计数原理全部课件集(排列等14份) 人教课标版11精品课件

合集下载

计数原理全部课件集优秀课件(排列等14份) 11

计数原理全部课件集优秀课件(排列等14份) 11
下面我们来研究二项式系数有些什么性质?我 们先通过杨辉三角观察n为特殊值时,二项式系数 有什么特点?
杨辉三角
1.“杨辉三角”的来历及规 n (律 a b) 展开式中的二项式系数,如下表所示:
(a b)
1 2
1 1
C 10 C 11
1
3 1 4 10 15 1 5 6 1
(a b) 3 (a b) (a b) (a b) (a b)
n
例2 已知
2 n ( x ) 的展开式中,第 x
3
4项的二项式系数是倒数第2项的二项式系 数的7倍,求展开式中x的一次项.
例3: (1 2 x ) 的展开式中第6项与第7项的系 数相等,求展开式中二项式系数最大的项和系数最 大的项。
n
变式引申:
7 ( x y ) 1、 的展开式中,系数绝对值最大的项是(
m 1 n
C
m n 1
课堂练习:
5 9 C aC , b ,那么 C 1)已知 15 1 5
10 16
=

9 ( a b ) 2) 的展开式中,二项式系数的最大值 是 ;
3)若 ( a b ) 的展开式中的第十项和第十一 项的二项式系数最大,则n= ;
n
例1 证明在 (a b) 的展开式中,奇 数项的二项式系数的和等于偶数项的二 项式系数的和.
当 n 6时,其图象是右 图中的7个孤立点.
r n
二项式系数的性质
2.二项式系数的性质
(1)对称性 与首末两端“等距离” 的两个二项式系数相等. 这一性质可直接由公式 m nm C 得到. n C n
n 图象的对称轴:r 2
二项式系数的性质 (2)增减性与最大值

计数原理全部课件集ppt完美课件 人教课标版3

计数原理全部课件集ppt完美课件 人教课标版3

第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法. 第二步:确定参加下午活动的同学,有2种方法
根据分步计数原理 丙 甲 丙 甲 乙
相应的排法 甲乙 甲丙 乙甲 乙丙 丙甲 丙乙
把上面问题中被取的对象叫做元素,于是问 题1就可以叙述为:
1
23 4 3 42 42 3
2 1 34
3 41 41 3
3
1 24 2 41 4 1 2
4
12
3
2 31 31 2
有此可写出所有的三位数: 123,124,132,134,142,143; 213,214,231,234,241,243, 312,314,321,324,341,342; 412,413,421,423,431,432。
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3
2、排列数:
从n个不同的元素中取出m(m≤n)个元素
的所有排列的个数,叫做从n个不同的元素中
取出m个元素的排列数。用符号
A
m n
表示。
“排列”和“排列数”有什么区别和联
“系一?个排列”是指:从n 个不同元素中,任取 m
按照一定的顺序排成一列,不是数;
(4)从2,3,5,7,11中任取两个数相除
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作过另一个点的 射线
(9)有10个车站,共需要多少种车票?
(10)有10个车站,共需要多少种不同的票价?
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3
件。
计 数 原 理 全 部课件 集ppt完 美课件 人 教 课标版 3

计数原理_1-课件

计数原理_1-课件

• [点评] 本题求的是“选垄方法”,而不是 “种植方法”,若求不同种植方法,则A种 第1垄,B种第8垄与A种第8垄,B种第1垄为 不同方法,应有不同种植方法2×6=12 种.

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
• 由分类加法计数原理知,可以组成的不同 的自然数为4+16+64+256=340(个).
• [点评] (1)在同一题目中涉及到这两个定 理时,必须搞清是先“分类”,还是先 “分步”,“分类”和“分步”的标准又 是什么.
• (2)该题是先分类,后分步,按自然数的位 数“分类”,按组成数的过程“分步”.
• [点评] 解两个计数原理的综合应用题时, 最容易出现不知道应用哪个原理来解题的 情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认 真审题,明确“完成一件事”的含义.具 体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁为 简”.
• 一、选择题
• 1.一个礼堂有4个门,若从一个门进,从 任一门出,共有不同走法
• [答案] 13 42
• 5.在一块并排10垄的田地上,选择2垄分 别种植A、B两种作物,每种作物种植一垄, 为有利于作物生长,要求A、B两种作物的 间隔不小于6垄,则不同的选垄方法有 ________种(结果用数字作答).
• [答案] 6
• [解析] A种第1垄,B可种8、9、10垄有3 种方法,A种第2垄,B可种9、10垄有2种 方法,A种第3垄,B只能种第10垄,∴共 有选垄方法3+2+1=6种.
• [解析] 第一类:“多面手”去参加英语 时,选出只会日语的一人即可,有2种选 法.

