最新北京四中精品资料高中数学(人教a版)选修4-5课时提升卷:第1讲 2 绝对值 三角不等式1 word版含解析
人教版高中数学选修4-5课时提升作业 二 1.1不等式.2 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业二基本不等式一、选择题(每小题6分,共18分)1.(2016·泰安高二检测)若关于x的方程9x+(4+a)·3x+4=0有解,则实数a的取值范围是( )A.(-∞,-8]∪【解析】选D.由方程9x+(4+a)·3x+4=0有解,即a+4=-≤-4,所以a≤-8.2.下列不等式的证明过程正确的是( )A.若a,b∈R,则+≥2=2B.若x>0,则cosx+≥2=2C.若x<0,则x+≤2=4D.若a,b∈R,且ab<0,则+=-[+]≤-2=-2【解析】选D.A,B,C中在应用基本不等式时忽视了前提“正数”,故均错误.3.(2015·福建高考)若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于( ) A.2 B.3 C.4 D.5【解题指南】利用基本不等式及“1”的代换求解.【解析】选C.因为直线过点(1,1),所以+=1,所以a+b=(a+b)=1+1++=2++,因为a>0,b>0,所以2++≥2+2=4,当且仅当“a=b=2”时等号成立.二、填空题(每小题6分,共12分)4.(2016·佛山高二检测)已知x+3y-2=0,则3x+27y+1的最小值是__________.【解析】3x+27y+1=3x+33y+1≥2+1=7.答案:75.若正数a,b满足ab=a+b+3,则ab的取值范围是____________.【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab ≥9,当a=b=3时取等号.答案:∪B.(-9,9]C.(-∞,9]D.[9,+∞)【解题指南】可令t=sin2x,将原不等式转化为关于t的不等式恒成立问题求解.【解析】选D.令t=sin2x,则cos2x=1-t.又x∈,所以t∈(0,1).不等式+≥16可化为p≥(1-t),令y=(1-t)=17-≤17-2=9,当且仅当=16t,即t=时取等号,因此原不等式恒成立,只需p≥9.二、填空题(每小题5分,共10分)3.若a>0,b>0,a+b=1,则的最小值是__________.【解析】因为=·=·===1+.由a>0,b>0,a+b=1得ab≤=.所以≥4,所以≥9.答案:94.已知x>0,y>0且满足x+y=6,则使不等式+≥m恒成立的实数m的取值范围为____________. 【解题指南】由已知条件先求得+的最小值,只要m小于等于其最小值即可.【解析】因为x>0,y>0,+==≥(10+6)=,当且仅当=,又x+y=6,得x=,y=时取等号.所以m的取值范围是.答案:三、解答题(每小题10分,共20分)5.设a,b,c均为正数,且a+b+c=1.证明:++≥1.【证明】因为+b≥2a,+c≥2b,+a≥2c,故+++a+b+c≥2(a+b+c),所以++≥a+b+c=1.当且仅当a=b=c=时取等号.6.已知a,b,x,y∈R+,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b. 【解析】因为x+y=(x+y)=a+b++≥a+b+2=(+)2,当且仅当=时取等号.又(x+y)min=(+)2=18,即a+b+2=18, ①又a+b=10, ②由①②可得或【拓展延伸】基本不等式的应用技巧判断定值条件是应用基本不等式的难点和易忽略点,常见的方法有:(1)拆项、添项、配凑此法常用在求分式型函数的最值中,如函数f(x)==,可按由高次项向低次项的顺序逐步配凑.(2)常值代换这种方法常用于“已知ax+by=m(a,b,x,y均为正数),求+的最小值”和“已知+=1(a,b,x,y均为正数),求x+y的最小值”两类题型.(3)构造不等式当和与积同时出现在同一个不等式中时,可利用基本不等式构造一个不等式,从而求出和或积的取值范围,如已知a+b=ab-3,求ab的取值范围,可构造出不等式2≤a+b=ab-3,即()2-2-3≥0.关闭Word文档返回原板块。
高中数学人教A版选修4-5优化课件:第一讲 二 绝对值不等式 1 绝对值三角不等式
01 课前 自主梳理
02 课堂 合作探究
03 课后 巩固提升
课时作业
[自主梳理] 一、绝对值的几何意义 1.实数 a 的绝对值|a|表示数轴上坐标为 a 的点 A 到 原点 的距离. 2.对于任意两个实数 a,b,设它们在数轴上的对应点分别为 A,B,那么|a-b| 的几何意义是数轴上 A,B 两点之间的距离 ,即线段 AB 的 长度 .
二、绝对值三角不等式 1.如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立.
2.如果把上面的绝对值三角不等式中的实数 a,b 换成向量 a,b,则它的几何 意义是 三角形两边之和大于第三边 三、三个实数的绝对值不等式 如果 a, b, c 是实数, 那么|a-c|≤|a-b|+|b-c|, 当且仅当 (a-b)(b-c)≥0 等号成立. 时, .
)
解析:|x-y|=|(x-a)-(y-a)|≤|x-a|+|y-a|<h+k,故选 C.
答案:C
3.函数 y=|x-1|+|x-5|的最小值为________,此时 x 的取值范围是________.
解析:|x-1|+|x-5|=|x-1|+|5-x| ≥|x-1+5-x|=4, 当且仅当(x-1)(5-x)≥0, 即 1≤x≤5 时等号成立.
ε ε 1.|x-A|< ,|y-A|< 是|x-y|<ε 的( 2 2 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
)
ε ε 解析:若|x-A|< ,|y-A|< , 2 2 则有|x-y|=|x-A+A-y| ε ε =|(x-A)+(A-y)|≤|x-A|+|y-A|< + =ε. 2 2 ε ε ∴|x-A|< ,|y-A|< 是|x-y|<ε 成立的充分条件. 2 2 3 ε ε ε 反之,若|x-y|<ε,则可以取|x-A|< ε,|y-A|< 使得条件|x-A|< ,|y-A|< 得 4 4 2 2 不到满足. ε ε 因此,我们有|x-A|< ,|y-A|< 是|x-y|<ε 成立的充分不必要条件,故选择 A. 2 2 答案:A
最新北京四中精品资料高中数学(人教a版)选修4-5课时提升卷:第1讲 1 三个正数的算术-几何平均不等式
课时提升卷(三)三个正数的算术-几何平均不等式(45分钟 100分)一、选择题(每小题5分,共30分)1.设x,y,z∈R+且x+y+z=6,则lgx+lgy+lgz的取值范围是( )A.(-∞,lg6]B.(-∞,3lg2]C.[lg6,+∞)D.[3lg2,+∞)2.若实数x,y满足xy>0,且x2y=2,则xy+x2的最小值是( )A.1B.2C.3D.43.若a,b,c为正数,且a+b+c=1,则错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
的最小值为( )A.9B.8C.3D.错误!未找到引用源。
4.已知x+2y+3z=6,则2x+4y+8z的最小值为( )A.3错误!未找到引用源。
B.2错误!未找到引用源。
C.12D.12错误!未找到引用源。
5.当0≤x≤错误!未找到引用源。
时,函数y=x2(1-5x)的最大值为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.无最大值6.设a,b,c∈R+,且a+b+c=1,若M=错误!未找到引用源。
·错误!未找到引用源。
·错误!未找到引用源。
,则必有( )A.0≤M<错误!未找到引用源。
B.错误!未找到引用源。
≤M<1C.1≤M<8D.M≥8二、填空题(每小题8分,共24分)7.若x>0,y>0且xy2=4,则x+2y的最小值为.8.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=错误!未找到引用源。
,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是.9.( 2013·扬州高二检测)设正数a,b,c满足a+b+c=1,则错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
的最小值为.三、解答题(10~11题各14分,12题18分)10.求函数f(x)=x(5-2x)2错误!未找到引用源。
最新人教A版选修4-5高中数学拔高习题四1.2.1和答案
温馨提示:课时提升作业四绝对值三角不等式一、选择题(每小题6分,共18分)1.已知|x-m|<,|y-n|<,则|4x+2y-4m-2n|小于( )A.ξB.2ξC.3ξD.【解析】选C.|4x+2y-4m-2n|=|4(x-m)+2(y-n)|≤4|x-m|+2|y-n|<4×+2×=3ξ.【补偿训练】若|x-a|<h,|y-a|<k,则下列不等式一定成立的是( )A.|x-y|<2hB.|x-y|<2kC.|x-y|<h+kD.|x-y|<|h-k|【解析】选C.|x-y|=|(x-a)+(a-y)|≤|x-a|+|a-y|<h+k.2.(2016·商丘高二检测)已知x∈R,不等式|x+1|-|x-3|≤a恒成立,则实数a的取值范围为( )A.(-∞,4]B.[4,+∞)C.[1,3]D.[-1,3]【解析】选B.因为x∈R,所以|x+1|-|x-3|≤|(x+1)-(x-3)|=4,故使不等式|x+1|-|x-3|≤a恒成立的实数a的取值范围为a≥4.3.设变量x,y满足|x-1|+|y-a|≤1,若2x+y的最大值是5,则实数a的值是( ) A.2 B.1 C.0 D.-1【解析】选B.设点M(1,a),则满足|x-1|+|y-a|≤1的点(x,y)构成区域为平行四边形ABCD及其内部,如图所示:令z=2x+y,则z表示直线y=-2x+z在y轴上的截距,故当直线y=-2x+z过点C(2,a)时,z取得最大值为5,即4+a=5,求得a=1.二、填空题(每小题6分,共12分)4.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为________.【解题指南】利用绝对值不等式及绝对值的几何意义求解.【解析】由|a|+|b|≥|a-b|知,|x|+|x-1|≥|x-(x-1)|=1,同理|y|+|y-1|≥1,又|x|+|y|+|x-1|+|y-1|≤2,故|x|+|y|+|x-1|+|y-1|=2,所以0≤x≤1且0≤y≤1,即0≤x+y≤2.答案:[0,2]5.若不等式|2a-1|≤对一切非零实数x恒成立,则实数a的取值范围是____________.【解析】=|x|+≥2,所以由已知得|2a-1|≤2,即2a-1≤2或2a-1≥-2,解得-≤a≤.答案:[-,]三、解答题(每小题10分,共30分)6.设函数f(x)=|2x-1|-|x+2|.若存在x0∈R,使得f(x)+2m2<4m,求实数m的取值范围.【解析】f(x)=|2x-1|-|x+2|=所以f(x)min=f=-.因为存在x0∈R,使得f(x)+2m2<4m,所以4m-2m2>f(x)min=-,整理得:4m2-8m-5<0,解得-<m<,因此m的取值范围是.7.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.【解析】f(x)-g(x)=|x-3|+|x+1|-6,因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,于是有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].8.(2016·全国卷Ⅲ)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集.(2)设函数g(x)=|2x-1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【解析】(1)当a=2时,f(x)=|2x-2|+2,解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3, ①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).一、选择题(每小题5分,共10分)1.已知h>0,设命题甲:两个实数a,b满足|a-b|<2h,命题乙:两个实数a,b满足|a-1|<h且|b-1|<h,那么( )A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充分条件D.甲不是乙的充分条件,也不是乙的必要条件【解析】选B.|a-b|=|(a-1)-(b-1)|≤|a-1|+|b-1|.若有甲:|a-b|<2h,不一定有乙:|a-1|<h,且|b-1|<h,故甲不是乙的充分条件,反之,由乙则可推出甲:2h>|a-1|+|b-1|≥|a-1-(b-1)|=|a-b|.2.(2016·济南高二检测)已知不等式|x-m|<1成立的一个充分不必要条件是<x<,则实数m 的取值范围为( )A. B.C. D.【解析】选 B.由|x-m|<1得m-1<x<m+1.因为不等式|x-m|<1成立的一个充分不必要条件是<x<,则是(m-1,m+1)的子集,即解得-≤m≤.二、填空题(每小题5分,共10分)3.(2016·九江高二检测)已知函数f(x)=|x-3|-|x-a|.若存在实数x,使得不等式f(x)≥a成立,则实数a的取值范围为________.【解析】由不等式性质可知f(x)=|x-3|-|x-a|≤|(x-3)-(x-a)|=|a-3|,所以若存在实数x,使得不等式f(x)≥a成立,则|a-3|≥a,解得a≤,所以实数a的取值范围是.答案:4.(2016·济南高二检测)以下三个命题:①若|a-b|≤1,则|a|≤|b|+1;②若a,b∈R,则|a+b|-2|a|≤|a-b|;③|x|<2,|y|>3,则<.其中正确命题的序号为________.【解析】因为|a|-|b|≤|a-b|≤1,所以|a|≤|b|+1,故①正确;因为|a+b|-2|a|=|a+b|-|2a|≤|(a+b)-2a|=|a-b|,故②正确;③显然正确.答案:①②③三、解答题(每小题10分,共20分)5.(2015·南昌高二检测)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M,证明:<.【证明】记f(x)=|x-1|-|x+2|=由-2<-2x-1<0,解得-<x<,则M=.因为a,b∈M,所以|a|<,|b|<,所以≤|a|+|b|<×+×=.【拓展延伸】含绝对值不等式的证明证明含有绝对值的不等式,其思路主要有两条:(1)恰当地运用|a|-|b|≤|a±b|≤|a|+|b|进行放缩,并注意不等号的传递性及等号成立的条件.(2)把含绝对值的不等式等价转化为不含绝对值的不等式,再利用比较法、综合法及分析法等进行证明,其中去掉绝对值符号的常用方法是平方法或分类讨论法.6.对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥M·|a|恒成立,记实数M的最大值是m,求m的值.【解析】不等式|a+b|+|a-b|≥M·|a|恒成立,即M≤对于任意的实数a(a≠0)和b恒成立,即左边恒小于或等于右边的最小值. 因为|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|,当且仅当(a-b)(a+b)≥0时等号成立,即|a|≥|b|时,等号成立,也就是的最小值是2.所以m=2.。
人教版高中数学选修4-5课时提升作业 1.2绝对值不等式.2 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业五绝对值不等式的解法一、选择题(每小题6分,共18分)1.(2016·临沂高二检测)>0的解集为( )A.B.C.D.{x|x∈R且x≠-3}【解析】选C.原不等式可化为解得x>或x<-且x≠-3.2.(2016·济南高二检测)不等式|x-2|+|x-1|≤3的最小整数解是( )A.0B.-1C.1D.2【解析】选A.根据绝对值的几何意义,得不等式|x-2|+|x-1|≤3的解为0≤x≤3.所以不等式|x-2|+|x-1|≤3的最小整数解为0.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是( )A.0B.1C.-1D.2【解析】选B.|x-2|+|x-a|=|x-2|+|a-x|≥|x-2+a-x|=|a-2|,所以|a-2|≥a,解得a≤1,所以a的最大值为1.二、填空题(每小题6分,共12分)4.(2016·德州高二检测)已知集合A={x||x-4|+|x-1|<5},B={x|a<x<6}且A∩B=(2,b),则a+b=________. 【解析】A={x|0<x<5},由A∩B=(2,b)知故a+b=7.答案:75.(2016·石家庄高二检测)不等式|x-1|+|x+2|≥5的解集为__________.【解析】方法一:由得x≤-3;由无解;由得x≥2.即所求的解集为{x|x≤-3或x≥2}.方法二:在数轴上,点-2与点1的距离为3,所以往左右边界各找距离为1的两个点,即点-3到点-2与点1的距离之和为5,点2到点-2与点1的距离之和也为5,所以原不等式的解集为{x|x≤-3或x≥2}.答案:{x|x≤-3或x≥2}三、解答题(每小题10分,共30分)6.(2016·武汉高二检测)解不等式x+|2x+3|≥2.【解析】原不等式可化为或解得x≤-5或x≥-.综上,原不等式的解集是.7.已知a+b=1,对任意的a,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立,求x的取值范围. 【解析】因为a>0,b>0且a+b=1,所以+=(a+b)=5++≥9,故+的最小值为9,因为对任意的a,b∈(0,+∞),使+≥|2x-1|-|x+1|恒成立,所以|2x-1|-|x+1|≤9,当x≤-1时,2-x≤9,所以-7≤x≤-1;当-1<x<时,-3x≤9,所以-1<x<;当x≥时,x-2≤9,所以≤x≤11.综上所述,x的取值范围是-7≤x≤11.8.(2016·聊城高二检测)已知函数f(x)=|x+1|+|2x+a|的最小值为3,求实数a的值. 【解析】①当a≤2时,f(x)=②当a>2时,f(x)=由①②可得f(x)min=f==3,解得a=-4或8.一、选择题(每小题5分,共10分)1.(2015·山东高考)不等式|x-1|-|x-5|<2的解集是( )A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)【解题指南】可以分段讨论去掉绝对值符号,也可以利用绝对值的几何意义,还可以结合选择题的特点利用特殊值排除错误答案.【解析】选A.方法一:当x<1时,原不等式化为1-x-(5-x)<2,即-4<2,不等式恒成立;当1≤x<5时,原不等式即x-1-(5-x)<2,解得x<4;当x≥5时,原不等式化为x-1-(x-5)<2,即4<2,显然不成立,综上可得不等式的解集为(-∞,4).方法二:由绝对值的几何意义可得数轴上的点x到1,5两点 (距离为4)的距离之差小于2的点满足x<4,所求不等式的解集为(-∞,4).方法三:用排除法,令x=0符合题意,排除C,D;令x=2符合题意,排除B.2.(2016·石家庄高二检测)设函数f(x)=则使f(x)≥1的自变量x的取值范围是( )A.(-∞,-2]∪B.(-∞,-2]∪C.(-∞,-2]∪D.∪【解析】选A.由题意知,当x<1时,f(x)≥1等价于(x+1)2≥1,解得x≤-2或0≤x<1;当x≥1时,f(x)≥1等价于4-≥1,解得1≤x≤4.综上所述,满足题设的x的取值范围是(-∞,-2]∪.二、填空题(每小题5分,共10分)3.(2016·安阳高二检测)若关于x的不等式|ax-2|<3的解集为,则a=__________. 【解析】由|ax-2|<3得到-3<ax-2<3,-1<ax<5,又知道解集为,所以a=-3.答案:-34.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.【解题指南】利用绝对值不等式的基本知识|x-a|+|x-b|表示数轴上某点到a,b的距离之和即可得解. 【解析】函数f(x)=| x-a|+|x-b|的值域为:2≤.【解析】(1)f(x)=2|x-1|+x-1=当x≥1时,由f(x)≤1得x≤,故1≤x≤;当x<1时,由f(x)≤1得x≥0,故0≤x<1;综上可知,f(x)≤1的解集为M=.(2)由g(x)=16x2-8x+1≤4得16≤4,解得-≤x≤.因此N=,故M∩N=.当x∈M∩N时,f(x)=1-x,于是x2f(x)+x2=xf(x)(x+f(x))=xf(x)=x(1-x)=-≤.关闭Word文档返回原板块。
