2021版新高考数学人教B版一轮课件:2.6幂函数与二次函数
新高考数学一轮复习教师用书:第2章 4 第4讲 二次函数与幂函数
第4讲 二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R)的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f(x)=ax 2+bx +c(a≠0). ②顶点式:f(x)=a(x -m)2+n(a≠0). ③零点式:f(x)=a(x -x 1)(x -x 2)(a≠0). (2)二次函数的图象和性质 解析式f(x)=ax 2+bx +c(a>0)f(x)=ax 2+bx +c(a<0)图象定义域 (-∞,+∞)(-∞,+∞)值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减对称性函数的图象关于x =-b2a对称[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n<0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c,x ∈[a,b]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c(a≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P77图象改编)如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c 的大小关系为________.解析:根据幂函数的性质可知a<0,b>1,0<c<1,故a<c<b. 答案:a<c<b2.(必修1P39B 组T1改编)函数g(x)=x 2-2x(x∈[0,3])的值域为________.解析:由g(x)=x 2-2x =(x -1)2-1,x ∈[0,3],得g(x) 在[0,1]上是减函数,在[1,3]上是增函数. 所以g(x)min =g(1)=-1,而g(0)=0,g(3)=3. 所以g(x)的值域为[-1,3]. 答案:[-1,3] [易错纠偏](1)二次函数图象特征把握不准; (2)二次函数的单调性规律掌握不到位; (3)幂函数的图象掌握不到位.1.如图,若a<0,b>0,则函数y =ax 2+bx 的大致图象是________(填序号).解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a<0,b>0,所以二次函数图象的对称为x =-b2a>0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________. 解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m<0-12m ≤3,即m≤-16.答案:⎝⎛⎦⎥⎤-∞,-16 3.当x∈(0,1)时,函数y =x m的图象在直线y =x 的上方,则m 的取值范围是________. 答案:(-∞,1)幂函数的图象及性质(1)幂函数y =f(x)的图象过点(4,2),则幂函数y =f(x)的图象是( )(2)若(a +1)12<(3-2a)12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f(x)的图象过点(4,2), 所以2=4α,解得α=12.所以y =x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a≥0,a +1<3-2a ,解得-1≤a<23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)判断幂函数y =x α(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断. (3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f(x)=xm 2-2m -3(m∈Z)的图象关于y 轴对称,并且f(x)在第一象限是单调递减函数,则m =________.解析:因为幂函数f(x)=xm 2-2m -3(m∈Z)的图象关于y 轴对称,所以函数f(x)是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m<0,故m =1. 答案:12.当0<x<1时,f(x)=x 1.1,g(x)=x 0.9,h(x)=x -2的大小关系是________.解析:如图所示为函数f(x),g(x),h(x)在(0,1)上的图象,由此可知h(x)>g(x)>f(x).答案:h(x)>g(x)>f(x)求二次函数的解析式已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f(x)=ax 2+bx +c(a≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f(x)=-4x 2+4x +7.法二:(利用顶点式)设f(x)=a(x -m)2+n(a≠0). 因为f(2)=f(-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f(x)=a ⎝ ⎛⎭⎪⎫x -122+8. 因为f(2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f(x)=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f(x)+1=0的两根为x 1=2,x 2=-1, 故可设f(x)+1=a(x -2)(x +1), 即f(x)=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f(x)=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f(x)=(x +a)(bx +2a)(常数a,b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析:由f(x)是偶函数知f(x)的图象关于y 轴对称,所以-a =-⎝ ⎛⎭⎪⎫-2a b ,即b =-2,所以f(x)=-2x2+2a 2,又f(x)的值域为(-∞,4],所以2a 2=4,故f(x)=-2x 2+4.答案:-2x 2+42.已知二次函数f(x)的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x∈R ,都有f(2-x)=f(2+x),求f(x)的解析式.解:因为f(2+x)=f(2-x)对任意x∈R 恒成立, 所以f(x)的对称轴为x =2.又因为f(x)的图象被x 轴截得的线段长为2, 所以f(x)=0的两根为1和3. 设f(x)的解析式为f(x)=a(x -1)(x -3)(a≠0), 又f(x)的图象过点(4,3), 所以3a =3,a =1, 所以所求f(x)的解析式为 f(x)=(x -1)(x -3), 即f(x)=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题. 角度一 二次函数图象的识别问题已知abc>0,则二次函数f(x)=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a<0,-b2a<0,所以b<0. 又因为abc>0,所以c>0,而f(0)=c<0,故A 错. B 项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B 错. C 项,因为a>0,-b2a <0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C 错.D 项,因为a>0,-b2a >0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f(x)=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________. 【解析】 当a =0时,f(x)=-3x +1在[-1,+∞)上递减,满足条件. 当a≠0时,f(x)的对称轴为x =3-a2a,由f(x)在[-1,+∞)上递减知⎩⎪⎨⎪⎧a<03-a 2a ≤-1,解得-3≤a<0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0](变条件)若函数f(x)=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f(x)=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a<0,a -3-2a =-1,解得a =-3.角度三 二次函数的最值问题已知函数f(x)=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f(x)的最大值与最小值;(2)f(x)的最小值记为g(a),求g(a)的解析式以及g(a)的最大值. 【解】 (1)当a =1时,f(x)=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f(x)的最小值为0,x =-1时,f(x)的最大值为4. (2)f(x)=(x -a)2+1-a 2,x ∈[-1,2], 当a<-1时,f(x)的最小值为f(-1)=2+2a, 当-1≤a≤2时,f(x)的最小值为f(a)=1-a 2, 当a>2时,f(x)的最小值为f(2)=5-4a, 则g(a)=⎩⎪⎨⎪⎧2+2a ,a<-1,1-a 2,-1≤a≤2,5-4a ,a>2,可知,g(a)在(-∞,0)上单调递增,在(0,+∞)上单调递减,g(a)的最大值为g(0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息. (2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.若函数f(x)=x 2+ ax +b 在区间[0, 1]上的最大值是M,最小值是m,则M -m( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关解析:选 B.f(x)=⎝ ⎛⎭⎪⎫x +a 22-a 24+b,①当0≤-a 2≤1时,f(x)min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b,f(x)max =M =max{f(0),f(1)}=max{b,1+a +b},所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f(x)在[0,1]上单调递增,所以M -m =f(1)-f(0)=1+a 与a 有关,与b 无关;③当-a2>1时,f(x)在[0,1]上单调递减,所以M -m =f(0)-f(1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.若函数f(x)=ax 2+20x +14(a >0)对任意实数t,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f(x 1)-f(x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f(x)=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f(x 1)-f(x 2)|≥8成立, 只需t =-10a时f(t +1)-f(t)≥8,即a(t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a≥8. 所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2020·金华市东阳二中高三调研)已知二次函数f(x)=x 2+ax +b(a,b ∈R).(1)当a =-6时,函数f(x)的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值; (2)当a =-1时在区间[-1,1]上,y =f(x)的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f(x)=x 2-6x +b,函数对称轴为x =3,故函数f(x)在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b≤6时,f(x)在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b≤10时,f(x)在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f(1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b>10时,f(x)在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f(1)<f(b 2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10.(2)当a =-1时,f(x)=x 2-x +b,由题意可知x 2-x +b>2x +2b -1对x∈[-1,1]恒成立, 化简得b<x 2-3x +1,令g(x)=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g(x)min=-1,故b<-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a≥f(x)恒成立⇔a ≥f(x)max ,a ≤f(x)恒成立⇔a ≤f(x)min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2020·宁波市余姚中学期中检测)设a<0,(3x 2+a)(2x +b)≥0在(a,b)上恒成立,则b -a 的最大值为( )A.13 B.12 C.33D.22解析:选A.因为(3x 2+a)(2x +b)≥0在(a,b)上恒成立, 所以3x 2+a≥0,2x +b≥0或3x 2+a≤0,2x +b≤0,①若2x +b≥0在(a,b)上恒成立,则2a +b≥0,即b≥-2a>0,此时当x =0时,3x 2+a =a≥0不成立, ②若2x +b≤0在(a,b)上恒成立,则2b +b≤0,即b≤0,若3x 2+a≤0在(a,b)上恒成立,则3a 2+a≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f(x)=x 2-x +1,在区间[-1,1]上不等式f(x)>2x +m 恒成立,则实数m 的取值范围是________.解析:f(x)>2x +m 等价于x 2-x +1>2x +m,即x 2-3x +1-m>0, 令g(x)=x 2-3x +1-m,要使g(x)=x 2-3x +1-m>0在[-1,1]上恒成立,只需使函数g(x)=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g(x)=x 2-3x +1-m 在[-1,1]上单调递减, 所以g(x)min =g(1)=-m -1. 由-m -1>0,得m<-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)[基础题组练]1.已知幂函数f(x)=k·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12 B .1 C.32D .2 解析:选C.因为函数f(x)=k·x α是幂函数,所以k =1,又函数f(x)的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f(x)=x mn(m,n ∈N *,m,n 互质)的图象如图所示,则( )A .m,n 是奇数,且mn <1B .m 是偶数,n 是奇数,且mn >1C .m 是偶数,n 是奇数,且mn <1D .m 是奇数,n 是偶数,且mn>1解析:选C.