2015七年级数学下册第一月月考试题
七下数学第一次月考试卷
①2121②12③12④123(第三题)2014——2015学年度第二学期七年级数学第一次月考试卷一、选择题:(每小题2分,共20分)1、下列哪个图形是由左图平移得到的( )BD2、下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④ 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140°4、如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D5、下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个6、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 7、如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对8、.如图2,直线,AB CD 相交于点E ,DF AB ∥. 若100AEC ∠=°,则D ∠等于( )EDC BA4321E DC BACA EBA A .70°B .80°C .90°D .100°9、如右图,CD AB //,且25=∠A ,45=∠C ,则E ∠的度数是( ) A.60 B.70 C.110 D.8010若B ∠和E ∠的两边分别平行,且B ∠比E ∠的2倍少30°,则E ∠的度数为 ( )A 、30°B 、70°C 、30°或70°D 、100° 二、填空题(每小题3分,共15分)11、把命题“等角的余角相等”写成“如果……,那么……”的形式为 。
2015年春七年级下数学第一次月考试题(新人教版)
_5 _4_3_2 _1 第7题图 第18题图A BC a b1 23 2015年春七年级下数学第一次月考试题(新人教版)一、选择题(每题3分,共30分。
) 1、).A. ±2 B. 2 C.-2 D.4. 2、下面四个图形中,∠1与∠2是对顶角的图形( )3、下列各式中,正确的是( )A. 6.06.3-=-B. 3355-=-C.13)13(2-=- D.636±=4、如图AD ⊥BC, ∠CAB=90°,则点C 到AB 所在直线的距离是 ( ) A 、2.46cm B 、4.64cm C 、3.94cm D 、以上都不对5、有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误..的是( ) A .①②③ B .①②④ C .②③④ D .①③④6、如图,在正方体ABCD-EFGH 中,下列各棱与棱AB 平行的是( ). A .BC B .CG C .EH D .HG7、如图,下列说法错误..的是( ) A 、∠1和∠3是同位角 B 、∠2和∠5内错角 C 、∠1和∠2是同旁内角 D 、∠4和∠5是同旁内角8、同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( ) A 、a ∥d B 、b ⊥d C 、a ⊥d D 、b ∥c 9、如图所示,下列推理及所注理由错误..的是( ) A .因为∠1=∠3,所以AB ∥CD (内错角相等,两直线平行) B .因为AB ∥CD ,所以∠1=∠3(两直线平行,内错角相等) C .因为AD ∥BC ,所以∠2=∠4(两直线平行,内错角相等) D .因为∠2=∠4,所以AD ∥BC (两直线平行,内错角相等) 10、在下列各数:..0.23,0.151151115,10049,0.2,π1,7,11131,327,3.14中,无理数的个数第6题图 第4题图第9题图D F 321GE CB A 是( )A. 2个B.3个C.4个D.5个二、填空题(每题3分,共30分。
2014-2015学年七年级数学第一次月考试题
2014-2015学年七年级数学第一次月考试题班级: 姓名: 成绩:一、选择题:(3*10=30分)1、有理数 13 的相反数是( )(A ) 1 3 (B )- 13 (C )3 (D )-32、已知A 地海拔高度为–53米,而B 地比A 地高30米则此时B 地的海拔高度为 ( )A 、–83米B 、–23米C 、30米D 、23米3、 在有理数3, ∣-2∣, 0, -(+5), -(-3), +(-3),│-(-1)│中,正数有:( )A.3个B.4个C.5个D.6个4、三个数 313-,-0..2,-0.22之间的大小关系是( ) A.313->-0..2>-0.22 B.313-<-0..2<-0.22 C.313-<-0.22<-0..2 D.-0..2 >-0.22>-3135、下列说法正确的是 ( ) A )与(2)21(+-互为相反数 B.5的相反数是5-C.数轴上表示-a 的点一定在原点的左边D.任何负数都小于它的相反数6、 已知不为零的a ,b 两数互为相反数,则下列各数不是互为相反数的是( )(A )5 a 与5 b . (B)a 3与b 3. (C)a 1与b 1. (D)a 2与b 2.7、绝对值等于本身的数是( )(A )正数(B )负数 (C )正数或零 (D )零 8、下列叙述正确的是( ) (A )有理数中有最大的数(B )零是整数中最小的数.(C )有理数中有绝对值最小的数.(D )若一个数的平方与立方结果相等,则这个数是0. 9、图中所画的数轴,正确的是( ) -1210-2A 21543B -1210C -1210D 10、中央电视台 “开心词典”栏目中,有一期题目如图所示,两个天平都平衡,则三个球相当于( )个正方体。
A .2 B .3 C . 4 D . 5 二、填空:(3*8=24分) 11、-4的相反数是 , 的绝对值是7. 12、绝对值最小的有理数是 .绝对值等于本身的数是 。
2015-2016七年级下第一月考数学试题
87654321DCBA图42015----2016学年度第二学期第一次月考试题七年级数学一、选择题:(本题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一项是符合要求的,将此选项的代号填入下面的答题栏内。
)题号 1 2 3 4 5 6 7 8 9 10 答案1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50° B.60°C .140°D .160°B 图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( ) A .相等B .互余C .互补D .互为对顶角4、同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( )A 、a ∥dB 、b ⊥dC 、a ⊥dD 、b ∥c5、如图4,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠86、下列句子中不是命题的是( ) A 、两直线平行,同位角相等。