2019-2020学年人教版高中数学选修4-5教材用书:第一讲不等式和绝对值不等式二绝对值不等式2.绝对值不
2.绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法只需将ax+b看成一个整体,即化成|x|≤a,|x|≥a(a>0)型不等式求解.|ax+b|≤c(c>0)型不等式的解法:先化为-c≤ax+b≤c,再由不等式的性质求出原不等式的解集.不等式|ax+b|≥c(c>0)的解法:先化为ax+b≥c或ax+b≤-c,再进一步利用不等式性质求出原不等式的解集.2.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键.|ax+b|≤c与|ax+b|≥c(c>0)型的不等式的解法解下列不等式:(1)|5x-2|≥8;(2)2≤|x-2|≤4.利用|x|>a及|x|<a(a>0)型不等式的解法求解.(1)|5x-2|≥8?5x-2≥8或5x-2≤-8?x≥2或x≤-6 5,∴原不等式的解集为x x≥2或x≤-65.(2)原不等式价于|x-2|≥2,①|x-2|≤4.②由①得x-2≤-2,或x-2≥2,∴x≤0或x≥4.由②得-4≤x-2≤4,∴-2≤x≤6.∴原不等式的解集为{x|-2≤x≤0或4≤x≤6}.|ax+b|≥c和|ax+b|≤c型不等式的解法:①当c>0时,|ax+b|≥c?ax+b≥c或ax+b≤-c,|ax+b|≤c?-c≤ax+b≤c.②当c=0时,|ax+b|≥c的解集为R,|ax+b|<c的解集为?.③当c<0时,|ax+b|≥c的解集为R,|ax+b|≤c的解集为?.1.解下列不等式:(1)|3-2x|<9;(2)|x-x2-2|>x2-3x-4;(3)|x2-3x-4|>x+1. 解:(1)∵|3-2x|<9,∴|2x-3|<9.∴-9<2x-3<9.即-6<2x<12.∴-3<x<6.∴原不等式的解集为{x|-3<x<6}.(2)∵|x-x2-2|=|x2-x+2|,而x2-x+2=x-122+74>0,∴|x-x2-2|=|x2-x+2|=x2-x+2.故原不等式等价于x2-x+2>x2-3x-4?x>-3.∴原不等式的解集为{x|x>-3}.(3)不等式可转化为x2-3x-4>x+1或x2-3x-4<-x-1,∴x2-4x-5>0或x2-2x-3<0.解得x>5或x<-1或-1<x<3,∴不等式的解集是(5,+∞)∪(-∞,-1)∪(-1,3).2.已知常数a满足-1<a<1,解关于x的不等式:ax+|x+1|≤1. 解:若x≥-1,则ax+x+1≤1,即(a+1)x≤0.因为-1<a<1,所以x≤0.又x≥-1,所以-1≤x≤0.若x<-1,则ax-x-1≤1,即(a-1)x≤2.因为-1<a<1,所以x≥2a-1.因为-1<a<1,所以2a-1-(-1)=a+1a-1<0.所以2a-1≤x<-1.综上所述,2a-1≤x≤0.故不等式的解集为2a-1,0.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法解不等式|x-3|-|x+1|<1.解该不等式,可采用三种方法:(1)利用绝对值的几何意义;(2)利用各绝对值的零点分段讨论;(3)构造函数,利用函数图象分析求解.法一:在数轴上-1,3,x对应的点分别为A,C,P,而B点对应的实数为12,B点到C点的距离与到A点的距离之差为 1.由绝对值的几何意义知,当点P在射线Bx上(不含B点)时不等式成立,故不等式的解集为x x>12.法二:原不等式?①x<-1,--++或②-1≤x<3,---+或③x≥3,--+①的解集为?,②的解集为x 12<x<3,③的解集为{x|x≥3}.综上所述,原不等式的解集为x x>12.法三:将原不等式转化为|x-3|-|x+1|-1<0,构造函数y=|x-3|-|x+1|-1,即y=3,-2x+1,-5,x≤-1,-1<x<3,x≥3.作出函数的图象(如下图所示),它是分段函数,函数与x轴的交点是12,0,由图象可知,当x>12时,有y<0,即|x-3|-|x+1|-1<0,所以原不等式的解集是x x>12.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.3.解不等式|2x-1|+|3x+2|≥8.解:①当x≤-23时,|2x-1|+|3x+2|≥8?1-2x-(3x+2)≥8?-5x≥9?x≤-95,∴x≤-95;②当-23<x<12时,|2x-1|+|3x+2|≥8?1-2x+3x+2≥8?x+3≥8?x≥5,∴x∈?;③当x≥12时,|2x-1|+|3x+2|≥8?5x+1≥8?5x≥7?x≥75,∴x≥75.∴原不等式的解集为-∞,-95∪75,+∞.4.设函数f(x)=x+1a+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解:(1)证明:由a>0,得f(x)=x+1a+|x-a|≥x+1a--=1a+a≥2,所以f(x)≥2.(2)f(3)=3+1a+|3-a|.当a>3时,f(3)=a+1a,由f(3)<5,得3<a<5+212.当0<a≤3时,f(3)=6-a+1a,由f(3)<5,得1+52<a≤3.综上所述,a的取值范围是1+52,5+212.含绝对值不等式的恒成立问题已知不等式|x+2|-|x+3|>m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为?,分别求出m的取值范围.解答本题可以先根据绝对值|x-a|的意义或绝对值不等式的性质求出|x+2|-|x+3|的最大值和最小值,再分别写出三种情况下m的取值范围.法一:因|x+2|-|x+3|的几何意义为数轴上任意一点P(x)与两定点A(-2),B(-3)距离的差.即|x+2|-|x+3|=|PA|-|PB|.又(|PA|-|PB|)max=1,(|PA|-|PB|)min=-1.即-1≤|x+2|-|x+3|≤1.(1)若不等式有解,m只要比|x+2|-|x+3|的最大值小即可,即m<1,m的取值范围为(-∞,1);(2)若不等式的解集为R,即不等式恒成立,m只要比|x+2|-|x+3|的最小值还小,即m<-1,m的取值范围为(-∞,-1);(3)若不等式的解集为?,m只要不小于|x+2|-|x+3|的最大值即可,即m≥1,m的取值范围为.6.把本例中的“-”改成“+”,即|x+2|+|x+3|>m时,分别求出m的取值范围.解:|x+2|+|x+3|≥|(x+2)-(x+3)|=1,即|x+2|+|x+3|≥1.(1)若不等式有解,m为任何实数均可,即m∈R;(2)若不等式解集为R,即m∈(-∞,1);(3)若不等式解集为?,这样的m不存在,即m∈?.课时跟踪检测(五)1.不等式|x+1|>3的解集是( )A.{x|x<-4或x>2} B.{x|-4<x<2}C.{x|x<-4或x≥2} D.{x|-4≤x<2}解析:选 A |x+1|>3,则x+1>3或x+1<-3,因此x<-4或x>2.2.满足不等式|x+1|+|x+2|<5的所有实数解的集合是( )A.(-3,2) B.(-1,3) C.(-4,1) D.-32,72解析:选C |x+1|+|x+2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x+1|+|x+2|<5解集是(-4,1).3.不等式1≤|2x-1|<2的解集为( )A.-12,0∪1,32B.-12,0∪1,32C.-12,0∪1,32D.-12,0∪1,32解析:选 D 由1≤|2x-1|<2,得1≤2x-1<2或-2<2x-1≤-1,因此-12<x≤0或1≤x<32.4.若关于x的不等式|x-1|+|x+m|>3的解集为R,则实数m的取值范围是( )A.(-∞,-4)∪(2,+∞) B.(-∞,-4)∪(1,+∞)C.(-4,2) D.解析:选 A 由题意知,不等式|x-1|+|x+m|>3恒成立,即函数f(x)=|x-1|+|x+m|的最小值大于3,根据绝对值不等式的性质可得|x-1|+|x+m|≥|(x-1)-(x+m)|=|m+1|,故只要满足|m+1|>3即可,所以m+1>3或m+1<-3,解得m>2或m<-4,故实数m的取值范围是(-∞,-4)∪(2,+∞).5.不等式|x+2|≥|x|的解集是________.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x+2)2≥x2,∴x2+4x+4≥x2,即x≥-1,∴原不等式的解集为{x|x≥-1}.答案:{x|x≥-1}6.不等式|2x-1|-x<1的解集是__________.解析:原不等式等价于|2x-1|<x+1?-x-1<2x-1<x+1?3x>0,x<2?0<x<2.答案:{x|0<x<2}7.已知函数f(x)=|x+1|+|x-2|-|a2-2a|,若函数f(x)的图象恒在x轴上方,则实数a的取值范围为________.解析:因为|x+1|+|x-2|≥|x+1-(x-2)|=3,所以f(x)的最小值为3-|a2-2a|.由题意,得|a2-2a|<3,解得-1<a<3.答案:(-1,3)8.解不等式:|x2-2x+3|<|3x-1|.解:原不等式?(x2-2x+3)2<(3x-1)2?<0?(x2+x+2)(x2-5x+4)<0?x2-5x+4<0(因为x2+x+2恒大于0)?1<x<4.所以原不等式的解集是{x|1<x<4}.9.解关于x的不等式|2x-1|<2m-1(m∈R).解:若2m-1<0,即m≤12,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>12,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤12时,原不等式的解集为?;当m>12时,原不等式的解集为{x|1-m<x<m}.10.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈-a2,12时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈-a2,12时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈-a2,12都成立.故-a2≥a-2,即a≤43.从而a的取值范围是-1,43.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(湖南高考)若实数a,b满足1a+2b=ab,则ab的最小值为( )A. 2 B.2C.2 2 D.4解析:选 C 由1a+2b=ab,知a>0,b>0,所以ab=1a+2b≥22ab,即ab≥22,当且仅当1a=2b,1a+2b=ab,即a=42,b=242时取“=”,所以ab的最小值为2 2.2.(重庆高考)设a,b>0,a+b=5,则a+1+b+3的最大值为________.解析:令t=a+1+b+3,则t2=a+1+b+3+2++=9+2++≤9+a+1+b+3=13+a+b=13+5=18,当且仅当a+1=b+3时取等号,此时a=72,b=32.∴t max=18=3 2.答案:3 23.(重庆高考)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________. 解析:由于f(x)=|x+1|+2|x-a|,当a>-1时,f(x)=-3x+2a--,-x+2a+-,3x-2a+作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)=5,即a+1=5,∴a=4.同理,当a≤-1时,-a-1=5,∴a=-6.答案:-6或44.(全国乙卷)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f(x)=错误! 故y=f(x)的图象如图所示.(2)由f(x)的函数表达式及图象可知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5.故f(x)>1的解集为{x|1<x<3},f(x)<-1的解集为x x<13或x>5.所以|f(x)|>1的解集为x x<13或1<x<3或x>5.5.(江苏高考)设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.证明:因为|x-1|<a3,|y-2|<a3,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×a3+a3=a.6.(全国丙卷)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解:(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥3,即x-a2+12-x≥3-a2.又x-a2+12-x min=12-a2,所以12-a2≥3-a2,解得a≥2.所以a的取值范围是“a+c>b+d”是“a>b且c>d”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>b且c>d.A基本不等式的应用利用基本不等式求最值问题一般有两种类型:①和为定值时,积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.已知x,y,z∈R+,x-2y+3z=0,则y2xz的最小值为________.由x-2y+3z=0,得y=x+3z2,则y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z时,等号成立.3设a,b,c为正实数,求证:1a3+1b3+1c3+abc≥2 3.因为a,b,c为正实数,由平均不等式可得1a3+1b3+1c3≥331a3·1b3·1c3.即1a3+1b3+1c3≥3abc,当且仅当a=b=c时,等号成立.所以1a3+1b3+1c3+abc≥3abc+abc,而3abc+abc≥23abc·abc=2 3.所以1a3+1b3+1c3+abc≥23,当且仅当abc=3时,等号成立.含绝对值的不等式的解法1.公式法|f(x)|>g(x)?f(x)>g(x)或f(x)<-g(x);|f(x)|<g(x)?-g(x)<f(x)<g(x).2.平方法|f(x)|>|g(x)|?2>2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.解下列关于x的不等式:(1)|x+1|>|x-3|;(2)|x-2|-|2x+5|>2x.(1)法一:|x+1|>|x-3|,两边平方得(x+1)2>(x-3)2,∴8x>8.∴x>1.∴原不等式的解集为{x|x>1}.法二:分段讨论:当x≤-1时,有-x-1>-x+3,此时x∈?;当-1<x≤3时,有x+1>-x+3,即x>1,此时1<x≤3;当x>3时,有x+1>x-3成立,∴x>3.∴原不等式的解集为{x|x>1}.(2)分段讨论:①当x<-52时,原不等式变形为2-x+2x+5>2x,解得x<7,∴原不等式的解集为x x<-52.②当-52≤x≤2时,原不等式变形为2-x-2x-5>2x,解得x<-35.∴原不等式的解集为x-52≤x<-35.③当x>2时,原不等式变形为x-2-2x-5>2x,解得x<-73,∴原不等式无解.综上可得,原不等式的解集为x x<-35.不等式的恒成立问题对于不等式恒成立求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f(x)≤a?f(x)max≤a,f(x)≥a?f(x)min≥a”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简便的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.设有关于x的不等式lg(|x+3|+|x-7|)>a.(1)当a=1时,解此不等式.(2)当a为何值时,此不等式的解集是R?(1)当a=1时,lg(|x+3|+|x-7|)>1,?|x+3|+|x-7|>10,?x≥7,2x-4>10或-3<x<7,10>10或x≤-3,4-2x>10,?x>7或x<-3.∴不等式的解集为{x|x<-3或x>7}.(2)设f(x)=|x+3|+|x-7|,则有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x-7)≤0,即-3≤x≤7时,f(x)取得最小值10.∴lg(|x+3|+|x-7|)≥1.要使lg(|x+3|+|x-7|)>a的解集为R,只要a<1.。
人教版A版高中数学选修4-5配套全册完整课件
C.ab>a>ab2
D.ab>ab2>a
解析:由-1<b<0,可得 b<b2<1,
又 a<0,所以有 ab>ab2>a.