由图知幂函数f(x)为偶函数,且mn <1,排除B,D ;当m,n 是奇数时,幂函数f(x)非偶函数,排除A ;选C.3.若函数f(x)=x 2+bx +c 对任意的x∈R 都有f(x -1)=f(3-x),则以下结论中正确的是( ) A .f(0)<f(-2)<f(5) B .f(-2)<f(5)<f(0) C .f(-2)<f(0)<f(5)D .f(0)<f(5)<f(-2)解析:选A.若函数f(x)=x 2+bx +c 对任意的x∈R 都有f(x -1)=f(3-x),则f(x)=x 2+bx +c 的图象的对称轴为x =1且函数f(x)的图象的开口方向向上,则函数f(x)在(1,+∞)上为增函数,所以f(2)<f(4)<f(5),又f(0)=f(2),f(-2)=f(4),所以f(0)<f(-2)<f(5).4.(2020·瑞安四校联考)定义域为R 的函数f(x)满足f(x +1)=2f(x),且当x∈[0,1]时,f(x)=x 2-x,则当x∈[-2,-1]时,f(x)的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x∈[-2,-1]时,x +2∈[0,1],则f(x +2)=(x +2)2-(x +2)=x 2+3x +2,又f(x +2)=f[(x +1)+1]=2f(x +1)=4f(x),所以当x∈[-2,-1]时,f(x)=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f(x)取得最小值,且最小值为-116,故选A.5.若函数f(x)=x 2-2x +1在区间[a,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f(x)=x 2-2x +1=(x -1)2,对称轴为x =1,因为在区间[a,a +2]上的最小值为4,所以当1≤a 时,y min =f(a)=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a≤-1,y min =f(a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a<1<a +2,即-1<a<1时,y min =f(1)=0≠4,故a 的取值集合为{-3,3}.6.(2020·温州高三月考)已知f(x)=ax 2+bx +c(a >0),g(x)=f(f(x)),若g(x)的值域为[2,+∞),f(x)的值域为[k,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f(x),由题意可得g(x)=f(t)=at 2+bt +c,t ≥k,函数y =at 2+bt +c,t ≥k 的图象为y =f(x)的图象的部分,即有g(x)的值域为f(x)的值域的子集, 即[2,+∞)⊆[k,+∞), 可得k≤2,即有k 的最大值为2. 故选C.7.已知幂函数f(x)=x -12,若f(a +1)<f(10-2a),则实数a 的取值范围是________.解析:因为f(x)=x -12=1x (x>0),易知x∈(0,+∞)时为减函数,又f(a +1)<f(10-2a),所以⎩⎪⎨⎪⎧a +1>0,10-2a>0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a>-1,a<5,a>3,所以3<a<5. 答案:(3,5)8.已知函数f(x)=x 2-2ax +2a +4的定义域为R,值域为[1,+∞),则a 的值为________. 解析:由于函数f(x)的值域为[1,+∞),所以f(x)min =1.又f(x)=(x -a)2-a 2+2a +4,当x∈R 时,f(x)min =f(a)=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2020·杭州四中第一次月考)已知函数f(x)=x 2+ax +1,若存在x 0使|f(x 0)|≤14,|f(x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f(x)=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g(x)=x 2+h,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g(-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a 24≤0,解得-6≤a ≤-2或2≤a≤ 6.答案:[-6,-2]∪[2,6]10.设函数f(x)=x 2-1,对任意x∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x)≤f(x-1)+4f(m)恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x-1)2-1+4(m 2-1)在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m≤-32或m≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f(x)=(m 2-5m +7)x m -1为偶函数.(1)求f(x)的解析式;(2)若g(x)=f(x)-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f(x)是偶函数矛盾,舍去, 所以m =3,所以f(x)=x 2.(2)g(x)=f(x)-ax -3=x 2-ax -3,g(x)的对称轴是x =a 2,若g(x)在[1,3]上不是单调函数, 则1<a2<3,解得2<a<6.12.(2020·台州市教学质量调研)已知函数f(x)=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f(x)的解析式;(2)若m <3,求函数f(x)在区间[m,3]上的值域.解:(1)因为函数f(x)=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称, 所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f(x)=x 2-2x.(2)当1≤m<3时,f(x)min =f(m)=m 2-2m, f(x)max =f(3)=9-6=3, 所以f(x)的值域为[m 2-2m,3];当-1≤m<1时,f(x)min =f(1)=1-2=-1, f(x)max =f(-1)=1+2=3,所以f(x)的值域为[-1,3].当m <-1时,f(x)min =f(1)=1-2=-1, f(x)max =f(m)=m 2-2m,所以f(x)的值域为[-1,m 2-2m].[综合题组练]1.(2020·台州质检)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a-b =1;③a-b +c =0;④5a<b.其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac>0,即b 2>4ac,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y>0,即a -b +c>0,③错误;由对称轴为x =-1知,b =2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.2.(2020·温州市十校联考)已知函数f(x)是定义在R 上的奇函数,当x≥0时,f(x)=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R,f(x -1)≤f(x),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x≥0时,f(x)=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x≤a 2时,f(x)=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f(x)=12(x -a 2+2a 2-x -3a 2)=-a 2;当x≥2a 2时,f(x)=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f(x)=12(|x -a 2|+|x -2a 2|-3a 2)在x≥0时的解析式等价于f(x)=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f(x)在R 上的大致图象如下,观察图象可知,要使∀x ∈R,f(x -1)≤f(x),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f(x)=|x 2+ax +b|在区间[0,c]内的最大值为M(a,b ∈R,c >0为常数)且存在实数a,b,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f(x)=|x 2+ax +b|在区间[0,c]内的最大值M 在端点处或x =-a 2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a24|=2,若在x =c 处取得,则|c 2+ac +b|=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b|≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2020·宁波市余姚中学高三期中)已知f(x)=34x 2-3x +4,若f(x)的定义域和值域都是[a,b],则a+b =________.解析:因为f(x)=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b<2时,函数在区间[a,b]上递减,又因为值域也是[a,b],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a ,即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a,两式相减得34(a +b)(a -b)-3(a -b)=b -a,又因为a≠b ,所以a +b =83,由34a 2-3a +4=83-a,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a<2≤b 时,得f(2)=1=a,又因为f(1)=74<2,所以f(b)=b,得34b 2-3b +4=b,所以b =43(舍)或b=4,所以a +b =5.③当a≥2时,函数在区间[a,b]上递增,又因为值域是[a,b],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a,b 是方程34x 2-3x +4=x 的两根,即a,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a≥2,故应舍去.综上得a +b =5.答案:55.已知函数f(x)=ax 2+bx +c(a >0,b ∈R,c ∈R). (1)若函数f(x)的最小值是f(-1)=0,且c =1,F(x)=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F(2)+F(-2)的值;(2)若a =1,c =0,且|f(x)|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f(x)=(x +1)2.所以F(x)=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f(x)=x 2+bx,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b≤1x -x 且b≥-1x-x 在(0,1]上恒成立.又当x∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b≤0.故b 的取值范围是[-2,0].6.(2020·宁波市余姚中学期中检测)已知函数f(x)=-x 2+2bx +c,设函数g(x)=|f(x)|在区间[-1,1]上的最大值为M.(1)若b =2,试求出M ;(2)若M≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f(x)=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g(-1)和g(1)中较大的一个, 又g(-1)=|-5+c|,g(1)=|3+c|,则M =⎩⎪⎨⎪⎧|-5+c|,c ≤1|3+c|,c>1.(2)g(x)=|f(x)|=|-(x -b)2+b 2+c|,(ⅰ)当|b|>1时,y =g(x)在区间[-1,1]上是单调函数, 则M =max{g(-1),g(1)},而g(-1)=|-1-2b +c|,g(1)=|-1+2b +c|,则2M≥g(-1)+g(1)≥|f(-1)-f(1)|=4|b|>4,可知M>2.(ⅱ)当|b|≤1时,函数y =g(x)的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g(-1),g(1),g(b)}, 又g(b)=|b 2+c|,①当-1≤b≤0时,有f(1)≤f(-1)≤f(b),则M =max{g(b),g (1)}≥12(g(b)+g(1))≥12|f(b)-f(1)|=12(b -1)2≥12;②当0<b≤1时,有f(-1)≤f(1)≤f(b).则M =max{g(b),g(-1)}≥12(g(b)+g(-1))≥12|f(b)-f(-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M≥12.而当b =0,c =12时,g(x)=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M≥k 对任意的b 、c 恒成立的k 的最大值为12.。
高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件
解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。
2.4幂函数与二次函数课件高三数学一轮复习
单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.
(完整版)高考数学第一轮复习幂函数与二次函数
∴2m=0,∴m=0.
则f(x)=-x2+3在(-5,-3)上是增函数.
3.图中C1,C2,C3为三个幂函数y=xk在第一象限内的图象,则解
析式中指数k的值依次可以是( )
(A) 1, 1 ,3
2
(C) 1 , 1,3
2
(B) 1,3, 1
2
(D) 1 ,3, 1
2
【解析】选A.设C1,C2,C3对应的k值分别为k1,k2,k3,则
k1<0,0<k2<1,k3>1,故选A.
4.函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数 a的取值范围是______. 【解析】二次函数f(x)的对称轴是x=1-a, 由题意知1-a≥3,∴a≤-2. 答案:(-∞,-2]
5.设函数f(x)=mx2-mx-1,若f(x)<0的解集为R,则实数m的取
(A)a>0,4a+b=0
(B)a<0,4a+b=0
(C)a>0,2a+b=0
(D)a<0,2a+b=0
(2)已知函数f(x)=x2+2ax+3,x∈[-4,6]. ①当a=-2时,求f(x)的最值; ②求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数; ③当a=-1时,求f(|x|)的单调区间.
【解析】设f(x)=xn,则 3 ( 3 )n ,
3
即
3
1n
32
,
1
n
1, n
2,f
x
x 2 .
