第1章 集合和命题

合集下载

第一章-集合与命题

第一章-集合与命题

第一章 集合与命题 (一)集合的概念与运算 【集合的基本概念】❖ 知识点归纳 1. 集合的定义: 2. 集合的特征: 3. 集合的表示法: 4. 集合的分类: 5. 数集: 6. 集合的关系: 7. 集合的运算: 8. 集合的运算性质:❖ 例题讲解 例1(1) 已知集合{}3M x x n n ==∈Z ,,{}31N x x n n ==+∈Z ,,{}31P x x n n ==-∈Z ,,且a M ∈,b N ∈,c P ∈,设d a b c =-+,则( ).A. d M ∈B. d N ∈C. d P ∈D. 以上都不正确 (2) 若集合2442k k A x x k B x x k ⎧⎫⎧⎫ππππ==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,,,,则( ).A. A B =B. B ⊂≠AC. A ⊂≠BD.AB =∅例2 写出满足{},M a b ⊆的所有集合M .例3 已知集合{}2340A x x x x =--<∈R ,,求A N 的真子集的个数.例4 已知全集{}1,2,3,4,5,6,7,8,9U =,{}2A B =,∁{}()1,9U A B =,∁{}4,6,8U A B =,求集合A 、B .(1) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈R R ,,,;(2) {}{}22(,)23(,)213A x y y x x x B x y y x x x ==--∈==-++∈R R ,,,;(3) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈Z Z ,,,.例6同时满足下列两个条件: ①{}1,2,3,4,5M ⊆,②若a M ∈,则6a M -∈,这样的集合M 有多少个? 写出这些 集合. 例7 已知集合{}{}222280320A x x x x B x x ax a x =--<∈=-+=∈R R ,,, (1) 实数a 在什么范围内取值时,B ⊂≠A ?(2) 实数a 在什么范围内取值时,AB =∅.❖ 回顾反思 1. 主要方法:① 解决集合问题,首先要分析集合中的元素是什么; ② 抓住集合中元素的3个性质,对互异性要注意检验;③ 弄清集合元素的本质属性,正确进行“集合语言”和“文字语言”的相互转化; ④ 了解空集的意义,在解题中强化空集的意识; ⑤ 借助数轴和文氏图进行求解. 2. 易错、易漏点:① 辨清: 子集、真子集、非空真子集的区别。

集合与命题

集合与命题

A M
N
(B)M
N
(C)M
N
DM
N
Ex:已知非空集合 M 1, 2, 3, 4, 5 ,且若 a M ,则 6 a M , 求集合M的个数 23-1=7 7个
6 .集合的运算: ①交集:A B { x x A 且 x B }
A
B
A
B
A B
a [ 1,1]
二、命题:
1.四种命题的关系: 原命题 若p则q 互 否 否命题 若 p 则q 互 逆 互 为 为 互 否 逆 逆 否 互 逆 逆命题 若q则p 互 否 逆否命题 若 q 则p
注:同真同假的命题是一对等价命题,互为逆否 的命题同真假,所以是一对等价命题。
关键词 都是 都不是 一定是 至多有一个 至少有一个 所有的(任意一个) p或q p且q 正数
sin (3)在 A B C 中,p:
A sin B ,
q:tan
A tan B
既非充分又非必要条件
(4)对于实数x,y,p: y 8, q: 2 或 x x
y 6
充分非必要条件
Ex: 下列四个条件中,p是q的必要不充分条件是( D )
A. p : a b, q : a b ; B . p : a b, q : 2 2 ;
否定 不都是
至少有一个是
一定不是 至少有两个 一个都没有 存在一个
p且 q
p或 q
非正数
B Ex:下列四个命题中的假命题是 (A)存在这样的α和β的值,使得 cos(α+β)=cosαcosβ+sinαsinβ; (B)不存在这样的α和β的值,使得 cos(α+β)=cosαcosβ+sinαsinβ; (C)对任意的α和β的值,cos(α+β)=cosαcosβsinαsinβ; (D)不存在这样的α和β的值,使得 cos(α+β)≠cosαcosβ-sinαsinβ;

高中数学高考02第一章 集合与常用逻辑用语 1 2 命题及其关系、充分条件与必要条件

高中数学高考02第一章 集合与常用逻辑用语  1 2 命题及其关系、充分条件与必要条件
所以“a∥b”是“tan θ=12成立”的必要不充分条件.
师生共研
题型三 充分、必要条件的应用
例2 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}. 由x∈P是x∈S的必要条件,知S⊆P.
解析 依题意,可得(-1,4) (2m2-3,+∞), 所以2m2-3≤-1,解得-1≤m≤1.
(2)设n∈N*,则一元二次方程x2-4x+n=0有整数根的充要条件是n=__3_或__4_. 解析 由Δ=16-4n≥0,得n≤4, 又n∈N*,则n=1,2,3,4. 当n=1,2时,方程没有整数根; 当n=3时,方程有整数根1,3, 当n=4时,方程有整数根2.综上可知,n=3或4.
5.有下列命题:
①“若x+y>0题;
③“若m>1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中正确的是
A.①②③
B.②③④
√C.①③④
D.①④
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∴充分性不成立;
取 α=3π,β=136π,sin α>sin β,但 α<β,必要性不成立.
故“α>β”是“sin α>sin β”的既不充分也不必要条件.
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的
√A.充分不必要条件
C.充要条件
B.必要不充分条件 D.既不充分也不必要条件

高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。

01-集合命题及简易逻辑

01-集合命题及简易逻辑

暑期复习第一课:集合、命题及简易逻辑复习复习要求:1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质。

5、理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义知识点:定义:一组对象的全体形成一个集合. 特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图 分类:有限集、无限集.数集:自然数集N 、整数集Z 、有理数集Q 、实数集R 、正整数集N *、空集φ. 关系:属于∈、不属于∉、包含于⊆(或⊂)、真包含于、集合相等=. 运算:交运算A ∩B ={x|x ∈A 且x ∈B};并运算A ∪B ={x|x ∈A 或x ∈B};补运算A C U ={x|x ∉A 且x ∈U},U 为全集 性质:A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ;A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ; A ∩B =A ⇔A ∪B =B ⇔A ⊆B ;A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A ;C U (A ⋃B)=(C U A)∩(C U B). 方法:韦恩示意图, 数轴分析.注意:① 区别∈与、与⊆、a 与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A ⊆B 时,A 有两种情况:A =φ与A ≠φ.③若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有真子集的个数是n2-1, 所有非空真子集的个数是22-n。

④区分集合中元素的形式:如}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xyz x x y z G =++==。

华二数学校本教材第一章 集合与命题(定稿)

华二数学校本教材第一章 集合与命题(定稿)