答案:D
3.若 a>b>0,c<d<0,则一定有( ) A.ac>bd B.ac<bd C.ad>bc D.ad<bc 解析:因为 c<d<0,所以-c>-d>0, 所以 0< 1 < 1 ,即 1 > 1 >0.
若若abr且且ab0则baab??????????????????ba??????????????????ab2????????????ba????????????ab2
人教版A版高中数学选修4-5配套 全册完整课件
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.1 不等式的基本性质
[学习目标] 1.理解实数大小与实数运算性质间的关 系. 2.理解不等式的性质,能用不等式的性质比较大小 和证明简单的不等式(重点、难点).
5.比较大小:(x+5)(x+7)________(x+6)2. 解析:因为(x+5)(x+7)-(x+6)2=x2+12x+35-x2 -12x-36=-1<0, 所以(x+5)(x+7)<(x+6)2. 答案:<
类型 1 用比较法比较大小(自主研析) [典例 1] 已知 x>1,比较 x3-1 与 2x2-2x 的大小. 解:x3-1-(2x2-2x)=x3-2x2+2x-1=(x3-x2)- (x2-2x+1)=x2(x-1)-(x-1)2=(x-1)(x2-x+1)=(x- 1)x-122+34.
3.用作差法比较两式的大小时,常采用因式分解、 配方、通分、分母有理化等技巧,通过彻底的变形,从而 判断差式的值的正负,进而判断出两式的大小.
[变式训练] 比较 x2-x 与 x-2 的大小. 解:(x2-x)-(x-2)=x2-2x+2=(x-1)2+1, 因为(x-1)2≥0, 所以(x-1)2+1>0,即(x2-x)-(x-2)>0. 所以 x2-x>x-2.
【人教A版】高中数学(选修4-5):全册配套课堂练习题(附答案)
第二讲证明不等式的基本方法1.回顾和复习不等式的基本性质和基本不等式,通过综合应用加深对不等式基本性质基本定理的理解.2.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.,利用代数恒等变换以及放大、缩小方法是证明不等式的常用方法,例如,比较法、综合法、分析法、反证法、放缩法等,在很多情况下需要一些前人为我们创造的技巧,对于专门从事某些数学领域研究的人们而言,掌握这些技巧是极为重要的.但是,对大多数学习不等式的人来说,常常很难从这些复杂的代数恒等变换中看到数学的本质,对他们更为重要的是理解这些不等式的数学思想和背景.所以,本专题尽力使用几何或其他方法来证明这些不等式,使学生较为容易地理解这些不等式以及证明的数学思想,不对恒等变换的难度特别是一些技巧做更多的要求,不希望不等式的教学陷在过于形式化的和复杂的恒等变换的技巧之中.2.1 比较法1.了解用作差比较法证明不等式.2.了解用作商比较法证明不等式.3.提高综合应用知识解决问题的能力.1.作差法:要比较两个实数的大小,只要考查它们的差的符号即可,即利用不等式的性质:a>b⇔a-b________0a=b⇔a-b________0a<b⇔a-b________0答案:>=<思考1 比较两个代数式值的大小:x2与x2-x+1.解析:当x=1时,x2=x2-x+1;当x>1时,x2>x2-x+1;当x<1时,x2<x2-x+1.2.作商法:由于当b >0时,a >b ⇒ab >1,因此要证明a >b (b >0),可以转化为证明与之等价的a b>1(b >0),这种证明方法即为作商法.思考2 求证:1618>1816.证明:∵16181816=256332=⎝ ⎛⎭⎪⎫27348=⎝ ⎛⎭⎪⎫128818>1,∴1618>1816.一层练习1.设m =a +2b ,n =a +b 2+1,则( ) A .m >n B .m ≥n C .m <n D .m ≤n 答案:D2.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b 答案:A3.已知下列不等式:①x 2+3>2x (x ∈R);②a 5+b 5>a 3b 2+a 2b 3(a ,b ∈R);③a 2+b 2≥2(a -b -1).其中正确的个数为( )A .0个B .1个C .2个D .3个 答案:C4.2a1+a2________1(填“≥”“≤”“>”或“<”). 答案:≤二层练习5.若a >b ,则代数式a 3+a 2b 与ab 2+b 3的大小关系是( )A .a 3+a 2b <ab 2+b 3B .a 3+a 2b ≥ab 2+b 3C .a 3+a 2b =ab 2+b 3D .不能确定解析:∵a >b ,∴(a 3+a 2b )-(ab 2+b 3)=(a 3-b 3)+(a 2b -ab 2)=(a -b )(a 2+ab +b 2)+ab (a -b )=(a -b )·(a +b )2≥0,∴a 3+a 2b ≥ab 2+b 3.答案:B6.设0<2a <1,M =1-a 2,N =1+a 2,P =11-a ,Q =11+a ,那么( )A .Q <P <M <NB .M <N <Q <PC .Q <M <N <PD .M <Q <P <N 答案:C7.若a >b >0,下列各式中恒成立的是( ) A.2a +b a +2b >a b B.b 2+1a 2+1>b 2a 2 C .a +1a >b +1bD .a a <a b答案:B8.设a ,b 均为正数,且a ≠b ,则a a b b 与a b b a的大小关系是______________.答案:a a b b >a b b a9.6-22与5-7的大小关系是________________________________________________________________________.答案:(6-22)>(5-7)10.设P =a 2b 2+5,Q =2ab -a 2-4a ,若P >Q ,则实数a ,b 满足的条件为________.解析:P -Q =a 2b 2+5-2ab +a 2+4a =(ab -1)2+(a +2)2.∵P >Q ,P -Q >0.∴ab ≠1或a ≠-2.答案:ab ≠1或a ≠-211.若a ,b 均为正数,求证:⎝ ⎛⎭⎪⎫a 2b 12+⎝ ⎛⎭⎪⎫b 2a 12≥a +b . 证明:证法一 左边-右边=a b +ba-(a +b ) =(a )3+(b )3-(a +b )abab=(a +b )[(a )2-2ab +(b )2]ab=(a +b )(a -b )2ab,因为a +b >0,ab >0,(a -b )2≥0,所以ab+ba-(a+b)≥0,所以ab+ba≥a+b.证法二左边-右边=ab+ba-(a+b)=⎝⎛⎭⎪⎫ab-b+⎝⎛⎭⎪⎫ba-a=a-bb+b-aa=(a-b)(a-b)ab =(a+b)(a-b)2ab≥0,所以ab+ba≥a+b.证法三左边右边=ab+baa+b=(a)3+(b)3ab(a+b)=a+b-abab=1+(a-b)2ab≥1,所以ab+ba≥a+b.三层练习12.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.证明:∵2a3-b3-(2ab2-a2b)=(2a3-2ab2)+(a2b-b3)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a+b)(a-b)(2a+b).又∵a≥b>0,∴a+b>0,a-b≥0,2a+b>0,∴(a+b)(a-b)(2a+b)≥0,∴2a3-b3-2ab2-a2b≥0,∴2a3-b3≥2ab2-a2b.13.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.解析:(1)由|2x-1|<1得-1<2x-1<1,解得 0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.14.设a,b是非负实数,求证:a3+b3≥ab(a2+b2).证明:由a,b是非负实数,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)[(a)5-(b)5].当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)·[(a)5-(b)5]≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)·[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).比较法是证明不等式的一种最基本、最常用的方法,比较法除了课本中介绍的作差比较法(即利用a>b⇔a-b>0),还有作商比较法(即要证明a>b,而b>0,只要证明ab>1).作差比较法的基本步骤是:作差、变形、判断符号.变形是关键,目的在于能判断差的符号,而不必考虑差的具体值是多少.为便于判断差式的符号,通常将差式变形为常数或几个因式的积、商形式或平方和形式.当所得的差式是某个字母的二次三项式时,则常用判别式法判断符号.变形方法常用分解因式、通分、配方、有理化等.多项式不等式、分式不等式或对数不等式常用作差比较法证明.作商比较法的基本步骤是:作商、变形、判断商值与1的大小,适用于两边都是正值的幂或积的形式的不等式.其中判断差值的正负及商值与1的大小是用比较法证明不等式的难点.判断过程应详细叙述.用比较法证明不等式时,当差式或商式中含有字母时,一般需对字母的取值进行分类讨论.习题课 不 等 式1.若a ,b , c ,d ∈R ,且a >b ,c >d ,那么( ) A .a -c >b -d B .ac >bd C .-a d >-b cD .a -d >b -c 答案: D2.若1a <1b<0,则下列等式:①1a +b <1ab;②|a |+b >0; ③a -1a >b -1b;④ln a 2>ln b 2.其中,正确的不等式是( )A .①④B .②③C .①③D .②④ 答案: C3.若a ,b ∈R ,则不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a≥2中一定成立的是( )A .①②③B .①②④C .①②D .②④ 答案: C4.若x >54,则f (x )=4x +14x -5的最小值为( )A .-3B .2C .5D .7答案: D5.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( )A.14B .1C .4D .8 答案: C6.当点(x ,y )在直线x +3y =2上移动时,表达式3x +27y+1的最小值为( ) A .3 B .5 C .1 D .7 答案: D7.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的最小值为________. 答案: 68.若正实数x ,y ,满足2x +y +6=xy ,则xy 的最小值是________.解析:由x >0,y >0,2x +y +6=xy 得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22(xy )-6≥0. ∴(xy -32)(xy +2)≥0. 又∵xy >0, ∴xy ≥32, 即xy ≥18.∴xy 的最小值为18. 答案:189.(2014·上海高考文科)设f (x )=⎩⎪⎨⎪⎧-x +a ,x ≤0,x +1x,x >0.若f (0)是f (x )的最小值,则a 的取值范围为______.解析:当时x >0,f (x )=x +1x≥2,若f (0)是f (x )的最小值,则f (0)=a ≤2.答案:(-∞,2].10.(2014·辽宁卷)对于c <0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b |最大时,1a +2b +4c的最小值为______.解析:因为4a 2-2ab +b 2-c =0,所以(2a +b )2-c =6ab =3×2ab ≤3×(2a +b )24,所以(2a +b )2≤4c ,当且仅当b =2a ,c =4a 2时,|2a +b |取得最大值. 故1a +2b +4c =2a +1a2=⎝ ⎛⎭⎪⎫1a +12-1,其最小值为-1 答案:-111.(2014·湖北卷)某项研究表明:在考虑行车安全的情况下,某段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流量速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l .(1)如果不限定车型,l =6.05,则最大流量为______辆/时;(2)如果限定车型,l =5,则最大流量比(l )中的作答车流量增加______辆/时. 解析:(1)依题意知,l >0,v >0,所以当l =6.05时,F =76 000v v 2+18v +12l =76 000v +121v+18≤76 0002v ·121v+18=1 900,当且仅当v =11时,取等号. (2)当l =5时,F =76 000v v +18v +100≤76 000v +100v+18≤2 000, 当且仅当v =10时,取等号,此时比(l )中的最大车流量增加100辆/时.答案:(1)1 900 (2)10012.已知x ,y ,z 都为正数,且xyz (x +y +z )=1. 求证:(x +y )(y +z )≥2.证明:由已知得xz >0,y (x +y +z )>0. 又xyz (x +y +z )=1,所以(x +y )(y +z )=xy +xz +y 2+yz =xz +y (x +y +z )≥2xz ·y (x +y +z )=2, 即(x +y )(y +z )≥2.当且仅当⎩⎪⎨⎪⎧xz =y (x +y +z ),xyz (x +y +z )=1时取等号.13.(1)已知x >1,求函数y =x 2x -1的最小值;(2)若x <12,求函数y =2x +2+12x -1的最大值.解析:(1)y =x 2x -1=(x +1)(x -1)+1x -1=x +1+1x -1=x -1+1x -1+2. ∵x >1,∴x -1>0. ∴y =x -1+1x -1+2≥2(x -1)·1x -1+2=4. 当且仅当x -1=1x -1,即x =2时等号成立. ∴y min =4.(2)y =2x +2+12x -1=(2x -1)+12x -1+3.∵x <12,∴2x -1<0.即1-2x >0.∴y =2x +2+12x -1=-⎣⎢⎡⎦⎥⎤(1-2x )+11-2x +3≤-2(1-2x )·1(1-2x )+3=1.当且仅当1-2x =11-2x ,即x =0时,等号成立. ∴y max =1.14.如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?解析:(1)设每间虎笼长为x m ,宽为y m , 则由条件得4x +6y =36,即2x +3y =18, 设每间虎笼面积为S ,则S =xy .解法一 由于2x +3y ≥22x ·3y =26xy ,∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3, 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 解法二 由2x +3y =18,得x =9-32y ,∵x >0,∴0<y <6,S =xy =⎝ ⎛⎭⎪⎫9-32y y =32(6-y )·y ,∵0<y <6,∴6-y >0, ∴S ≤32·⎣⎢⎡⎦⎥⎤(6-y )+y 22=272, 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5,故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.(2)由条件知S =xy =24,设钢筋网总长为l ,则l =4x +6y .∵2x +3y ≥22x ·3y =26xy =24, ∴l =4x +6y =2(2x +3y )≥48, 当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24, 解得⎩⎪⎨⎪⎧x =6,y =4,故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.第一讲不等式和绝对值不等式不等式和绝对值不等式1.回顾和复习不等式的基本性质和基本不等式.2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)|a+b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|;(3)会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.,在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系是基本的数学关系.