2012中考数学试题及答案分类汇编2

合集下载

2012年北京市中考数学二模分类汇编

2012年北京市中考数学二模分类汇编

FEB AO 2012年北京市中考数学二模分类汇编——圆(一)与圆有关的填空选择题1.(西城3)若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是AA.12O O =5B.12O O =11C.12O O >11D. 5<12O O <112.(延庆) 如图,⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,1OD =,则BAC ∠的度数是BA .55° B.60° C.65° D .70° 3.(通州7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =60o,则sin∠BDC 的值为( )A .12B .3C .2D .24.(丰台11)如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D , 如果1OD =,那么BAC ∠=________︒.60°5.(西城6)如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD ∠=, 则AB 的长是 A . 20 B. 16 C. 12 D. 86.(顺义6)如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.(怀柔5=5m ,横截面的圆心O 到污水面的距离OC =3m ,则污水面宽AB 等于AA .8mB .10mC .12mD .16m8.(密云7)如图,AB 是半⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D ,若:4:3AC B C =,10AB =cm ,则OD 的长为A .2 cmB .4 cmC .6 cmD .8 cmDO CBA-2 -9.(延庆)已知扇形的圆心角为60°,半径为6,则扇形的弧长为DA .6πB .4πC .3πD .2π10.(平谷11)如图,在⊙O 中,直径AB =6,∠CAB =40°,则阴影部分的面积是 .11.(东城区10) 一个扇形圆心角为120°,半径为1,则这个扇形的弧长为 .23π12.(石景山11)已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .13.(延庆)如图,点A 、B 、C在直径为O ⊙上,45BAC ∠=°,则图中阴影部分的面积等于____________.(结果中保留π)3π342- 14.(西城8)如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为A . 21π B. 31π C.41π D. 51π15.(东城12) 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .2π-16.(密云12)如图,在边长为1的等边△ABC 中,若将两条含120︒圆心角的 AOB 、BOC 及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积比是 ______ .17.(通州8)如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( )A .132π平方厘米B .312π平方厘米C .25π平方厘米D .无法计算18.(昌平10)圆锥的母线长为3,底面半径为2,则它的侧面积为 . 19.(房山7)已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于(D ).A .15πB .14πC .13πD .12π20.(西城11)如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .CA-3 -(二)与圆有关的计算问题1.怀柔20. 如图,点D 在O ⊙直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°. (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积. 20.(1)证明:连结O C .………………1分∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.……………2分 ∵ OCOA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………3分(2)解:∵∠A=30o , ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………4分 在Rt△OCD 中, tan 60CD OC =⋅︒=∴Rt 11222OCD S OC CD ∆=⨯=⨯⨯=∴ 图中阴影部分的面积为-3223π. ……………5分2.(石景山21)已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MP 的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论;(2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:21.(1)联结CO , …………………………1分 ∵DM ⊥AB ∴∠D+∠A=90°∵PC PD =∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA ∴∠OCA+∠PCD=90°∴PC ⊥OC ∴直线PC 是⊙O 的切线 ……………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q∴Rt △CQA 中∴22tanD QAC tan ==∠∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x∴22=AQ∴242==AQ AN ∴163CD ==……………… 5分 3.(门头沟20) 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径.点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.20.(1)证明:连接OC, ∵O A=OC,∴∠OCA=∠OAC .∵CD⊥PA,∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE,∴∠DAC=∠CAO . ………………………1分 ∴∠DC O =∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.∴CD 为⊙O 的切线. …………………………2分(2)解:过O作O F⊥AB,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF 为矩形,∴OC=FD ,OF=CD.-4 -∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分 ∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt△AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍).∴AD=2, AF=5-2=3.∵OF⊥AB, AB=2AF=6.4.(通州20)已知:如图直线PA 交⊙O 于A ,E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB .(1)求证:AC 平分∠DAB .(2)若DC =4,DA =2,求⊙O 的直径. 20. 答案:(1)连结OC ∵DC 切⊙O 于C ∴OC ⊥DC又∵PA ⊥DC ∴ OC∥PA ∴∠PAC =∠OCA又 OC =OA ∴ ∠OCA =∠OAC ∴∠PAC =∠OAC ∴AC 平分∠DAB (2)作OF ⊥AE 于F ,设⊙O 的半径为R ……………..(3分)又∵PA ⊥DC OC ⊥DC ∴四边形OCDF 为矩形∴OF =CD =4 且 DF =OC =R 又 DA =2,∴ AF=DF-AD=R -2……………………………..(4分)在Rt △OAF 中,OF 2+AF 2=OA 2∴ 42+(R -2)2=R 2解得:R =5∴⊙O 的直径:2R =10 5.(海淀20)如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长. 20.(1)证明:连结OC .∴ ∠DOC =2∠A . ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4, ∴ CE =12BC =2. ∵ BC //AO ,∴ ∠OCE =∠DOC . ∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒, ∴ ∠COE =∠D .∵tan D =12,∴tan COE ∠=12.∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC == 在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, …………4分 由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+=…………………5分 6.(密云)19.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30. (1)求∠P 的大小; (2)若AB =6,求PA 的长.- 5 -19.(1)解:∵PA是⊙O的切线,AB为⊙O的直径,∴PA AB⊥.∴90BAP∠=-----------------1分∵∠BAC=30,∴9060PAC BAC∠=-∠=.又∵PA、PC切⊙O于点A、C,∴PA PC=--------------2分∴△PAC是等边三角形.∴60P∠=. ------------------------3分( 2 ) 如图,连结BC.∵AB是直径,∠ACB=90. --------4分在R t△ACB中,AB=6,∠BAC=30,∴cos6cos3033AC AB BAC=⋅∠==又∵△PAC是等边三角形,∴PA AC== --------------------------5分7.(西城区21)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=33,求CD的长.21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD∠=∠=︒.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE==.∴EACECA∠=∠.∵OA=OC,∴OCAOAC∠=∠.∵CD是⊙O的切线,∴CD⊥OC.∴90ECA OCA∠+∠=︒. ∴90EAC OAC∠+∠=︒.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线.(2) 解:由(1)知OA⊥AP.在Rt△OAP中,∵90OAP∠=︒,OC=CP=OA,即OP=2OA,∴ sin P21==OPOA.∴30P∠=︒. ∴60AOP∠=︒.∵OC=OA,∴60ACO∠=︒.在Rt△BAC中,∵90BAC∠=︒,AB=33,60ACO∠=︒,∴3tanABACACO===∠.又∵在Rt△ACD中,90CAD∠=︒,9030ACD ACO∠=︒-∠=︒,∴3cos cos30ACCDACD===∠︒﹍﹍﹍﹍5分8.(顺义)已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O位置关系,并证明你的结论;(2)若BC=2,11sin23APC∠=,求PC的长及点C到PA的距离.OCBAP- 6 -D85674321O C B AP20.解:(1)直线PC 与⊙O 相切.证明:连结OC ,∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC , ∴∠1=∠3.∴∠2=∠4. 又∵OC=OA ,OP=OP ,∴△POC ≌△POA .∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°. ∴∠PCO =90°.∴PC 与⊙O 相切.…………… 2分 (2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠.∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°.∴1cos 2sin 53∠=∠=.∵∠3=∠1 =∠2,∴1cos 33∠=.连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∴261cos 33BC AB ===∠.∴OA=OB=OC=3,AC ==Rt △POC 中,9sin 5OCOP ==∠.∴PC == 4分过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°. ∴∠3=∠8.∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠== 9.(延庆19)已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D , (1) 求证:∠AOD =2∠C (2) 若AD =8,tan C =34,求⊙O 的半径。