2
2.函数f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-3)
高考数学一轮复习教学案二次函数与幂函数(含解析)
第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。
新高考数学一轮复习考点知识归类讲义 第10讲 幂函数与二次函数
新高考数学一轮复习考点知识归类讲义第10讲幂函数与二次函数1.幂函数(1)定义形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+n (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx+c (a >0)f (x )=ax 2+bx+c (a <0) 图象定义域 (-∞,+∞) (-∞,+∞) 值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a 成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴(简记为“指大图高”).[典例]1.(2022·全国·高三专题练习)若幂函数()m n(m,n∈N*,m,n互质)的图像如图f x x所示,则()A.m,n是奇数,且m<1n>1B.m是偶数,n是奇数,且mn<1C.m是偶数,n是奇数,且mnD.m是奇数,n是偶数,且m>1n【答案】C【解析】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.2.(2022·全国·高三专题练习)幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6B .1C .6D .1或﹣6 【答案】B 【解析】∵幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∴2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数 1m ∴=或6m =-当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去 因此:m =1 故选:B3.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a << 【答案】D 【解析】因幂函数()()1nf x m x =-的图象过点(),8m ,则11m -=,且8n m =,于是得2m =,3n =,函数3()f x x =,函数()f x 是R 上的增函数,而20.32log 0.300.312<<<<,则有20.32(log 0.3)(0.3)(2)f f f <<,所以c b a <<. 故选:D [举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x = 【答案】D 【解析】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足. 故选:D2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数 【答案】D 【解析】设幂函数的解析式为y x α=,将点(的坐标代入解析式得3α=12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数, 故选:D.3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( )A .(0,2)B .[0,1)C .[1,2)D .(1,2] 【答案】C 【解析】函数2()-=a f x x 单调递减可得20a -<及2a <;函数4()-⎛⎫= ⎪⎝⎭xg x a 单调递减可得014a <<,解得04a <<,若函数2()-=a f x x与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减,可得02a <<,由题可得所求区间真包含于()0,2, 结合选项,函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是C.故选:C.4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =,对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确; 对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x =='切线方程为0)y x x -,又因为切线过点1(0,)2P ,所以01)2x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+, 即选项C 正确; 对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=-⎪⎝⎭⎝⎭212024x x +=-==-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12 【解析】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭故答案为:12.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 【答案】1,1-(答案不唯一) 【解析】因为幂函数()mf x x =在()0,∞+上单调递增,所以0m >,因为幂函数()ng x x =在()0,∞+上单调递减,所以0n <,又因为()()y f x g x =-是奇函数,所以幂函数()f x 和幂函数()g x 都是奇函数,所以m 可以是1,n 可以是1-.故答案为:1,1-(答案不唯一). 7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.【答案】[)1,-+∞ 【解析】由题设,99999999(1)(2)1x x x --≤+,而9999y x =在R 上递增,当12x x ->即1x <-时,99999999(1)(2)01x x x -->>+,原不等式不成立; 当12x x -≤即1x ≥-时,99999999(1)(2)01x x x --≤≤+,原不等式恒成立. 综上,解集为[)1,-+∞. 故答案为:[)1,-+∞8.(2022·全国·高三专题练习)如图是幂函数iy x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______.【答案】3x (答案不唯一) 【解析】设幂函数()f x x α=,由题意,得()f x x α=为奇函数,且在定义域内单调递增,所以21n α=+(N n ∈)或mnα=(,m n 是奇数,且互质), 所以满足上述条件的幂函数可以为()3f x x =.故答案为:3x (答案不唯一).10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【解】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t =,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0=t 时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,. ➢考点2 二次函数的解析式[名师点睛]求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______ 【答案】f (x )=-4x 2+4x +7. 【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为2(1)122x +-==,所以m =12. 又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=21()82a x -+.因为f (2)=-1,所以21(2)812a -+=-,解得a =-4, 所以f (x )=214()82x --+=-4x 2+4x +7. 法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=. 解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7. 故答案为:f (x )=-4x 2+4x +7.2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式. 【解】解:因为()f x 为二次函数,所以设()2f x ax bx c =++,因为()00f =,所以0c ,所以()2f x ax bx =+,所以()()()()()22212121442f x a x b x ax a b x a b +=+++=++++,因为()()22132f x f x x x +-=++,所以()()223432ax a b x a b x x ++++=++,所以31a =,43a b +=,2a b +=,所以13a =,53b =,所以()21533f x x x =+. [举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( ) A .()236f x x x =-+B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =- 【答案】A 【解析】对于函数12x y a -=+,当1x =时,023y a =+=, 所以函数12x y a -=+过定点P ()1,3,设以P ()1,3为顶点且过原点的二次函数()()213f x a x =-+,因为()f x 过原点()0,0,所以()20013a =-+,解得:3a =-,所以()f x 的解析式为:()()2231336f x x x x =--+=-+,故选:A.2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( )A .221x x -+B .221x x ++C .2221x x -+D .2221x x +- 【答案】B 【解析】设()()20f x ax bx c a =++≠,则()2f x ax b '=+,由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________. 【答案】2()1f x x x =-+【解析】解:由题意,设2()(0)f x ax bx c a =++≠, 因为(0)1f =,即1c =,所以2()1f x ax bx =++,所以()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦,从而有220a a b =⎧⎨+=⎩,解得1,1a b ==-,所以2()1f x x x =-+, 故答案为:2()1f x x x =-+.➢考点3 二次函数的图象与性质是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. [典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③ 【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得00ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求;若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求; 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤B .12a ≤-C .1a ≤-D .2a ≤- 【答案】D【解析】解:因为()221f x x ax =+-的对称轴为x a =-,开口向上,所以1a -≥,解得1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的充要条件为1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为2a ≤-;故选:D3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增, ∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a -≤,即1a ≥-,同时 需满足1(2)()02f f -->,即1(4)(21)04a a +-<, 解得142a -<<, 综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________. 【答案】[0,1]【解析】对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,即1122()()()()f x g x f x g x --<,令2()()()21F x f x g x x a x =-=--,即12()()F x F x <只需在[0,2]上单调递增即可,当1x =时,()1F x =,函数图象恒过()1,1;当1x >时,2()22F x x ax a =-+; 当1x <时,2()22F x x ax a =+-; 要使()F x 在区间[0,2]上单调递增,则当2x ≤1<时,2()22F x x ax a =-+的对称轴1x a =≤,即1a ≤;当1x ≤0<时,2()22F x x ax a =+-的对称轴0x a =-≤,即0a ≥; 且12121212a a a a +⨯-≤-⨯+, 综上01a ≤≤ 故答案为:[0,1]. [举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x > 【答案】B 【解析】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项; 故选:A.3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是()A .k ≤-8B .k ≥4C .k ≤-8或k ≥4D .-8≤k ≤4 【答案】C【解析】函数2()28f x x kx =--对称轴为4kx =, 要使()f x 在区间[-2,1]上具有单调性,则24k≤-或14k ≥,∴8k ≤-或4k ≥ 综上所述k 的范围是:k ≤-8或k ≥4. 故选:C.4.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( )A .(1)(4)(2)f f f <<B .(4)(1)(2)f f f <<C .(4)(2)(1)f f f <<D .(2)(4)(1)f f f << 【答案】B【解析】因为(1)(3)f f =,所以二次函数2()f x ax bx c =++的对称轴为2x =, 又因为0a <,所以(4)(3)(2)f f f <<,又(1)(3)f f =,所以(4)(1)(2)f f f <<. 故选:B.5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关 【答案】AB【解析】二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =-1, 当x 1+x 2=-2时,x 1,x 2关于x =-1对称,则有f (x 1)=f (x 2),B 正确;当x 1+x 2>-2时,而x 1<x 2,则x 2必大于-1,于是得x 2-(-1)>-1-x 1,有| x 2-(-1)|>|-1-x 1|, 因此,点x 2到对称轴的距离大于点x 1到对称轴的距离,即f (x 1)<f (x 2),A 正确,C 错误; 显然当a >0时,f (x 1)与f (x 2)的大小只与x 1,x 2离-1的远近有关,与a 无关,D 错误. 故选:AB6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .5 【答案】BC【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC.7.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______.【答案】[2,0]-【解析】当0a =时,()61f x x =-,在(,1)-∞上为增函数,符合题意,当0a ≠时,要使函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则需满足0a <且对称轴为612a x a+=-≥,解得:2a ≥-,即20a -≤<, 综上所述:实数的取值范围是:[2,0]-.