它们在数学研究和数学应用中起着重要的作用.学习时注意适当联系实际,加深理解现实生活中的不等关系与相等关系.适当应用数形结合有利于解决问题.如函数的图象、集合的韦恩图、数集的数轴表示等.1.1 不等式1.1.1 不等式的基本性质1.回顾和复习不等式的基本性质.2.灵活应用比较法比较两个数的大小.3.熟练应用不等式的基本性质进行变形与简单证明.1.实数的运算性质与大小顺序的关系.数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法和在数轴上的表示可知:a>b⇔a-b________;a=b⇔a-b________;a<b⇔a-b________.答案:>0 =0 <0得出结论:要比较两个实数的大小,只要考查它们的差的符号即可.思考1 比较大小:x2+3________x2+1.答案:>2.不等式的基本性质.(1)对称性:如果a >b ,那么b <a ;如果b <a ,那么a >b .(2)传递性:如果a >b ,且b >c ,那么a >c ,即a >b ,b >c ⇒a >c . (3)加法:如果a >b ,那么a +c >b +c ,即a >b ⇒a +c >b +c .推论:如果a >b ,且c >d ,那么a +c >b +d .即a >b ,c >d ⇒a +c >b +d .(4)乘法:如果a >b ,且c >0,那么ac >bc ;如果a >b ,且c <0,那么ac <bc .(5)乘方:如果a >b >0,那么a n >b n(n ∈N,且n >1). (6)开方:如果a >b >0,那么n a >nb (n ∈N,且n >1). 思考2 若a >b ,则有3+a ____2+b . 思考3 若a >b >0,则有3a ____2b . 答案: 2.思考2:> 思考3:>一层练习1.设a ,b ,c ∈R 且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3答案: D2.(2014·四川高考理科)若a >b >0,c <d <0,则一定有( ) A.a c >bd B.a c <b d C.a d >b c D.a d <b c解析:选D.因为c <d <0,所以-c >-d >0,即得1-d >1-c >0,又a >b >0.得a-d>b-c,从而有a d <b c.答案:D3.比较大小:(x +5)(x +7)________(x +6)2. 答案:< 4.“a >b ”与“1a>1b”同时成立的条件是________________________________________________________________________. 答案:b <0<a二层练习5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0答案:C6.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0D .-π2<α-β<π2答案:A7.如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b答案:D8.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2.其中正确的有( )A .1个B .2个C .3个D .4个 答案:B9.已知a >b >0,则a b 与a +1b +1的大小是________.答案:a b >a +1b +110.已知a >0,b >0,则b 2a +a 2b 与a +b 的大小关系是________.答案:b 2a +a 2b ≥a +b三层练习11.设x ,y ∈R ,则“x ≥1且y ≥2”是“x +y ≥3”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .即不充分也不必要条件 答案:A12.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b>1 D .lg(b -a )<0 答案:D13.(2014·山东高考理科)已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1) C .sin x >sin yD .x 3>y 3解析:选D.由a x <a y(0<a <1)知,x >y ,所以 A .y =1x 2+1在(-∞,0)递增,(0,+∞)递减,无法判断 B .y =ln(x 2+1)在(-∞,0)递减,(0,+∞)递增,无法判断 C .y =s in x 为周期函数,无法判断D .y =x 3在R 上为增函数,x 3>y 3答案:D14.设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c<b c;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________. A .① B .①② C .②③ D .①②③解析:根据不等式的性质构造函数求解. ∵a >b >1,∴1a <1b.又c <0,∴c a >c b,故①正确.构造函数y =x c.∵c <0,∴y =x c在(0,+∞)上是减函数.又a >b >1,∴a c <b c,故②正确. ∵a >b >1,-c >0,∴a -c >b -c >1.∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ), 即log b (a -c )>log a (b -c ),故③正确. 答案:D1.不等关系与不等式.(1)不等关系强调的是关系,而不等式强调的则是表示两者不等关系的式子,可用“a>b”,“a<b”,“a≠b”,“a≥b”,“a≤b”等式子表示,不等关系可通过不等式来体现;离开不等式,不等关系就无法体现.(2)将不等关系熟练化为不等式是解决不等式应用题的基础,不可忽视.2.不等式的性质.对于不等式的性质,关键是正确理解和运用,要弄清每一个性质的条件和结论,注意条件放宽和加强后,结论是否发生了变化;运用不等式的性质时,一定要注意不等式成立的条件,切不可用似乎、是或很显然的理由代替不等式的性质.特别提醒:在使用不等式的性质时,一定要搞清它们成立的前提条件.3.比较两个实数的大小.要比较两个实数的大小,通常可以归结为判断它们的差的符号(仅判断差的符号,至于确切值是多少无关紧要).在具体判断两个实数(或代数式)的差的符号的过程中,常会涉及一些具体变形,如:因式分解、配方法等.对于具体问题,如何采用恰当的变形方式来达到目的,要视具体问题而定.【金版学案】2015-2016学年高中数学 第一讲 不等式和绝对值不等式讲末检测 新人教A 版选修4-5一、选择题(每小题5分,共60分)1.若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C.b a +a b>2 D .|a |-|b |=|a -b | 答案: D2.若a >0,b >0,a +b =2,则ab +1ab的最小值为( )A .2B .3C .4D .2 2解析:由a >0,b >0,2=a +b ≥2ab 得0<ab ≤1,令t =ab ,则t ∈(0,1].因为y =t +1t在(0,1]上为减函数,所以当t =1时,y min =2.答案:A 3.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析:∵(x -a )(x +a )<1对任意实数x 成立,∴(x -a )(1-x -a )<1对任意实数x成立,∴x 2-x -a 2+a +1>0对任意实数x 成立,∴1-4(-a 2+a +1)<0,∴-12<a <32.答案:C4.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不恒成立的是( ) A.b a >c a B.b -ac>0 C.b 2c >a 2c D.a -c ac<0 解析:∵c <b <a 且ac <0,∴a >0,c <0.由b >c ,a >0,即1a >0可得b a >c a .故A 恒成立.∵b <a ,∴b -a <0,又c <0,∴b -a c>0.故B 恒成立.∵c <a ,∴a -c >0,又ac <0,∴a -cac<0.故D 恒成立.当b =-2,a =1时,b 2>a 2,而c <0,∴b 2c <a 2c,故C 不恒成立. 答案:C5.设a ,b ,c 均为正数,且2a=log 12a ,⎝ ⎛⎭⎪⎫12b =log 12b ,⎝ ⎛⎭⎪⎫12c=log 2c ,则( ) A .a <b <c B .c <b <aC .c <a <bD .b <a <c解析:依题意知a >0,b >0,c >0,故2a>1,0<⎝ ⎛⎭⎪⎫12b <1,0<⎝ ⎛⎭⎪⎫12c<1,∴log 12a >1,0<log 12b <1,0<log 2c <1,即0<a <12,12<b <1,1<c <2,从而a <b <c .答案:A6.若x ∈(-∞,1),则函数y =x 2-2x +22x -2有( )A .最小值1B .最大值1C .最大值-1D .最小值-1 答案:C7.若关于x 的不等式x +|x -1|≤a 有解,则实数a 的取值范围是( ) A .[1,+∞) B .[2,+∞) C .(3,+∞) D .[4,5] 答案:A8.对任意实数x ,若不等式|x +1|-|x -2|>k 恒成立,则k 的取值范围是( ) A .k <3 B .k <-3 C .k ≤3 D .k ≤-3 答案:B9.设a >b >c ,n ∈N +,且1a -b +1b -c ≥n a -c恒成立,则n 的最大值为( ) A .2 B .3 C .4 D .5 解析:因为原不等式⇔n ≤⎝⎛⎭⎪⎫1a -b +1b -c (a -c )=⎝ ⎛⎭⎪⎫1a -b +1b -c (a -b +b -c )恒成立, 所以n ≤⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫1a -b +1b -c [(a -b )+(b -c )]min=4. 答案:C10.不等式|x |>2x -1的解集为( ) A .{x |x >2或x <-1} B .{x |-1<x <2} C .{x |x <1或x >2} D .{x |1<x <2} 解析:方法一 当x <1时,2x -1<0,不等式恒成立,故选C. 方法二 |x |>2x -1]⇒⎩⎪⎨⎪⎧x >2x -1,x ≥0或⎩⎪⎨⎪⎧x <21-x ],x <0,解得x <1或x >2.答案:C11.已知命题p :不等式|x |+|x -1|>m 的解集为R ,命题q :f (x )=-(5-2m )x是减函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若不等式|x |+|x -1|>m 的解集为R ,则m <1,若函数f (x )=-(5-2m )x是减函数, 则5-2m >1,则m <2,.故p ⇒q ,q ⇒ /p . 答案:A12.不等式|2x -log 2x |<2x +|log 2x |的解集为( ) A .{x |1<x <2} B .{x |0<x <1} C .{x |x >1} D .{x |x >2}解析:因为|a -b |≤|a |+|b |,其中等号成立的条件为ab ≤0,所以由原不等式成立得 2x ·log 2x >0,所以x >1. 答案:C二、填空题(每小题5分,共20分)13.已知集合A ={x ∈R||x +3|+|x -4|≤9},B ={x ∈R|x =4t +1t-6,t ∈(0,+∞)},则集合A ∩B =______________. 解析:由集合A ={x ∈R||x +3|+|x -4|≤9}解出A ={x |-4≤x ≤5},B ={x ∈R|x =4t +1t-6,t ∈(0,+∞)}={x |x ≥ -2};故A ∩B ={x |-2≤x ≤5}.答案:{x |-2≤x ≤5} 14.已知x 1·x 2·x 3·…·x 2012=1,=且x 1,x 2,…,x 2012都是正数,则(1+x 1)(1+x 2)·…·(1+x 2012)的最小值是________.解析:∵x 1是正数,∴1+x 1≥2x 1,同理:1+x 2≥2x 2,…,1+x 2012≥2x 2012,各式相乘,得(1+x 1)·(1+x 2)·…·(1+x 2012)≥22012x 1·x 2·…·x 2012=22012.等号成立的条件为x 1=x 2=…=x 2012=1.答案:2201215.设a >b .①ac 2>bc 2;②2a >2b ;③1a <1b;④a 3>b 3;⑤a 2>b 2.其中正确的结论序号有________.解析:若c =0,①错;若a ,b 异号或a ,b 中有一个为0,则③⑤错. 答案:②④16.若a +1>0,则不等式x ≥x 2-2x -ax -1的解集为________.解析:由题意得x -x 2-2x -ax -1≥0∴x +ax -1≥0.又a +1>0,∴-a <1, ∴x ≤-a 或x >1,∴原不等式的解集为(-∞,-a ]∪(1,+∞). 答案:(-∞,a ]∪(1,+∞)三、解答题(本大题共6小题,共70分)17.(本小题满分11分)解不等式⎪⎪⎪⎪⎪⎪x -2x >1.解析:∵⎪⎪⎪⎪⎪⎪x -2x >1,∴x -2x >1或x -2x <-1,∴x 2-x -2x >0或x 2+x -2x<0,∴-1<x <0或x >2或x <-2或0<x <1.∴原不等式的解集为{x |x <-2或-1<x <0或0<x <1或x >2}.18.(本小题满分11分)设关于x 的不等式lg(|x +3|+|x -7|)>a . (1)当a =1时,解这个不等式;(2)当a 为何值时,这个不等式的解集为R? 解析:(1)当a =1时,原不等式可变形为 |x +3|+|x -7|>10,可解得其解集为 {x |x <-3或x >7}.(2)∵|x +3|+|x -7|≥|x +3-(x -7)|=10对任意x ∈R 都成立,∴lg(|x +3|+|x -7|≥lg10=1对任意x ∈R 都成立,即lg(|x +3|+|x -7|)>a 当且仅当a <1时对任意x ∈R 都成立.19.(本小题满分12分)求函数y =1x -3+x (x >3)的最小值. 解析:∵x >3,∴x -3>0,∴y =1x -3+x =⎝ ⎛⎭⎪⎫1x -3+x -3+3≥21x -3·(x -3)+3=5,当且仅当1x -3=x -3,即x =4时取等号. ∴当x =4时,函数的最小值为5.20.(本小题满分12分)设f (x )是定义在[-1,1]上的奇函数,g (x )的图像与f (x )的图像关于直线x =1对称,且当x ∈[2,3]时,g (x )=-x 2+4x -4.(1)求f (x )的解析式;(2)对于任意的x 1,x 2∈[0,1]且x 1≠x 2,求证:|f (x 2)-f (x 1)|<2|x 2-x 1|; (3)对于任意的x 1,x 2∈[0,1]且x 1≠x 2,求证:|f (x 2)-f (x 1)|≤1. (1)解析:由题意知f (x +1)=g (1-x )⇔ f (x )=g (2-x ).当-1≤x ≤0时, 2≤2-x ≤3,∴f (x )=-(2-x )2+4(2-x )-4=-x 2; 当0<x ≤1时,-1≤-x <0,∴f (-x )=-x 2.∵f (x )是奇函数,∴f (x )=⎩⎪⎨⎪⎧-x 2(-1≤x ≤0),x 2(0<x ≤1).(2)证明:∵当x 1,x 2∈[0,1]且x 1≠x 2时,0<x 1+x 2<2,∴|f (x 2)-f (x 1)=|x 22-x 21|=|(x 2-x 1)(x 2+x 1)|<2|x 2-x 1|.(3)证明:当x 1,x 2∈[0,1]且x 1≠x 2时,0≤x 21≤1,0≤x 22≤1,∴-1≤x 22-x 21≤1,即|x 22-x 21|≤1,∴|f (x 2)-f (x 1)|=|x 22-x 21|≤1.21.(本小题满分12分)已知在平面直角坐标系xOy 中,点A 的坐标为(0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C.(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 的距离的最小值.解析:(1)设M (x ,y ),由已知得B (x ,-3).又A (0,-1),所以MA →=(-x ,-1-y ),MB →=(0,-3-y ),AB →=(x ,-2).