2012年中考数学精编试卷(2)(附答案详解)

2012年中考数学精编试卷(2)(附答案详解)

2012中考数学精编试卷(2)一、填空题:本大题共10小题;每小题4分,共40分.1、因式分解:a2+2a=_________.2、在▱ABCD中,∠A=120°,则∠1=_________度.3、在钦州保税港区的建设中,建设者们发扬愚公移山、精卫填海的精神,每天吹沙填海造地约40亩.据统计,最多一天吹填的土石方达316 700方,这个数字用科学记数法表示为_________方.(保留三个有效数字)4、如图中物体的一个视图(a)的名称为_________.5、在不透明的袋子中装有4个红球和7个黄球,每个球除颜色外都相同,从中任意摸出一个球,摸到_________球的可能性大.6、钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了_________度.7、一次函数的图象过点(0,2),且函数y的值随自变量x的增大而增大,请写出一个符合条件的函数解析式:_________.(答案不唯一)8、如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC的面积为2,则k=_________.9、如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是_________.10、一组按一定规律排列的式子:﹣a2,,﹣,,…,(a≠0),则第n个式子是_________(n为正整数).二、选择题:本大题共8小题;每小题4分,共32分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得4分,选错,不选或多选均得零分.11、实数1的倒数是()A、0B、1C、﹣1D、±112、sin30°的值是()A、B、C、D、13、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形,正三角形,等腰梯形,菱形等四种方案,你认为符合条件的是()A、等腰三角形B、正三角形C、等腰梯形D、菱形14、点P(﹣2,1)关于y轴对称的点的坐标为()A、(﹣2,﹣1)B、(2,1)C、(2,﹣1)D、(﹣2,1)15、如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()A、2对B、3对C、4对D、5对16、将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是()A、y=2x2+3B、y=2x2﹣3C、y=2(x+3)2D、y=2(x﹣3)217、如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB18、如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A2时,共经过的路径长为()cm.A、3.5πB、4.5πC、5πD、10π三、解答题:本大题3题,共28分.解答应写出文字说明或演算步骤.19、(1)解不等式:x﹣1<0,并把它的解集在数轴上表示出来;(2)解方程:=1.20、(1)当b≠0时,比较1+b与1的大小;(2)先化简,再求值:,其中a=+1(精确到0.01).21、(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;(2)已知:如图2,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.答案与评分标准一、填空题:本大题共10小题;每小题4分,共40分.1、因式分解:a2+2a=a(a+2).考点:因式分解-提公因式法。

