+3(a-b)=5(a+b)=5ab,所以ab, bd共线.又因为它们有公共点b,所以a,b,d三点共线.(2)因为ka+b和a+kb共线,因为a与b是不共线的两个非零向量,【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知o是正三角形bac内部一点,+2+3=0,则△oac的面积与△oab的面积之比是(3a. 2c.2 2b. 31d. 3 )【解析】如图,在三角形abc中, oa+2ob+3oc=0,整理可得oa+oc+2(ob+oc)=0.1令三角形abc中ac边的中点为e,bc边的中点为f,则点o在点f与点e连线的处,即oe=2of. 32由于ab=2ef,oe=,所以ab=3oe, 31s△oacoe?h2==.故选b. 3s△oabab?h4总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用【例1】如图?abcd中,m,n分别是dc,bc中点.已知am=a,=b,试用a,b表示,ad与ac【解析】易知am=ad+dm 1=+, 21an=ab+bn=ab2ad, 1???a,??2即? ??1?b.?2?22所以=b-a),=2a-b). 332所以=+=a+b). 3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知d为△abc的边bc上的中点,△abc所在平面内有一点p,满足++=0等于( ) 1b. 2c.1 d.2 1a. 3【解析】由于d为bc边上的中点,因此由向量加法的平行四边形法则,易知pb+pc=2pd,因此结合pa+bp+cp=0即得pa=2pd,因此易得p,a,d三点共线且d是pa=1,即选c.题型二向量的坐标运算【例2】已知a=(1,1),b=(x,1),u=a+2b,v=2a-b.(1)若u=3v,求x;(2)若u∥v,求x.【解析】因为a=(1,1),b=(x,1),所以u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3),v=2(1,1)-(x,1)=(2-x,1).(1)u=3v?(2x+1,3)=3(2-x,1)?(2x+1,3)=(6-3x,3),所以2x+1=6-3x,解得x=1.?2x?1??(2?x),?? 3????(2x+1)-3(2-x)=0?x=1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.+|a141+b|2的最大值为.值为284.题型三平行(共线)向量的坐标运算【例3】已知△abc的角a,b,c所对的边分别是a,b,c,设向量m=(a,b),n=(sin b,sin a),p=(b-2,a-2).(1)若m∥n,求证:△abc为等腰三角形;【解析】(1)证明:因为m∥n,所以asin a=bsin b.由正弦定理,得a2=b2,即a=b.所以△abc为等腰三角形.a(b-2)+b(a-2)=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=(a+b)2-3ab,所以(ab)2-3ab-4=0.所以ab=4或ab=-1(舍去).113所以s△abc=absin c3. 222【点拨】设m=(x1,y1),n=(x2,y2),则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.【变式训练3】已知a,b,c分别为△abc的三个内角a,b,c的对边,向量m=(2cosc-1,-2),n=(cos c,cos c+1).若m⊥n,且a+b=10,则△abc周长的最小值为( )a.10-3c.10-23b.10+53d.10+231【解析】由m⊥n得2cos2c-3cos c-2=0,解得cos c=-cos c=2(舍去),所以c2=a2+b2-2abcos 2【篇二:高中数学平面向量测试题及答案】选择题:1。
已知abcd为矩形,e是dc的中点,且ab=a,ad=b,则be=()(a) b+a(b) b-a (c) a+b (d) a-b2222???????????????????2.已知b是线段ac的中点,则下列各式正确的是()(a) ab=-bc (b) ac=bc(c) ba=bc(d) bc=ac22????????????????????????3.已知abcdef是正六边形,且ab=a,ae=b,则bc=()(a) ????????????2(a?b)(b) (b?a)(c) a+b (d) (a?b)222?????????4.设a,b为不共线向量,ab =a+2b,bc=-4a-b,cd=-5a-3b,则下列关系式中正确的是()(a)ad=bc (b)ad=2bc (c)ad=-bc??????????????????????????????????(d)ad=-2bc??????5.将图形f按a=(h,k)(其中h0,k0)平移,就是将图形f()(a)向x轴正方向平移h个单位,同时向y轴正方向平移k个单位。
(b)向x轴负方向平移h个单位,同时向y轴正方向平移k个单位。
(c)向x轴负方向平移h个单位,同时向y轴负方向平移k个单位。
(d)向x轴正方向平移h个单位,同时向y轴负方向平移k个单位。
6.已知a=(,1),b=(?122??3,2),下列各式正确的是()????????????????7.设e1与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,则k的值是()(a) 1 (b)-1 (c) ?1(d)任意不为零的实数9.已知m(-2,7)、n(10,-2),点p是线段mn上的点,且pn=-2pm,则p点的坐标为()(a)(-14,16)(b)(22,-11)(c)(6,1)(d)(2,4)????????????????????????10.已知a=(1,2),b=(-2,3),且ka+b与a-kb垂直,则k=()(a) ?1?2(b) 2?1(c) 2?3(d) 3????????2?11.把函数y?sin(x?3)?2的图象经过按a平移得到y?sinx的图象,则a=()(a) ????(b) ??3,2?(c) ???3,?2?(d) ?3,?2? 3,212.△abc的两边长分别为2、3,其夹角的余弦为1 ,则其外接圆的半径为()(a)92(b)94(c)98(d)29二、填空题:13.已知m、n是△abc的边bc、ca上的点,且bm=????3???bc,cn=???3???ca,设ab=???a,ac=b,则mn=???????14.△abc中,sinb?sinacosc,其中a、b、c是△abc的三内角,则△abc是三角形。