计数的基本原理ppt课件

计数的基本原理ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2、如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
想一想?
问题 2. 从甲地到乙地,可以乘火车,也可 以乘汽车,还可以乘轮船。一天中,火车 有2班, 汽车有3班,轮船有4班。那么一天 中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
甲 为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能 地
乙 地
分析: 完成由甲地到乙地这件事有三类办法:
第一类办法乘火车,有2种不同走法,
第二类办法乘汽车,有3种不同走法 第三类办法乘轮船,有4种不同走法。
因此,在一天中,此人由甲地到乙地不同的走法共 有 2+3+4=9 种。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例3:体育福利彩票的中奖号码有7位数码,每位数若是 0~9这十个数字中任一个,则产生中奖号码所有可能的 种数是多少?
变2: 0~9这十个数字可组成多少数字不重复的七位数?
两个计数原理的联系和区别:

计数原理-完整版课件

计数原理-完整版课件
解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,

r 3

k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.

高二数学选修课件计数原理

高二数学选修课件计数原理
性质3
$C_{n+1}^0 + C_{n+1}^1 + ... + C_{n+1}^n + C_{n+1}^{n+1} = 2^{n+1}$,即从 (n+1)个元素中取出0个、1个、...、n个、(n+1)个元素的组合数之和等于2的(n+1)次方。
03
常见计数问题及求解策略
相邻问题捆绑法
80%
捆绑法原理
高二数学选修课件计数原理
汇报人:XX
20XX-01-14

CONTENCT

• 计数原理基本概念 • 排列组合公式与性质 • 常见计数问题及求解策略 • 复杂计数问题解决方法 • 概率初步知识与事件概率计算 • 计数原理在现实生活中的应用
01
计数原理基本概念
计数原理定义及意义
计数原理定义
计数原理是研究如何按照一定的规则对事件进行计数的数学原理 。
组合公式及推导过程
组合定义
从n个元素中取出m个元素,不 考虑顺序,叫做从n个元素中取
出m个元素的一个组合。
组合数公式
$C_n^m = frac{n!}{m!(n-m)!}$ ,其中n为元素总数,m为取出
元素个数。
推导过程
考虑从n个元素中取出m个元素 的排列数为$A_n^m$,而组合 数是不考虑顺序的,因此需要将 排列数除以m的阶乘(即m个元 素的排列数),得到组合数公式
加法原理应用场景
当两个事件不能同时发生时,可以使用加法原理 来计算它们发生的总次数。
排列组合原理应用场景
在解决一些实际问题时,经常需要计算从n个元 素中取出m个元素的排列数或组合数,这时就需 要使用排列组合原理。例如,在概率论、统计学 、密码学等领域中,排列组合原理都有着广泛的 应用。

计数原理全部课件集(排列等14份) 人教课标版5精品课件

计数原理全部课件集(排列等14份) 人教课标版5精品课件
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
4.有关公式:
1.阶乘:n! 12 3 (n 1)n
(2)排列数公式:
A
m n

n (n 1)(n
m
1)
n! (n m)!
(m、nN*,m n)
(3)全排列数公式: Ann n!
课堂练习
1.计算:(1)5 A53 4 A42 348 (2) A41 A42 A43 A44 64
风景在路上,我们需要去寻找,才能找到真正的自己,谁都有无奈,谁都有生活的压力,只是你们的选择不一样,当你走上自己的路,或许你会觉得轻松,或许你会觉得很难,但那终归是属于自己的路,因为生活,始终在你手中。是在医院渡过,然而和母亲在一起的毎一刻都是温暖美好的。四年前,母亲还是离开了这个世界,离开了我。生命就是如此脆弱,逝去和別离,陈旧的情绪某年某月的那一刻如水泻闸。水在流,云在走,聚散终有时,不贪恋一生,有你的这一程就是幸运。那是地久天长的在我的血液中渗透,永远在我的心中,在我的生命里。
A3 10