2012中考数学试题及答案分类汇编 代数式和因式分解

2012中考数学试题及答案分类汇编 代数式和因式分解

2012中考数学试题及答案分类汇编:代数式和因式分解一、选择题1.(某某3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D)2=0x z y +-【答案】D 。

【考点】代数式变形,完全平方公式。

【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz z xy yz y x z y x z y x z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。

故选D 。

2.(某某省2分)下列分解因式正确的是A 、﹣a +a 3=﹣a (1+a 2) B 、2a ﹣4b +2=2(a ﹣2b )C 、a 2﹣4=(a ﹣2)2D 、a 2﹣2a +1=(a ﹣1)2【答案】D 。

【考点】提公因式法和应用公式法因式分解。

【分析】根据提公因式法,平方差公式,完全平方公式求解即可求得答案:A 、﹣a +a 3=﹣a (1﹣a 2)=﹣a (1+a )(1﹣a ),故本选项错误; B 、2a ﹣4b +2=2(a ﹣2b +1),故本选项错误; C 、a 2﹣4=(a ﹣2)(a +2),故本选项错误; D 、a 2﹣2a +1=(a ﹣1)2,故本选项正确。

故选D 。

3.(某某省2分)下列运算中,正确的是A 、2x ﹣x =1B 、x +x 4=x 5C 、(﹣2x )3=﹣6x 3D 、x 2y ÷y =x 2【答案】D 。

【考点】合并同类项,幂的乘方与积的乘方,整式的除法。

【分析】A 中整式相减,系数相减再乘以未知数,故本选项错误;B 、不同次数的幂的加法,无法相加,故本选项错误;C 、整式的幂等于各项的幂,故本选项错误;D 、整式的除法,相同底数幂底数不变,指数相减.故本答案正确。

2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)

2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)

2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.3. (2012广东广州14分)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.4. (2012广东肇庆10分)已知二次函数2y mx nx p =++图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证: n 4m 0+=; (2)求m 、n 的值;(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.5. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.7. (2012浙江宁波12分)如图,二次函数y=ax 2+bx+c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA=PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标;②若⊙M M 的坐标.8. (2012浙江温州14分)如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。

2012年各地中考数学试题分类汇编答案

2012年各地中考数学试题分类汇编答案

2012年各地中考数学试题分类汇编(一元二次方程部分)1、(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.…8分此时,售价为:60﹣6=54(元),.…9分答:该店应按原售价的九折出售.…10分2、解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x2=220时,120﹣0.5×(220﹣60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120﹣0.5×(80﹣60)=110>100,∴x=80,答:该校共购买了80棵树苗.3、解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.9、4、5、解:(1)设到2013年底,这两年中投入资金的平均年增长率为x ,根据题意得:3+3(x+1)+3(x+1)2=10.5…(3分)(2)由(1)得,x 2+3x ﹣0.5=0…(4分)由根与系数的关系得,x 1+x 2=﹣3,x 1x 2=﹣0.5…(5分)又∵mx 12﹣4m 2x 1x 2+mx 22=12m[(x 1+x 2)2﹣2x 1x 2]﹣4m 2x 1x 2=12m[9+1]﹣4m 2(﹣0.5)=12∴m 2+5m ﹣6=0解得,m=﹣6或m=1…(8分)6、解:(1)222(0.7)2 2.5x ++=,故答案为;0.8,﹣2.2(舍去),0.8。