第一章集合与命题Sets and Propositions我们知道,事物既有个性,也有共性.我们研究一个具体问题时,常把讨论对象限制在一定的整体范围内,便于讨论其共同性质;而对整体来说,每个对象又有着其各自的特点.这就是集合与其元素之间的基本关系.集合概念及其基本理论,称为集合论,是近、现代数学的基本语言和重要基础.一方面,许多重要的数学分支都建立在集合理论的基础上;另一方面,集合论及其思想,在越来越广泛的领域中得到应用.数学中的命题比比皆是,而连接相关命题之间的链条就是逻辑推理.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学里,集合的初步知识与命题等相关知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,基于上述原因,我们把“集合与命题”安排在高中数学的起始章.一、集合(Sets)1.1集合及其表示法(Sets and Their Expressions)在现实生活和数学中,我们经常要把一些确定的对象作为一个整体来考察研究.例如:(1)某校高一(1)班的全体学生;(2)中国运动员在历届夏、冬季奥运会上取得的所有金牌;(3)1~100之间的所有质数;(4)不等式2x-3>0的解的全体;(5)所有的平行四边形;(6)平面上到两个定点的距离相等的点的全体.我们把能够确切指定的不同对象组成的整体叫做集合(set),简称集.集合中的各个对象叫做这个集合的元素(element).对于一个给定的集合,集合中的元素是确定的,也是各不相同的,而且各元素地位相等,与顺序无关.我们把含有有限个元素的集合称为有限集(finite set),含有无限个元素的集合称为无限集(infinite set).为了研究的需要,我们把不含任何元素的集合叫做空集(empty set),记作∅.例如,方程x2+1=0的实数解组成的集合就是空集.集合通常用大写的英文字母表示,如A、B、C、……,元素通常用小写的英文字母表示,如a、b、c、…….如果a是集合A的元素,就记作a∈A,读作“a属于(belong to)A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于(not belong to)A”.数的集合简称数集,常用的数集我们一般用特定的字母表示:全体自然数组成的集合,即自然数集(natural numbers set),记作N;不包括零的自然数组成的集合,即正整数集,记作N*;全体整数组成的集合,即整数集(set of integer),记作Z;全体有理数组成的集合,即有理数集(rational numbers set),记作Q;全体实数组成的集合,即实数集(set of real numbers ),记作R .我们还把正整数集、负整数集、正有理数集、负有理数集、正实数集、负实数集分别表示为Z +、Z -、Q +、Q -、R +、R -.集合的表示方法通常有两种,即列举法和描述法:把集合中的元素一一列举出来,写在大括号内表示集合的方法称为列举法.如:{1,3,5,7,9},{x 2,3x -2,x +7y 3,x 2-4y 2}.在大括号内,先写出此集合中元素的一般形式,再划一条竖线,在竖线后面写上集合中的元素的公共属性,即A ={x | x 满足性质P },这种表示集合的方法称为描述法.如:不等式2x -3>0的解集可表示为{x | x -3>2},函数y =x +1图像上的点组成的集合可表示为{(x , y ) | y =x +1}.例1. 用适当的方法表示下列集合:(1)30的所有正因数组成的集合A ;(2)被5除余3的自然数全体组成的集合B ;(3) 二次函数y =x 2+2x -3图像上的所有点组成的集合C .解:(1)用列举法表示:A ={1,2,3,5,6,10,15,30};(2)用描述法表示:B ={x | x=5n +3, n ∈N};(3)用描述法表示:C ={(x , y ) | y =x 2+2x -3}.例2. A 是由一切能表示成两个整数的平方之差的全体整数组成的集合,试证明:(1)任意奇数都是A 的元素;(2)偶数4k -2(k ∈Z)不属于A .证明:设A ={x | x =a 2-b 2,a 、b ∈Z},(1) 设任意奇数x=2k+1,k ∈Z ,则x =k 2+2k+1-k 2=(k +1)2-k 2∈A ;(2) 反证:假设任意偶数x=4k -2,k ∈Z 属于A ,则设x =a 2-b 2,a 、b ∈Z ,于是有2(2k -1)=(a +b )(a -b ),…①在上述①式中,等号右边的a +b 与a -b 同奇同偶,则x 或为奇数,或为4的整数倍;而等号左边是2与一个奇数的积,则x 不能被4整除,由此产生矛盾.所以,原假设不成立,即“偶数4k -2(k ∈Z)不属于A ”得证.例3. 若集合{}2210,R A x ax x x =--=∈中至多有一个元素,求实数a 的取值范围.解:当0a =时,方程只有一个根12-,则0a =符合题意; 当0a ≠时,则关于x 的方程2210ax x --=是一元二次方程,由于集合A 中至多有一个元素,则一元二次方程2210ax x --=有两个相等的实数根或没有实数根,所以∆=440a +≤,解得1a ≤-.综上所得,实数a 的取值范围是{}01a a a =≤-或. 课堂活动·大家谈1、 集合中的元素有什么特性?集合的表示法中是如何体现这些性质的?2、 用列举法和描述法表示集合有什么区别?各有什么优势与不足?3、 通过实例分别选择自然语言、集合语言(列举法或描述法)表述不同的具体问题,感受集合语言的意义和作用,体验用集合思想去观察和思考问题的乐趣.课堂活动·自己想1、 区分∅,{∅},{0},0等符号的含义;2、集合{1,2}与集合{(1,2)}有什么区别?3、能否将“身材高大的人”组成一个集合?课外活动·自己学集合论简介集合论是德国著名数学家康托尔(George Cantor,1845-1918)于19世纪末创立的.十七世纪数学中出现了一门新的分支——微积分.在之后的一至二百年中,这一崭新学科获得了飞速发展并结出了丰硕的成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念,他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界,这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中,这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现,这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论,公理化集合论是对朴素集合论的严格处理,它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等,而这一切都是与康托尔的开拓性工作分不开的.当现在回头去看康托尔的贡献时,我们仍然可以引用当时一些著名数学家对他的集合论的评价作为我们的总结.德国伟大的数学家希尔伯特(David Hilbert,1862-1943)称康托尔的集合论是“数学精神最令人惊羡的花朵,人类理智活动最漂亮的成果”.英国数学家和哲学家罗素(Bertrand Russell,1872-1970)把康托尔的工作描述为“可能是这个时代所能夸耀的最伟大的工作”.前苏联著名的数学家科尔莫戈洛夫(Andrey Nikolaevich Kolmogorov,1903-1987)说,“康托尔的不朽功绩,在于他敢向无穷大冒险迈进.”还有如:它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一等等.课外活动·自己找借助图书馆或电脑网络系统查阅有关集合论创始人康托尔的生平简介等资料,了解其创立集合论的艰辛历程,进一步体验和学习数学家追求真理的不懈精神.习题练习·自己练1. 用描述法表示下列集合:(1){1,4,7,10,13}; (2){-2,-4,-6,-8,-10};(3) { 1,5,25,125,625 }; (4) { 0,±21,±52,±103,±174,……}. 2. 用列举法表示下列集合:(1){x | x 是15的正约数}; (2){(x ,y ) | x ∈{1,2},y ∈{1,2}}; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+-=+22),(22y x y x y x ; (4) {(x ,y ) | y =x 2-1,|x |≤2,x ∈Z}. 3. 关于x 的方程ax +b =0,当a ,b 满足条件_______时,解集是有限集;当a ,b 满足条件_________时,解集是无限集.4. 已知集合{2a ,a 2-2a }为数集,求a 的取值范围.5. 把可以表示成两个整数的平方之和的全体整数记作集合M ,试证明集合M 的任意两个元素的乘积仍属于M .6. 已知全集M ={},求集合M . 7. 已知集合(){}0121|2=+--=x x m x A 中至多含有一个元素,求实数m 的取值范围. 8. 设A ={x | x 2+(b +2)x +b +1=0,b ∈R},求A 中所有元素之和.9. 设A={x | x=m 2 –n 2,m 、n ∈ Z},问8、9、10与集合A 有什么关系?并证明你的结论.10. 设集合S ={a 0,a 1,a 2,a 3},在S 上定义运算为:a i ⊕a j = a k ,其中k 为i+j 被4除的余数,i 、j=0,1,2,3,则求满足关系式(x ⊕x )⊕a 2= a 0的x ( x ∈S )的个数.11. 设集合A ={-3,-1,2,7},集合B ={x | f (x ) >0},在下列条件下,是否存在函数f (x ),使得集合A 中恰有一个元素不是B 的元素?(1) f (x )为一次函数;(2) f (x )为二次函数.12. 已知实数集A 满足:若x ∈A ,则A xx ∈-+11. (1) 求证:当2∈A 时,A 中还有3个元素;(2) 试找寻一个实数a ,使得a ∈A ,并由此求出相应的集合A ;(3) 由上述研究过程,你能得出什么结论?1.2集合之间的关系 (Relations of Sets )考察下列集合:A={1,2},B={1,2,3,4},C={ x ︱x 2-3x+2=0},D={ x ︱x 是四边形},E={ x ︱x 是多边形}.容易发现,集合A 中的任何一个元素都是集合B 的元素,集合D 中的任何一个元素都是集合E 的元素,而集合B 中的元素3和4不是集合A 的元素,集合C 中的元素与集合A 的元素完全相同.一般地,对于两个集合A 与B ,如果集合A 中任何一个元素都是集合B 的元素,我们就说集合A 是集合B 的子集(subset ),记作B A ⊆或A B ⊇,读作“A 包含于(be contained in )B ”或“B 包含(contain)A ”.我们规定,空集包含于任何一个集合,即空集是任何集合的子集.对于两个集合A 与B ,如果有B A ⊆,且A B ⊇,我们集合A 与集合B 相等,记作A=B ,读作“集合A 等于集合B ”.如对于集合A={x ︱x=2k+1,k ∈Z }与B={x ︱x=2k -1,k ∈Z },则有A=B .对于两个集合A 与B ,如果B A ⊆,并且B 中至少有一个元素不属于A ,那么称集合A 是集合B 的真子集(proper subset ),记作A B 或B A 读作“A 真包含于B ”或“B 真包含A ”.用平面区域来表示集合之间关系的方法叫做集合的图示法,如右图所示,表示B A ⊆(A B )所用的图叫做文氏图(Venn diagram ).例1. 写出集合{a ,b ,c }的所有子集和真子集.解:集合的所有子集为∅,{a },{b },{c },{a ,b },{b ,c },{a ,c },{a ,b ,c },除了{a ,b ,c },其余七个子集均为集合{a ,b ,c }的真子集.例2. 设集合A ={a ,a 2,ab },B={1,a ,b },A=B ,求实数a ,b 的值.解:由于A=B ,则(1)若a 2=b ,ab=1,则a 3=1,即a=b=1,与集合中元素的互异性矛盾;(2)若a 2=1,ab=b ,则由集合中元素的互异性可得a=-1,b=0.例3. 已知{}Z n Z m n m x x S ∈∈+==,,3614,{}Z k k x x T ∈==,2,求证S=T .解:(1)任意x ∈S ,则存在m ,n ∈Z ,使得x=14m+36n=2(7m+18n ),令7m+18n=k ,由于m ,n ∈Z ,所以k=7m+18n ∈Z ,则x=2k ,k ∈Z ,即x ∈T ,因此S ⊆T ;(2)反之,任意x ∈T ,则存在k ∈Z ,使得x=2k ,要使得x=2k=14m+36n ,m ,n ∈Z ,则k=7m+18n=7×(-5k )+18×(2k ),可见当m=-5k ,n=2k (k ∈Z)时,x=14m+36n ,m ,n ∈Z ,即x ∈S ,因此T ⊆S . 所以,综合(1)和(2)知,S=T 得证. 课堂活动·大家谈1、 讨论符号“∈”与“⊆”的意义、区别及作用;2、 集合之间的关系与实数中的大小关系、相等关系有相似之处吗?类比实数中有关不等式的性质,研究集合的有关包含和真包含关系的性质.3、 考察数集N ,Z ,Q ,R 之间的包含关系,了解和感受数域的扩张过程.课堂活动·自己想1、 如果B A ⊆,那么集合A 与B 的关系有几种可能?2、 如何理解空集是任何集合的子集?进一步体会∅与{∅}、{0}之间的关系.3、 判断下列写法是否正确?为什么?①∅A ;②A A .课外活动·自己做试探究含n 个元素的有限集合的子集的个数.课外活动·自己学悖论悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”.这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比.悖论是自相矛盾的命题.即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的.古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力.解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念.悖论有三种主要形式:1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬).2.一种论断看起来 好像肯定是对的,但实际上却错了(似是而非的理论).3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾.事实上,悖论古已有之.一般认为,最早的悖论是古希腊的“说谎者悖论”,见于《新约全书·提多书》,属于语义学悖论.另一类悖论涉及数学中的集合论,被称为“数学悖论”或“集合论悖论”.在康托尔创立集合论不久,他自己就发现了问题,这就是1899年的“康托尔悖论”,亦称“最大基数悖论”.与此同时,还发现了其他集合论悖论,其中最著名的当属“罗素悖论”.1902年,英国数学家罗素提出了这样一个理论:以M 表示是其自身成员的集合的集合,N 表示不是其自身成员的集合的集合.然后问N 是否为它自身的成员?如果N 是它自身的成员,则N 属于M 而不属于N ,也就是说N 不是它自身的成员;另一方面,如果N 不是它自身的成员,则N 属于N 而不属于M ,也就是说N 是它自身的成员.无论出现哪一种情况都将导出矛盾的结论.1919年罗素给出了上述悖论的通俗形式,即“理发师悖论”:一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发.”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言.因为,如果他给自己理发,那么他就属于自己给自己理发的那类人.但是,招牌上说明他不给这类人理发,因此他不能自己理.如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理.由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的.课外活动·自己找借助图书馆或电脑网络系统查阅资料,了解集合论的有关著名悖论和英国哲学家、数学家罗素.习题练习·自己练1. 