B 、直线AB 垂直于CD 吗?C 、若︱a ︱=︱b ︱,则a 2 = b 2。
D 、同角的补角相等。
7、如图5,PO ⊥OR ,OQ ⊥PR ,则点O 到PR 所在直线的距离是线段()的长 A 、PO B 、RO C 、OQ D 、PQ8、如图,A 、B 、C 、D 中的哪幅图案可以通过图案(1)平移得到( )图59、下列计算正确的事( )A 4643±= B.9)3(2= C.525-=- D.39=± 10、17的值 ( )A 、大于16小于18;B 、大于4小于5;C 、大于3小于4;D 、大于5小于6二、填空:(本题共8小题,每小题4分,共32分.)把答案填在题后的横线上。
2015人教版七年级数学下册第一次月考试题
新人教版七年级数学(下)第一次月考试卷一、精心选一选(每小题 分,共 分)1.如图⑦,∠D=∠EFC ,那么( ) A .AD ∥BC B .AB ∥CD C .EF ∥BC D .AD ∥EF2.如图⑧,判定AB ∥CE 的理由是( ) A .∠B=∠ACE B .∠A=∠ECD C .∠B=∠ACB D .∠A=∠ACE 3.如图⑨,下列推理正确的是( )A .∵∠1=∠3,∴a ∥bB .∵∠1=∠2,∴a ∥bC .∵∠1=∠2,∴c ∥dD .∵∠1=∠2,∴c ∥d 4. 下列说法正确的个数是..........( ).. ①同位角相等;.......②过一点有且只有一条直线与已知直线垂直;.................... ③过一点有且只有一条直线与已知直线平行...................;.;. ④三条直线两两相交,总有三个交点;................. ⑤若..a .∥.b .,.b .∥.c .,则..a .∥.c...A.1...个.B.2...个.C.3...个.D.4...个. 5.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 6.如右图,CD AB //,且25=∠A ,45=∠C ,则E ∠的度数是( )A.60 B.70 C.110 D.807.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC <C. BD BC >D. BD CD <8. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
2015年七年级数学下册第一次月考试卷
图4 A B C ab 1 23 图1 七年级下数学第一次月考试卷一、选择题(本题有8小题,每小题3分,共24分) 1.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.A.1个B.2个C.3个D.4个、 2.下列式子中,正确的是( )A.35-= —35B.—6.3= —0.6C.2)13(-= —13 D.36= ±63.在π、722、3-、3125-、1416.3中,无理数的个数是( ) A 、1个 B 、 2个 C 、 3个 D 、4个4.在数轴上,到原点距离为5个单位的点表示的数是5.体育课上,老师测量跳远成绩的依据是( ).A 、两点确定一条直线B 、两点之间,线段最短C 、垂线段最短D 、平行线间的距离相等6.如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°7.如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°8.已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角二、填空题(本题有10小题,每小题3分,共30分)9.如果a 2=3,那么a=______. 如果a =3,那么a=_______.10.一个正方形的面积是78,则这个正方形的边长是_______.11.比较下列各组数大小:⑴π 14.3 ⑵215- 5.0 12.x 是16的算术平方根,那么x 的平方根是_______. 13.25的算术平方根是________.14.23-的相反数是 ,绝对值是 。
15学年下学期七年级第一次月考数学试卷(附答案)(2)
青海省师大附中2014-2015学年七年级下学期第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中∠1与∠2是对顶角的是()A.B.C.D.2.(3分)下列各数中无理数的个数有()3.141,﹣,,π,0,4.2,0.1010010001…A.2个B.3个C.4个D.5个3.(3分)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.110°D.80°4.(3分)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()A.35°B.145°C.55°D.125°5.(3分)如果一个实数的平方根与它的立方根相等,则这个数是()A.0B.正实数C.0和1 D.16.(3分)下列命题正确的是()A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角,内错角,同旁内角D.同位角相等,两直线平行7.(3分)两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交8.(3分)如图,如果∠1=∠2,那么下面结论正确的是()A.A D∥BC B.A B∥CD C.∠3=∠4 D.∠A=∠C9.(3分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°10.(3分)已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是()A.①③B.②④C.①③④D.①②③④二、填空题:(每题3分,共3×6=18分)11.(3分)如图,直线a、b相交,∠1=36度,则∠2=度.12.(3分)已知|2a+1|+=0,则=.13.(3分)一个正数x的平方根是a+1,a﹣3,则a=,x=.14.(3分)如图,已知∠1=∠2,则图中互相平行的线段是.15.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.16.(3分)如图,已知AC⊥BC,CD⊥AB,其中AC=6,BC=8,AB=10,CD=4.8,那么点B到AC的距离是.三、解答题:(本大题共8小题,17--22题,每题6分,23、24每题8分,共52分)17.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.18.(6分)如图,已知:∠1=∠2,∠3=108°,求∠4的度数.19.(6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD的度数.20.