故答案为:[2,0]-8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____.【答案】[]1,3【解析】函数f (x )=x 2﹣2x 的对称轴方程为x =1,在[﹣1,1]上为减函数,且值域为[﹣1,3],当x ≥1时,函数为增函数,且(3)3f =∴要使函数f (x )=x 2﹣2x 在定义域[﹣1,n ]上的值域为[﹣1,3],实数n 的取值范围是[1,3].故答案为:[1,3]9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围. 【解】(1)由题意得:()02f c ==,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=- 所以22a =,1a b +=-,解得:1a =,2b =-,所以函数()f x 的解析式为()222f x x x =-+.(2)()()()222g x f x mx x m x =-=-++,对称轴为22m x +=,要想函数()()g x f x mx =-在区间[]12-,上是单调函数,则要满足212m +≤-或222m +≥,解得:4m ≤-或2m ≥,故实数m 的取值范围是(][),42,-∞-+∞.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k ,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x =+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪ ⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围. 【解】(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则 0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =, 所以2(1)2f x x x =++.(2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要 21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦。
新高考数学一轮复习幂函数与二次函数重难点题型精讲(含答案)
幂函数与二次函数-重难点题型精讲1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较R R R {x |x ≥0} {x |x ≠0}2.二次函数的图象和性质R R【题型1 幂函数的图象及性质】【例1】(2021•宜春模拟)已知幂函数f(x)=(m﹣1)x n的图象过点(m,8).设a=f(20.3),b=f (0.32),c=f(log20.3),则a,b,c的大小关系是()A.b<c<a B.a<c<b C.a<b<c D.c<b<a【解题思路】利用幂函数的定义,先求出f(x)的解析式,可得a、b、c的值,从而判断a,b,c的大小关系.【解答过程】解:∵幂函数f(x)=(m﹣1)x n的图象过点(m,8),∴m﹣1=1,且m n=8,求得m =2,n =3,故f (x )=x 3.∵a =f (20.3)=20.9>1,b =f (0.32)=0.36∈(0,1),c =f (log 20.3)=(log 20.3)3<0, ∴a >b >c , 故选:D .【变式1-1】(2021•阳泉三模)已知点(2,8)在幂函数f (x )=x n 图象上, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a【解题思路】推导出f (x )=x 3,从而45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0,由此能判断a ,b ,c 的大小关系.【解答过程】解:点(2,8)在幂函数f (x )=x n 图象上, ∴f (2)=2n =8,解得n =3,∴f (x )=x 3, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254), ∴45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0, ∴a ,b ,c 的大小关系是b >a >c . 故选:A .【变式1-2】(2020•金安区校级模拟)已知幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数,设a =f (sin2π7),b =f (cos2π7),c =f (tan2π7),则( ) A .b <a <c B .c <b <aC .b <c <aD .a <b <c【解题思路】根据幂函数的定义与奇函数的定义,求出m 、n 的值,写出f (x ),判断其单调性,再根据cos2π7、sin2π7和tan2π7的大小比较f (cos2π7)与f (sin2π7)、f (tan2π7)的大小.【解答过程】解:根据幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数, 得m =1,且﹣2+n =0,解得n =2;∴f (x )=x 3,且在定义域R 上是单调增函数; 又0<π4<2π7<π2,∴cos2π7<sin2π7<1<tan2π7,∴f (cos 2π7)<f (sin 2π7)<f (tan 2π7),即b <a <c . 故选:A .【变式1-3】(2020•三明模拟)已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g (x )=2x ﹣t ,对于任意x 1∈[1,5)时,总存在x 2∈[1,5)使得f (x 1)=g (x 2),则t 的取值范围是( ) A .∅B .t ≥7或t ≤1C .t >7或t <1D .1≤t ≤7【解题思路】先利用幂函数的定义和单调性,求出m 的值,得到函数f (x )的解析式,设函数f (x )在[1,5)的值域为集合A ,函数g (x )在[1,5)的值域为集合B ,利用函数的单调性分别求出集合A ,集合B ,由题意可得A ⊆B ,利用集合间的包含关系列出不等式组,即可求出t 的取值范围. 【解答过程】解:∵幂函数f(x)=(m −1)2x m 2−4m+2在(0,+∞)上单调递增,∴{(m −1)2=1m 2−4m +2>0,解得m =0,∴f (x )=x 2,当x 1∈[1,5)时,f (x 1)∈[1,25),设集合A =[1,25),又当x 2∈[1,5)时,g (x 2)∈[2﹣t ,32﹣t ),设集合B =[2﹣t ,32﹣t ), 由题意得:A ⊆B ,∴{2−t ≤132−t ≥25,解得:1≤t ≤7, 故选:D .【题型2 二次函数的图象及性质】【例2】(2020•西湖区校级模拟)已知函数f (x )=mx 2+(m ﹣3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( ) A .[0,1]B .(0,1)C .(﹣∞,1)D .(﹣∞,1]【解题思路】本题考查的是函数的图象问题.在解答时,应先结合m 是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答. 【解答过程】解:由题意可知:当m =0时,由f (x )=0 知,﹣3x +1=0,∴x =13>0,符合题意;当m>0时,由f(0)=1可知:{△=(m−3)2−4m≥0−m−32m>0,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选:D.【变式2-1】(2020秋•龙岩期中)已知二次函数f(x)=ax2+(a﹣5)x+a2﹣6(a≠0)的图象与x轴交于M(x1,0),N(x2,0)两点,且﹣1<x1<1<x2<2,则a的取值范围是()A.(2,1+2√3)B.(2,2√3−1)C.(1+2√3,+∞)D.(−∞,2−2√3)【解题思路】由已知结合二次函数的实根分布中特殊点函数值的符号建立关于a的不等式,可求.【解答过程】解:若a>0,则{f(−1)=a2−1>0f(1)=a2+2a−11<0 f(2)=a2+6a−11>0,解得2<a<2√3−1;若a<0,则{f(−1)=a2−1<0f(1)=a2+2a−11>0f(2)=a2+6a−16<0,不等式组无解.故a的取值范围是(2,2√3−1).故选:B.【变式2-2】(2020秋•咸阳期末)已知二次函数f(x)=x2﹣2ax+3,a∈R.(Ⅰ)若函数f(x)在(﹣∞,﹣2)上单调递减,求a的取值范围;(Ⅱ)若a=1时,函数f(x)的图象恰好在函数g(x)=2x+b的图象上方(f(x)≥g(x)且恰好能取到等号),求实数b的值.【解题思路】(Ⅰ)求出函数的对称轴,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为x2﹣4x+3﹣b≥0恒成立,根据判别式△≤0,求出b的值即可.【解答过程】解:(Ⅰ)f(x)=x2﹣2ax+3=(x﹣a)2+3﹣a2,对称轴是x=a,若函数f(x)在(﹣∞,﹣2)上单调递减,则a≥﹣2,即a的取值范围是[﹣2,+∞);(Ⅱ)a=1时,f(x)=(x﹣1)2+2,f(x)﹣g(x)=x2﹣4x+3﹣b,由题意得f(x)﹣g(x)≥0,即x2﹣4x+3﹣b≥0恒成立,故△=16﹣12+4b ≤0,解得:b ≤﹣1, 当f (x )≥g (x )且恰好能取到等号, 即f (x )=g (x )时,b =﹣1.【变式2-3】(2020秋•越秀区期末)问题:是否存在二次函数f (x )=ax 2+bx +c (a ≠0,b ,c ∈R )同时满足下列条件:f (0)=3,f (x )的最大值为4,____?若存在,求出f (x )的解析式;若不存在,请说明理由.在①f (1+x )=f (1﹣x )对任意x ∈R 都成立,②函数y =f (x +2)的图象关于y 轴对称,③函数f (x )的单调递减区间是[12,+∞)这三个条件中任选一个,补充在上面问题中作答.【解题思路】由f (0)=3,可求得c =3,由条件可得函数的对称轴,又f (x )的最大值为4,可得关于a ,b 的方程组,求解即可.【解答过程】解:由f (0)=3,可得c =3,则f (x )=ax 2+bx +3, 若选择①f (1+x )=f (1﹣x )对任意x ∈R 都成立, 可得f (x )的对称轴为x =1,所以−b2a =1,又f (x )的最大值为4,可得a <0且f (1)=4,即a +b +3=4, 解得a =﹣1,b =2, 此时f (x )=﹣x 2+2x +3;若选择②函数y =f (x +2)的图象关于y 轴对称, 可得f (x )关于x =2对称,则−b2a =2,又f (x )的最大值为4,可得a <0且f (2)=4,即4a +2b +3=4, 解得a =−14,b =1, 此时f (x )=−14x 2+x +3;若选择③函数f (x )的单调递减区间是[12,+∞), 可得f (x )关于x =12对称,则−b2a =12,又f (x )的最大值为4,可得a <0且f (12)=4,即14a +12b +3=4,解得a =﹣4,b =﹣4, 此时f (x )=﹣4x 2﹣4x +3.【题型3 二次函数的最值问题】【例3】(2020春•滨海新区期末)已知函数f (x )=x 2+2ax +a 2在x ∈[﹣1,2].上有最大值是4,则实数a 的值为( ) A .﹣1或3B .﹣4或0C .﹣1或0D .﹣4或3【解题思路】由函数f (x )=x 2+2ax +a 2的图象开口向上知函数f (x )在|﹣1,2]上的最大值在﹣1或2上取得.从而分类讨论求解.【解答过程】解:由函数f (x )=x 2+2ax +a 2的图象开口向上知, 函数f (x )=x 2+2ax +a 2在|﹣1,2]上的最大值在﹣1或2上取得. 若函数f (x )在﹣1上取得最大值4,则 {−a ≥121−2a +a 2=4,解得a =﹣1,若函数f (x )在2上取得最大值4,则 {−a ≤124+4a +a 2=4,解得a =0,故选:C .【变式3-1】(2020秋•仓山区校级期中)如果函数y =4x 2﹣4ax +a 2﹣2a +3在区间[0,2]上有最小值3,那么实数a 的值为 .【解题思路】由二次函数对称轴结合定义域进行讨论即可解决此题. 【解答过程】解:函数y =4x 2﹣4ax +a 2﹣2a +3的对称轴是:x =a2.当a2≤0,即a ≤0时,f (x )在[0,2]上的最小值a 2﹣2a +3=3,解得:a =0或2(舍去);当0<a2<2,即0<a <4时,f (x )的最小值是f (a2)=﹣2a +3=3,解得:a =0(舍去);a 2≥2,即a ≥4时,f (x )的最小值是f (2)=4×22﹣4a ×2+a 2﹣2a +3=a 2﹣8a +19=3,解得:a 1=a 2=4.综上,a 的值是0或4. 故答案为:0或4.【变式3-2】(2020•浙江模拟)已知函数f (x )=ax 2+bx +c (a ≠0),对一切x ∈[﹣1,1],都有|f (x )|≤1,则当x ∈[﹣2,2]时,f (x )的最大值为 .【解题思路】由题知{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,进而求出a ,b ,c ,所以f (x )=f (1)(x 2+x 2)+f (﹣1)(x 2−x2)+f(0)(1﹣x 2)再由题知对一切x ∈[﹣1,1],都有|f (x )|≤1分别再讨论﹣2≤x ≤﹣1与1≤x ≤2区间最值,最后得出最值. 【解答过程】解:由题意{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,有得{a =12[f(1)+f(−1)−2f(0)]b =12[f(1)−f(−1)]c =f(0)所以f (x )=f (1)(x 2+x2)+f (﹣1)(x 2−x2)+f (0)(1﹣x 2) 对一切x ∈[﹣1,1],都有|f (x )|≤1所以当﹣2≤x <﹣1时,|f (x )|≤||||+||||+||||)|≤||+||+|| =(x 2+x2)+(x 2−x2)+(x 2−1)=2x 2−1≤7当1<x ≤2时,|f (x )|≤||||+||||+||||)|≤||+||+||=(x 2+x 2)+(x 2−x 2)+(x 2−1)=2x 2−1≤7综上所述,当x ∈[﹣2,2]时,f (x )的最大值为7.【变式3-3】(2021春•浦东新区校级期末)已知函数f (x )=x 2﹣(a ﹣2)x +a ﹣3. (1)若f (a +1)=f (2a ),求a 的值;(2)若函数y =f (x )在x ∈[2,3]的最小值为5﹣a ,求实数a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ]?若存在,请求出m 、n 的值;若不存在,请说明理由.【解题思路】(1)根据已知条件,得到(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3解方程即可求出结果; (2)由于f (x )的对称轴为x =a−22,根据对称轴与区间的位置关系进行分类讨论,判断单调性求出最小值即可;(3)根据题意转化为 m ,n 是方程 x 2﹣(a ﹣2)x +a ﹣3=x 的两个根,结合韦达定理得到 m +n =2+mn ,分离常数,根据m ,n 为整数即可求解.