设集合{}{}31,,32,M x x m m Z N y y n n Z ==+∈==+∈,若,,x M y N ∈∈则x y 与集合M 、N 的关系是( )A .x y M ∈B .x y M ∉C .x y N ∈D .x y N ∉2. 设集合,,,22k M x x k Z N t t n t n n Z ππππ⎧⎫⎧⎫==∈===+∈⎨⎬⎨⎬⎩⎭⎩⎭或,则集合M 、N 的有怎样的关系?为什么?3. 已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆. 4. 已知集合⎭⎬⎫⎩⎨⎧=1,,m n m M ,{}0,,2n m m N +=,若M=N ,求m 2008+n 2009. 5. 已知集合A={0,1},B={x | x ∈A ,x ∈N ﹡} ,C={x | x ⊆ A } 则A 、B 、C 之间有怎样的关系?6. 已知集合A=},,53|{Z b a b a x x ∈+=,B=},,107|{Z n m n m y y ∈+=,判断A 与B 的关系并说明理由.7. 已知集合A={}Z b a b a x x ∈+=,,812|,B={}Z d c d c x x ∈+=,,1620|,求证A=B .8. 已知集合A={x |-2k+6< x <k 2-3},B={x |-k < x < k },若AB ,求实数k 的取值范围. 9. 设含有10个元素的集合的全部子集数为S ,其中有3个元素组成的子集数为T ,则求ST的值.10. 已知集合A={ m | m=n 2+1,n ∈N *},B={y |y=x 2-2x +2,x ∈N *},研究A 与B 的关系,并给予证明.11. 已知A={ x | 22≤≤-x },①若集合B={ x | a x ≤ },满足A ⊆B ,求a 范围;②若集合C={x | 152+≤≤-a x a },满足A ⊆C ,求a 的取值范围;③若把②中条件“A ⊆C ”改为“C ⊆A ”,求a 的取值范围.12. 设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),求k 的最大值.1.3集合之间的运算 (Operation of Sets )1. 交集考察集合A={ x | x 是我校在校女生},B={ x | x 我校高一学生}与C={ x | x 是我校高一女生}之间的关系,易知集合C 是由所有既属于集合A 又属于集合B 的元素组成的.一般地,由集合A 和集合B 的所有公共元素组成的集合,叫做A 与B 的交集(intersection).记作A ∩B ,读作“A 交B ”,即A ∩B={x |x ∈A 且x ∈B 用文氏图可以直观地表示A ∩B 的一般情况.由交集运算的定义,容易得到以下一些基本性质:(1)A ∩B= B ∩A ; (2)A ∩A=A ; (3)A ∩∅=∅;(4)A ∩B ⊆A ,A ∩B ⊆B ;(5)若A ∩B=A ,则有A ⊆B ;反之若A ⊆B ,则A ∩B=A .例1. 设集合A={(x ,y )|3x -y=7},集合B={(x ,y )|2x+y=3},求A ∩B .解:A ∩B =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+=-32,73),(y x y x y x =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧-==1,2),(y x y x ={(2,-1)}. 2. 并集一般地,由所有属于集合A 或者属于集合B 的元素组成的集合,叫做A 与B 的并集(union).记作A ∪B ,读作“A 并B ”,即A ∪B={x |x ∈A 或x ∈B }.用文氏图可以直观地表示A ∪B 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)A ∪B= B ∪A ; (2)A ∪A=A ; (3)A ∪∅= A ;(4)A ⊆A ∪B ,B ⊆A ∪B ;(5)若A ∪B=B ,则有A ⊆B ;反之若A ⊆B ,则A ∪B=B .例2.设A={x |-1<x <2},B={x |1<x <3},求A ∩B ,A ∪B .解:A ∩B={x |1<x <2},A ∪B={x |-1<x <3}.例3.已知关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B , 若A ∩B =⎭⎬⎫⎩⎨⎧-31,求A ∪B . 解: ∵A ∩B =⎭⎬⎫⎩⎨⎧-31,∴-31∈A 且-31∈B . ∴3(-31)2+p (-31)-7=0且3(-31)2-7(-31)+q =0, ∴p =-20,q =-38. 由3x 2-20x -7=0得A ={-31,7},由3x 2-7x -38=0得B ={-31,38}. ∴A ∪B ={-31,38,7}.3. 补集在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为全集(universe).若A 是全集U 的子集,由U 中不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集(complementary set),记作A C U ,读作“A 补”,即{}A x U x x A C U ∉∈=,. 用文氏图可以直观地表示A C U 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)=A C A U ∅; (2)U A C A U = ; (3)A A C C U U =)(.例4. 已知全集I={-4,-3,-2,-1,0,1,2,3,4},A={-3,a 2,a +1}, B={a -3,2a -1,a 2+1},其中a ∈R ,若A ∩B ={-3},求C I (A ∪B ).解:由a -3=-3或2a -1=-3,可求得A={-3,0,1},B={-4,-3,2},则A ∪B={-4,-3,0,1,2},C I (A ∪B )={-2,-1,3,4}.例5. 设U ={x | x <10,x ∈N *},A ∩B={3},(C u A )∩B={4,6,8},A ∩(C u B )={1,5}, 求C u(A ∪B ),A ,B .解: A ∪B 中的元素可分为三类:一类属于A 不属于B ;一类属于B 不属于A ;一类既属于A 又属于B .由(C u A )∩B ={4,6,8},即4,6,8属于B 不属于A ;由(C u B )∩A ={1,5},即1,5属于A 不属于B ;由A ∩B ={3},即3既属于A 又属于B ;又U ={x | x <10,x ∈N *}={1,2,3,4,5,6,7,8,9}, 若2属于A 不属于B ,则与(C u B )∩A ={1,5}矛盾,若2属于B 不属于A ,则与(C u A )∩B ={4,6,8}矛盾,而2∉ A ∩B ,∴2既不属于A 也不属于B ,同理7,9既不属于A 也不属于B .综上,C u (A ∪B )={2,7,9},A={1,3,5},B={3,4,6,8}.课堂活动·大家谈1. 关于集合的交、并、补的三种运算的性质是如何证明的?2. 设全集U={a ,b ,c ,d ,e },A={a ,c ,d },B={b ,d ,e },通过计算A C U ,B C U ,)(B A C U ,)(B A C U ,B C A C U U 和B C A C U U ,在发现这些集合之间的关系后给予证明,并将结论推广到一般情形.课堂活动·自己想1. 思考性质“=A C A U ∅”的意义及作用,并进一步深刻理解引入空集概念的意义和作用.2. 思考集合A ,B ,A ∩B 和A ∪B 中元素的个数有何关系?课外活动·自己学容斥原理及其应用在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.对于有限集合P ,我们用n (P )表示P 中的元素个数.容斥原理(1)如果被计数的事物有A 、B 两类,那么,A 类或B 类元素个数= A 类元素个数+B 类元素个数-既是A 类又是B 类的元素个数.即 )()()()(B A n B n A n B A n ⋂-+=⋃. 容斥原理(2)如果被计数的事物有A 、B 、C 三类,那么,A 类或B 类或C 类元素个数= A 类元素个数+ B 类元素个数+C 类元素个数-既是A 类又是B 类的元素个数-既是A 类又是C 类的元素个数-既是B 类又是C 类的元素个数+既是A 类又是B 类而且是C 类的元素个数.即 )()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=.例6 对某学校的100名学生进行调查,了解他们喜欢看球赛、看电影和听音乐的情况.其中58人喜欢看球赛,38人喜欢看电影,52人喜欢听音乐,既喜欢看球赛又喜欢看电影的有18人,既喜欢听音乐又喜欢看电影的有16人,三种都喜欢的有12人,问有多少人只喜欢听音乐?解:设A ={x | x 为喜欢看球赛的人},B ={x | x 为喜欢看电影的人},C ={x | x 为喜欢听音乐的人},则A ∩B ={x | x 为既喜欢看球赛的人又喜欢看电影的人},B ∩C ={x | x 为既喜欢听音乐又喜欢看电影的人},A ∩B ∩C ={x | x 为三种都喜欢的人},A ∪B ∪C ={x | x 为看球赛和电影、听音乐至少喜欢一种}.则)(A n =58,)(B n =38,)(C n =52,)(B A n =18,)(C B n =16,)(C B A n =12,)(C B A n =100,由)()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=得)()()()()()()()(C B A n C B n B A n C B A n C n B n A n A C n +---++= =148-(100+18+16-12)=26,所以,只喜欢听音乐的人共有n (C )-n (B ∩C )-n (C ∩A )+n (A ∩B ∩C )=52-16-26+12=22. 课外活动·自己找借助图书馆或电脑网络系统查阅英国数学家德·摩根的简介及德·摩根定理.习题练习·自己练1. 分别用集合符号表示下图的阴影部分:(1) (2)(3) (4)2. 设A={x | x >-2}, B={x |x <3}, 求A ∩B , A ∪B .3. 已知A={2,-1,x 2-x +1},B={2y ,-4,x +4},C={-1,7}, 且A ∩B=C ,求A ∪B .4. 若A 、B 、C 为三个集合,C B B A =,则一定有( )(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)=A ∅5. 已知集合A={x ︱x ≤ 2},B ={x ︱x > a },在下列条件下分别求实数a 的取值范围:(1) A ∩B =∅;(2) A ∪B =R ;(3) 1∈A ∩B .6. 设(){}N a a a A x x x f ∈≤≤=+-=,101|,36122,B A C =,{}A a a f b b B ∈==),(|,求:(1)集合C ;(2)C 的所有子集中的各个元素和的总和.7. 全集I={ x | x 为三角形},A={ x | x 为锐角三角形},B={ x | x 为钝角三角形},C={ x | x为直角三角形},D={ x | x 为斜角三角形},求()()D C C B A C I I .8. 设全集为U=Z ,{}Z k k x x M ∈==,2|,{}Z k k x x P ∈==,3|,求()P C M U .9. 已知全集I=}32,3,2{2-+a a ,若}2,{b A =,}5{=A C I ,求实数b a ,.10. 已知全集U={}20|≤X x x 是质数且,A ,B 是U 的子集,且同时满足(){}5,3=B C A U ,(){}197,=B A C U ,()(){}17 2,=B C A C U U ,求A 和B .11. 设全集(){}R y x y x U ∈=,|,,集合()⎭⎬⎫⎩⎨⎧∈=--=R x x y y x A ,123|,, ①若(){}R y x x y y x B ∈+=,,1|,=,B A U 求C;②若(){}R y x x y y x B ∈+≠=,,1|,,求()B A C U .12. 某公司有120人,其中乘轨道交通上班的84人,乘汽车上班的32人,两种都乘的18人,求:(1)只乘轨道交通上班的人数;(2)不乘轨道交通上班的人数;(3)乘坐交通工具的人数;(4)不乘交通工具而步行的人数;(5)只乘一种交通工具的人数.二、四种命题的形式(Four Forms of Propositions )1.4命题的形式及等价关系(The Forms of Propositions and Equivalent Relationship )1. 命题与推出关系在初中,我们已经知道,判断真假的语句叫做命题(proposition).命题通常用陈述句表述.正确的命题叫做真命题,错误的命题叫做假命题.一般地,命题是由题设(条件)和结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…,那么…”的形式. 命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.例1. 判断下列语句是否为命题?如果是命题,判断它们是真命题还是假命题?为什么?(1) 你是高一学生吗?(2) 过直线AB 外一点作该直线的平行线.(3) 个位数是5的自然数能被5整除.(4) 互为余角的两个角不相等.(5)竟然得到5>9的结果!(6)如果两个三角形的三个角分别对应相等,那么这两个三角形相似.解:(1)、(2)、(5)不是命题,(3)、(4)、(6)是命题,其中(4)是假命题.(1)语句“你是高一学生吗?”是疑问句,不是判断语句,所以它不是命题.(2)语句“过直线AB外一点作该直线的平行线.”是祈使句,不是判断语句,所以它也不是命题.(3)此命题为真命题.这是因为个位数是0的自然数总可以表示为10k(k∈N)的形式,而10k=5·2k,所以10k能被5整除.(4)取一个角为45°,另一个角也为45°,它们互为余角,但是它们是相等的.所以“互为余角的两个角不相等.”是假命题.(5)语句“竟然推出6>8的结果!”是感叹句,不是判断语句,所以它不是命题.(6)此命题为真命题.它是三角形相似的判定定理,在初中数学中已经给出证明.由例1的(4)可以看到,要确定一个命题是假命题,只要举出一个满足命题的条件,而不满足其结论的例子即可,这在数学中称为“举反例”.要确定一个命题是真命题,就必须作出证明,证明若满足命题的条件就一定能推出命题的结论.一般地,如果事件α成立可以推出事件β也成立,那么就说由α可以推出β,并用记号α⇒β表示,读作“α推出β”.换言之,α⇒β表示以α为条件,β为结论的命题是真命题.如果事件α成立,而事件β不能成立,那么就说事件α不能推出事件β成立,可记作αβ.换言之,α表示以α为条件,β为结论的命题是一个假命题.如果α⇒β,并且β⇒α,那么记作α⇔β,叫做α与β等价.显然,推出关系满足传递性:α⇒β,β⇒γ,那么α⇒γ.2.四种命题形式一个命题由条件和结论两部分组成,如果把原命题的条件和结论互换,所得的命题是原命题的逆命题( inverse proposition),显然它们互为逆命题.例如,命题(1)“对顶角相等”和命题(2)“相等的角是对顶角”互为逆命题.如果一个命题的条件和结论分别是另一个命题的条件的否定与结论的否定,则称这两个命题为互否命题,其中一个命题是另一个命题的否命题( negative proposition).像命题(3)“不是对顶角的角不相等”与命题(1)是互否命题.如果将一个命题的结论的否定作为条件,而将此命题的条件的否定作为结论所得到的命题叫做原命题的逆否命题( inverse negative proposition).如命题(4)“不相等的角不是对顶角”与命题(1)是互为逆否命题.若α为原命题条件,β为原命题结论,则其四种命题的形式及关系为:原命题:若α,则β;逆命题:若β,则α;否命题:若α,则β;逆否命题:若β,则α.例2. 写出命题:“若x + y = 5,则x = 3且y = 2”的逆命题、否命题和逆否命题,并判断它们的真假.解:原命题:若x + y = 5,则x = 3且y = 2.。