再由题意可知(MA →+MB →)·AB →=0,即(-x ,-4-2y )·(x ,-2)=0.所以曲线C 的方程为y =14x 2-2.(2)设P (x 0,y 0)为曲线C :y =14x 2-2上一点.因为y ′=12x ,所以l 的斜率为12x 0.所以直线l 的方程为y -y 0=12x 0(x -x 0),即x 0x -2y +2y 0-x 20=0.所以O 点到l 的距离d =|2y 0-x 20|x 20+4.又y 0=14x 20-2,所以d =12x 20+4x 20+4=12⎝ ⎛⎭⎪⎫x 20+4+4x 20+4≥2,当且仅当x 0=0时,等号成立,所以O 点到l 的距离的最小值为2.22.(本小题满分12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为:y =920vv 2+3v +1 600(v >0).(1)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内? (2)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少(结果可保留分数形式)?解析:(1)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64;(2)依题意,y =9203+⎝ ⎛⎭⎪⎫v +1 600v ≤9203+2 1 600=92083,当且仅当v =1 600v ,即v =40时上式等号成立, ∴y max =92083(千辆/时).第三讲柯西不等式与排序不等式1.能够利用柯西不等式求一些特定函数的最值.2.认识柯西不等式的几种不同形式,理解它们的几何意义.(1)柯西不等式向量形式:|α||β|≥|α·β|.(2)(a2+b2)(c2+d2)≥(ac+bd)2.(3) (x1-x2)2+(y1-y2)2+(x2-x3)2+(y2-y3)2≥(x1-x3)2+(y1-y3)2(通常称作平面三角不等式).3.用参数配方法讨论柯西不等式的一般情况:∑n,i=1a2i·∑n,i=1b2i≥(∑n,i=1a i b i)2.4.用向量递归方法讨论排序不等式.,1.在本讲教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本讲给出的不等式大都有明确的几何背景.学生在学习中应该把握这些几何背景,理解这些不等式的实质.2.准确记忆柯西不等式的向量形式以及其他几何形式,深刻理解其几何意义,综合提升数学应用能力.3.1 二维形式的柯西不等式1.利用柯西不等式证明不等式.2.能够利用柯西不等式求一些特定函数的最值.3.认识二维形式的柯西不等式的几种不同形式,理解它们的几何意义.1.定理1(二维形式的柯西不等式的代数形式):设a,b,c,d均为实数,则____________________________________,其中等号当且仅当________时成立.答案:(a2+b2)(c2+d2)≥(ac+bd)2ad=bc2.定理2(柯西不等式的向量形式):设α,β为两个平面向量,则________,其中等号当且仅当两个向量__________________时成立.答案:|α||β|≥|α·β|方向相同或相反(即两个向量共线)思考1 几何意义:设α,β为平面上以原点O 为起点的两个非零向量,它们的终点分别为A (a ,b ),B (c ,d ),那么它们的数量积α·β=________,而|α|=a 2+b 2,|β|=c 2+d 2,所以柯西不等式的几何意义就是________,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立.答案:ac +bd |α||β|≥|α·β|3.定理3(三角形不等式):设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则________________________________________________________________________.答案:(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 3)2+(y 1-y 3)2思考2 设a ,b ,c ,d ,m ,n 都是正实数,P =ab +cd ,Q =ma +nc ·b m +d n,则P 与Q 的大小关系是________.解析:由柯西不等式,得P =am ·b m +nc ·dn ≤am +nc ·b m +dn=Q , ∴P ≤Q . 答案:P ≤Q一层练习1.已知a ,b ∈R ,a 2+b 2=4,则3a +2b 的最大值为( ) A .4 B .213 C .8 D .9 答案:B2.设x ,y ,m ,n >0,且m x +ny=1,则u =x +y 的最小值是( ) A .(m +n )2B.m +nC .m +nD .(m +n )2答案:A3.已知a ,b >0,且a +b =1,则12a +1b 的最小值为________.解析:∵12a +1b =(a +b )⎝ ⎛⎭⎪⎫12a +1b =[(a )2+(b )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12a 2+⎝ ⎛⎭⎪⎫1b 2≥⎝⎛⎭⎪⎫a ·12a +b ·1b 2=⎝ ⎛⎭⎪⎫12+12=32+ 2.答案:32+24.若3x +4y =2,求x 2+y 2的最小值及最小值点.解析:由柯西不等式有(x 2+y 2)(32+42)≥(3x +4y )2,得25(x 2+y 2)≥4,∴x 2+y 2≥425,当且仅当x 3=y 4时等号成立,为求最小值点,需解⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4,∴⎩⎪⎨⎪⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2的最小值为425,最小值点为⎝ ⎛⎭⎪⎫625,825.二层练习5.若直线x a +y b=1通过点M (cos α,sin α),则( ) A .a 2+b 2≤1 B .a 2+b 2≥1 C.1a 2+1b 2≤1 D.1a 2+1b2≥1答案:D6.函数y =21-x +2x +1的最大值为______. 答案:37.已知2x 2+y 2=1,则2x +y 的最大值是______. 答案:38.已知x ,y ∈R ,且xy =1,则⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y 的最小值为( )A .4B .2C .1 D.14答案:A三层练习9.已知a 1-b 2+b 1-a 2=1,求证:a 2+b 2=1.证明:由柯西不等式,得(a 1-b 2+b 1-a 2)2≤[a 2+(1-a 2)][b 2+(1-b 2)]=1. 当且仅当b1-a2=1-b2a时,上式取等号,∴ab =1-a 2·1-b 2,a 2b 2=(1-a 2)(1-b 2).于是a 2+b 2=1.10.设a +b =12,求证:a 8+b 8≥127.证明:a 8+b 8=12(12+12)[(a 4)2+(b 4)2]≥12(1×a 4+1×b 4)2=12(a 4+b 4)2=12·⎣⎢⎡⎦⎥⎤12(12+12)(a 4+b 4)2=12×14{(12+12)[(a 2)2+(b 2)2]}2≥123(1×a 2+1×b 2)2=123(a 2+b 2)2=123·⎣⎢⎡⎦⎥⎤12(12+12)(a 2+b 2)2≥123×122(a +b )2=127.∴原不等式成立.11.在半径为R 的圆内,求周长最大的内接长方形.解析:如图,设内接长方形ABCD 的长为x ,则宽为4R 2-x 2,于是长方形ABCD 的周长l =2(x +4R 2-x 2)=2(1·x +1·4R 2-x 2),由柯西不等式有l ≤2[x 2+(4R 2-x 2)2]12(12+12)12=22·2R =42R ,等号成立⇔x 1=4R 2-x 21⇔x =2R ,此时宽为4R 2-(2R )2=2R ,即长方形ABCD 为正方形,故周长最大的内接长方形为正方形,其周长为42R .1.二维形式的柯西不等式是柯西不等式的最简单形式,学习柯西不等式时要注意它的几种形式间是等价的,也要关注结构形式的变化对数值的要求.2.理解柯西不等式,就要认真理解代数推导过程和向量形式、三角形式的推导过程,并从形和数两方面来理解和记忆.另外,对等号“=”取到的条件是要从推导过程来理解的.2.3 反证法与放缩法1.了解用反证法证明不等式.2.了解用放缩法证明不等式.3.提高综合应用知识解决问题的能力.1.反证法.(1)先________________,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)________的结论,以说明________不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.答案:假设要证的命题不成立矛盾假设(2)利用反证法证明不等式,一般有下面几个步骤:第一步,分清欲证不等式所涉及的条件和结论.第二步,做出与所证不等式________的假定.第三步,从____________出发,应用正确的推理方法,推出________结果.第四步,断定产生矛盾结果的原因在于开始所做的假定________,于是原证不等式________.答案:相反条件和假定矛盾不正确成立反证法经常用于证明否定性命题(结论中出现“不存在”“不可能”等字眼)、唯一性命题、结论中出现“至多”“至少”的命题、结论中出现“都是”“都不是”的命题、证明方法上直接证明较困难或在证明方向上从结论的反面着手较容易的命题.(3)用反证法证明不等式必须把握以下几点:①必须否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种情况,缺少任何一种可能的情况,反证法都是不完整的;②反证法必须从否定的结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推理论证.否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;③推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知的事实相违背等.推导出的矛盾必须是明显的;④在使用反证法时,“否定结论”在推理论证中往往作为已知使用,可视为已知条件.(4)反证法中的数学语言.反证法适宜证明存在性问题、唯一性问题、带有“至少有一个”“至多有一个”等字样的问题,或者说“正难则反”,直接证明有困难时,常采用反证法,下面我们列举一些常见个以上思考1 已知a >b >0,求证:n a >nb (n ∈N 且n >1).用反证法证明此题时第一步是:________.答案:假设n a ≤nb2.放缩法.(1)所谓放缩法,即是把要证的不等式一边适当地________(或________),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法.答案:放大 缩小(2)放缩法的主要理论依据. ①不等式的传递性;②等量加不等量为不等量;③同分子(分母)、异分母(分子)的两个分式大小的比较; ④基本不等式与绝对值不等式的基本性质; ⑤三角函数的有界性等. (3)使用放缩法的主要方法.放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标,而且要恰到好处,目标往往从要证明的结论考虑.常用的放缩法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122; 将分子或分母放大(或缩小):1k2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k>2k +k +1( k ∈R,k >1)等.(4)对不等式而言,放缩的本质是“不等式的加强”,常见的放缩有下面四种类型:①直接放缩; ②裂项放缩;③利用数列或函数的单调性放缩; ④利用基本不等式放缩.思考2 对于任何实数x ,求证:x 2-x +1≥34.证明: 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以x 2-x +1≥34.一层练习1.用反证法证明“若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个偶数”时,下列假设中正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数 答案:B2.在求证“数列2,3,5不可能为等比数列”时最好采用( ) A .分析法 B .综合法 C .反证法 D .直接法 答案:C3.设M =1210+1210+1+1210+2+…+1211-1,则( )A .M =1B .M <1C .M >1D .M 与1大小关系不定 答案:B4.A =1+12+13+ (1)与n (n ∈N *)的大小关系为________.解析:n ∈N *,当n =1时,A =n =1;当n >1时,A =1+12+13+…+1n >1+12+1+13+2+…+1n +n -1=1+(2-1)+(3-2)+…+(n -n -1)=n .综上可知,A ≥n . 答案:A ≥n二层练习5.(2014.山东高考理科·T4)用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根.B .方程x 2+ax +b =0至多有一个实根.C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根.解析:本题考查了反证法,从问题的反面出发进行假设.一元二次方程根的个数为0,1,2.因此至少有一个实根包含1根或两根,它的反面为0根.选A.答案:A6.设a ,b ,c ∈R +,则三个数a +1b ,b +1c ,c +1a( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2 答案:D7.A =1+122+132+…+1n2与2的大小关系是________.解析:A =1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n =1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n =2-1n <2. 答案:A <28.已知x ,y >0,且x +y >2.证明:1+x y ,1+y x中至少有一个小于2.证明:(反证法)设1+x y ≥2,1+y x≥2,则⎩⎪⎨⎪⎧1+x ≥2y , ①1+y ≥2x . ②由①②式可得2+x +y ≥2(x +y ), 即x +y ≤2与题设矛盾. ∴1+x y ,1+yx中至少有一个小于2.9.若数列{x n }的通项公式为x n =nn +1,求证:x 1·x 3·x 5·…·x 2n -1<1-x n1+x n. 证明:∵1-x n1+x n=1-nn +11+n n +1=12n +1,x 1·x 3·x 5·…·x 2n -1=12×34×…×2n -12n <13×35×…×2n -12n +1=12n +1. ∴x 1·x 3·x 5·…·x 2n -1< 1-x n1+x n.10.(2014·佛山一模·节选)数列{a n }的通项公式a n =4n (n +1). (1)记1c n =1a n +1a n +1,求证:对一切正整数n ,有1c 1+1c 2+1c 3+…+1c n <38;(2)求证:对一切正整数n ,有1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27. (1)证明:证法一1a n =14n 2+4n =14(1n -1n +1), 所以1c n =1a n +1a n +1=14⎝ ⎛⎭⎪⎫1n -1n +2.于是1c 1+1c 2+1c 3+…+1c n =14[⎝ ⎛⎭⎪⎫1-13+(12-14)+…+ ⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2]=14(1+12-1n +1-1n +2)<38. 证法二1c n =1a n +1a n +1=14n (n +1)+14(n +1)(n +2)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2.于是1c 1+1c 2+1c 3+…+1c n=14[⎝ ⎛⎭⎪⎫1-13+(12-14)+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+(1n -1n +2)] =14(1+12-1n +1-1n +2)<38. (2)证明:所证明的不等式为 17+123+147+…+14n 2+4n -1<27. 