三、解答题:15.abcd是梯形,ab∥cd,且ab=2cd,m、n分别是dc和ab的中点,已知ab???=a,ad=b,试用a、b表示mn。
16.设两非零向量a和b不共线,如果ab=a+b,cd=3(a-b),?????????????????????????bc?2a?8b,求证:a、b、d三点共线。
??18.在△abc中,已知abc,且a=2c,a、b、c所对的边分别为a、b、c,又a、b、c成等差数列,且b=4,求a、c的长。
平面向量测试题答案bddba acbda ac13.15.3?b?a;14.直角34??a?b?;18.+a?5,c?519.由2cotb?cota?cotc得b2=ac2cosbcosa?sinbsinacoscsin(a?c)sin2ba2?c2?b2??2cosb??sincsinasincsinasincac?a2?c2?2b2…【篇三:平面向量练习题集答案】一. 向量的基本概念与基本运算1向量的概念:①向量:既有大小又有方向的量向量的大小即向量的模(长度)的模可以比较大小.??②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行,所以在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量方向相同或相反的向量,称为平行向⑤相等向量:长度相等且方向相同的向量2向量加法:求两个向量和的运算叫做向量的加法?设ab?a,bc?b,则a+b=ab?bc=ac?????(1)0?a?a?0?a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:ab?bc?cd?. ?pq?qr?ar,但这时必须“首尾相连”3向量的减法:??①相反向量:与a长度相等、方向相反的向量,叫做a?记作?a 关于相反向量有:???????(i)?(?a)=a; (ii) a+(?a)=(?a)+a=0;?????????(iii)若a、b是互为相反向量,则a=?b,b=?a,a+b=0????????②向量减法:向量a加上b的相反向量叫做a与b的差,记作:a?b?a?(?b)??????③作图法:a?b可以表示为从b的终点指向a的终点的向量(a、b 有共同起点) 4实数与向量的积:??(Ⅰ)?a???a;??????当??0时,?a?0,方向是任意的??5两个向量共线定理:????向量b与非零向量a共线?有且只有一个实数?,使得b=?a6平面向量的基本定理:???如果e1,e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有?????一对实数?1,?2使:a??1e1??2e2,其中不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底7 特别注意:(1)相等向量与平行向量有区别,向量平行是向量相等的必要条件(2)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况二. 平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底a可表示成a?xi?yj,记作a=(x,y)(1)相等的向量坐标相同,坐标相同的向量是相等的向量2平面向量的坐标运算:(1) 若a??x1,y1?,b??x2,y2?,则a?b??x1?x2,y1?y2? (2) 若a?x1,y1?,b?x2,y2?,则ab??x2?x1,y2?y1? (3) 若a=(x,y),则?a=(?x, ?y)(4) 若a??x1,y1?,b??x2,y2?,则a//b?x1y2?x2y1?0 (5) 若a??x1,y1?,b??x2,y2?,则a?b?x1?x2?y1?y2 若a?b,则x1?x2?y1?y2?0向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质三.平面向量的数量积 1两个向量的数量积:a?b∈r,称为向量b在a方向上的投影|a|4向量的模与平方的关系:a?a?a2?|a|5乘法公式成立:?a?b???a?b??a?b?a?a?b??a?2a?b?b?a222222?b; ?2a?b?b2226平面向量数量积的运算律:①交换律成立:a?b?b?a????③分配律成立:?a?b??c?a?c?b?c?c??a?b? 特别注意:(1)结合律不成立:a??b?c???a?b??c;(2)消去律不成立a?b?a?c不能得到b?c? (3)a?b=0不能得到a=0或b=0②对实数的结合律成立:??a??b??a?b?a??b???r?7两个向量的数量积的坐标运算:8向量的夹角:已知两个非零向量a与b,作oa=a, ob=b,则∠aob=? (00???1800)叫做向量a与b的夹角cos?=cos?a,b??a?ba?b????典例精析题型一向量的有关概念【例1】下列命题:①向量ab的长度与的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量与向量cd是共线向量,则a、b、c、d必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;ab与cd是共线向量,则a、b、c、d可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=a?a;②(a?b) ?c=a? (b?c);③oa-ob=;b.2c.3d.4【解析】选d.| a|=a?a正确;(a?b) ?c≠a? (b?c); oa-ob=ba 正确;如下图所示,mn=++且mn=++,两式相加可得2mn=ab+dc,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b). 所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点m在线段do上,且=,点n在线段oc上,且=,设=a, =b,试用a、b表示,,.【解析】在?abcd中,ac,bd交于点o, 111所以==(-)a-b),2221313=2=2(+)=2(a+b).11又=,=,33111。