其中以0为排头的排列数为

计数原理全部课件集(排列等14份) 人教课标版12精品课件

计数原理全部课件集(排列等14份) 人教课标版12精品课件
29 n(n N, n 1), 那么(1 y)6的展开式中含 y n项的系数是 .
5.求值:
(1)1 C51 22 C52 24 C53 26 C54 28 C55 210 (2)310 39C110 38C120 37 C130 36C140 35C150
老吴走后每一天孩子起床都是老李叫他们起床,洗脸,吃饭上学,都是老李管的。孩子们放学就在老李家里学习,写作业,吃饭。每到星期天老石钓来鱼做熟以后,就端到老李家让老吴的孩子打牙祭。老赵的孩子学习好,只要有时间就去老吴家帮助他的孩子辅导功课。就这样两个多月很快过去了,老吴两口子回来了,他们看到家里面收拾的整整齐齐的。孩子们也长胖了,也爱学习了。他当面给老李鞠了一躬表示十分的感激,还给老石的孩子带了一些当地的土特产,给老赵的孩子买了几件衣服。 老干部老李当时家里有一部电话机,这个电话机就成了几家人共同使用的了。那个时候打个电话一般不太容易,当时电话机是个除了单位有一部以外,根本很少有个人电话的。老石在休息的时候喜欢出去钓鱼,他这个人喜欢钓鱼,就是不太喜欢吃鱼。钓的鱼一部分留下给自家孩子吃一些,大部分的鱼都分给邻居吃了。老李特别喜欢吃鱼,老石就经常把钓的鱼给他吃。老赵是个食堂的采购员,经常可以买到别人还没有吃到的反季节蔬菜,大家经常让他给代买一点便宜的蔬菜,或者便宜的鸡蛋,或者便宜的肉和其他调味品。 当时一般的人家里都没有电视机,最多有个半导体收音机就是很好的了。大多数人下班吃完饭没有事就是喜欢串串门,一起都聊的是过去的事情,以及现在的工作和家常事。串门是特别普遍的现象。现在这个年代在一起住了好久也不知道邻居是干啥的,或者姓啥叫啥,哪里的人都不知道。就是住在隔壁的也就是看见了打个招呼点个头,各自开门关门就走开了,与那个时候的邻里关系没法相比。老吴是个老师,也是一个戏迷,爱听京剧,也是一个爱下象棋的。老吴一有空就和老李下棋玩,于是他们有了深厚的情谊。他们几家人的孩子相处得也是特别的好,一般放了学就在一起学习玩耍。 在那个时候,人们心里都是充满着英雄主义和共产主义的理想,就是跟着毛主席共产党好好的为人民服务。小孩玩的游戏,多是是刀枪、打仗的游戏,还有电影里看见的剧情。他们拿着玩具枪,还有木头做的宝剑,或者花五角钱可以买一根长杆木头大刀。他们拿着这些玩具就分出两个队伍。你这个队伍藏起来,他们埋伏起来之前还要伪装好,他们一般都是藏在山坡底下或者是草多的地方。有的头上还要带上细树枝编的帽子或者是柳树条编的头箍,他们就趴在草丛里一般很难被另外一群小伙伴发现的。那个队伍就到处找他们,这个游戏叫做抓特务,或者叫做打伏击抓俘虏。他们一有时间,或者一放寒暑假,一群孩子就喜欢玩这个游戏,特别好玩。那一两个月就是孩子们的天下了,非常热闹。除此之外就是滚铁环、碰膝盖游戏。女孩子喜欢跳皮筋、跳格子、跳绳、打沙包、唱歌,也喜欢玩抓

计数原理全部课件集PPT优秀课件(排列等14份) 7

计数原理全部课件集PPT优秀课件(排列等14份) 7

例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生Байду номын сангаас加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
例7、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况: (1)4只鞋子恰有两双; (2) 4只鞋子没有成双的; (3) 4只鞋子只有一双。
1.2.2组合(二)
复习巩固:
1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合.
2、组合数: 从n个不同元素中取出m(m≤n)个元素的所有组合的个 数,叫做从n个不同元素中取出m个元素的组合数,用符号 C nm 表示.
3、组合数公式:
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
3 2 3 2 C . CC CC 8 7 7 8
3 2 1 DC . 8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员, 则甲、乙两人不都入选的不同选法种数共有( D)
A .C A
2 5
3 3
B .2 C A
3 5
3 3
C .A
3 5