2012年全国中考数学试题分类解析汇编

2012年全国中考数学试题分类解析汇编

2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。

【考点】由实际问题抽象出二元一次方程组。

【分析】要列方程,首先要根据题意找出存在的等量关系。

本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。

把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。

故选B。

2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。

【考点】由实际问题抽象出分式方程。

【分析】要列方程,首先要根据题意找出存在的等量关系。

本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。

而甲种雪糕数量为40x,乙种雪糕数量为301.5x。

(数量=金额÷价格)从而得方程:403020x 1.5x-=。

故选B。

3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。

史上最全2012年全国中考数学试题分类解析汇编160套60专题专题2实数的运算

史上最全2012年全国中考数学试题分类解析汇编160套60专题专题2实数的运算

【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题2:实数的运算一、选择题1. (2012山西省2分)计算:﹣2﹣5的结果是【 】 A . ﹣7B .﹣3 C . 3 D .7【答案】A 。

【考点】有理数的加法。

【分析】根据有理数的加法运算法则计算即可:﹣2﹣5=﹣(2+5)=﹣7。

故选A 。

2. (2012广东佛山3分)与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4【答案】B 。

【考点】有理数的乘除运算。

【分析】根据连除的性质可得:2÷3÷4=2÷(3×4)。

故选B 。

3. (2012广东梅州3分)012⎛⎫-- ⎪⎝⎭=【 】A .﹣2B .2C .1D .﹣1 【答案】D 。

【考点】零指数幂。

【分析】根据任何非0数的0次幂等于1解答即可:01=12⎛⎫--- ⎪⎝⎭。

故选D 。

4. (2012广东肇庆3分)计算2-的结果是【】3+A.1 B.1-C.5 D.5-【答案】B。

【考点】有理数的加法。

【分析】根据有理数的加法运算法则计算即可得解:-3+2=-(3-2)=-1。

故选B。

5. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【】A.﹣2 B.0 C.1 D.2【答案】A。

【考点】有理数的加减混合运算。

【分析】根据有理数的加减混合运算的法则进行计算即可得解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。

故选A。

6. (2012浙江嘉兴、舟山4分)(﹣2)0等于【】A. 1 B. 2 C.0 D.﹣2【答案】A。

【考点】零指数幂。

【分析】根据不等于0的数的零次幂为0的定义,直接得出结果:(﹣2)0=1。

故选A。

7. (2012浙江宁波3分)(﹣2)0的值为【】A.﹣2 B.0 C.1 D.2【答案】C。

2012中考数学试卷及答案

2012中考数学试卷及答案

数 学 试 题(2)参考公式:抛物线2y ax bx c =++的顶24(,)24b ac b a a-- 一、选择题(本大题共10小题,每小题3分,共30分。

1.16-的相反数是 A. 16 B. 6 C.-6 D. 16-2.若|2|a -与2(3)b +互为相反数,则ab 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体4.“一方有难。

八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元 B. 120.43710⨯元 C.104.3710⨯元 D.943.710⨯元5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值 A.2007 B.2008 C.2009 D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A.1201803x x =+ B. 1201803x x =- C. 1201803x x =+ D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。

2012全国各地中考数学试题分类汇编_二次根式(含答案)

2012全国各地中考数学试题分类汇编_二次根式(含答案)