1.1交大附中2017届第一轮复习01-集合与命题第1讲-集合的概念及运算

1.1交大附中2017届第一轮复习01-集合与命题第1讲-集合的概念及运算

集合第1讲 集合的概念及运算【知识点归纳】1. 定义:我们常常把能够确切指定的一些对象看作一个整体,这个整体叫做集合,简称集。

根据此定义,集合中元素具有:确定性。

2. 表示法:(1)列举法。

如{1,2,3,4,5};(当集合用列举法表示的时候,其中的元素具有互异性与无序性)(2)描述法。

如A ={x │x 满足性质p};(凡具有性质p 的元素都在集合A 中,不满足性质p 的就不在其中)(3)图示法。

如韦恩图、数轴、坐标平面等。

(4)特殊集合:自然数集N 、整数集Z 、有理数集Q 、实数集R 、复数集C 、空集∅。

正整数集N *、负整数集Z -等。

(5)区间也是一种集合的表示方法。

3. 分类(按元素个数):空集、有限集、无限集。

4. 关系:(元素与集合)属于∈、不属于∉。

(集合与集合)包含于⊆、真包含于、包含⊇,真包含,集合相等=。

(1)子集:若对任意x A ∈都有x B ∈(或对任意x B ∉都有x A ∉)则A 是B 的子集,记作:A B ⊆或B A ⊇。

(2)真子集:若A B ⊆,且存在x 0∈B 但x 0∉A ,则A 是B 的真子集,记作AB ,对任何集合A 有∅⊆A ;若A ≠∅则∅A 。

(3)集合的包含:若A 是B 子集,则说A 包含于B ,或B 包含A 。

(4)集合的相等:若A B ⊆且B A ⊆,则A =B 。

(5)包含关系的性质:(1)A A ⊆;(2)A ∅⊆;(3)若A B ⊆,B C ⊆,则A C ⊆; 5. 运算:(1)交运算:A ∩B ={x │x ∈A 且x ∈B }; (2)并运算:A ∪B ={x │x ∈A 或x ∈B };(3)补运算:当A 是U 的子集时,A C u ={x │x ∈U 且x ∉A }。