【解答过程】解:(1)因为f (x )=x 2﹣(a ﹣2)x +a ﹣3,且 f (a +1)=f (2a ), 所以(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3, 整理得2a 2+a ﹣3=0,解得a =1或−32;(2)f (x )=x 2﹣(a ﹣2)x +a ﹣3 的对称轴为 x =a−22, 因为 x ∈[2,3], ①当a−22≤2,即 a ≤6,则f (x )在x ∈[2,3]上单调递增,所以f (x )min =f (2)=22﹣2(a ﹣2)+a ﹣3=5﹣a ,符合题意;②当2<a−22<3,即6<a <8,则f (x )在(2,a−22)上单调递减,在(a−22,3)单调递增, 所以f(x)min =f(a−22)=(a−22)2−a−22(a −2)+a −3=−a 2+8a−164=5﹣a , 则a =6,与6<a <8矛盾,不符合题意; ③a−22≥3,即a ≥8,则f (x )在x ∈[2,3]上单调递减,所以f(x)min =f(3)=32−3(a −2)+a −3=12−2a =5−a , 则a =7,与a ≥8矛盾,不符合题意,综上a ≤6,因此实数a 的取值范围为(﹣∞,6];(3)因为关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ], ①若a−22≤m ,则f (x )在[m ,n ]上单调递增,所以{f(m)=mf(n)=n,即m ,n 是方程x 2﹣(a ﹣2)x +a ﹣3=x ,即x 2﹣(a ﹣1)x +a ﹣3=0的两个根, 由韦达定理得{m +n =a −1mn =a −3,所以 m +n =2+mn ,所以m (1﹣n )=2﹣n ,当n =1时,m 不存在,舍去, 当n ≠1时,m =2−n 1−n =11−n +1,所以当n =0时,m =2;当n =2时,m =0,又因为m <n ,所以n =2,m =0,经检验,此时a =3,关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;②若m <a−22≤n ,则f (x )在(m ,a−22)上单调递减,在(a−22,n +1)上单调递增,所以{f(a−22)≥m f(n)=n f(m)=n ,即{(a−22)2−(a −2)⋅a−22+a −3≥m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n,所以{−a 2+8a −16≥4m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n ,即x 2﹣(a ﹣2)x +a ﹣3﹣n =0有两个不相等的实数根,且m +n =2﹣a ,由于m ,n 为整数,则a 为整数,则a =n 2+n−3n−1=n +2−1n−1,当n =0时,a =3,m =﹣1,经检验关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;当n =2时,a =3,m =﹣1,经检验符合题意; 故m =﹣1,n =2; ③若a−22≥n ,则f (x )在[m ,n ]上单调递减,所以{f(m)=nf(n)=m,即{m 2−(a −2)⋅m +a −3=n n 2−(a −2)⋅n +a −3=m ,则m =n ,不合题意舍去. 综上:存在这样的m ,n 为整数,且m =﹣1,n =2. 【题型4 二次函数的恒成立问题】【例4】(2021•4月份模拟)对于任意a ∈[﹣1,1],函数f (x )=x 2+(a ﹣4)x +4﹣2a 的值恒大于零,那么x 的取值范围是( ) A .(1,3) B .(﹣∞,1)∪(3,+∞)C .(1,2)D .(3,+∞)【解题思路】把二次函数的恒成立问题转化为y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x 的取值范围.【解答过程】解:原问题可转化为关于a 的一次函数y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,只需{(−1)⋅(x −2)+x 2−4x +4>01×(x −2)+x 2−4x +4>0, ∴{x >3,或x <2x <1,或x >2, ∴x <1或x >3.故选:B .【变式4-1】(2020春•玉林期末)已知函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,则k 的取值范围为( )A .(﹣∞,72)B .(72,+∞)C .(﹣∞,143)D .(143,+∞)【解题思路】由题意可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,结合y =g (x )的图象,只需g (1)<0,且g (2)<0,解不等式可得所求范围.【解答过程】解:函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,由于y =g (x )的图象为开口向上的抛物线,只需g (1)<0且g (2)<0,所以{1+4−k −k +2<04+2(4−k)−k +2<0,即{k >72k >143, 可得k >143. 故选:D .【变式4-2】(2020春•浙江期中)已知f (x )=x 2﹣|x ﹣a |+a ,若f (x )≤0对任意x ∈[﹣1,1]恒成立,则a 的取值范围是( )A .(﹣∞,﹣1]B .(﹣∞,0]C .[0,+∞)D .[﹣1,0]【解题思路】利用分段思想,分类讨论,结合二次函数性质即可求解.【解答过程】解:f (x )=x 2﹣|x ﹣a |+a ={x 2−x +2a ,x ≥a x 2+x ,x <a ,∵f (x )≤0对任意x ∈[﹣1,1]恒成立,∴①{x 2−x ≤−2a x ≥a 恒成立, 此时a ≤﹣1;②{x 2+x ≤0x <a在x ∈[﹣1,1]恒成立, 此时a ≤0;综上核对a ≤0,故选:B .【变式4-3】(2021春•虹口区期末)已知函数f (x )=x 2+2ax ﹣a +2.(1)若对于任意x ∈R ,f (x )≥0恒成立,求实数a 的取值范围;(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,求实数a 的取值范围;(3)若对于任意a ∈[﹣1,1],f (x )>0成立,求实数x 的取值范围.【解题思路】(1)利用二次函数的图象与性质可得△≤0,从而可求得a 的取值范围;(2)f (x )≥0恒成立等价于f (x )min ≥0,利用二次函数的图象与性质对a 分类讨论,求出f (x )的最小值,结合题意即可求解a 的取值范围;(3)将函数f (x )看作关于a 的函数g (a ),结合题意可得关于x 的不等式组即可求解x 的取值范围.【解答过程】解:(1)f (x )=x 2+2ax ﹣a +2≥0恒成立,可得△=4a 2﹣4(2﹣a )≤0,解得﹣2≤a ≤1,即实数a 的取值范围是[﹣2,1].(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,则f (x )min ≥0,函数f (x )=x 2+2ax ﹣a +2的对称轴为x =﹣a ,当﹣a <﹣1,即a >1时,f (x )min =f (﹣1)=3﹣3a ≥0,解得a ≤1,矛盾,舍去;当﹣a >1,即a <﹣1时,f (x )min =f (1)=3+a ≥0,可得﹣3≤a <﹣1,当﹣1≤﹣a ≤1,即﹣1≤a ≤1时,f (x )min =f (﹣a )=﹣a 2﹣a +2≥0,可得﹣1≤a ≤1,综上所述,求实数a 的取值范围是[﹣3,1].(3)对于任意a ∈[﹣1,1],f (x )>0成立,等价于对于任意a ∈[﹣1,1],g (a )=(2x ﹣1)a +x 2+2>0,所以{g(−1)=x 2−2x +3>0g(1)=x 2+2x +1>0,解得x ≠1, 所以实数x 的取值范围是{x |x ≠﹣1}.。
2025年新人教版高考数学一轮复习讲义 第二章 §2.6 二次函数与幂函数
2025年新人教版高考数学一轮复习讲义第二章§2.6 二次函数与幂函数1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.幂函数(1)幂函数的定义一般地,函数 叫做幂函数,其中x 是自变量,α是常数.(2)常见的五种幂函数的图象y =x α(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点 和 ,且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点 ,且在(0,+∞)上单调递减;④当α为奇数时,y =x α为 ;当α为偶数时,y =x α为 .(1,1)(0,0)(1,1)奇函数偶函数2.二次函数(1)二次函数解析式的三种形式一般式:f (x )= .顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为 .零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的 .ax 2+bx +c (a ≠0)(m ,n )零点(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)R定义域___值域______________________________对称轴x=______顶点坐标_______________函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)奇偶性当b =0时是 函数,当b ≠0时是非奇非偶函数单调性偶减增增减1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数y = 是幂函数.( )(2)若二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( )(3)二次函数y =a (x -1)2+2的单调递增区间是[1,+∞).( )(4)若幂函数y =x α是偶函数,则α为偶数.( )××√×1212x√1x23.(2023·南京模拟)已知函数f(x)=x2-2x+2,x∈(-2,2),则函数f(x)的值域为A.(2,10)B.[1,2)√C.[2,10]D.[1,10)当x∈(-2,2)时,-3<x-1<1,则f(x)=x2-2x+2=(x-1)2+1∈[1,10).4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数(-∞,4]a的取值范围是___________.由函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,即a≤4,故实数a的取值范围是(-∞,4].返回第二部分探究核心题型题型一 幂函数的图象与性质例1 (1)(2023·合肥模拟)如图所示,图中的曲线是幂函数y=x n在第一象限的图象,已知n取±2,±四个值,则相对应曲线C1,C2,C3,C4的n 依次为√根据幂函数y=x n的性质,在第一象限内的图象:(2)(2023·无锡模拟)“n=1”是“幂函数f(x)=(n2-3n+3)x2n-3在(0,+∞)上单调递减”的A.充分不必要条件B.必要不充分条件√C.充要条件D.既不充分也不必要条件因为f(x)=(n2-3n+3)x2n-3是幂函数,所以n2-3n+3=1,即n2-3n+2=0,解得n=1或n=2,所以“n=1”是“幂函数f(x)=(n2-3n+3)x2n-3在(0,+∞)上单调递减”的充要条件.思维升华(1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1 (1)幂函数y = (0≤m ≤3,m ∈Z )的图象关于y 轴对称,且在(0,+∞)上单调递增,则m 的值为A.0 B.2 C.3 D.2或3√22m m x+-当m=0时,y=x-2,由幂函数性质得,y=x-2在(0,+∞)上单调递减;当m=1时,y=x0,由幂函数性质得,y=x0在(0,+∞)上是常函数;当m=2时,y=x4,由幂函数性质得,图象关于y轴对称,y=x4在(0,+∞)上单调递增;当m=3时,y=x10,由幂函数性质得,图象关于y轴对称,在(0,+∞)上单调递增.(2)(2023·临沂模拟)如图所示是函数y = (m ,n 均为正整数且m ,n 互质)的图象,则√mn x由幂函数性质可知,y =与y =x 的图象恒过定点(1,1),即在第一象限内的交点坐标为(1,1),m n x mn x又y = 的图象关于y 轴对称,mnx ∴y = 为偶函数,mn x ()mn x mnx 又m ,n 互质,∴m 为偶数,n 为奇数.题型二 二次函数的解析式例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定该二次函数的解析式.方法一 (利用“一般式”解题)设f(x)=ax2+bx+c(a≠0).所以所求二次函数的解析式为f(x)=-4x2+4x+7.方法二 (利用“顶点式”解题)设f(x)=a(x-m)2+n(a≠0).因为f(2)=f(-1),又根据题意,函数有最大值8,所以n=8,解得a=-4,方法三 (利用“零点式”解题)由已知得f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.解得a=-4.故所求函数的解析式为f(x)=-4x2+4x+7.思维升华求二次函数解析式的三个策略(1)已知三个点的坐标,宜选用一般式.(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式.(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2 已知二次函数f(x)的图象过点(0,3),对称轴为直线x=2,且f(x)=x2-4x+3方程f(x)=0的两个根的平方和为10,则f(x)的解析式为________________.依题意,设函数f(x)=a(x-2)2+h(a≠0),由二次函数f(x)的图象过点(0,3),得f(0)=3,所以4a+h=3,即h=3-4a,所以f(x)=a(x-2)2+3-4a,令f(x)=0,即a(x-2)2+3-4a=0,所以ax2-4ax+3=0,设方程的两根为x1,x2,所以f(x)=x2-4x+3.题型三 二次函数的图象与性质命题点1 二次函数的图象例3 (多选)(2023·银川模拟)已知二次函数f (x )=ax 2+bx +c 的图象如图所示,则下列说法正确的是A.2a +b =0 B.4a +2b +c <0C.9a +3b +c <0D.abc <0√√√又因为f (0)=c >0,所以abc <0.f (2)=f (0)=4a +2b +c >0,f (3)=f (-1)=9a +3b +c <0.命题点2 二次函数的单调性与最值例4 (2024·福州模拟)已知二次函数f(x)=ax2-x+2a-1.(1)若f(x)在区间[1,2]上单调递减,求a的取值范围;由题意知a≠0.所以f(x)在区间[1,2]上单调递减恒成立.(2)若a>0,设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.f(x)在区间[1,2]上单调递增,此时g(a)=f(1)=3a-2.f(x)在区间[1,2]上单调递减,此时g(a)=f(2)=6a-3.微拓展二次函数定轴动区间和动轴定区间问题在含参的二次函数中,常常出现两种情况的讨论:(1)二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定二次函数在动区间上的最值”.(2)二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”.√所以f(x)在区间[a,b]上单调递增,(2)若函数f(x)=x2-2bx+3a在区间[0,1]上的最大值为M,最小值为m,则M-m的值√A.与a无关,与b有关B.与a有关,与b无关C.与a有关,且与b有关D.与a无关,且与b无关函数f(x)=x2-2bx+3a的图象开口向上,且对称轴为直线x=b,①当b>1时,f(x)在[0,1]上单调递减,则M=f(0)=3a,m=f(1)=1-2b+3a,此时M-m=2b-1,故M-m的值与a无关,与b有关;②当b<0时,f(x)在[0,1]上单调递增,则M=f(1)=1-2b+3a,m=f(0)=3a,此时M-m=1-2b,故M-m的值与a无关,与b有关;③当0≤b≤1时,m=f(b)=3a-b2,∴M-m=b2-2b+1,故M-m的值与a无关,与b有关,∴M-m=b2,故M-m的值与a无关,与b有关,综上,M-m的值与a无关,与b有关.思维升华二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)(2024·宣城模拟)已知y=(x-m)(x-n)+2 023(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是A.α<m<n<βB.m<α<n<β√C.m<α<β<nD.α<m<β<n。
高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版
• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2
高考数学 2.6 一次函数 二次函数与幂函数复习课件
解 方法一 设 f(x)=ax2+bx+c (a≠0),
4a+2b+c=-1, 依题意有a4-ac4-ba+b2c==8-,1,
解之,得ba==4-,4, c=7,
∴所求二次函数为 y=-4x2+4x+7.