2012年全国各地中考数学真题分类汇编二次根式一、选择题1.(2012•烟台)的值是( )A .4B .2C .﹣2D .±22.(2012菏泽)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( )A .加号B .减号C .乘号D .除号3.(2012义乌)一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间4.(2012•杭州)已知m =,则有( ) A .5<m <6 B .4<m <5 C .﹣5<m <﹣4 D .﹣6<m <﹣55.(2012泰安)下列运算正确的是( )A .2(5)5-=-B .21()164--= C .632x x x ÷= D .325()x x = 6. (2012南充)下列计算正确的是( )(A )x 3+ x 3=x 6 (B )m 2·m 3=m 6 (C )3-2=3 (D )14×7=727. (2012南充)在函数y =2121--x x 中,自变量的取值范围是 A . x ≠ 21 B .x ≤21 C .x ﹤21 D .x ≥21 8.(2012上海)在下列各式中,二次根式的有理化因式是( )A. B. C.D . 9.(2012•资阳)下列计算或化简正确的是( )A.a2+a3=a5B.C.D.10.(2012•德州)下列运算正确的是()A.B.(﹣3)2=﹣9 C.2﹣3=8 D.20=011.(2012•湘潭)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=12.(2012•德阳)使代数式有意义的x的取值范围是()A.x≥0B.C.x≥0且D.一切实数13.(2012•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2C.x>2 D.x≥214.(2012•广州)已知|a﹣1|+=0,则a+b=()A.﹣8 B.﹣6 C.6 D.815.(2012贵州安顺)计算的结果是()A.±3B. 3C.±3D.3 16.(2012•黔东南州)下列等式一定成立的是()A.B.C.D.=917. (2012湖北荆门)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3B.9C.12D.2718.(2012攀枝花)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A. 20或16 B. 20 C. 16 D.以上答案均不对19.(2012•聊城)函数y=中自变量x的取值范围是()A.x>2 B.x<2 C.x≠2D.x≥2 .二、填空题1.(2012临沂)计算:1482-= .2.(2012广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是 1 .3.(2012•杭州)已知(a﹣)<0,若b=2﹣a,则b的取值范围是.4.(2012•丽水)写出一个比-3大的无理数是.5.(2012铜仁)当x时,二次根式1x有意义.6.(2012•梅州)使式子有意义的最小整数m是---------- .9.(2012•德阳)有下列计算:①(m2)3=m6,②,③m6÷m2=m3,④,⑤,其中正确的运算有①④⑤.10.(2012•恩施州)2的平方根是.11.(2012福州)若20n是整数,则正整数n的最小值为________________.12.(2012无锡)计算:= .13.(2012江西)当x=﹣4时,的值是3.三、解答题4.(2012•扬州)计算:-(-1)2+(-2012)05.(2012•连云港)计算:-(-)0+(-1)2012.6.(2012上海).8. (2计算:(1)1231)7()2(|2|-⎪⎭⎫⎝⎛--+-+-π;(2)241221348+⨯-÷.。

2012年6月最新整理全国各地中考数学模拟试题分类汇编 2--43.图形的变换

2012年6月最新整理全国各地中考数学模拟试题分类汇编 2--43.图形的变换

A(第1题图)图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2012年浙江五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A2、(2012年浙江五模)如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个答案:B3、(2012年浙江绍兴八校自测模拟)下列图形不是..轴对称图形的是( ) A . B . C . D .答案:C4、(2012年浙江绍兴八校自测模拟)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(-4,3) B .(-3,4) C .(3,-4) D .(4,-3) 答案:B5、(2012年浙江绍兴县一模)由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )答案:A6、(2012年浙江绍兴县一模)如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E在AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形; ②∠DFE =∠CFE ; ③DE 是△ABC 的中位线; ④BF +CE =DF +DE . A .1个 B .2个 C .3个 D . 4个 答案:B7、(2012年重庆外国语学校九年级第二学期期中)下列图形中不是..中心对称图形的是()答案:C8、(保沙中学2012二模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2 C.2 D .3答案:B答案:C 10、(广州海珠区2012毕业班综合调研)下列图形中,不是中心对称图形的是( )A. B. C. D.答案:B 11、(广州海珠区2012毕业班综合调研)如图所示,已知在三角形纸片ABC 中,∠BCA =90°,第6题图∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A .6B .3C .32 D答案:C12、(2012荆门东宝区模拟) 下列图案是部分汽车的标志,其中是中心对称图形的是(A. B.C.D.答案:A13、(2012江西高安)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A .①③B . ①④C .②③D .②④答案:A针方向旋转 90后的图形14、(2012广西北海市模拟)将图形 按顺时是····················( )答案:B 15、(2012江苏江阴市澄东一模 )下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种 ( ) A .2 B .3 C .4 D .5 答案:B16、(2012江苏南京市白下区一模)下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形答案:B 17、(2012年济宁模拟)下列轴对称图形中,只有两条对称轴的图形是( )C① ② ③ ④DC B A A . B . C .D .答案:A18、(2012四川夹江县模拟)下列图形中,是中心对称图形的是( )答案:B19、(2012四川乐山市市中区毕业会考)点(-1,2)关于原点对称的点的坐标是 (A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 答案:D20、(2012年河北一模)下列图形是中心对称图形的是( )答案:D21、(2012年荆州模拟)如图,在Rt △ABC 中,∠BAC =900,∠B =600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转90得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC ’,则∠CC ’B ’的度数是( )。

2012中考数学试题及答案分类汇编:平面几何基础

2012中考数学试题及答案分类汇编:平面几何基础

2012中考数学试题及答案分类汇编:平面几何基础一、选择题1.(河北省2分)如图,∠1+∠2等于A、60°B、90°C、110°D、180°【答案】B。

【考点】平角的定义。

【分析】根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°。

故选B。

2.(河北省3分)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。

【考点】一元一次方程组的应用,三角形三边关系。

【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得213132x >x <+⎧⎨+⎩,解得,11<x <15,所以,x 为12、13、14。