运算性质:(1)A ∩A =A ∪A =A ;(2)A ∩∅=∅,A ∪∅=A ;(3)A B B A =,A B B A =;(4)()()AB C A B C A B C ==,()()A B C A B C A B C ==(5)A ∩B =A ⇔A ∪B =B ⇔A ⊆B ;(6)Φ=⋂A C A u ,U A C A u =⋃,A A C C u u =)(;(7))()()(B C A C B A C u u u ⋂=⋃,)()()(B C A C B A C u u u ⋃=⋂ 6. 常用方法:韦恩图:离散的数集的并、交、补、包含关系可画韦恩图解决。

上海市进才中学 作业册第一章 集合与命题(带答案)

上海市进才中学 作业册第一章 集合与命题(带答案)

§1.1 集合及其表示方法(1)A 组1.判断下列对象能否构成集合,能的打勾,不能的打叉。

① 上海市各区县的名称。

( )能 ② 末位数是3的自然数。

( )能 ③ 身高比较高的男生。

( )不能2.集合元素的性质: 、 、 。

确定性、互异性、无序性3.用符号,∈∉填空:①1_____}1{; ②d _____},,{c b a ; ,∈∉4.用符号,∈∉填空:①0_____N ; ②0_____∅; ③π_____Q ; ④2_____R ,,,∈∉∉∈5.用符号,∈∉填空:①1_____{(1,2)}; ②)2,1(_____)}1,2(),2,1{(;,∉∈6.确定下列集合是有限集还是无限集: ①}043|{2=--x x x 是_________;②},32|{R x x x ∈<<是_________;③},|),{(*N y Z x y x ∈∈是_________; ④},101|{*N x x x ∈≤≤-是_________; ⑤},101|{Q x x x ∈≤≤-是_________; 有限集,无限集,无限集,有限集,无限集B 组填空题7.判断下列对象能否构成集合;若能,指出是有限集还是无限集;若不能,请说明理由。

① 高一1班身高超过1.8m 的同学; ( 是 ) 有限集 ② 末位数是3的自然数; ( 是 ) 无限集 ③ NBA 篮球明星; ( 不是 ) 对象不确定 ④ 某中学的大胖子。

( 不是 ) 对象不确定8.若集合{|0.30.7,}A x x n n N ==-+∈,则 1.3- A ,0.29- A ,2- A 。

∉∉∈ 9.数集{}x x -2,1,0中的x 不能取的数的集合为 。

⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+251,251,1,0 10.若集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a = 。

0,-1 11. 若集合2{|(1)0}A x k x x k =++-=中只有一个元素,则实数k = 。

高考数学第一章集合与常用逻辑用语2第2讲命题及其关系、充分条件与必要条件理

高考数学第一章集合与常用逻辑用语2第2讲命题及其关系、充分条件与必要条件理

12/12/2021
第十五页,共四十一页。
4.已知集合 P=x|x=k+12,k∈Z,Q=x|x=k2,k∈Z,记
原命题:“x∈P,则 x∈Q”,那么,在原命题及其逆命题、
否命题、逆否命题中,真命题的个数是( )
A.0
B.1
C.2
D.4
12/12/2021
第十六页,共四十一页。
解析:选 C.因为 P=x|x=k+12,k∈Z=x|x=2k+2 1,k∈Z, Q=x|x=k2,k∈Z, 所以 P Q, 所以原命题“x∈P,则 x∈Q”为真命题, 则原命题的逆否命题为真命题. 原命题的逆命题“x∈Q,则 x∈P”为假命题, 则原命题的否命题为假命题,所以真命题的个数为 2.
12/12/2021
第二十一页,共四十一页。
(2)

|
→ AB

→ AC
|>|
→ BC
|


|
→ AB

→ AC
|2>|
→ BC
|2

AB2

A→C2

2A→B·A→C>|B→C|2,因为点 A,B,C 不共线,所以线段 AB,BC,
AC 构成一个三角形 ABC,设内角 A,B,C 对应的边分别为 a,
12/12/2021
第六页,共四十一页。
下列命题为真命题的是( A.若1x=1y,则 x=y C.若 x=y,则 x= y
答案:A
) B.若 x2=1,则 x=1 D.若 x<y,则 x2<y2
12/12/2021
第七页,共四十一页。
(教材习题改编)命题“若 a>b,则 a-1>b-1”的否命题是 () A.若 a>b,则 a-1≤b-1 B.若 a>b,则 a-1<b-1 C.若 a≤b,则 a-1≤b-1 D.若 a<b,则 a-1<b-1

高中数学必修一第一章集合与常用逻辑用语重点知识点大全(带答案)

高中数学必修一第一章集合与常用逻辑用语重点知识点大全(带答案)

高中数学必修一第一章集合与常用逻辑用语重点知识点大全单选题1、已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5答案:B分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C6、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B7、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B分析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a 2=4a4=16,解得a=±2故选:B8、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.多选题9、下列选项正确的是()A .√7∈RB .Z ∈QC .0∈∅D .∅⊆{0}答案:AD分析:根据元素与集合的关系,集合与集合的关系以及空集的概念进行判断即可.A .√7是无理数,无理数属于实数,所以√7∈R ,故正确;B .因为Z,Q 都是集合,所以不能用∈表示两者关系,故错误;C .因为∅不包含任何元素,所以0∉∅,故错误;D .因为空集是任何集合的子集,所以∅⊆{0},故正确;故选:AD.10、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为( )A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m , 因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13, 综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.填空题12、设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,则满足关系式(x ⊕x)⊕A 2=A 0的x (x ∈S )的个数为________.答案:2解析:由已知中集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,分别分析x 取A 0,A 1,A 2,A 3时,式子的值,并与A 0进行比照,即可得到答案. 当x =A 0时,(x ⊕x)⊕A 2=(A 0⊕A 0)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 1时,(x ⊕x)⊕A 2=(A 1⊕A 1)⊕A 2=A 2⊕A 2=A 4=A 0当x =A 2时,(x ⊕x)⊕A 2=(A 2⊕A 2)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 3时,(x ⊕x)⊕A 2=(A 3⊕A 3)⊕A 2=A 2⊕A 2=A 0=A 0则满足关系式(x ⊕x)⊕A 2=A 0的x(x ∈S)的个数为:2个.所以答案是:2.小提示:本题考查的知识点是集合中元素个数,其中利用穷举法对x 取值进行分类讨论是解答本题的关键.属于中档题.13、已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A ⊆B ,则实数a 的取值范围是________. 答案:a <-4或a >2分析:按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围.①当a >3即2a >a +3时,A =∅,满足A ⊆B ;.②当a ≤3即2a ≤a +3时,若A ⊆B ,则有{2a ≤a +3a +3<−1或2a >4,解得a <-4或2<a ≤3 综上,实数a 的取值范围是a <-4或a >2.所以答案是:a <-4或a >214、命题p:∀x >2,2x −3>0的否定是___________.答案:∃x >2,2x −3≤0分析:将全称命题否定为特称命题即可命题p:∀x >2,2x −3>0的否定是∃x >2,2x −3≤0,所以答案是:∃x >2,2x −3≤0解答题15、已知集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.答案:[4,5]分析:根据给定条件可得AB ,再借助集合的包含关系列式计算作答.因“x ∈A ”是“x ∈B ”的充分不必要条件,于是得AB ,而集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },因此,{a −4<1a −1≥3 或{a −4≤1a −1>3,解得4≤a <5或4<a ≤5,即有4≤a ≤5, 所以实数a 的取值范围为[4,5].。

全国通用版高中数学第一章集合与常用逻辑用语考点总结

全国通用版高中数学第一章集合与常用逻辑用语考点总结

(名师选题)全国通用版高中数学第一章集合与常用逻辑用语考点总结单选题1、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.2、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.3、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A4、若命题“∃x0∈[−1,2],−x02+2⩾a”是假命题,则实数a的范围是()A.a>2B.a⩾2C.a>−2D.a⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x0∈[−1,2],−x02+2⩾a”是假命题,则命题“∀x∈[−1,2],−x2+2<a”是真命题,当x=0时,(−x2+2)max=2,所以a>2.故选:A.5、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.6、命题∃x∈R,x2+1≤0的否定是()A.∀x∈R,x2+1>0B.∃x∈R,x2+1>0C.∀x∈R,x2+1≥0D.∃x∈R,x2+1≥0答案:A分析:根据特称命题的否定形式直接求解.特称命题的否定是全称命题,即命题“∃x∈R,x2+1≤0”的否定是“∀x∈R,x2+1>0”.故选:A7、已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5答案:B分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.8、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.9、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.10、设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案:B分析:求出集合N后可求M∩N.N=(7,+∞),故M∩N={5,7,9},2故选:B.11、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.12、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.填空题13、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).14、已知A={x∈R|2a≤x≤a+3},B={x∈R|x<-1或x>4},若A⊆B,则实数a的取值范围是________.答案:a<-4或a>2分析:按集合A为空集和不是空集两种情况去讨论即可求得实数a的取值范围.①当a>3即2a>a+3时,A=∅,满足A⊆B;.②当a≤3即2a≤a+3时,若A⊆B,则有{2a≤a+3a+3<−1或2a>4,解得a<-4或2<a≤3综上,实数a的取值范围是a<-4或a>2.所以答案是:a<-4或a>215、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)16、若命题“∃x0∈R,x02−2x0−a=0”为假命题,则实数a的取值范围是______.答案:a<−1;解析:根据命题为假得到x2−2x−a>0恒成立,计算得到答案.命题“∃x0∈R,x02−2x0−a=0”为假命题,故x2−2x−a>0恒成立.Δ=4+4a<0,故a<−1.所以答案是:a<−1.小提示:本题考查了根据命题的真假求参数,意在考查学生的推断能力.17、已知p:x>2,q:x>1,则p是q的_______________(充分条件”、“必要条件”、“充要条件”、“既不充分也不必要条件”中选择一个填空).答案:充分条件分析:根据集合关系判断即可得答案.设命题p:x>2对应的集合为A={x|x>2},命题q:x>1对应的集合为B={x|x|x>1},因为A⊊B,所以命题p是命题q的充分条件.所以答案是:充分条件.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,则q对的集合与p对应集合互不包含.解答题18、试分别用描述法和列举法表示下列集合:(1)方程x2−2=0的所有实数根组成的集合A;(2)由大于10且小于20的所有整数组成的集合B.答案:(1)A={x∈R|x2−2=0}={√2,−√2};(2)B={x∈Z|10<x<20}={11,12,13,14,15,16,17,18,19}.解析:(1)用描述法表示集合A,再解方程求出对应根,用列举法表示即可;(2)用描述法表示集合B,再列举出大于10且小于20的所有整数,用列举法表示集合B即可.(1)设x∈A,则x是一个实数,且x2−2=0.因此,用描述法表示为A={x∈R|x2−2=0}.方程x2−2=0有两个实数根√2,−√2,因此,用列举法表示为A={√2,−√2}.(2)设x∈B,则x是一个整数,即x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.小提示:本题主要考查了用描述法以及列举法表示集合,属于基础题.19、设α:m−1≤x≤2m,β:2≤x≤4,m∈R,α是β的必要条件,但α不是β的充分条件,求实数m的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4 },所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].20、已知集合A ={x|−1≤x ≤2},B ={y|y =ax +3,x ∈A },C ={y|y =2x +3a,x ∈A },(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围;答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2,由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。