内有一个最大值-5,求 a 的值.
思维启迪 二次函数在给定区间上的最值问题,要讨论
对称轴与给定区间的关系.
解 f(x)=-4x-a22-4a,对称轴为 x=a2,顶点为
a2,-4a. (1)当a2≥1,即 a≥2 时,f(x)在区间[0,1]上递增.
∴ymax=f(1)=-4-a2.令-4-a2=-5,
学生解答展示
解
当a 0时, f (x) a(x 1)2 2 1
a
a
1a f
1 (1)
a
2
2
或1
1 a
0
f
(4)
4 2
1 a
0
或1a4 f (4)16a820
a
a
1 0
或
1
4
a
a
1 2
1
或
a
a
1 4 3 8
a 1或 1 a 1或 .即 a 1
2
2
当
a
0时
,
§2.6 一次函数、二次函数与幂函数
基础知识 自主学习
要点梳理 1.一次函数、二次函数的图象及性质
(1)一次函数 y=kx+b,当 k>0 时,在实数集 R 上是 增函数,当 k<0 时在实数集 R 上是减函数.b 叫纵截 距,当 b=0 时图象过原点,且此时函数是奇函数; 当 b≠0 时函数为非奇非偶函数.
北师版高考总复习一轮理科数精品课 第2章 函数的概念与性质 第4节 幂函数与二次函数
1
a= ,所以
9
1
f(x)= (x+2)2-1,即
9
1 2 4 5
f(x)= x + x- .
9
9 9
考点三
二次函数的图像与性质(多考向探究)
考向1.二次函数的图像
典例突破
例3.如图是二次函数y=ax2+bx+c(a≠0)图像的一部分,
图像过点A(-3,0),对称轴为直线x=-1.给出下面四个结论:
选项符合题意,故选C.
考向2.二次函数的单调性与最值
典例突破
例4.(2021新疆乌鲁木齐模拟)若定义在R上的二次函数f(x)的值域为[-4,
+∞),且满足f(1+x)=f(1-x),f(2)=-3.
(1)求函数f(x)的解析式;
(2)求f(x)在[t,t+1]上的最小值g(t).
解:(1)由于f(1+x)=f(1-x),则二次函数f(x)的图像关于直线x=1对称,因为二次
衍生考点
核心素养
1.幂函数的图像与性质
2.二次函数的解析式
3.二次函数的图像
4.二次函数的性质
5.三个“二次”之间的关
系
1.数学抽象
2.直观想象
3.数学运算
4.逻辑推理
强基础 增分策略
1.幂函数
(1)幂函数的定义
一般地,函数 y=xα
叫作幂函数,其中x是自变量,α是常数.
微点拨幂函数的特点:①自变量x处在幂底数的位置,幂指数α为常数;②xα图像上的一些特殊
点,如函数图像与y轴的交点,与x轴的交点等.
从这三方面入手,能准确地判断出二次函数的图像,反之,也能从图像中得
人教高中数学必修二B版《增长速度的比较》指数函数、对数函数与幂函数说课教学课件
Δ
3+1 -3
(3)对于 y=3 , =
=2×3a>6,
Δ
(+1)-
log2 (+1)-log2
Δ
+1
对于 y=log2x,Δ =
=log2
(+1)-
1
1
=log2 1 + <log2 1 + =1.
1
x
所以 y=log2x 在[a,a+1]上的平均变化率小于 y=3x 在[a,a+1]上的平
(-0.9)-(-1)
-0.9-(-1)
f(-0.9)=-(-0.9)2+(-0.9)=-1.71,所以平均变化率为
=
-1.71-(-2)
=2.9.
0.1
5.函数f(x)=x2在区间[1,1.1]上的平均变化率是
.
答案:2.1
解析:f(1)=1,f(1.1)=1.21,该函数在区间[1,1.1]上的平均变化率为
2.填空.
平均变化率的求解步骤:
(1)确定区间[x1,x2](x2>x1);
(2)求出Δx=x2-x1;
(3)求出Δf=f(x2)-f(x1);
Δ
(4)求出平均变化率Δ
=
(2 )-(1 )
.
2 -1
3.做一做:y=x2+1在[1,1+Δx]上的平均变化率是 (
)
A.2 B.2x C.2+Δx
1.21-1
=2.1.
1.1-1
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
人教B版高考总复习一轮数学精品课件 第3章函数与基本初等函数 第1节函数的概念及其表示
础,应明确;二次函数、指对幂函数的图象与性质贯穿在解决函数问题的全
过程,应熟练掌握.
2.强化数学思想方法的训练:数形结合、函数与方程、分类讨论等数学
思想方法在解决函数问题中具有重要应用,应强化应用意识.
3.注重数学运算能力的提升:解决函数问题的过程中,代数推理、变形化
≠ 0,
解析 函数的定义域满足
即 x∈(-∞,0)∪(0,1].
1- ≥ 0,
.
2 研考点 精准突破
考点一函数的概念及应用
例1(1)(多选题)(2024·浙江衢州模拟)已知函数f(x)与g(x),若存在f(x)使得
f(g(x))=x2,则g(x)不可能为( AB )
A.x2-2 023x
B.sin x
第1节 函数的概念及其表示
领航备考路径
新课标核心考点
2020
2021
Ⅰ卷 Ⅱ卷 Ⅰ卷
2022
Ⅱ卷 Ⅰ卷
2023
Ⅱ卷 Ⅰ卷
Ⅱ卷
第11题
第4题 第6题
1.函数的概念与表示
2.函数的单调性
第7题
3.函数的性质及其应
第8题第8题 第13题第8题 第12题 第8题
第4题
用
4.指对幂运算及大小
第7题 第7题
比较
考点二函数的定义域
例 2(1)(2024·江西赣州模拟)若函数 f(x-1)的定义域为[-2,3],则函数
f(2x-4)
g(x)= x 2 -4
的定义域为( B )
1
A.[2,3]
1
B.[2,2)∪(2,3]
C.[-1,2)∪(2,4]
高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 二次函数与幂函数
∈[2,3]上恒成立,故 a≤4.故选 D.
名师点析幂函数的图象与性质应用技巧
(1)由于幂函数解析式中只含有一个参数,因此只需一个条件,利用待定系
数法即可确定幂函数的解析式.
(2)对于幂函数的图象,可结合5个常见幂函数的图象特点进行分析判断.
(3)对于幂函数f(x)=xα,当α>0时f(x)在(0,+∞)上单调递增,当α<0时f(x)在
叫做幂函数,其中x是自变量,α是常数.
注意幂函数与指数函数的区别
2.常用5个简单幂函数的图象与性质
函数
y=x
y=x2
定义域
R
R
值域
R
{y|y≥0} R
奇偶性 奇函数 偶函数
在R上 在(-∞,0)上单调
单调性 单调
递增
递减,在(0,+∞)
上单调递增
1
x2
y=x3
y=
R
{x|x≥0}
{y|y≥0}
奇函数
单调递减.
3.一般地,对于幂函数f(x)=
(m,n∈N*,m与n互质),当m为偶数时,f(x)为
偶函数;当m,n均为奇数时,f(x)为奇函数;当n为偶数时,f(x)为非奇非偶函数.
4.如果幂函数的图象与坐标轴相交,则交点一定是原点.
对点演练
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1-)2 -4 × (-2) ≤ 0,
由
> -1,
是(
)
答案 D
考向2.二次函数的单调性
典例突破
例4.(2023四川南山中学一模)已知函数f(x)=x2-2x在定义域[-1,n]上的值域
高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数课件理北师大版
►考法 3 二次函数中的恒成立问题
【例 4】 (1)已知函数 f(x)=ax2-2x+2,若对一切 x∈12,2,f(x)>0 都成立,则实数 a 的取值范围为( )
A.12,+∞ C.[-4,+∞)
B.12,+∞ D.(-4,+∞)
(2)已知函数 f(x)=x2+mx-1,若对于任意 x∈[m,m+1],都有 f(x)<0
幂函数的图像及性质
1.幂函数 y=f(x)的图像经过点(3, 3),则 f(x)是( ) A.偶函数,且在(0,+∞)上是增函数 B.偶函数,且在(0,+∞)上是减函数 C.奇函数,且在(0,+∞)上是减函数 D.非奇非偶函数,且在(0,+∞)上是增函数
D
[设幂函数 f(x)=xα,则 f(3)=3α=
二次函数的图像与性质
►考法 1 二次函数的单调性
【例 2】 函数 f(x)=ax2+(a-3)x+1 在区间[-1,+∞)上是递减的,
则实数 a 的取值范围是( )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
D [当 a=0 时,f(x)=-3x+1 在[-1,+∞)上递减,满足题意. 当 a≠0 时,f(x)的对称轴为 x=3- 2aa, 由 f(x)在[-1,+∞)上递减知 a<0, 3- 2aa≤-1, 解得-3≤a<0. 综上,a 的取值范围为[-3,0].]
1
1
3.若(a+1)2<(3-2a)2,则实数 a 的取值范围是________.
-1,23
1
[易知函数 y=x2的定义域为[0,+∞),在定义域内为增函数,
a+1≥0, 所以3-2a≥0,
a+1<3-2a,
解之得-1≤a<23.]