计数原理优秀ppt课件

计数原理优秀ppt课件
解 从3幅画中选2幅 取分别挂在左、右 边墙,上 可以分两步: 完成 第1步 ,从 3幅画中 1幅选 挂在左 ,有 边 3种墙上 方;法 第2步,从剩下 2幅 的画中 1幅 选画挂在右 上,有2种方. 法
根据分步乘法,不 计同 数挂 原法 理种数是 N326.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
用两个计数
原理解决计
数问题时
,最
重要的是

开始 计算 之
前要进 行仔
细分析

要分类还

需要分步
.
分 类 要"不 做重 到不 ".分漏 类后再分别 对 每 一 类 进,行 最计 后数 用 分 类 加 数 原 理 求 ,得和 到 总. 数
分 步 要"步 做骤 到完 ". 整完成了所有 步 骤,恰 好 完 成 任,当务然 步 与 步 之 间 要 相 互 独立.分 步 后 再 计 算 每 一方步法的 数,最 后 根 据 分 步 乘 法原计理,数把 完 成 每 一 步 方 法 数 相 ,得乘到 总 .数
新课
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有
N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有
问题3:用前6个大写英文字母和1~9个阿拉伯

《计数原理》课件

《计数原理》课件
探讨抽屉原理及其在计 数问题中的实际应用。
错排问题与公式推 导
讲解错排问题的概念, 并推导出错排公式。
具体应用
可重集排列组合问题
讨论可重集的排列组合问题,例如将不同颜色的积木 排列成不同的形状。
球与盒子问题
考虑将球放在盒子中的不同方式,包括球的数量和盒 子的数量。
字母重排列问题
通过重新排列字母来创建不同的单词或短语,并讨论
钞票找零问题
解决找零时的计数问题,包括使用不同面额的钞票和
拓展应用
1
Fibonacci数列及其应用
介绍Fibonacci数列的定义和它在自然界和科学中的应用。
2
卡特兰数与其特殊应用
探讨卡特兰数及其在计数问题中的特殊应用,如括号匹配问题。
总结与展望
重要性
总结计数原理在实际问题中的重要性和应用。
新方法探究
《计数原理》PPT课件
计数原理是一门关于计数和组合的数学学科,它在计算机科学、密码学和信 息论等领域中有着广泛的应用。
引言
定义与作用Байду номын сангаас
介绍计数原理的定义和它在问题求解中的作用。
应用场景
简述计数原理在实际生活和科学研究中的应用场景。
基本概念
1
排列组合
介绍排列组合的定义和它们之间的区别。
2
排列、重排列、循环排列
讲解排列、重排列和循环排列的概念及其应用。
3
组合、二项式系数、帕斯卡三角形
探讨组合、二项式系数和帕斯卡三角形在计数原理中的重要性。
基本定理与公式
乘法原理与加法原 理
解释乘法原理和加法原 理,并探讨它们在计数 问题中的应用。
容斥原理与推广
介绍容斥原理以及它在 解决重叠计数问题中的 应用。

计数原理 PPT课件

计数原理 PPT课件
因为一天中乘火车有3种走法,乘汽车有2种走法,每 一种走法都可以从甲地到乙地,所以共有:3+2=5(种
1、分类计数原理(加法原理)
做一件事情,完成它可以有n类 办法,在第一类办法中有m1种不同的 方法,在第二类办法中有m2种不同的 方法,……,在第n类办法中有mn 种不同的方法。那么完成这件事共 有N=m1+m2+…+mn 种不同的方法。
6 ×5 ×4 ×3=360(个)
3、一种号码锁有4个拨号盘, 每个拨号盘上有从0到9共10个数 字, 这4个拨号盘可以组成多少 个四位数字的号码?
4
10 ×10 ×10 ×10=10
注意
有些较复杂的问题往往不是单纯 的“分类”“分步”可以解决的,而要 将“分类”“分步”结合起来运用.一 般是先“分类”,然后再在每一类中“ 分步”, 综合应用分类计数原理和分 步计数原理.请看下面的例题:


A村
中 南
B村 南 C村
解: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6
种不同的方法。
问题3:用前6个大写英文字母和1~9个阿拉伯
数字,以A1,A2,,B1,B2的方式给教室的座位编 号.
从甲地到乙 地有3条路, 从乙地到丁地 有2条路;从 甲地到丙地有 3条路,从丙 地到丁地有4 条路,问:从 甲地到丁地有 多少种走法?
实际问题