故选B 。

3.(山西省2分)如图所示,∠AOB 的两边、OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB平行,则∠DEB 的度数是A 、35°B 、70°C 、110°D 、120°【答案】B 。

【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。

【分析】过点D 作DF ⊥AO 交OB 于点F,则DF 是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD ∥OB,∴∠1=∠2(两直线平行,内错角相等)。

∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°。

故选B 。

4.(山西省2分)一个正多边形,它的每一个外角都等于45°,则该正多边形是A 、正六边形B 、正七边形C 、正八边形D 、正九边形【答案】C 。

2012中考数学试题和答案分类汇编:圆

2012中考数学试题和答案分类汇编:圆

2012中考数学试题及答案分类汇编:圆一、选择题1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B) 相离 (C) 内切 (D) 外切【答案】D 。

【考点】圆与圆位置关系的判定。

【分析】两圆半径之和3+4=7,等于两圆圆心距12O O =7,根据圆与圆位置关系的判定可知两圆外切。

2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。

∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。

故选B 。

3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于A 、30°B 、60°C 、45°D 、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。

【分析】连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠CAP=∠ACO 。

∵PC 为⊙O 的切线,∴OC ⊥PC 。

∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。

故选C 。

4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为A. 14B. 15C. 32D. 23【答案】B 。

2012中考数学试题及答案分类汇编:三角形

2012中考数学试题及答案分类汇编:三角形

2012中考数学试题及答案分类汇编:三角形2.选择题1. (天津3分)sin45°的值等于(A) 12(B) 22(C) 32(D) 1【答案】B。

【考点】特殊角三角函数。

【分析】利用特殊角三角函数的定义,直接得出结果。

2.(河北省3分)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为A、B、2 C、3 D、4【答案】B。

【考点】翻折变换(折叠问题),相似三角形的判定和性质。

【分析】∵△ABC沿DE折叠,使点A落在点A′处,∴∠EDA=∠EDA′=90°,AE=A′E,∴△ACB∽△AED。

∴ED AEBC AC=。

又∵A′为CE的中点,∴AE=A′E=A′C。

∴ED163=。

∴ED=2。

故选B。

3.(山西省2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形、若DE=2cm,则AC的长为A、33cmB、4cmC、23cmD、25cm【答案】D。

【考点】等腰三角形的性质,三角形中位线定理,正方形的性质,勾股定理。

【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理可求出CE=5,即可得出AC=25。

故选D。

4.(内蒙古呼和浩特3分)如果等腰三角形两边长是6cm和3cm,那么它的周长是A、9cmB、12cmC、15cm或12cmD、15cm【答案】D。

【考点】等腰三角形的性质,三角形三边关系。

【分析】求等腰三角形的周长,即要确定等腰三角形的腰与底的长,根据三角形三边关系知当6为腰,3为底时,6﹣3<6<6+3,能构成等腰三角形,周长为6+6+3=15;当3为腰,6为底时,3+3=6,不能构成三角形。

故选D。

5.(内蒙古呼伦贝尔3分)如图,△ACB≌△A1CB1, ∠BCB1=30°,则∠ACA1的度数为A、20° B. 30° C. 35° D. 40°【答案】B。

2012年全国各地中考数学真题分类汇编

2012年全国各地中考数学真题分类汇编

2012年全国各地中考数学全等三角形 解答训练
1.(2012十堰)如图,在四边形ABCD 中,AB=AD ,CB=CD .
求证:∠B=∠D .
2.(2012•广州)如图,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C. 求证:BE=CD .
3.(2012·哈尔滨)右图,点B 在射线AE 上,∠CAE=∠DAE ,∠CBE=∠ADBE .求证:AC=AD .
4.(2012宜宾)如图,点A .B .D .E 在同一直线上,
AD=EB ,BC ∥DF ,∠C=∠F .
求证:AC=EF .
5.(2012北京)已知:如图,点E A C ,,在同一条直线上,
AB C D ∥,AB CE AC CD ==,.求证:B C E D =.
6.(2012宜宾)如图,点A 、B 、D 、E 在同一直线上,AD=EB,BC ∥DF,∠C=∠F,求证:AC=EF.
7.(2012武汉)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.