数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析
第四节二次函数与幂函数最新考纲考情分析1。
了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题。
1。
幂函数一般不单独命题,而常与指数函数,对数函数交汇命题,题型一般为选择题、填空题,主要考查幂函数的图象和性质.2.对二次函数相关性质的考查是命题热点,大多以选择题、填空题出现.3.试题难度以中、低档题为主,个别试题难度较大.知识点一二次函数的图象和性质1。
二次函数解析式的三种形式:(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件:(1)ax2+bx+c〉0(a≠0)恒成立的充要条件是“a〉0且Δ〈0”;(2)ax2+bx+c〈0(a≠0)恒成立的充要条件是“a<0且Δ<0”.知识点二幂函数1.定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.2.常见的五种幂函数的图象和性质比较1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)函数y=是幂函数.(×)(2)当n>0时,幂函数y=x n在(0,+∞)上是增函数.(√)(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.(×)(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是错误!.(×)解析:(1)由于幂函数的解析式为f(x)=xα,故y=不是幂函数,(1)错.(3)由于当b=0时,y=ax2+bx+c=ax2+c为偶函数,故(3)错.(4)对称轴x=-错误!,当-错误!小于a或大于b时,最值不是4ac-b24a,故(4)错.2.小题热身(1)已知幂函数f(x)=k·xα的图象过点错误!,则k+α=(C)A。
高三数学一轮复习 幂函数与幂函数的图象变换课件 新人教B版
• (文)f ′(x)是f(x)的导函数,f ′(x)的图象如图 所示,则f(x)的图象可能是( )
• 解析:由图可知,当b>x>a时,f ′(x)>0, 故在[a,b]上,f(x)为增函数.且曲线上 每一点处切线的斜率先增大再减小,故选 D. • 答案:D
• (理)已知函数y=f(x),y=g(x)的导函数的 图象如图,那么y=f(x)式知,当m=1时,为偶函数,∴选C.
分析:观察两个数的特征可以发现,指数相同,都是
1 1 - - ,底数不同,故可视作幂函数y=x 3 的两个函数值,利 3 用幂函数的性质求解.
解析:幂函数y=x
-
1
3 在(0,+∞)上为减函数,函数值
y>0;在(-∞,0)上也是减函数,函数值y<0. a+1<0 ∴有a+1>3-2a>0或0>a+1>3-2a或 ,∴ 3-2a>0 2 3 <a< 或a<-1 3 2 2 3 即a的取值范围为( , )∪(-∞,-1). 3 2 2 3 答案:( , )∪(-∞,-1) 3 2
• 已知P为圆x2+(y-1)2=1上任意一点(原 点O除外),直线OP的倾斜角为θ弧度, 记d=|OP|.在图中的坐标系中,画出以(θ, d)为坐标的点的轨迹大致图形.
• 解析:依题意,设圆与y轴 的另一交点为D,则 D(0,2).从而|OP|= |OD|·sinθ,∴d= 2sinθ(θ∈(0,π)).其图象 为正弦曲线一段.故作简 图如右图.
• 5.有关结论 • 若f(a+x)=f(a-x),x∈R恒成立,则y= f(x)的图象关于直线x=a成轴对称图形. • 误区警示 • 1.对于函数y=|f(x)|与y=f(|x|)一定要区 分开来,前者将y=f(x)位于x轴下方的图 象翻折到x轴上方,后者将y=f(x)图象在y 轴左侧图象去掉作右侧关于y轴的对称图, 后者是偶函数而前者y≥0.比如y=|sinx|与y =sin|x|.
2021高考一轮复习 第七讲 二次函数与幂函数
2021高考一轮复习第七讲二次函数与幂函数一、单选题(共14题;共28分)1.(2分)已知幂函数f(x)=x n的图象过点(8,1),且f(a+1)<f(3),则a的取值范围是4()A.(−4,2)B.(−∞,−4)∪(2,+∞)C.(−∞,−4)D.(2,+∞)2.(2分)已知函数f(x)=(m−1)2x m2−4m+2是在(0,+∞)上单调递增的幂函数,则m=()A.0或4B.0或2C.0D.23.(2分)设a=(1)0.5,b=(13)0.5,c=log0.30.2,则a、b、c的大小关系是()2A.a>b>c B.a<b<c C.b<a<c D.a<c<b4.(2分)二次函数f(x)=−x2+2tx在[1 , +∞)上最大值为3,则实数t=()A.±√3B.√3C.2D.2或√35.(2分)已知二次函数f(x)满足f(3+x)=f(3−x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(−∞,0]B.[0,6]C.[6,+∞)D.(−∞,0]∪[6,+∞)6.(2分)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A.B.C.D.7.(2分)若二次函数f(x)=ax2−x+4对任意的x1,x2∈(−1,+∞),且x1≠x2,都有f(x1)−f(x2)x1−x2<0,则实数a的取值范围为()A.[−1,0)B.[−12,+∞)C.(−12,0)D.(−12,+∞)28.(2分)如果二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是()A.{-2,6}B.(-2,6)C.[-2,6]D.(-∞,-2)∪(6,+∞)9.(2分)已知二次函数f(x)=x2+bx+c(b∈R,c∈R),M,N分别是函数f(x)在区间[−1,1]上的最大值和最小值,则M−N的最小值()A.B.C.D.10.(2分)二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4−x)成立,若f(1−2x2)<f(1+2x−x2),则x的取值范围是()A.B.或C.0D.或11.(2分)二次函数f(x)=x2−4x+1(x∈[3,5])的值域为()A.[−2,6]B.[−3,+∞)C.[−3,6]D.[−3,−2] 12.(2分)二次函数y=ax2+bx+c和y=cx2+bx+a( ac≠0, a≠c)的值域分别为M 和N,命题p:MÜ N,命题q:M∩N≠∅,则下列命题中真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q13.(2分)二次函数f(x)满足f(x+2)=f(-x+2),且f(0)=3,f(2)=1,若在[0,m]上f (x)的最大值为3,最小值为1,则m的取值范围是()A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]14.(2分)若二次函数f(x)=ax2+bx+c图象的顶点在第四象限且开口向上,则导函数f′(x)的图象可能是()A.B.C.D.二、填空题(共3题;共3分)15.(1分)幂函数f(x)的图像经过点P(4,2),则f(9)=.16.(1分)已知集合A={−2,−1,−12,13,12,1,2,3},任取k∈A,则幂函数f(x)=x k为偶函数的概率为(结果用数值表示)17.(1分)幂函数y=(m2−m−1)x−5m−3在x∈(0,+∞)时为减函数,则m=。
高考数学第 2.6 幂函数与二次函数
幂函数与二次函数(45分钟 100分)一、选择题(每题5分,共40分)1.(2021·襄阳模拟)已知幂函数f(x)的图象通过点(9,3),那么f(2)-f(1)=( )√2√22.以下函数f(x)中,知足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f(x 1)<f(x 2)”的是( ) (x)=1x(x)=x 2-4x+4 (x)=2x(x)=lo g 12x3.(2014·孝感模拟)函数f(x)=(m 2-m-1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,那么实数m 的值是( )B.2或24.(2021·黄石模拟)设函数f(x)=ax 2+bx+c(a,b,c ∈R),假设a=c,那么函数f(x)的图象不可能是( )5.(2021·济南模拟)函数y=x-x13的图象大致为( )6.函数f(x)=ax 2+(a-3)x+1在区间[-1,+∞)上是递减的,那么实数a 的取值范围是 ( ) A.[-3,0) B.(-∞,-3] C.[-2,0]D.[-3,0]7.(2021·哈尔滨模拟)已知函数f(x)={x ,x ≤0,x 2−x ,x >0,假设函数g(x)=f(x)-m 有三个不同的零点,那么实数m 的取值范围为( ) A.[−12,1]B.[−12,1)C.(−14,0)D.(−14,0]8.(能力挑战题)假设不等式x 2+ax+1≥0关于一切x ∈(0,12]恒成立,那么a 的最小值是( )B.252二、填空题(每题5分,共20分) 9.(2021·大同模拟)已知二次函数f(x)=cx 2-4x+a+1的值域是[1,+∞),那么1a +9c的最小值是 .10.设f(x)与g(x)是概念在同一区间[a,b]上的两个函数,假设函数y=f(x)-g(x)在x ∈[a,b]上有两个不同的零点,那么称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.假设f(x)=x 2-3x+4与g(x)=2x+m 在[0,3]上是“关联函数”,那么m 的取值范围为 .11.(2021·黄冈模拟)假设函数f(x)=x 2-3x-4的概念域为[0,m],值域为[−254,−4],那么实数m 的取值范围是________.12.(能力挑战题)设函数f(x)=lgax 2+x+(b 2−b +12)(a ≠0),假设对任意实数b,函数f(x)的概念域为R,那么a 的取值范围为 .三、解答题(13题12分,14~15题各14分)13.(2021·武汉模拟)二次函数f(x)知足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(x)的解析式.(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m 的图象上方,试确信实数m 的范围. 14.(2021·南阳模拟)已知函数f(x)=ax 2+2x+c(a,c ∈N)知足①f(1)=5; ②6<f(2)<11. (1)求f(x)的解析式. (2)假设对任意实数x ∈[12,32],都有f(x)-2mx ≤1成立,求实数m 的取值范围.15.(能力挑战题)设a 为实数,记函数f(x)=a √1−x 2+√1+x +√1−x 的最大值为g(a).(1)设t=√1+x +√1−x ,求t 的取值范围,并把f(x )表示为t 的函数m(t).(2)求g(a).(3)试求知足g(a)=g (1a)的所有实数a.答案解析1.【解析】选C.设幂函数为f(x)=x α,由f(9)=9α=3,即32α=3,因此2α=1,α=12,因此f(x)=x 12=√x ,因此f(2)-f(1)=√2-1.2.【解析】选C.由条件可知函数f(x)在(0,+∞)上递增,选项A,f(x)=1x 在(0,+∞)上递减.选项B,f(x)=x 2-4x+4在(0,+∞)上先减后增.选项D,f(x)=lo g 12x 在(0,+∞)上递减,只有选项C 符合要求.3.【解析】选(x)=(m 2-m-1)x m 是幂函数⇒m 2-m-1=1⇒m=-1或m=2.又函数在x ∈(0,+∞)上是增函数,因此m=2.4.【解析】选D.由A,B,C,D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标别离为x 1,x 2,假设只有一个交点,那么x 1=x 2,由于a=c,因此x 1x 2=ca =1,比较四个选项,可知选项D 的x 1<-1,x 2<-1,因此D 不知足.5.【解析】选 A.函数为奇函数,图象关于原点对称,因此排除C,D.当x=1时,y=0,当x=8时,y=8-√83=8-2=6>0,排除B,应选A.6.【解析】选D.当a=0时,f(x)=-3x+1显然成立,当a ≠0时,需{a <0,−a −32a≤−1,解得-3≤a<0,综上可得-3≤a ≤0.【误区警示】此题易轻忽a=0这一情形而误选A,失误的缘故是将关于x 的函数误以为是二次函数. 【加固训练】设二次函数f(x)=ax 2-2ax+c 在区间[0,1]上单调递减,且f(m)≤f(0),那么实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]【解析】选D.