第一章 集合与命题

第一章 集合与命题
空集 是任何集合的子集; 任何一个集合是它本身的子集;
9
定义 2:对于两个集合 A 与 B,如果 A B 且 B A, 那么叫做集合 A 等于集合 B ,记作 A = B(读作集合 A 等于集合 B );
定义 3:对于两个集合 A 与 B ,如果 A B ,并且 B 中 至少有一个元素不属于 A ,那么集合 A 叫做 B 的真子 集,记作: AÜ B或 B Ý A,读作 A 真包含于 B 或 B 真 包含 A .
16
5.交集的运算性质
对于任何集合A、B,有 (1)A∩B=B∩A; (2)A∩A=A; (3)A∩Ø=Ø ;
(4)A∩B ⊆ A,A∩B⊆B; (5)A∩B=A⇔A⊆B
.
17
6.并集的运算性质 (1)A∪B=B∪A; (2)A∪A=A; (3)A∪Ø=A;
(4)A∪B ⊇ A,A∪B ⊇ B; (5)A∪B=B⇔A⊆B. 7.交集、并集、补集的关系 A∩(∁UA)=Ø;A∪(∁UA)=U. 8.常见结论 (1)A∩B=A⇔A⊆B;A∪B=A⇔A⊇B; (2)A∪(∁UA)=U;A∩(∁UA)=Ø.
2.若p q, q p,即p q,则p是q充分必要条件, 简称充要条件. 也说p与q互为充要条件.
3.若p q, q p,则p是q的既不充分不必要条件. q是p的既不必要不充分条件.
31
2010年上海15
A
32
2009年上海 15
A
33
1、判别步骤:
① 认清条件和结论。 ② 考察p q和q p的真假。
• 确定性:按照明确的判断标准给定一个元素或者在这个 集合里,或者不在,不能模棱两可;
• 互异性:集合中的元素没有重复; • 无序性:集合中的元素没有一定的顺序(通常用正常的

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④命题“若m>1,则不等式mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.答案①②③解析①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则3a>3b>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一 命题及其关系例1 (2016·扬州模拟)下列命题: ①“若a 2<b 2,则a <b ”的否命题; ②“全等三角形面积相等”的逆命题;③“若a >1,则ax 2-2ax +a +3>0的解集为R ”的逆否命题; ④“若3x (x ≠0)为有理数,则x 为无理数”的逆否命题. 其中正确的命题是________.(填序号) 答案 ③④解析 对于①,否命题为“若a 2≥b 2,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确. 思维升华 (1)写一个命题的其他三种命题时,需注意: ①对于不是“若p ,则q ”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f(x)=13x-1+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P . ∴[-2,-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(1)若a =3,求A ∪B ;(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >ax |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1; ③若x =y ,则x =y ; ④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为____________. 答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数, 又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数. 当x ∈[3,4]时,x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立. 反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数. ∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________. 答案 [32,+∞)解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N*都成立,于是可得3>2λ,即λ<32.故所求λ的取值范围是[32,+∞).*14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件; ④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件. 正确的是________. 答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零, 反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n+q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1; 当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. ∴a n =pn -1(p -1),n ∈N *.又a n +1a n =p n p -p n -1p -=p ,∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ; 当n ≥2时,a n =S n -S n -1=pn -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列, ∴a 2a 1=a n +1a n =p .∴p p -p +q=p ,即p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.。