8.(2012随州)右图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上。

求证:(1)△ABD≌△ACD;(2)BE=CE
9. (2012广元)如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF。

(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,,那么”);
(2)选择(1)中你写出的一个命题,说明它正确的理由。

2012中考数学试题及答案分类汇编

2012中考数学试题及答案分类汇编

2012中考数学试题及答案分类汇编:四边形
一、选择题
1. (北京4分)如图,在梯形ABCD中,AD∥BC,对角线
AC,BD相交于点O,若AD=1,BC=3,则的A O
C O
错误!未
找到引用源。

值为
A、1
2
错误!未找到引用源。

B、错误!未找到引用源。

C、错误!
未找到引用源。

D、错误!未找到引用源。

【考点】梯形的性质,相似三角形的判定和性质。

2.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均
落在对角线BD上,得折痕BE、BF,则∠EBF的大小为
(A) 15°(B) 30°(C) 45°(D) 60°
【考点】折叠对称,正方形的性质。

3.(内蒙古包头3分)已知菱形ABCD中,对角线AC与BD
交于点O,∠BAD=120°,AC=4,则该菱形的面积是
A.16 3 B.16 C.8 3 D.8
【考点】菱形的性质,含30°角直角三角形的性质,勾股定理。

4.(内蒙古呼和浩特3分)下列判断正确的有
①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形;
②中心投影的投影线彼此平行;
③在周长为定值的扇形中,当半径为错误!未找到引用源。

时扇形的面积最大;
④相等的角是对顶角的逆命题是真命题.
A、4个
B、3个
C、2个
D、1个。

2012年全国各地中考数学真题分类汇编 二次函数

2012年全国各地中考数学真题分类汇编 二次函数

2012年全国各地中考数学真题分类汇编二次函数一、选择题1.(2012菏泽)已知二次函数2y ax bx c=++的图像如图所示,那么一次函数y bx c=+和反比例函数ayx=在同一平面直角坐标系中的图像大致是()A .B .C .D .2.(2012•烟台)已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y 随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个3.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--5.(2012泰安)二次函数2y ax bx=+的图象如图,若一元二次方程20ax bx m++=有实数根,则m的最大值为()A.3-B.3 C.6-D.96.(2012泰安)二次函数2()y a x m n=++的图象如图,则一次函数y mx n=+的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.(2012泰安)设A1(2)y-,,B2(1)y,,C3(2)y,是抛物线2(1)y x a=-++上的三点,则1y,2y,3y的大小关系为()A.213y y y>>B.312y y y>>C.321y y y>>D.312y y y>> 8.(2012•乐山)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.﹣1<t<19.(2012•衢州)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y110.(2012义乌市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x 值是或.其中正确的是()A.①②B.①④C.②③D.③④11.(2012•杭州)已知抛物线y=k(x+1)(x ﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是()A.2 B.3 C.4 D.512.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A.y=(x+2)2+2 B.y=(x+2)2-2 C.y=(x-2)2+2 D.y=(x-2)2-2 13.(2012•资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>514.(2012•德阳)在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(﹣1,1)B.(1,﹣2)C.(2,﹣2)D.(1,﹣1)15.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3C.1≤c≤3D.c≤3 16.(2012•兰州)抛物线y=-2x2+1的对称轴是( )A.直线B.直线C.y轴D.直线x=2 17.(2012张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B .C D18.(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=x2的切线②直线x=﹣2与抛物线y=x2相切于点(﹣2,1)③直线y=x+b与抛物线y=x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=x2相切,则实数k=其中正确命题的是()A.①②④B.①③C.②③D.①③④19.(2012潜江)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()二、填空题1.(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为21(4)312y x=--+,由此可知铅球推出的距离是m。

2012年全国各地中考数学真题分类汇编

2012年全国各地中考数学真题分类汇编

2012年全国各地中考数学真题分类汇编点、线、面、体、角一 .选择题1.(2012南通)已知∠=32o,则∠的补角为【C】A .58o B. 68o C. 148o D. 168o矚慫润厲钐瘗睞枥。

【考点】余角和补角.【专题】惯例题型.【剖析】依据互为补角的和等于180°列式计算即可得解.【解答】解:∵∠ a=32°,∴∠ a 的补角为 180°- 32° =148°.应选 C.【评论】本题考察了余角与补角的定义,熟记互为补角的和等于180°是解题的重点.2.( 2012 中考)如图,直线 a 与直线 c 订交于点 O,∠ 1 的度数是(D)A. 60°B. 50°C. 40° D .30°3.(2012长沙)以下四个角中,最有可能与70°角互补的是()A.B.C.D.【答案】D【评论】解: 70°角的补角 =180°﹣ 70°=110°,是钝角,联合各选项,只有 D 选项是钝角,因此,最有可能与70°角互补的是 D 选项的角.应选 D .4. (2012 嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()聞創沟燴鐺險爱氇。