二次函数f(x)=ax 2-2ax+c 在区间[0,1]上单调递减,那么a ≠0, f ′(x)=2a(x-1)≤0,x ∈[0,1],因此a>0,即函数图象的开口向上,对称轴是直线x=1.因此f(0)=f(2),那么当f(m)≤f(0)时,有0≤m ≤2.7.【思路点拨】在座标系中作出f(x)的图象,数形结合求解.【解析】选C.由g(x)=f(x)-m=0得f(x)=m,作出函数y=f(x)的图象, 当x>0时,f(x)=x 2-x=(x−12)2-14≥-14,因此要使函数g(x)=f(x)-m 有三个不同的零点,那么-14<m<0,即(−14,0).8.【解析】选C.由x 2+ax+1≥0得a ≥-(x +1x)在x ∈(0,12]上恒成立,令g(x)=-(x+1x),那么知g(x)在(0,12]为增函数,因此g(x)max =g (12)=-52,因此a ≥-52.9.【解析】由已知得{4c (a +1)−164c=1,c >0,得ac=4,且a>0,c>0,因此1a +9c ≥2√9ac =2·√94=3.答案:310.【解析】由题意知,y=f(x)-g(x)=x 2-5x+4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y=m 与y=x 2-5x+4(x ∈[0,3])的图象如下图, 结合图象可知,当x ∈[2,3]时,y=x 2-5x+4∈[−94,−2],故当m ∈(−94,−2]时,函数y=m 与y=x 2-5x+4(x ∈[0,3])的图象有两个交点. 答案:(−94,−2]11.【解析】函数f(x)=x 2-3x-4的图象的对称轴为直线x=32,且f (32)=-254,又f(x)=-4, 即x 2-3x-4=-4,即x 2-3x=0,解得x=0或x=3,由于函数f(x)=x 2-3x-4的值域为[−254,−4],故32∈[0,m],那么有m ≥32,结合图象知,m ≤3,故实数m 的取值范围是[32,3]. 答案:[32,3]12.【解析】函数f(x)的概念域为R,那么知足{a >0,Δ=1−4a (b 2−b +12)<0,即{a >0,4a >1b 2−b +12=1(b −12)2+14,对任意实数b 恒成立,只要4a 比1(b −12)2+14的最大值大即可,而1(b −12)2+14的最大值为4,即4a>4,a>1. 答案:(1,+∞)13.【解析】(1)设f(x)=ax 2+bx+c(a ≠0),由f(0)=1得c=1,故f(x)=ax 2+bx+1. 因为f(x+1)-f(x)=2x,因此a(x+1)2+b(x+1)+1-(ax 2+bx+1)=2x.即2ax+a+b=2x,因此{2a =2,a +b =0,因此{a =1,b =−1,因此f(x)=x 2-x+1.(2)由题意得x 2-x+1>2x+m 在[-1,1]上恒成立,即x 2-3x+1-m>0在[-1,1]上恒成立. 设g(x)=x 2-3x+1-m,其图象的对称轴为直线x=32,因此g(x)在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1. 14.【解析】(1)f(1)=a+2+c=5,因此c=3-a. 又6<f(2)<11,即6<4a+c+4<11, 那么-13<a<43,故a=1,c=2.f(x)的解析式为f(x)=x 2+2x+2. (2)由(1)知f(x)=x 2+2x+2,由题意得2(1-m)≤-(x+1x)在[12,32]上恒成立,易求[−(x +1x )]min =-52,故2(1-m)≤-52,解得m ≥94.15.【解析】(1)因为t=√1+x +√1−x ,因此要使t 成心义,必需1+x ≥0且1-x ≥0,即-1≤x ≤1.因为t 2=2+2√1−x 2∈[2,4],且t ≥0,①因此t 的取值范围是[√2,2].由①得:√1−x 2=12t 2-1, 因此m(t)=a (12t2−1)+t=12at 2+t-a,t ∈[√2,2].(2)由题意知g(a)即为函数m(t)=12at 2+t-a,t ∈[√2,2]的最大值,因为直线t=-1a 是抛物线m(t)=12at 2+t-a 的对称轴,因此可分以下几种情形进行讨论:①当a>0时,函数y=m(t),t ∈[√2,2]的图象是开口向上的抛物线的一段, 由t=-1a <0知m(t)在t ∈[√2,2]上单调递增,故g(a)=m(2)=a+2;②当a=0时,m(t)=t,t ∈[√2,2],有g(a)=2;③当a<0时,函数y=m (t),t ∈[√2,2]的图象是开口向下的抛物线的一段,假设t=-1a ∈(0,√2]即a ≤-√22时,g(a)=m(√2)=√2,假设t=-1a ∈(√2,2],即a ∈(−√22,−12]时,g(a)=m (−1a )=-a-12a ,假设t=-1a ∈(2,+∞)即a ∈(−12,0)时,g(a)=m(2)=a+2.综上所述,有g(a)={a +2,a >−12,−a −12a ,−√22<a ≤−12,√2,a ≤−√22.(3)当-12<a<0时,1a ∈(-∞,-2),g(a)=a+2>32>√2;g (1a )=√2,显然无解.当-√22<a ≤-12时,1a ∈[-2,-√2),-a ∈[12,√22),-12a ∈(√22,1],因此-a ≠-12a,g(a)=-a-12a >2√(−a )·(−12a)=√2;g (1a)=√2,显然无解.当a>0时,1a >0,由g(a)=g (1a )知:a+2=1a+2,故a=1.当a ≤-√22时,1a ∈[-√2,0),a ·1a =1,故a ≤-1或1a ≤-1,从而有g(a)=√2或g (1a)=√2,要使g(a)=g (1a ),必需有a ≤-√22,1a ≤-√22,即-√2≤a ≤-√22,现在,g(a)=√2=g (1a ).综上可知a ∈[−√2,−√22]或a=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.若f(x)=ax2+bx+c(a≠0),则当
a
0,时恒有f(x)>0,当
0
a
0,时,恒有
0
f(x)<0.
【知识点辨析】(正确的打“√”,错误的打“×”)
(1)函数y=2
1
x3
是幂函数.
()
(2)当n>0时,幂函数y=xn在(0,+∞)上是增函数. ( )
(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数. ( )
即b<c<a.
【规律方法】 1.幂函数图象的特点 掌握幂函数图象只要抓住在第一象限内三条线分第一象限为六个区域,即 x=1,y=1,y=x分的区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象 限部分由奇偶性决定. 2.比较幂值大小的方法 在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进 行比较.
题图知a>b>c>d.
3.选C.当a=3,b=2时,选项A错.由于a>b,而y=3x是增函数,所以3a>3b,故B错.当
a=3,b=-5时,选项D错.因为y=x3是增函数,故a3>b3,故C正确.
4.选A.因为0< 1< 2<1,指数函数y= 在R上单调递减,故 < .
33
又由于幂函数y= 在R上单调递增,故 > ,所以 < < ,
第六节 幂函数与二次函数
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
【教材·知识梳理】 1.幂函数的图象与性质 (1)常见的5种幂函数的图象
(2)性质 ①幂函数在(0,+∞)上都有定义. ②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增. ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点. ( )
(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是 4ac b2 .
4a
()
提示:(1)×.不符合幂函数的形式.
(2)√.根据5个基本幂函数知,n>0时为增函数,n<0时为减函数.
(3)×.当b=0时,为偶函数.
(4)√.在y=xn中,令y=0,则x=0,令x=0,则y=0,所以正确.
考点一 幂函数的图象与性质
【题组练透】
1.幂函数f(x)=(m2-4m+4) xm2-6m+8 在(0,+∞)上为增函数,则m的值为 ( )
A.1或3 B.1
C.3
D.2
2.若四个幂函数y=xa,y=xb,y=xc,y=xd在同一坐标系中的图象如图所示,则 a,b,c,d的大小关系是 ( )
A.d>c>b>a C.d>c>a>b
成立,则f(x)的解析式为________.
3.已知二次函数f(x)与x轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,
则f(x)=________.
【解题导思】
【解析】1.选C.因为f(x)的对称轴为x=- 1,f(0)=a>0,所以f(x)的大致图象如图
(5)×.只有当对称轴在区间内时最值才是
4ac b2 .
4a
【易错点索引】
序号 1 2 3 4
易错警示 对幂函数概念理解错误 周期性、对称性对应代数式分辨不清 二次函数最值点错误 忽略最高次数项的系数是否为零
典题索引 考点一、T1 考点二、T2 考点三、角度3 考点三、角度2T1
【教材·基础自测】
2.二次函数的图形与性质
解析式
f(x)=ax2+bx+c(a>0)
图象
定义域 值域
Байду номын сангаас
(-∞,+∞)
[ 4ac b2 , ) 4a
f(x)=ax2+bx+c(a<0)
(-∞,+∞)
(, 4ac b2 ] 4a
解析式 单调性 奇偶性
顶点 对称性
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
B.a>b>c>d D.a>b>d>c
3.(2019·全国卷Ⅱ)若a>b,则 ( )
A.ln(a-b)>0
B.3a<3b
C.a3-b3>0
D.|a|>|b|
4.设a= ,b=
,c=
,则a,b,c的大小关系为 世纪金榜导学号( )
A.a>c>b
B.a>b>c
C.c>a>b
D.b>c>a
【解析】1.选B.由题意知 mm22- -64mm++解84=得10m,,=1. 2.选B.由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x轴,由
1.(必修1P119巩固与提高T1(5)改编)已知幂函数f(x)=k·xα的图象过点 ( 1, 2 )
22
则k+α等于
A. 1
B.1
C. 3
D.2
2
2
()
k 1,
【解析】选C.由幂函数的定义,知
2 k ( 1 ).
2
2
所以k=1,α= 1 ,所以k+α= .3
2
2
2.(必修1P63习题2-2AT8改编)已知函数f(x)=x2+2ax+3,若y=f(x)在区间[-4,6]上 是单调函数,则实数a的取值范围为________. 【解析】由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上 是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4. 答案:(-∞,-6]∪[4,+∞)
在 [ b , ) 上单调递增;
2a
在 (, b ] 上单调递减
2a
在 (, b ]
2a
在 [ b , )
2a
上单调递增; 上单调递减
当_b_=_0_时为偶函数,当b≠0时为非奇非偶函数
( b , 4ac b2 ) 2a 4a
图象关于直线 x b 成轴对称图形
2a
【常用结论】 1.幂函数的图象和性质 (1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是 否出现在第二、三象限内,要看函数的奇偶性. (2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定 是原点. (3)当α>0时,y=xα在[0,+∞)上为增函数; 当α<0时,y=xα在(0,+∞)上为减函数.
【秒杀绝招】 题3可以用特殊值法求解,令a=0,b=-1,则可排除选项A,B,D.
考点二 二次函数的图象与解析式
【典例】1.设函数f(x)=x2+x+a(a>0),已知f(m)<0,则 ( )
A.f(m+1)≥0
B.f(m+1)≤0
C.f(m+1)>0
D.f(m+1)<0
2.已知二次函数f(x)=x2-bx+c满足f(0)=3,对∀x∈R,都有f(1+x)=f(1-x)