讲讲练练
1.有不同的中文书9本,不同的英文书7本,不同的日文 书5本.从其中取出不是同一国文字的书2本,问有多少 种不同的取法?
9×7+9×5+7×5=143

计数原理全部课件集优秀课件(排列等14份) 7

计数原理全部课件集优秀课件(排列等14份) 7
m n! A n ( n 1 ) ( n 2 ) ( nm 1 ) m m n Cn C nm A m ! m!(n m)! m
我 们 规 定 : C 1 .
0 n
定 理 1 :
CC
n n
m
n m

例1:一位教练的足球队共有17名初级学员,他们中以 前没有一人参加过比赛。按照足球比赛规则,比赛时 一个足球队的上场队员是11人。问: (1)这位教练从这17名学员中可以形成多少种学员上 场方案? (2)如果在选出11名上场队员时,还要确定其中的守 门员,那么教练员有多少种方式做这件事情?
课堂练习: 5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。 31、理想是美好的,但没有意志,理想不过是瞬间即逝的彩虹。 32、骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。——荀况 33、伟大的理想只有经过忘我的斗争和牺牲才能胜利实现。 34、为了将来的美好而牺牲了的人都是尊石质的雕像。 35、理想对我来说,具有一种非凡的魅力。 36、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唯用一枝瘦笔,剪一段旧时光,剪掉喧嚣尘世的纷纷扰扰,剪掉终日的忙忙碌碌。情也好,事也罢,细品红尘,文字相随,把寻常的日子,过得如春光般明媚。光阴珍贵,指尖徘徊的时光唯有珍惜,朝圣的路上做一个谦卑的信徒,听雨落,嗅花香,心上植花田,蝴蝶自会来,心深处自有广阔的天地。旧时光难忘,好的坏的一一纳藏,不辜负每一寸光阴,自会花香满径,盈暗香满袖。每个人都有自己的精神家园,而对于记忆中的几户人家,我更有着刻骨铭心的情感。 上个世纪六七十年代,在陕西的某城市的郊区一个大院子里住了四家人。一家人姓赵四十岁左右,是一个食堂的采购员;姓李的一家人是个老离休干部,也是一个军人。曾经在解放战争时期受过伤,当时他的腿上留有敌人手榴弹炸的弹片在里头呢;东面的一家姓石,是一个搞电子的工程师;西面一家姓吴,老吴是一个中学教师。
1.3.2“杨辉三角” 与二项式系数的性

一、新课引入
二项定理: 一般地,对于n N*有
(a b)n Cn0a n Cn1a n1b Cn2a n2b2

C
r n
a
nr
br


C
n n
bn
二项展开式中的二项式系数指的是那些?共 有多少个?
下面我们来研究二项式系数有些什么性质?我 们先通过杨辉三角观察n为特殊值时,二项式系数 有什么特点?
二项式系数的性质
(2)增减性与最大值
由于: C kn

n(n
1)(n 2)(n k (k 1)!

k
1)

Ck 1 n

n

k k

1
nk 1
所以C
k n
相对于C
k n
1的增减情况由
决定.
k
二项式系数的性质
(2)增减性与最大值
由:n k 1 1 k n 1
例2
已知 (3 x 2 )n 的展开式中,第
x
4项的二项式系数是倒数第2项的二项式系 数的7倍,求展开式中x的一次项.
例3: (1 2x)n的展开式中第6项与第7项的系
数相等,求展开式中二项式系数最大的项和系数最
大的项。
变式引申:
1、(x y)7的展开式中,系数绝对值最大的项是( )
A.第4项 B.第4、5项 C.第5项 D.第3、4项
回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。
k
2
可知,当k n 1 时,
2
二项式系数是逐渐增大的,由对称性可
知它的后半部分是逐渐减小的,且中间项取
得最大值。
二项式系数的性质
(2)增减性与最大值
因此,当n为偶数时,中间一项的二项式
n
系数
C
2取得最大值;
n
n1
当n为奇数时,中间两项的二项式系数
n1
Cn2

Cn2 相等,且同时取得最大值。
C
n n
从函数角度看,C
r n
可看
成是以r为自变量的函数f (r) ,
其定义域是:0,1,2,, n
当 n 6 时,其图象是右
图中的7个孤立点.
二项式系数的性质
2.二项式系数的性质
(1)对称性
与首末两端“等距离” 的两个二项式系数相等.
这一性质可直接由公式
Cmn