A.40 °B.60 °C.80 °D.90 °【分析】∵∠ B = 2∠ A, ∠C=∠ A+20°,∠ A+ ∠ B+ ∠C= 180°,∴∠ A+2 ∠ A+( ∠A+20°)= 180°, ∴∠ A =40°. 应选 A.【答案】 A.【评论】本题考察三角形内角和的应用.送分题 .5.( 2012 滨州)借助一副三角尺,你能画出下边哪个度数的角()A . 65°B. 75°C. 85°D. 95°【分析】利用一副三角板能够画出 75°角,用 45°和 30°的组合即可,【答案】选 B.【评论】本题考察角的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D F
E
A
B
C
2012中考数学试题及答案分类汇编:三角形
一.选择题 1. sin45°的值等于 A
12
B
22
C
32
D 1
2.如图,在△ABC 中,∠C=90°,BC=6,D ,E 分别在 AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为 A 错误!未找到引用源。

B 2
C 3
D 4
3如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 A 33cm
B 4cm
C 23cm
D 25cm
4.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是 A 9cm
B 12cm
C 15cm 或12cm
D 15cm
5.如图,已知AB=12;AB ⊥BC 于B ,AB ⊥AD 于A ,AD=5,BC=10.点E 是CD 的中点,则AE 的长是
6如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C′处,连接BC′,那么BC′的长为
7.如图,EF 是△ABC 的中位线,将△AEF 沿AB 方向平移到△EBD
的位置,点D 在BC 上,已知△AEF 的面积为5,则图中阴影部分的面积为 . 8.如图,△ABD 与△AEC 都是等边三角形,AB≠AC ,下列结论中:①BE=DC ;②∠BOD=60°;③△BOD ∽△COE .正确的序号是 .
9.如图所示,在梯形ABCD 中,AD ∥
BC ,CE 是∠BCD 的平分线,且CE ⊥
AB ,E 为垂足,
A D
B C
E
O
BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为错误!未找到引用源。

.10.如图,在Rt△ABC中,∠ABC = 900, AB = 8cm , BC = 6cm , 分别以A,C为圆心,以A C
2
的长为半径作圆, 将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为cm2
(结果保留π)
三.解答题
1.某厂家新开发的一种电动车如图,它的大灯A射出的光线
AB,AC 与地面MN 所夹的锐角分别为80和100,大灯A与地面离地面的距离为lm则该车大灯照亮地面的宽度BC是m .(不考虑其它因素)
2.阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,
BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于错误!未找到引用源。


3.某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m.在一处测得望海校B位于A的北偏东30°方向.游轮沿正北方向行驶一段时间后到达C.在C处测得望海楼B位于C的北偏东60°方向.求此时游轮与望梅楼之间的距离BC (3取l.73.结果保留整数).
4.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
△BDE 的面积等于1。

(1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是△CFP 。

(2)连接EF ,PE ,则△CFP 可公割成△PEF ,△PCE 和△EFC 。

∵四边形BEPF 是平行四边形,∴△PEF ≌△BFE 又∵E ,F 是AC ,AB 的中点,∴△BFE 的底和高都是△ABC 的一半。

∴△BFE 的面积是△ABC 的
14
,即△PEF 的面积是△ABC 的
14。

同理,△PCE 和△EFC 的面积都是△ABC 的14。

∴以AD 、BE 、CF 的长度为三边长的三角形的面积等于错误!未找到引用源。

(1)∵∠ACB=90°,∴∠CFA=90°-∠CAF 。

∵CD ⊥AB ,∴∠CEF=∠AED=90°-∠EAD 。

又∵AF 平分∠CAB ,∴∠CAF=∠EAD 。

∴∠CFA=∠CEF 。

∴CE=CF 。

(2)BE′与CF 相等。

证明如下:
如图,过点E 作EG ⊥AC 于G 。

又∵AF 平分∠CAB ,ED ⊥AB ,∴ED=EG 。

由平移的性质可知:D’E’=DE ,∴D’E’ =GE 。

∵∠ACB=90°,∴∠ACD+∠DCB=90°。

∵CD ⊥AB 于D ,∴∠B+∠DCB=90°。

∴∠ACD=∠B 。

在Rt △CEG 与Rt △BE’D’中,
∵∠GCE=∠B ,∠CGE=∠BD’E’,CE=D’E’,∴△CEG ≌△BE’D’(AAS )。

∴CE=BE’。

由(1)CE=CF ,得CF=BE’。

相关文档
最新文档