证法一 首先证明14n 2+4n -1<27(1n -1n +1)(n ≥2).∵14n 2+4n -1<27⎝ ⎛⎭⎪⎫1n -1n +1⇔14n 2+4n -1<27n 2+7n⇔7n 2+7n <8n 2+8n -2⇔n 2+n -2>0⇔(n -1)·(n +2)>0.∴当n ≥2时,17+123+…+14n 2+4n -1<17+27[⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]<17+27×12=27. 当n =1时,17<27.综上所述,对一切正整数n ,有 1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27.方法二14n 2+4n -1<14n 2+4n -3=1(2n -1)(2n +3)=14⎝ ⎛⎭⎪⎫12n -1-12n +3.当n ≥3时,17+123+…+14n 2+4n -1<17+123+14·[⎝ ⎛⎭⎪⎫15-19+⎝ ⎛⎭⎪⎫17-111+…+⎝ ⎛⎭⎪⎫12n -3-12n +1+⎝ ⎛⎭⎪⎫12n -1-12n +3]<17+123+14⎝ ⎛⎭⎪⎫15+17<17+114+114=27.当n =1时,17<27;当n =2时,17+123<17+17=27.综上所述,对一切正整数n ,有 1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27.三层练习11.若数列{a n }的通项公式为a n =n 2,n ∈N *,求证:对一切正整数n ,有1a 1+1a 2+…+1a n<74. 证明:①当n =1时,1a 1=1<74,∴原不等式成立.②当n =2时,1a 1+1a 2=1+14<74,∴原不等式成立. ③当n ≥3时,∵n 2>(n -1)·(n +1),∴1n 2<1(n -1)·(n +1).1a 1+1a 2+…+1a n=112+122+…+1n 2<1+11×3+12×4+…+1(n -2)n+1(n -1)·(n +1)=1+12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫12-14+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -2-1n +12⎝ ⎛⎭⎪⎫1n -1-1n +1=1+12(1-13+12-14+13-15+…+1n -2-1n +1n -1-1n +1)=1+12⎝ ⎛⎭⎪⎫1+12-1n -1n +1=74+12(-1n -1n +1)<74.∴当n ≥3时,∴原不等式成立.综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.12.已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2…的最小值记为B n ,d n =A n -B n证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1 解析:①首先{a n }中的项不能是0,否则d 1=a 1-0=2,与已知矛盾.②{a n }中的项不能超过2,用反证法证明如下:若{a n }中有超过2的项,设a k 是第一个大于2的项, {a n }中一定存在项为1,否则与d n =1矛盾. 当n ≥k 时,a n ≥2,否则与d k =1矛盾.因此存在最大的i 在2到k -1之间,使得a 1=1, 此时d i =A i -B i =2-B i ≤2-2=0,矛盾. 综上{a n }中没有超过2的项.综合①②,{a n }中的项只能是1或2.下面证明1有无数个,用反证法证明如下:若a k 为最后一个1,则d k =A k -B k =2-2=0,矛盾. 因此1有无数个.13.(2014·广东高考文科)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.解析:(1)令n =1,则S 1=a 1,S 21-(12+1-3)S 1-3(12+1)=0,即a 21+a 1-6=0,解得a 1=2或a 1= -3(舍去).(2)S 2n -(n 2+n -3)S n -3(n 2+n )=0可以整理为(S n +3)[S n -(n 2+n )]=0, 因为数列{a n }中a n >0,所以S n ≠-3,只有S n =n 2+n .当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n ,而a 1=2,所以数列{a n }的通项公式为a n =2n (n ∈N *).(3)因为1a n (a n +1)=12n (2n +1)=14·1n ⎝ ⎛⎭⎪⎫n +12<14·1⎝ ⎛⎭⎪⎫n -14⎝ ⎛⎭⎪⎫n +1-14,1⎝ ⎛⎭⎪⎫n -14⎝ ⎛⎭⎪⎫n +1-14=1n -14-1n +1-14, 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<14⎣⎢⎢⎡⎝ ⎛⎭⎪⎪⎫11-14-12-14+⎝ ⎛⎭⎪⎪⎫12-14-13-14+…+⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1n -14-1n +1-14=14⎣⎢⎢⎡⎦⎥⎥⎤11-14-1n +1-14=13-14n +3<13.故对一切正整数n ,有。
人教版高三数学选修4-5全册配套试卷-课时提升作业_六_2.1有答案
课时提升作业六比较法一、选择题(每小题6分,共18分)1.设t=a+2b,s=a+b2+1,则下列t与s的大小关系中正确的是( )A.t>sB.t≥sC.t<sD.t≤s【解析】选D.s-t=(a+b2+1)-(a+2b)=(b-1)2≥0,所以s≥t.【补偿训练】已知a>2,b>2,则( )A.ab≥a+bB.ab≤a+bC.ab>a+bD.ab<a+b【解析】选C.因为a>2,b>2,所以-1>0,-1>0,则ab-(a+b)=a+b>0.所以ab>a+b.2.(2016·商丘高二检测)给出下列命题:①当b>0时,a>b⇔>1;②当b>0时,a<b⇔<1;③当a>0,b>0时,>1⇔a>b;④当ab>0时,>1⇔a>b.其中真命题是( )A.①②③B.①②④C.④D.①②③④【解析】选A.①当b>0时,>1⇔-1>0⇔>0,即a>b⇔>1,故①正确;②当b>0时,<1⇔-1<0⇔<0,即a<b⇔<1,故②正确;结合①知③正确;由>1⇔-1>0⇔>0,知b>0时,>1⇔a>b,b<0时,>1⇔a<b,即④不正确.3.已知a>b>-1,则与的大小关系为( )A.>B.<C.≥D.≤【解析】选B.因为a>b>-1,所以a+1>0,b+1>0,a-b>0,则-=<0,所以<.二、填空题(每小题6分,共12分)4.(2016·大同高二检测)设P=a2b2+5,Q=2ab-a2-4a,若P>Q,则实数a,b满足的条件为________.【解析】P-Q=(a2b2+5)-(2ab-a2-4a)=a2b2+5-2ab+a2+4a=(ab-1)2+(a+2)2,所以,若P>Q,则实数a,b满足的条件为ab≠1或a≠-2.答案:ab≠1或a≠-25.若x<y<0,M=(x2+y2)(x-y),N=(x2-y2)(x+y),则M,N的大小关系为________. 【解析】M-N=(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y). 因为x<y<0,所以xy>0,x-y<0.所以-2xy(x-y)>0,所以M-N>0,即M>N.答案:M>N三、解答题(每小题10分,共30分)6.设A=+,B=(a>0,b>0),试比较A,B的大小.【解题指南】本题可考虑使用作商法,另外化简时可考虑使用基本不等式.【解析】因为==×=≥=1(当且仅当a=b时,等号成立).又因为B>0,所以A≥B.7.(2016·菏泽高二检测)已知a>0,b>0,求证:+≥+.【证明】-(+)=+=+=(a-b)·=≥0,所以+≥+.8.已知a,b均为实数,用比较法证明:≥(当且仅当a=b时等号成立).【证明】-=-==≥0,当且仅当a=b时等号成立,所以≥(当且仅当a=b时等号成立).一、选择题(每小题5分,共10分)1.(2016·温州高二检测)已知a>b>0且ab=1,设c=,P=log c a,N=log c b,M=log c(ab),则( )A.P<M<NB.M<P<NC.N<P<MD.P<N<M【解析】选A.因为a>b>0且ab=1,所以a>1,0<b<1,a+b>2,所以0<c<1,得P<0,N>0,M=0,即P<M<N.2.已知a>b>0,c>d>0,m=-,n=,则m与n的大小关系是( ) A.m<n B.m>n C.m≥n D.m≤n【解析】选B.因为a>b>0,c>d>0,所以ac>bd>0,>,所以m>0,n>0.又因为m2=ac+bd-2,n2=ac+bd-(ad+bc),又由ad+bc>2,所以-2>-ad-bc,所以m2>n2,所以m>n.二、填空题(每小题5分,共10分)3.已知0<x<1,a=2,b=1+x,c=,则a,b,c中最大的是________.【解析】因为0<x<1,所以a>0,b>0,c>0,又a2-b2=(2)2-(1+x)2=-(1-x)2<0,所以a2-b2<0,所以a<b.又c-b=-(1+x)=>0,所以c>b,所以c>b>a.答案:c4.比较大小:log34______log67.【解题指南】令log34=a,log67=b,利用对数运算性质,比较a-b与0的大小.【解析】设log34=a,log67=b,则3a=4,6b=7,得7·3a=4·6b=4·2b·3b,即3a-b=,显然b>1,2b>2,则3a-b=>1⇒a-b>0⇒a>b.答案:>三、解答题(每小题10分,共20分)5.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.对任意两个不相等的正数a,b,证明:a2b+ab2比a3+b3接近2ab.【证明】因为a>0,b>0,且a≠b,所以a2b+ab2>2ab,a3+b3>2ab.所以a2b+ab2-2ab>0,a3+b3-2ab>0.所以|a2b+ab2-2ab|-|a3+b3-2ab|=a2b+ab2-2ab-a3-b3+2ab=a2b+ab2-a3-b3=a2(b-a)+b2(a-b)=(a-b)(b2-a2)=-(a-b)2(a+b)<0所以|a2b+ab2-2ab|<|a3+b3-2ab|,所以a2b+ab2比a3+b3接近2ab.6.甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走.如果m≠n,问甲、乙二人谁先到达指定地点?【解析】设从出发地点至指定地点的路程为s,甲、乙二人走完这段路程所用的时间分别为t1,t2,依题意有:m+n=s,+=t2.所以t1=,t2=,所以t1-t2=-==-.其中s,m,n都是正数,且m≠n,所以t1-t2<0,即t1<t2,从而知甲比乙先到达指定地点.【方法技巧】应用不等式解决实际问题的策略(1)应用不等式解决实际问题时,关键是如何把等量关系、不等量关系转化为不等式的问题来解决,也即建立数学模型是解应用题的关键.(2)在实际应用题中解决不等式问题时,常用比较法来判断数的大小关系,若是选择题或填空题,则可用特殊值加以判断.。
人教A版高中数学选修4-5全册配套试卷含答案课时提升作业 九 3.1
课时提升作业九二维形式的柯西不等式一、选择题(每小题6分,共18分)1.(2016·泰安高二检测)若3x2+2y2≤1,则3x+2y的取值范围是( )A.[0,]B.[-,0]C.[-,]D.[-5,5]【解析】选C.|3x+2y|≤·≤,从而-≤3x+2y≤.2.设a,b∈R,a2+b2=3,则3a-b的最大值为( )A.30B.-30C.D.-【解析】选 C.3a-b=3a+(-1)·b≤·==,当且仅当3b=-a,即a=,b=-时等号成立.3.(2016·长春高二检测)已知a,b,c,d,m,n都是正实数,P=+,Q=·,则P与Q的大小关系为( )A.P≤QB.P<QC.P≥QD.P=Q【解析】选A.Q2=(am+cn)≥=(+)2=P2,因为a,b,c,d,m,n都是正实数,所以P≤Q.二、填空题(每小题6分,共12分)4.设x,y∈R,则(x+y)·的最小值是________.+【解析】(x+y)≥=(+)2=5+2,当且仅当·=·时,等号成立.答案:5+25.已知x>0,y>0,且+=1,则2x+y的最小值为________. 【解析】2x+y=(2x+y)=[()2+()2]≥=3+2,当且仅当·=·时,等号成立,又+=1,则此时答案:3+2【一题多解】2x+y=(2x+y)=++3≥2+3=2+3.当且仅当=,即2x2=y2时取等号.又+=1,则此时答案:2+3【拓展延伸】利用柯西不等式的关键利用柯西不等式时关键问题是找出相应的两组数,当这两组数不太容易找时,需分析、增补(特别对数字1的增补:a=1·a)、变形等.三、解答题(每小题10分,共30分)6.(2016·天津高二检测)已知m>0,n>0,m+n=p,求证:+≥,指出等号成立的条件.【解析】根据柯西不等式,得(m+n)≥=4,于是+≥=,当m=n=时等号成立.7.求函数f(x)=-的最大值.【解题指南】由二维形式的三角不等式稍作变化,即得-≤.【解析】由于f(x)=- =-=-≤=.8.已知函数f(x)=|x-4|. (1)若f(x)≤2,求x 的取值范围. (2)在(1)的条件下,求g(x)=2+的最大值.【解析】(1)由已知得,|x-4|≤2,即-2≤x-4≤2, 即2≤x ≤6,即x 的取值范围为[2,6]. (2)由2≤x ≤6可得g(x)=2+,由柯西不等式, 得g(x)≤=2.当且仅当=,即x=时,g(x)的最大值为2.一、选择题(每小题5分,共10分)1.已知a,b,x 1,x 2为互不相等的正数,若y 1=,y 2=,则y 1y 2与x 1x 2的关系为 ( )A.y 1y 2<x 1x 2B.y 1y 2=x 1x 2C.y 1y 2>x 1x 2D.不能确定【解析】选C.因为a,b,x 1,x 2为互不相等的正数, 所以y 1y 2=·== >==x 1x 2.【补偿训练】已知a,b ∈R,且P=,Q=,则P,Q 的大小关系是 ( ) A.P ≥Q B.P>Q C.P ≤Q D.P<Q 【解析】选C.因为(a 2+b 2)≥,当且仅当a ·=b ·,即a=b 时“=”成立. 所以≥+,即Q ≥P.2.函数y=+的最小值是 ( )A.20B.25C.27D.18【解题指南】由函数式的特征,两项分母x 及1-2x 的关系可表示为2·x+1-2x=1,这为创造条件利用柯西不等式提供了可能. 【解析】选B.y=+=+=[2x+(1-2x)]≥=25,当且仅当x=时等号成立.二、填空题(每小题5分,共10分)3.(2016·广州高二检测)已知函数f(x)=3+4,则函数f(x)的最大值为________.【解析】由柯西不等式知(3+4)2≤(32+42)·[()2+()2]=25.当且仅当3=4时,等号成立,因此f(x)≤5.答案:5,且a+b=1,则+的最小值是________.4.已知a,b∈R+且a+b=1,【解析】因为a,b∈R+所以+=(a+b),由柯西不等式得(a+b)≥==+.当且仅当时等号成立,此时a=-1,b=2-.答案:+【一题多解】+=(a+b)=++≥2+=+,当且仅当a=-1,b=2-时等号成立.答案:+三、解答题(每小题10分,共20分)5.(2016·天津高二检测)设x>0,y>0,且x+y=2,求+的最小值.【解题指南】利用柯西不等式求最小值,需要出现(a 2+b 2)(c 2+d 2)的结构,我们把+看作一部分,利用x+y=2构造出一部分(2-x+2-y). 【解析】因为x+y=2,根据柯西不等式,有 [(2-x)+(2-y)]= [()2+()2][()2+()2]≥=(x+y)2=4,所以+≥===2.当且仅当·=·,即x=y=1时,等号成立.所以当x=y=1时,+有最小值2.6.求证:点P(x 0,y 0)到直线Ax+By+C=0的距离为d=.【证明】设Q(x,y)是直线上任意一点,则Ax+By+C=0. 因为|PQ|2=(x-x 0)2+(y-y 0)2,A 2+B 2≠0.由柯西不等式,得 (A 2+B 2)[(x-x 0)2+(y-y 0)2]≥[A(x-x 0)+B(y-y 0)]2=[(Ax+By)-(Ax 0+By 0)]2 =(Ax 0+By 0+C)2, 所以|PQ|≥.当且仅当=时,取等号,|PQ|取得最小值. 因此,点P(x 0,y 0)到直线Ax+By+C=0的距离为d=.关闭Word 文档返回原板块。