Cnm n
得到.
图象的对称轴:r n 2
杨辉三角
1.“杨辉三角”的来历及规 (律a b)n展开式中的二项式系数,如下表所示:
(a b)1
11
C10C11
(a b)2 (a b)3
121 13 31
C20C21C22
C30C31C32C33
(a b)4
14 6 41
C40C41C42C43C44
(a b)5
1 5 10 10 5 1
一般地,(a b)n 展开式的二项式系数
Cn0 ,Cn1,Cnn 有如下性质:
(1)
Cnm

C nm n
(2)
Cnm

C m1 n

Cm n1
(3)当 r 当r

n 1 n21
2
时, 时,
C nr Cnr

1
C r1 n
Cnr
(4) Cn0 Cn1 Cnn 2n
5.已知(10+xlgx)5的展开式中第4项为106,求x的值.
小结
二项展开式中的二项式系数都是一些特 殊的组合数,它有三条性质,要理解和掌握 好,同时要注意“系数”与“二项式系数” 的区别,不能混淆,只有二项式系数最大的 才是中间项,而系数最大的不一定是中间项, 尤其要理解和掌握“取特值”法,它是解决 有关二项展开式系数的问题的重要手段。
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
二项式系数的性质
(3)各二项式系数的和
在二项式定理中,令a b 1,则:
C0n
C1n

C
2 n
Cnn

2n
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
同时由于C
0 n
1,上式还可以写成:
C1n C2n C3n Cnn 2n 1
这是组合总数公式.
时光在飞逝,父母容颜渐渐沧桑,望着父母佝偻的背影,心里一阵阵莫名的心酸。年轻时不努力拼搏,老了就自己受苦,这是现在年轻人经常激励自己的话,为了所谓的以后,我们牺牲了自己最美好的年华,却没有谁知道以后的样子又会是如何,也许这就是所谓的选择。
我们每个人都有很多在选择,学业、事业、爱情……我们都有各种各样的选择,可以说生活中我们时刻面临着选择,选择不一样,结局也会不一样,只是你的选择是否真正发自内心还是出自于生活的无奈,已经无人理会。人生路需要走很久,我们总会遇到各种各样的人,各种各样的事,正如我们工作平台选择不一样,起点也会不一样,领导选择不一样,或许你的结局也会不一样,我们不能选择自己的出生,所以不要怨天尤人,更不要去指责,生活对谁都一样,选择永远在你手中,跟着心走,或许你就能找到一个真正的自己。
风景在路上,我们需要去寻找,才能找到真正的自己,谁都有无奈,谁都有生活的压力,只是你们的选择不一样,当你走上自己的路,或许你会觉得轻松,或许你会觉得很难,但那终归是属于自己的路,因为生活,始终在你手中。是在医院渡过,然而和母亲在一起的毎一刻都是温暖美好的。四年前,母亲还是离开了这个世界,离开了我。生命就是如此脆弱,逝去和別离,陈旧的情绪某年某月的那一刻如水泻闸。水在流,云在走,聚散终有时,不贪恋一生,有你的这一程就是幸运。那是地久天长的在我的血液中渗透,永远在我的心中,在我的生命里。
课堂练习:
1)已知 C155

a, C195
b
,那么
C10 16
=

2) (a b)9的展开式中,二项式系数的最大值 是;
3)若 (a b)n 的展开式中的第十项和第十一
项的二项式系数最大,则n=

例1 证明在 (a b)n 的展开式中,奇 数项的二项式系数的和等于偶数项的二 项式系数的和.
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。
时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。
1、已知
a x

x 2
的9 展开式中x3的系数
为 9 ,则常数a的值是_______
4
2、在(1-x3)(1+x)10的展开式中x5的系数是(

A.-297 B.-252 C. 297 D. 207
3、(x+y+z)9中含x4y2z3的项的系数是 _4_._已_知__(_1_+_x2_)n展开式中含x-2的项的系数为12,求n.
小心翼翼珍藏着,和母亲在一起的美好时光。母亲身体一直不好,最后的几年光景几乎 长大后,才发现生活不像我们想象的那样的简单,我们时刻面临着不同的选择,学习、工作、家庭……我们总是小心翼翼,在每一条路上,我们总是想追求最好的,努力付出过后,结局如何,只有我们自己慢慢去体会。
相关文档
最新文档