高一数学第1章知识点总结

高一数学第1章知识点总结

高一数学第1章知识点总结第一节:集合与命题集合是数学中的重要概念之一,它是由一些确定的对象所组成的整体。

集合的表示方法有描述法和列举法。

集合运算包括交集、并集、差集等,这些运算都符合一定的性质和定律。

命题是陈述句,它要么是真,要么是假。

命题的连接词有“与”、“或”、“非”等。

根据命题的连接词,可以推导出不同的命题关系,如合取、析取、否定等。

第二节:函数函数是一种特殊的关系。

对于一个函数,在定义域中的每一个元素都有唯一的映射结果。

函数的表示方法包括映射图、映射式和函数图像等。

常见的函数类型有线性函数、二次函数、指数函数等。

函数的性质有奇偶性、单调性、增减性等。

函数的运算包括函数的加法、乘法、复合函数等。

第三节:数列数列是按照一定规律排列的一组数。

数列的表示方法有通项公式、递推公式等。

常见的数列类型有等差数列、等比数列、斐波那契数列等。

数列的性质有有界性、单调性、等差性、等比性等。

数列的运算包括数列的加法、减法、乘法等。

第四节:集合的运算与函数的运算集合的运算包括交、并、差、补等。

函数的运算包括加法、减法、乘法、复合函数等。

集合的运算和函数的运算在性质和规则上具有一定的相似性。

通过集合的运算和函数的运算,可以解决一些实际问题,如集合的交集可以表示共同的特征,函数的复合可以表示一系列的动作。

第五节:数列的递推关系数列的递推关系描述了数列中第n项与前一项之间的关系。

递推关系可以用递推公式表示。

通过递推关系,可以求解出数列中的任意项。

数列的递推关系可以是线性的,也可以是非线性的。

根据递推关系的不同形式,可以计算出数列的通项公式,进而进一步研究数列的性质和规律。

总结:高一数学第1章主要介绍了集合与命题、函数、数列、集合的运算与函数的运算、数列的递推关系等知识点。

这些知识点是数学学习的基础,对于建立数学思维和解决实际问题都具有重要意义。

通过对这些知识点的学习和理解,可以为后续的数学学习打下坚实的基础。

高中数学第一章集合与逻辑1-2常用逻辑用语1-2-1命题学生用书湘教版必修第一册

高中数学第一章集合与逻辑1-2常用逻辑用语1-2-1命题学生用书湘教版必修第一册

1.2 常用逻辑用语1.2.1 命题教材要点要点一 命题1.命题的概念:可以____________________的语句叫作命题.2.命题的分类(1)真命题:________的命题叫作真命题.(2)假命题:________的命题叫作假命题.(3)猜想:________________的命题可以叫作猜想.状元随笔 (1)命题是一个陈述句,疑问句或祈使句等均不是命题,如“你今天快乐吗?”“请坐下!”等都不是命题,它们分别是疑问句和祈使句;(2)命题不一定是正确的,但可以作出正确与否的判断,常说的定理、公理等都是正确的,所以是真命题.可以作出判断,只是暂时作不出的陈述句也是命题,如著名的哥德巴赫猜想就是一个命题.要点二 命题的条件和结论如果将命题写成“若p ,则q ”的形式,就将p 叫作命题的条件,q 叫作命题的结论. 命题“若p ,则q ”为真,则记作p ⇒q ,读作“p 推出q ”;命题“若p ,则q ”为假,则记作pq ,读作“p 推不出q ”.状元随笔 (1)命题的否定就是否定命题的结论,它仍然是一个命题;(2)如果将命题的条件和结论交换一个位置,所得到的命题称为原来命题的逆命题.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)并非任何语句都是命题,只有能判断真假的陈述句才是命题.( )(2)一个命题不是真命题就是假命题.( )(3)有的命题只有结论没有条件.2.(多选)下列语句中是命题的是( )A.空集是任何集合的真子集B.请起立!C.单位向量的模为1D.你是高二的学生吗?3.下列命题是真命题的是( )A.所有素数都是奇数B.若a>b,则a-6>b-6成立C.对任意的x∈N,都有x3>x2成立D.方程x2+x+1=0有实根4.命题“若a>1,则a>0”的逆命题是________________.题型1 命题及其真假的判断例1 判断下列语句是否为命题?若是,请判断其真假,并说明理由.(1)求证√3是无理数;(2)若x∈R,则x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢吃苹果;(5)若xy是有理数,则x,y都是有理数;(6)60x+9>4.方法归纳判断一个语句是否是命题,关键是看它是否符合两个条件:“是陈述句”“可以判断真假”,祈使句、疑问句、感叹句等都不是命题.判断命题的真假,往往要综合运用日常生活和生产实践中的知识经验或数学的知识方法.跟踪训练1 判断下列命题的真假,并说明理由.(1)正方形既是矩形又是菱形;(2)当x=4时,2x+1<0;(3)若x=3或x=7,则(x-3)(x-7)=0;(4)一个等比数列的公比大于1时,该数列一定为递增数列.题型2 命题结构的分析与转化例2 把下列命题改写成“若p,则q”的形式,并判断真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.方法归纳(1)将命题改写为“若p,则q”形式的方法及原则(2)命题改写中的注意点若命题不是以“若p,则q”这种形式给出时,首先要确定这个命题的条件p和结论q,进而再写成“若p,则q”的形式.跟踪训练2 把下列命题改写成“若p,则q”的形式:(1)各位数字之和能被9整除的整数,可以被9整除;(2)能被6整除的数既能被3整除也能被2整除;(3)钝角的余弦值是负数.题型3 写出一个命题的否定和逆命题例3 写出下列命题的否定和逆命题,并判断它们的真假.(1)正数的平方根都不等于0;(2)当x=-2时,x2-x-6=0;(3)实数的平方是非负数;(4)若x,y都是奇数,则x+y是偶数.方法归纳(1)如果一个命题不是“若p,则q”的形式,则改写成这个形式后更有利于对它进行分析;(2)将一个命题的条件和结论交换位置,就变为这个命题的逆命题;将一个命题的条件不变而否定结论,就变为这个命题的否定.跟踪训练3 写出下列命题的否定和逆命题,并判断它们的真假.(1)若a=b,则a2=b2;(2)若|2x+1|≥1,则x2+x>0.课堂十分钟1.下列语句为命题的是( )A.对角线相等的四边形B.同位角相等C.x≥2D.x2-2x-3<02.下列命题中的真命题是( )A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角3.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( )A.4B.2C.0D.-34.命题“若x2<1,则-1<x<1”的逆命题是________.5.将下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知x,y为非零自然数,当y-x=2时,y=4,x=2.1.2 常用逻辑用语1.2.1 命题要点一1.判断成立或不成立2.(1)成立(2)不成立(3)暂时不知道真假[基础自测]1.答案:(1)√(2)√(3)×2.解析:AC是命题.答案:AC3.答案:B4.答案:若a>0,则a>1题型探究·课堂解透例1 解析:(1)是祈使句,不是命题.(2)因为x2+4x+4=(x+2)2≥0,所以可以判断其真假,是命题,而且是真命题.(3)是疑问句,不是命题.(4)是命题,而且是真命题,有的人喜欢吃苹果,有的人不喜欢吃苹果.(5)是命题,而且是假命题,如√7×(-√7)=-7是有理数,但√7和-√7都是无理数.(6)不是命题.这种含有未知数的语句,无法确定未知数的取值能否使不等式成立.跟踪训练1 解析:(1)是真命题.由正方形的定义知,正方形既是矩形又是菱形.(2)是假命题.x=4时,不满足2x+1<0.(3)是真命题.x=3或x=7能得到(x-3)(x-7)=0.(4)是假命题.因为当首项a1<0,公比q>1时,该数列为递减数列.例2 解析:(1)若一个数是实数,则它的平方是非负数.真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac>bc,则a>b.假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等.真命题.跟踪训练2 解析:(1)若一个整数的各位上数字之和能被9整除,则这个整数可以被9整除.(2)若一个数能被6整除,则这个数既能被3整除也能被2整除.(3)若一个角是钝角,则这个角的余弦值是负数.例3 解析:(1)命题p:“若a为正数,则a的平方根不等于0”,¬p:“若a为正数,则a的平方根不存在或等于0”,是真命题;逆命题:“若a的平方根不等于0,则a为正数”,是真命题.(2)命题p:“若x=-2,则x2-x-6=0”,¬p:“若x=-2,则x2-x-6≠0”,是假命题;逆命题:“若x2-x-6=0,则x=-2”,是假命题.(3)命题p:“若x∈R,则x2≥0”,¬p:“若x∈R,则x2<0”,是假命题;逆命题:“若x2≥0,则x∈R”,是真命题.(4)¬p:“若x,y都是奇数,则x+y不是偶数”,是假命题.逆命题:“若x+y是偶数,则x,y都是奇数”,是假命题.跟踪训练3 解析:(1)¬p:“若a=b,则a2≠b2”,是假命题.逆命题:若a2=b2,则a=b,该命题是假命题.(2)¬p:“若|2x+1|≥1,则x2+x≤0”,是假命题.逆命题:若x2+x>0,则|2x+1|≥1,该命题是真命题.[课堂十分钟]1.解析:A、C、D不能判断真假,所以不是命题,故选B.答案:B2.解析:由平面几何知识可知A、B、D三项都是错误的.答案:C3.解析:方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.答案:C4.答案:若-1<x<1,则x2<15.解析:(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知x,y为非零自然数,若y-x=2,则y=4,x=2,是假命题.。

高一数学上册 第1章 集合和命题 1.5 充分条件与必要条件课件 沪教版

高一数学上册 第1章 集合和命题 1.5 充分条件与必要条件课件 沪教版
•p:x=y;q:x2=y2 •p:x2-3x+2≠0; q: x ≠1 •p:AC=BD;q: 四边形ABCD是矩形
练习
“a和b都是偶数”是“a+b也是偶数”的_____条件; “四边相等”是“四边形是正方形”的_____条件; “x≠3”是“|x|≠3”的______条件; “x-1=0”是“x2-1=0”的________条件; “两个角是对顶角”是“这两个角相等”的___条件; 集合A = B是A∩C = B∩C的_______条件; 对于实数x,y,“xy=0”是“x2+y2=0”的_____条件;
定义:如果 p q ,
有它p足够推 q, 没有p,q不一定不成立
则说p是q的充分条件,
q是p的必要条件
如果x>0,则x≥0
有它q推p不一定行, 没它一定不行
可理解成:x>0 是x≥0 的充分条件 x≥0 是 x>0 的必要条件
运用新知
例1:下列“若p,则q”形式的命题中,哪些命题中的 p是q
的充分条件?
(3)有两角相等的三角形是等腰三角形。(4)Biblioteka a2>b2,则a>b。
(1)、(3)为真命题。 (2)、(4)为假命题。
写出命题“若x1,x2是一元二次方程ax2+bx+c=0的
两个根,则
x1
x2
b a
且x1x2
c a
”的等价命题。
新课
如果命题“若p则q”为真,则记作p q。 如果命题“若p则q”为假,则记作p q。
从集合角度理解:
p小推大q, 相当于P Q
例如:
小范围是大范围的充分条件 大范围是小范围的必要条件
1、”x>0”是”x>1”的什么条件?

第一讲 集合与命题

第一讲 集合与命题

第一讲 集合与命题第一节 集合的概念与运算一、知识梳理1、集合:把某些能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。

集合中的各个对象叫做这个集合的元素。

2、集合元素的特征:确定性、互异性、无序性3、子集:对于两个集合A 和B ,如果集合A 中任何一个元素都属于B ,那么集合A 叫作集合B 的子集,记作A B ⊆,或B A ⊇4、真子集:对于两个集合A 和B ,如果A B ⊆,并且集合B 中至少有一个元素不属于集合A ,那么集合A 叫作集合B 的真子集,记作A B Ü,或B A Ý5、相等集:对于两个集合A 和B ,如果A B ⊆,且B A ⊆,那么集合A 与B 相等,记作A B =6、空集:不含任何元素的集合,记∅。

空集是任何集合的子集,是任何非空集合的真子集。

7、交集:由集合A 和集合B 的所有公共元素组成的集合,叫作A 与B 的交集,记作{}A B x x A x B =∈∈ 且8、并集:由所有属于集合A 或者属于集合B 的元素组成的集合,叫作A 与B 的并集,记作{}A B x x A x B =∈∈ 或9、补集:记U 为全集,A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫作A 在全集U 中的补集,记作{}U A x x U x A =∈∉且ð10、对于含有n 个元素的有限集合{}12,,,n A a a a = ,其子集的个数为2n个,其真子集的个为21n -个,其非空子集的个数为21n -个,其非空真子集的个数为22n-个 11、集合的表示方法:列举法、描述法、文氏图法 12、德·摩根公式:()U UU A B A B = 痧?,()U UU A B A B =痧?二、学法点拨1、理解集合的概念,掌握集合的三种表示方法,领会集合中元素的确定性、互异性、无序性(确定性和无序性主要用于列式,互异性主要用于检验),以及元素与集合的“属于”或“不属于”关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 集合和命题元素属性是核心,特殊集合要熟记。

关系运算是基础,画轴讨论析端点。

命题形式会互写,充要条件能判断。

命题推出细思考,集合语言常应用。

【要点回顾】①元素与集合的关系:,∈∉ ②集合与集合的关系:,,⊂⊆=≠ ③集合的运算: ,,U A ð ④集合中的参数问题; ⑤命题的四种形式; ⑥充要条件的判定; ⑦子集与推出关系;主要知识:集合的运算(集合中的参数问题)、命题的四种形式、充要条件的判定、子集与推出关系(集合与逻辑的关系)。