人教版高中数学选修4-5课时提升作业 一 1.1不等式.1 Word版含答案
温馨提示:此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
课时提升作业一不等式的基本性质一、选择题(每小题分,共分).(·天津高二检测)已知>且>,则与的大小关系是( )> <≥≤【解析】选≥,所以≥.【补偿训练】(·银川高二检测)设 ()()(),则与的大小关系为( )><.无法判定【解析】选.因为()()()()()<,所以<..(·商丘高二检测)设∈(∞),则“>”是“>”成立的().充分非必要条件.必要非充分条件.充要条件.既不充分也不必要条件【解析】选.因为(),又∈(∞),所以>等价于()>,即>..若为实数,则“<<”是“<或>”的( ).充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件【解析】选.因为<<,所以同号,且<.当>>时<;当<<时>,所以“<<”是“<或>”的充分条件.而取显然有<,但不能推出<<,故“<<”是“<或>”的充分而不必要条件.二、填空题(每小题分,共分).设,若>,则实数满足的条件是.【解析】()()()().由>得条件是≠或≠.答案≠或≠.已知<<<,若,则的大小关系为.【解题指南】根据<<<可知<<<<<,再结合函数在上的单调性即可获得问题的解答.【解析】由题意可知<<<,所以<<<<<,又因为函数在上是单调递增函数,所以<<,所以<<.。
北京中国人民大学附属外国语中学高中数学选修4-5第一章《不等关系与基本不等式》测试卷(有答案解析)
一、选择题1.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .22.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c <,则a b < D .若a b >,c d >,则ac bd >3.若实数a >b ,则下列结论成立的是( ) A .a 2>b 2B .11ab<C .ln 2a >ln 2bD .ax 2>bx 24.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤5.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞B .(][),31,-∞-+∞C .(][),13,-∞-+∞D .(][),04,-∞+∞6.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd < 7.若a >b ,c 为实数,下列不等式成立是() A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知0x y >> 0m <,则下列结论正确的是( ) A .mx my > B .m m x y> C .22mx my >D .22m m x y> 9.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a1b> 10.已知等差数列{a n }的前n 项和为S n ,a 2=1,则“a 3>5”是“S 3+S 9>93”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.2x ≤是11x +≤成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分又非必要条件12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C .a b a b -<-D .2a ab <二、填空题13.若0x y >>,则()412x y x y +-的最小值是________.14.已知函数()21f x x x =--,若对任意的实数x 有()()()1f x t f x t R +-≤∈成立,则实数t 的取值范围是______.15.若不等式21x a x a a -++≥-+对于任意实数x 恒成立,则满足条件的实数a 的取值范围______.16.若关于x 的不等式14x x a -++<的解集是空集,则实数a 的取值范围是__________. 17.已知11()22f x x a x a x a x x =+-+--+-0x >()的最小值为32,则实数a =____. 18.(卷号)1570711643127808 (题号)1570711648378880 (题文)已知二次函数的图像为开口向下的抛物线,且对任意都有.若向量,,则满足不等式的取值范围为_____________.19.已知|a +b|<-c(a ,b ,c ∈R),给出下列不等式: ①a <-b -c ;②a >-b +c ;③a <b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号).20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x x =>;③()sin 02f x x x π⎛⎫=<<⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知()|1||1|f x x x =-++,不等式()4f x <的解集为M . (1)求集合M ;(2)当,a b M ∈时,证明:2|||4|a b ab +<+. 22.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 23.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()2f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.24.已知函数()()30f x x x a a =-++>. (1)若1a =,求不等式()6f x ≥的解集;(2)若()221f x a a ≥--恒成立,求实数a 的取值范围.25.已知函数()||f x x a a =-+,(1)当2a =时,求不等式()6f x ≤的解集;(2)设函数()|1|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 26.已知0a >,0b >,函数()|||2|f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥恒成立,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤;当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题2.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.3.C解析:C 【解析】 【分析】特值法排除A,B,D,单调性判断C 【详解】 由题意,可知:对于A :当a 、b 都是负数时,很明显a 2<b 2,故选项A 不正确; 对于B :当a 为正数,b 为负数时,则有11a b>,故选项B 不正确; 对于C :∵a >b ,∴2a >2b >0,∴ln 2a >ln 2b ,故选项C 正确; 对于D :当x =0时,结果不成立,故选项D 不正确; 故选:C . 【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.4.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.5.B解析:B 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
人教版高中数学选修4-5练习:第一讲复习课Word版含解析(20200621171343)
x> 2,
由
得 x>6.
x> 6
综上所示,原不等式的解集为 (- ∞, 0)∪(6,+ ∞).
归纳升华
1.|ax+ b|≤c(c> 0),|ax+b|≥c(c>0)型不等式的解法.
c> 0,则 |ax+b|≤c 等价于- c≤ax+b≤ c,|ax+ b|≥c 等价于 ax
+b≥c 或 ax+b≤- c,然后根据 a,b 的值解出即可.
所以
x+ y=1·(x+y)=
1x+
9 y
( x+ y)= xy+ 9yx+10≥2
xy· 9yx+
10= 6+10=16,
当且仅当 yx=9yx,且 1x+9y=1,
所以当 x=4,y=12 时, x+y 有最小值为 16.
法二: 因为由 1x+9y=1 得(x-1)(y-9)=9(定值 ),
且 x>0,y>0,
有“加-项、减-项” “配系数”“拆项法”“ 1 的代换”等.
x2- 2x+ 2 例 1] 已知 x>1,求函数 y= 2x-2 的最小值.
解:
x2-2x+2 (x-1)2+1 1 y= 2x-2 = 2(x-1) =2
(
x-
1)+
1 x-
1
≥ 1,
当且仅当 x-1=x-1 1,即 x=2 时,等号成立,
所以当 x=2 时, y 有最小值,最小值为 1.
归纳升华
1.利用基本不等式求最值的条件是 “一正、二定、三相等 ”,“一
正”是指各项均为正数; “二定 ”就是若积为定值则和有最小值,若
和为定值则积有最大值; “三相等 ”就是必须验证等号成立的条件,
若等号不在给定的区间内,通常利用函数的单调性求最值.
所以可把全体实数分为三部分:
【人教A版】高中数学选修4-5全册配套试卷(21份打包,含答案)课时提升作业一1.1.1
课时提升作业一不等式的基本性质一、选择题(每小题6分,共18分)1. (2019·商丘高二检测)设a,b∈(-∞,0),则“a>b”是“a->b-”成立的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【解析】选C.因为-=(a-b),又a,b∈(-∞,0),所以a>b等价于(a-b)>0,即a->b-.2. (2019·天津高二检测)已知a>-1且b>-1,则p=+与q=+的大小关系是 ( )A.p>qB.p<qC.p≥qD.p≤q【解析】选C.p-q=+=≥0,所以p≥q.【补偿训练】(2019·银川高二检测)设M= (x+5)(x+7),N=(x+6)2,则M与N的大小关系为 ( )A.M>NB.M<NC.M=ND.无法判定【解析】选B.因为M-N=(x+5)(x+7)-(x+6)2=(x2+12x+35)-(x2+12x+36)=-1<0,所以M<N.3.若a,b为实数,则“0<ab<1”是“a<或b>”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.因为0<ab<1,所以a,b同号,且ab<1.当a>0,b>0时,a<;当a<0,b<0时,b>,所以“0<ab<1”是“a<或b>”的充分条件.而取a=-1,b=1显然有a<,但不能推出0<ab<1,故“0<ab<1”是“a<或b>”的充分而不必要条件.二、填空题(每小题6分,共12分)4.设x=a2b2+5,y=2ab-a2-4a,若x>y,则实数a,b满足的条件是__________.【解析】x-y=(a2b2-2ab+1)+(a2+4a+4)=(ab-1)2+(a+2)2.由x>y得条件是ab≠1或a≠-2.答案:ab≠1或a≠-25.已知0<m<a<b,若x=sin,y=sin,z=sin,则x,y,z的大小关系为________.【解题指南】根据0<m<a<b可知:0<<<<1<,再结合函数y=sinx在上的单调性即可获得问题的解答.【解析】由题意可知:0<m<a<b,所以0<<<<1<,又因为函数y=sinx在上是单调递增函数,所以sin<sin<sin,所以x<y<z.答案:x<y<z三、解答题(每小题10分,共30分)6.已知a,b,c是正实数,求证:++≥++.【证明】由++≥0,得2-2≥0.所以++≥++.7.(2019·天水高二检测)已知α,β满足求α+3β的取值范围.【解析】设α+3β=λ(α+β)+μ(α+2β)=(λ+μ)α+(λ+2μ)β,比较系数得解得λ=-1,μ=2,由①②得-1≤-α-β≤1,2≤2α+4β≤6,两式相加,得1≤α+3β≤7,即α+3β的取值范围是[1,7].8.已知x>y>0,比较与的大小.【解析】-===,因为x>y>0,所以x-y>0,x+y>0,x2>0,x2+1>1,所以>0.所以>>0.故>.一、选择题(每小题5分,共10分)1.当a≠0时,“a>1”是“<1”的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.因为-1=,若a>1,则1-a<0,所以<0,即<1.反过来<1<0>0,当a>0时,a>1;当a<0时,a<1,即a<0,不能得出a>1.所以<1a>1,所以“a>1”是“<1”的充分而不必要条件.【误区警示】本题求解过程中易误用性质.由<1,得a>1,而误选C.2.对于0<a<1,给出下列四个不等式:①log a(1+a)<log a;②log a(1+a)>log a;③a1+a<;④a1+a>.其中成立的是 ( )A.①③B.②④C.①②D.①②③④【解析】选B.因为0<a<1,所以1+a<1+,所以①错②对;③错④对.【补偿训练】(2015·西安高二检测)下列四个不等式:①x+≥2(x≠0);②<(a>b>c>0);③>(a,b,m>0);④≥恒成立的个数是 ( )A.3B.2C.1D.0【解析】选B.①当x>0时,x+≥2=2;当x<0时,x+=-≤-2=-2;②因为a>b>0,所以<,又c>0,所以<成立;③-=,又a,b,m>0,所以b+m>0,但b-a的符号不确定,故③错误;④=≤=.二、填空题(每小题5分,共10分)3.若a,b∈R,且a>b,下列不等式:①>;②(a+b)2>(b+1)2;③(a-1)2>(b-1)2.其中不成立的是__________.【解析】①-==.因为a-b>0,a(a-1)的符号不确定,①不成立;②取a=2,b=-2,则(a+b)2=0,(b+1)2>0,②不成立;③取a=2,b=-2,则(a-1)2=1,(b-1)2=9,③不成立.答案:①②③【补偿训练】若a,b,c∈R,a>b,则下列不等式成立的是________(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【解析】①当a是正数,b是负数时,不等式<不成立;②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立;③在a>b两边同时除以c2+1,不等号的方向不变,故③正确;④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.答案:③4.(2019·广州高二检测)已知三个不等式:①ab>0;②>;③bc>ad.以其中两个作为条件,余下一个作结论,则可组成________个正确命题.【解析】若ab>0,bc>ad成立,不等式bc>ad两边同除以ab可得>.即ab>0,bc>ad?>;若ab>0,>成立,>两边同乘以ab得bc>ad.即ab>0,>?bc>ad;若>,bc>ad成立,由于-=>0,又bc-ad>0,故ab>0,所以>,bc>ad?ab>0.综上,任两个作条件都可推出第三个成立,故可组成3个正确命题.答案:3三、解答题(每小题10分,共20分)5.已知m,n是正数,证明:+≥m2+n2.【证明】因为+-m2-n2=+==.又m,n均为正实数,所以≥0,所以+≥m2+n2.6.已知a>0,b>0,试比较+与+的大小.【解析】-(+)=====.因为a>0,b>0,所以+>0,>0,又因为(-)2≥0(当且仅当a=b时等号成立),所以≥0,即+≥+(当且仅当a=b时等号成立).【补偿训练】已知a<b<c,x<y<z,则ax+by+cz,ax+cy+bz,bx+ay+cz,cx+by+az中哪一个最大?请予以证明.【解析】最大的一个是ax+by+cz,证明如下: ax+by+cz-(ax+cy+bz)=(b-c)(y-z)>0,所以ax+by+cz>ax+cy+bz,同理ax+by+cz>bx+ay+cz,ax+by+cz>cx+by+az,故结论成立.。
【人教A版】高中数学选修4-5全册配套试卷(21份打包,含答案)课时提升作业十三4.2(20200621172041)