点评:弄清集合元素是什么,画数轴讨论集合的关系及其运算,注意讨论端点的取舍,是解决集合问题的常用策略。

一、集合的表示和常见集合的记号(1)集合的表示法:列举法(枚举法)、描述法、区间表示法。

(2)空集用∅表示。

用描述法表示∅有多种形式, 如{}{}2|10,|10,x x x R x x x R ∅=+=∈=+=∈= 思考问题:∅与{}0的联系与区别是什么? (3)集合的元素具有:确定性、互异性、无序性。

(4)熟记一些常用集合及其表示:,,,,,,,,,,,N N Z Z Z Q Q Q R R R C *+-+-+-。

知道这些集合的元素特性。

注意:自然数集{}{}0,1,2,3,,,N n == 自然数,符号{}表示所有的意思,指具有某性质的全体对象构成的集合。

如:{}N =全体自然数,则是一种错误的表述。

二、元素与集合的关系:,∈∉思考问题:简述a A ∈与a A ∉的含义。

【应用举例】【例】已知集合{}221,1,1A a a a a =+---,若1A ∈,则实数a =分析:1是集合A 的一个元素,而A 有3个元素,哪个元素是1要分3种情况讨论,并要求所求出a 的值要满足A 的元素互异。

解:1,11A a ∈∴+= 或211a -=或211a a --=。

由11a +=得0a =,此时211a -=-,211a a --=-,不满足集合元素互异性要求,所以0a =不合题意。

由211a -=得a =1,1,1A =-,所以a =求。

由211a a --=得1a =-或2。

当1a =-时,2110a a +=-=,1a ∴≠-。

当2a =时,2113a a +=-=,2a ∴≠。

综上所述,所求a 的值是a =点评:要注意检验所求未知数的值是否符合题意。

【基础练习】1、a ={}|A x x x R =≤∈,则a A 。

2、已知x R ∈,则x C 。

3、已知a R +∈,则a {}2|,B x x t t R ==-∈。

4、若221{1,(1),22}A a a a a ∈=+++-,则实数a =___________。

5、集合{}2|210,A x ax x x R =++=∈的元素个数可能是 个。

6、设集合6,5A x N x Z x *⎧⎫=∈∈⎨⎬-⎩⎭,试用枚举法表示集合A = 。

7、给定三元素集合{}1,,21A x x =-,则实数x 的取值范围是 。

三、集合与集合的关系:,,=⊆Ü(1)能用自己的语言表述“,,A B A B A B =⊆Ü”中A 与B 的关系; (2)掌握子集关系;(3)会用韦恩图表示,,A B A B A B =⊆Ü; (4)会用“,,A B A B A B =⊆Ü”进行简单推理。

【应用举例】【例1】 已知集合{},,A x xy x y =+,{}0,,B x y =,且A B =,求实数x y 、的值。

解法一:,0,0A B B A =∈∴∈ 。

若0x =,则0x xy ==,这与已知矛盾,0x ∴≠ 若0xy =,又0x ≠,于是0y =,与已知矛盾,故0y ≠.()0,x y y x y x ∴+==-≠,1,1,1x y xy x y =⎧∴==∴⎨=-⎩. 解法二:A B = ,()()0||0||x xy x y x y x xy x y x y ⋅⋅+=⋅⋅⎧⎪∴⎨+++=++⎪⎩,即()()2(1)2||(2)x y x y x y x ⎧+=⎪⎨+=⎪⎩。

由(1),可知0x =或0y =或0x y +=。

若0x =或0y =均推出矛盾(不满足元素的互异性),()0,x y y x y x ∴+==-≠,()2||,1x x x x ∴-==,11x y =⎧∴⎨=-⎩【解题策略】:①解法一、解法二都是解决集合A=B 这类问题的常用方法。

②解法一利用A=B 的意义进行代数推理,确定未知数的值。

解法二则利用A=B 建立方程组求解(元素的和、积分别相等)。

两种方法各有千秋,我们要根据给定的问题能灵活选用两种方法之一解决这类问题。

【例2】已知集合{}|13,A x x x R =≤≤∈,{}22|22,B x m x m m m x R =≤≤-+∈、,且A B Ü,求实数m 的取值范围。

解:因为A B Ü,所以22221(1)223(2)22(3)m m m m m m ⎧≤⎪-+≥⎨⎪<-+⎩((1)与(2)的等号不能同时成立). 解此不等式组,得11112m m m -≤≤⎧⎪⎨≥≤-⎪⎩或,即1112m m -≤≤-=或。

又当1m =时,[]1,3B =与A B Ü矛盾,所以1m ≠。

故所求实数m 的取值范围是112m -≤≤-.点评:要认真分析所求未知数的取值是否符合题意,同时对于解决有关集合的问题要注意讨论端点的情况。

【基础练习】1、 已知R α∈,集合{}{}2sin ,cos ,1,sin ,sin cos ,0A B ααααα==+,且A=B ,则20102010sincos αα+=( )(A )0 (B )1± (C )1 (D )1-0 2m 1 3 222m m -+ x2、 已知x y R ∈、,集合{}{}2222,,,,,0A x y x y xy B x y x y =-+=+-,且A=B ,则x y += .3、 集合{}{}()2,,,,,20,P a aq aq Q a a d a d a a d q R ==++≠∈、、,且P Q =,则q =4、集合2{1,,},{,,}A a b B a a ab ==,且A B =,则实数a =_____、b =___________。

5、集合{}{}2|320,|10M x x x N x ax =-+==+=,若N M ⊆,则满足题意的实数a 组成的集合P = 。

6、集合{}{}2|20,,|20,A x x x x R B x x a x R =+-≤∈=+<∈,若A B ⊆,则实数a 的取值范围是 。

7、已知a b R ∈、,集合{}2,,1,,,0b A a B a a b a ⎧⎫==+⎨⎬⎩⎭,若A=B ,则20092010a b += 8、 已知集合{}0,2,4M ⊆,请写出满足条件的所有集合M : . 9、 集合{}{}2,,2,2,3,5,8A a a B =+=,且A B Ü,则实数a = .10、已知集合{}{}2|160,,|3,A x x x R B x x a x R =-≤∈=-≤∈,若A B ⊇,求实数a的取值范围。

11、已知集合{}{}222|320,|430A x x x B x x ax a =++<=-+<且A B Ü,求实数a 的取值范围。

12、集合{}{}2|30,,|560A x ax x R B x x x =+=∈=-+=,若A B ⊆,求实数a 的取值范围。

13、集合{}{}2|1,|1A x ax B x x ====,若A B ⊆,则实数a 组成的集合为*14、集合(){}{},,lg ,0,,A x y xy B x y ==,且A=B ,则x y 与满足的条件是 . *15、集合{}{}8,,,,1,,,A x y z B xy xz yz ==,若A B N =Ü,则x y z ++= .四、集合的运算:U 、、ð(1)掌握集合的交、并、补运算。

(2)能熟练地用韦恩图表示集合的运算。

(3)会求几个集合的交、并集,会求已知集合的补集。

(4)会求有关集合运算中的参数取值范围。

一般地有:,;,A A B B A B A B A A B B ⊆⊆⊆⊆ ,;,A A A A A A A A A =∅==∅=∅,U U U U ∅==∅ 痧【应用举例】【例1】已知全集{}{}{},,,,,,,,,,,,U a b c d e f A a e f B a b c e ===,求A B 、A B 、()()UUA B 痧、()U A B ð解:{}{}{},,,,,,,,,,,,U a b c d e f A a e f B a b c e ==={}{},,,,,,A B a b c e f A B a e ∴== {}{},,,,U U A b c d B d f ==痧()(){},,,U U A B b c d f ∴= 痧,(){},,,U A B b c d f = ð点评:一般地()U A B = ð()()U UA B 痧,()U A B = ð()()U U A B 痧。

【例2】已知集合{}{}2|1030,|121A x x x B x m x m =+-≥=+≤≤-,当A B =∅ 时,求实数m 的取值范围。

解:把{}2|1030A x x x =+-≥化简为{}|25,A x x x R =-≤≤∈,又A B =∅ ,由图可知,有212121m m m -<-⎧⎨+<-⎩(Ⅰ)或15121m m m +>⎧⎨+<-⎩(Ⅱ)解(Ⅰ)得m ∈∅,解(Ⅱ)得4m >。

故所求实数m 的取值范围是4m >。

点评:解决有关集合中的参数问题,或求集合的交、并、补运算,通常用画数轴加以讨论,并注意讨论端点的取舍,方可避免遗漏和重复。

【基础练习】1、已知集合{}{}{}22,1,3,3,21,1,3M m m N m m m M N =+-=--+=- ,则m = 。

2、全集{}{}{}1,2,3,4,5,6,1,2,5,2,3,4U A B ===,则A B = ,()()UUA B = 痧 ,()()U U A B = 痧 。

3、已知集合{}{}|1,|P x x Q x x a =≤=>,若P Q =∅ ,则实数a 的取值范围是 。

4、已知全集{}{}2,|12,|680U R A x x B x x x ==-≥=-+<,则()U A B = ð 。

相关文档
最新文档