课时提升作业十三用数学归纳法证明不等式举例一、选择题(每小题6分,共18分)1.用数学归纳法证明不等式++…+<(n≥2,n∈N+)的过程中,由n=k递推到n=k+1时不等式左边 ( )A.增加了一项B.增加了两项和C.增加了B中两项但减少了一项D.以上各种情况均不对【解析】选 C.因为n=k时,左边=++…+,n=k+1时,左边=++…+++,所以增加了两项和,少了一项.2.(2016·淮南高二检测)用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取 ( )A.2B.3C.5D.6【解析】选C.当n≤4时,2n<n2+1;当n≥5时,2n>n2+1.于是n0应取5.【补偿训练】用数学归纳法证明2n≥n2(n≥5,n∈N+)成立时第二步归纳假设的正确写法是 ( )A.假设n=k时命题成立B.假设n=k(k∈N+)时命题成立C.假设n=k(k≥5)时命题成立D.假设n=k(k>5)时命题成立【解析】选C.由题意知n≥5,n∈N+,所以应假设n=k(k≥5)时命题成立.3.(2016·长春高二检测)证明1+++…+>(n∈N*),假设当n=k时成立,当n=k+1时,左端增加的项数为 ( )A.1项B.k-1项C.k项D.2k项【解析】选D.当n=k时,不等式左端为1+++…+,当n=k+1时,不等式左端为1+++…+++…+,左端增加了+…+,共2k项.二、填空题(每小题6分,共12分)4.用数学归纳法证明“2n+1≥n2+n+2(n∈N+)”时,第一步的验证为____________. 【解析】当n=1时,21+1≥12+1+2,即4≥4成立.答案:21+1≥12+1+25.(2016·南昌高二检测)已知1+2×3+3×32+4×33+…+n·3n-1=3n(na-b)+c对一切n∈N*都成立,则a=______,b=______,c=________.【解析】当n=1时,3a-3b+c=1,当n=2时,18a-9b+c=7,当n=3时,81a-27b+c=34,解得,a=,b=c=.答案:三、解答题(每小题10分,共30分)6.(2016·广州高二检测)证明:1+++…+≥(n∈N*).【证明】(1)当n=1时,不等式为1≥1,显然成立.(2)假设当n=k时不等式成立,即1+++…+≥.那么,当n=k+1时,1+++…++≥+,而+-==>0,即+>,所以1+++…++≥,即当n=k+1时不等式也成立.综合(1)(2)得,不等式对一切正整数n都成立.7.(2016·济南高二检测)求证:+++…+>(n≥2,n∈N+).【解题指南】本题由n=k到n=k+1时的推证过程中,n=k时,首项是,尾项是,分母是从k+1开始的连续正整数,因而当n=k+1时,首项应为,尾项是,与n=k时比较,后面增加,,共三项,而不只是增加一项,且还减少了一项.【证明】(1)当n=2时,左边=+++=>,不等式成立.(2)假设n=k(k≥2,k∈N+)时,不等式成立,即++…+>,则当n=k+1时,++…++++=++…++>+>+=+=.所以当n=k+1时,不等式也成立.由(1)(2),知原不等式对一切n≥2且n∈N+都成立.8.数列{a n}满足S n=2n-a n(n∈N+).(1)计算a1,a2,a3,a4,并由此猜想通项公式a n.(2)用数学归纳法证明(1)中的猜想.【解析】(1)a1=1,a2=,a3=,a4=,由此猜想a n=(n∈N+).(2)当n=1时,a1=1,结论成立.假设n=k(k≥1)时,结论成立,即a k=,那么当n=k+1时,a k+1=S k+1-S k=2(k+1)-a k+1-2k+a k=2+a k-a k+1.所以2a k+1=2+a k,所以a k+1===.这表明当n=k+1时,结论成立.所以a n=(n∈N+).一、选择题(每小题5分,共10分)1.用数学归纳法证明:1+++…+<n(n∈N+且n>1)第一步验证n=2时,左边的项为 ( )A.1B.1+C. D.1++【解析】选D.当n=2时,左边最后一项为=,所以左边的项为1++.2.(2016·济南高二检测)已知数列的前n项和为S n,且S n=2n-a n(n∈N*),若已经算出a1=1,a2=,则猜想a n= ( )A. B.C. D.【解析】选D.因为a1=1,a2=,由S3=1++a3=6-a3,所以a3=,同理,a4=.猜想,得a n=.二、填空题(每小题5分,共10分)3.(2016·太原高二检测)在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立.猜想在n边形A1A2…A n中,类似成立的不等式为__.【解析】由题中已知不等式可猜想:+++…+≥(n≥3且n∈N*).答案:+++…+≥(n≥3且n∈N*)4.设a,b均为正实数,n∈N+,已知M=(a+b)n,N=a n+na n-1b,则M,N的大小关系为_.【解析】由贝努利不等式(1+x)n>1+nx(x>-1,且x≠0,n>1,n∈N+),知当n>1时,令x=,所以>1+n·,所以>1+n·,即(a+b)n>a n+na n-1b,当n=1时,M=N,故M≥N.答案:M≥N三、解答题(每小题10分,共20分)5.(2016·苏州高二检测)已知函数f(x)=x3-x,数列{a n}满足条件:a1≥1,且a n+1≥f′(a n+1),证明:a n≥2n-1(n∈N+).【证明】由f(x)=x3-x,得f′(x)=x2-1.因此a n+1≥f′(a n+1)=(a n+1)2-1=a n(a n+2).(1)当n=1时,a1≥1=21-1,不等式成立.(2)假设当n=k(k≥1)时,不等式成立,即a k≥2k-1.当n=k+1时,a k+1≥a k(a k+2)≥(2k-1)(2k-1+2)=22k-1.又k≥1,所以22k≥2k+1,所以当n=k+1时,a k+1≥2k+1-1,即不等式成立.根据(1)和(2)知,对任意n∈N+,a n≥2n-1都成立.6.在数列{a n}中,a1=2,a n+1=a n+2n+1(n∈N+).(1)求证{a n-2n}为等差数列.(2)设数列{b n}满足b n=2log2(a n+1-n).(n∈N+)证明:…>(n∈N+).【证明】(1)由a n+1=a n+2n+1得(a n+1-2n+1)-(a n-2n)=1,因此{a n-2n}是等差数列.(2)a n-2n=(a1-2)+(n-1)=n-1,即a n=2n+n-1,b n=2log2(a n+1-n)=2n.下面用数学归纳法证明···…·>.①当n=1时,左端=>=右端,不等式成立;②假设n=k(k≥1)时不等式成立,即···…·>,当n=k+1时,···…··>·==>.由①②知不等式···…·>对于一切n∈N+都成立.。
2022-2023高中数学选修4-5练习 :第一讲1
第一讲不等式和绝对值不等式1.1 不等式1.1.3 三个正数的算术—几何平均不等式A级基础巩固一、选择题1.若实数x,y满足xy>0,且x2y=2,则xy+x2的最小值是() A.1B.2C.3D.4解析:xy+x2=12xy+12xy+x2≥3312xy·12xy·x2=3314(x2y)2=3344=3,当且仅当12xy=x2,即x=1时,等号成立.答案:C2.若a>b>0,则a+1b(a-b)的最小值为()A.0 B.1 C.2 D.3解析:因为a+1b(a-b)=(a-b)+b+1b(a-b)≥33(a-b)·b·1b(a-b)=3,当且仅当a=2,b=1时取等号,所以a+1b(a-b)的最小值为3.答案:D3.设x ,y ,z ∈R +,且x +y +z =6,则lg x +lg x +lg z 的取值范围是( )A .(-∞,lg 6]B .(-∞,3lg 2]C .lg 6,+∞)D .3lg 2,+∞)解析:因为lg x +lg y +lg z =lg(xyz ),而xyz ≤⎝⎛⎭⎪⎪⎫x +y +z 33=23, 所以lg x +lg y +lg z ≤lg 23=3lg 2,当且仅当x =y =z =2时,取等号.答案:B4.已知x +2y +3z =6,则2x +4y +8z 的最小值为( ) A .336 B .2 2 C .12 D . 1235 解析:2x +4y +8z =2x +22y +23z ≥3326=12. 当且仅当x =2y =3z =2时等号成立. 答案:C5.若log x y =-2,则x +y 的最小值是( ) A.3322 B.2333 C.332 D.223解析:当log x y =-2,得x -2=y ,即x 2y =1,且x >0,y >0, x +y =12x +12x +y ≥3312x ·12x ·y =3232.当且仅当12x =y 时等号成立.答案:A 二、填空题6.已知正数a ,b 满足ab 2=1,则a +b 的最小值是________. 解析:因为a ,b 是正数,ab 2=1, 所以a +b =a +b 2+b2≥33ab 24=3232. 故a +b 的最小值是3232,当且仅当⎩⎪⎨⎪⎧ab 2=1,a =b 2,即⎩⎨⎧a =1232,b =32时取到最小值.答案:33227.函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52的最大值是________.解析:f (x )=14×4x (5-2x )(5-2x )≤14⎝ ⎛⎭⎪⎪⎫4x +5-2x +5-2x 33=25027, 当且仅当4x =5-2x ,即x =56时,等号成立.故函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52的最大值为25027. 答案:250278.设x ,y ,z >0且x +3y +4z =6,则x 2y 3z 的最大值是_________.解析:因为6=x +3y +4z =x 2+x2+y +y +y +4z ≥66x 2y 3z ,所以x 2y 3z ≤1,当且仅当x2=y =4z ,即x =2,y =1,z =14时,等号成立.所以x 2y 3z 取得最大值1. 答案:1 三、解答题9.θ为锐角,求y =sin θ·cos 2θ的最大值.解:y 2=sin 2θcos 2θcos 2θ=12·2sin 2θ(1-sin 2θ)(1-sin 2θ)≤12⎝ ⎛⎭⎪⎫233=427. 当且仅当2sin 2θ=1-sin 2θ,即sin θ=33时取等号.所以y max =239.10.已知a ,b ,c 为正数,求证: (a +b +c )(a 2+b 2+c 2)≥9abc . 证明:因为a ,b ,c 为正数,所以a +b +c ≥33abc ,a 2+b 2+c 2≥33a 2b 2c 2所以(a +b +c )(a 2+b 2+c 2)≥33abc ·33a 2b 2c 2=93abc ·a 2b 2c 2. 所以(a +b +c )(a 2+b 2+c 2)≥9abc , 当且仅当a =b =c 时等号成立.B 级 能力提升1.若数列{a n }的通项公式是a n =nn 3+128,则该数列中的最大项是( )A .第4项B .第6项C .第7项D .第8项解析:a n =nn 3+128=1n 2+128n =1n 2+64n +64n因为n 2+64n +64n≥33n 2·64n ·64n=48,当且仅当n 2=64n ,即n =4时,等号成立,所以a n ≤148,该数列的最大项是第4项.答案:A2.函数y =4sin 2x ·cos x 的最大值为__________,最小值为________.解析:因为y 2=16sin 2x ·sin 2x ·cos 2x =8(sin 2x ·sin 2x ·2cos 2x )≤8⎝ ⎛⎭⎪⎪⎫sin 2x +sin 2x +2cos 2x 33=8×827=6427, 所以y 2≤6427,当且仅当sin 2x =2cos 2x ,即tan x =±2时取等号.所以y max =893,y min =-89 3.答案:839 -8393.请你设计一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥,如图所示.试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?解:设OO 1为x m ,则1<x <4.由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2,于是底面正六边形的面积为6×34×(8+2x -x 2)2=332(8+2x -x 2),帐篷的体积为V (x )=332(8+2x -x 2)·⎣⎢⎡⎦⎥⎤13(x -1)+1=32(4-x )(x+2)(x +2)=34(8-2x )(x +2)(x +2)≤34⎣⎢⎢⎡⎦⎥⎥⎤(8-2x )+(x +2)+(x +2)33=16 3. 当且仅当8-2x =x +2,即x =2时取等号.即当帐篷的顶点O 到底面中心O 1的距离为2 m 时帐篷的体积最大.。
高中数学选修部分之不等式选讲新人教A版选修4-5
选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升卷(四)
绝对值三角不等式
(45分钟 100分)
一、选择题(每小题5分,共30分)
1.已知实数a,b满足ab<0,则下列不等式成立的是( )
A.|a+b|>|a-b|
B.|a+b|<|a-b|
C.|a-b|<||a|-|b||
D.|a-b|<|a|+|b|
2.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( )
A.|a+b|+|a-b|>2
B.|a+b|+|a-b|<2
C.|a+b|+|a-b|=2
D.不能比较大小
3.(2013·合肥高二检测)若关于x的不等式|x-2|+|x+3|<a的解集为 ,则实数a的取值范围为( )
A.(-∞,1]
B.(-∞,1)
C.(-∞,5]
D.(-∞,5)
4.不等式|x+3|+|x-1|≥a2-3a对任意实数x恒成立,则实数a的取值范围
为( )
A.[-1,4]
B.( -∞,-1]∪[4,+∞)
C.(-∞,-2]∪[5,+∞)
D.[-2,5]
5.(2013·青岛高二检测)若不等式x2+|2x-6|≥a对于一切实数x均成立,则实数a的最大值是( )
A. 7
B. 9
C. 5
D. 11
6.对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为( )
A.5
B.4
C. 8
D.7
二、填空题(每小题8分,共24分)
7.已知f(x)=3x+1,若当|x-1|<b时,有|f(x)-4|<a,a,b∈(0,+∞),则a,b满足的关系为.
8.若x<5,n∈N,则下列不等式:
①错误!未找到引用源。
<5错误!未找到引用源。
;②|x|lg错误!未找到引用源。
<5lg错误!未找到引用源。
;
③xlg错误!未找到引用源。
<5错误!未找到引用源。
;④|x|lg错误!未找到引用源。
<5错误!未找到引用源。
.
其中能够成立的有.(填序号)
9.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是.
三、解答题(10~11题各14分,12题18分)
10.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.
11.已知函数f(x)=x2-x+13,|x-a|<1.
求证:|f(x)-f(a)|<2(|a|+1).
12.(能力挑战题)两个加油站A,B位于某城市东akm和bkm处(a<b),一卡车从该城市出发,由于某种原因,它需要往返A,B两加油站,问它行驶在什么情况下到两加油站的路程之和是一样的?
答案解析
1.【解析】选B.因为ab<0,所以|a-b|=|a|+|b|,
又|a+b|<|a|+|b|,所以|a+b|<|a|+|b|=|a-b|.
2.【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,
当(a+b)(a-b)<0时,
|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.
【变式备选】已知p,q,x∈R,pq≥0,x≠0,则错误!未找到引用源。
2错误!未找到引用源。
.(填不等关系符号)
【解析】当p,q至少有一个为0时,错误!未找到引用源。
≥2错误!未找到引用源。
.
当pq>0时,p,q同号,则px与错误!未找到引用源。
同号,
错误!未找到引用源。
=|px|+错误!未找到引用源。
≥2错误!未找到引用源。
. 故错误!未找到引用源。
≥2错误!未找到引用源。
.
答案:≥
3.【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,
又关于x的不等式|x-2|+|x+3|<a的解集为 ,
所以a≤5.
4.【解析】选A.由绝对值的几何意义易知|x+3|+|x-1|的最小值为4,所以不等式|x+3|+|x-1|≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4.
5.【解析】选C.令f(x)=x2+|2x-6|,
当x≥3时,f(x)=x2+2x-6=(x+1)2-7≥9;
当x<3时,f(x)=x2-2x+6=(x-1)2+5≥5.
综上可知,f(x)的最小值为5,故原不等式恒成立只需a≤5即可,从而a的最大值。