(6分)已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.21.(6分)如图,AE∥BC,AE平分∠CAD,观察图中∠B与∠C有什么关系?并说明理由.22.(6分)已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是8,求a+2b的平方根.23.(8分)如图,∠1=40°,∠B=50°,AB⊥AC①∠DAB+∠B=°②AD与BC平行吗?AB与CD平行吗?试说明理由.24.(8分)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.青海省师大附中2014-2015学年七年级下学期第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义进行判断.解答:解:根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.符合条件的只有B,故选:B.点评:本题考查对顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.2.(3分)下列各数中无理数的个数有()3.141,﹣,,π,0,4.2,0.1010010001…A.2个B.3个C.4个D.5个考点:无理数.分析:根据无理数的定义(无理数是指无限不循环小数)判断即可.解答:解:无理数有π,0.1010010001…,共2个,故选A.点评:本题考查了对无理数的定义的应用,能正确理解无理数的定义是解此题的关键,注意:无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.3.(3分)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.110°D.80°考点:平行线的性质.专题:计算题.分析:本题主要利用两直线平行,内错角相等进行做题.解答:解:过点E作一条直线EF∥AB,则EF∥CD,∴∠A=∠1,∠C=∠2,∴∠AEC=∠1+∠2=∠A+∠C=70°.故选:B.点评:注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.4.(3分)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()A.35°B.145°C.55°D.125°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.5.(3分)如果一个实数的平方根与它的立方根相等,则这个数是()A.0B.正实数C.0和1 D.1考点:立方根;平方根.专题:应用题.分析:根据立方根和平方根的性质可知,只有0的立方根和它的平方根相等,解决问题.解答:解:0的立方根和它的平方根相等都是0;1的立方根是1,平方根是±1,∴一个实数的平方根与它的立方根相等,则这个数是0.故选A.点评:此题主要考查了立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个他们互为相反数.6.(3分)下列命题正确的是()A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角,内错角,同旁内角D.同位角相等,两直线平行考点:平行线的判定.分析:根据同位角,内错角,同旁内角的定义,以及平行线的性质即可判定.解答:解:A、只有两直线平行,内错角才相等,故错误;B、对顶角相等,但相等的角不一定是对顶角,故错误;C、必须出现“三线八角”的形式,即两直线被第三条直线所截,才产生同位角,内错角,同旁内角,故错误;D、平行线的判定定理,故正确.故选D.点评:正确理解“三线八角”中的同位角、内错角、同旁内角的产生是正确答题的关键,不能遇到相等的角就误认为是对顶角,必须是两直线相交形成的没有公共边的两个角才是对顶角.7.(3分)两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交考点:平行线的判定与性质;角平分线的定义.分析:两平行直线被第三条直线所截,同位角相等,它们的平分线形成的同位角相等,同位角相等的平分线平行.解答:解:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.点评:此题综合运用了角平分线的定义和平行线的判定方法及性质.8.(3分)如图,如果∠1=∠2,那么下面结论正确的是()A.A D∥BC B.A B∥CD C.∠3=∠4 D.∠A=∠C考点:平行线的判定.分析:∠1=∠2,且∠1和∠2互为内错角,根据内错角相等,两直线平行,可判定AB∥CD.解答:解:∵∠1=∠2,∠1和∠2互为内错角,∴AB∥CD(内错角相等,两直线平行).故选B.点评:本题考查了平行线的判定,解答本题的关键是掌握平行线的判定定理:内错角相等,两直线平行.9.(3分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°考点:平行线的性质.分析:由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.解答:解:在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°﹣∠1=45°(三角形的内角和定理),∴∠4=180°﹣∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.点评:此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.10.(3分)已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是()A.①③B.②④C.①③④D.①②③④考点:平行线的判定;对顶角、邻补角.分析:在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行).②∵∠3=∠6,∴a∥b(内错角相等,两直线平行).③∵∠4+∠7=180°,∵∠4=∠6(对顶角相等),∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行).④同理得,a∥b(同旁内角互补,两直线平行).故选D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题:(每题3分,共3×6=18分)11.(3分)如图,直线a、b相交,∠1=36度,则∠2=144度.考点:对顶角、邻补角.专题:计算题.分析:根据邻补角的定义和性质,结合图形可得∠1与∠2互为邻补角,即∠1+∠2=180°,把∠1=36°代入,可求∠2.解答:解:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°,又∵∠1=36°,∴∠2=180°﹣36°=144°.点评:本题考查邻补角的定义和性质,是一个需要熟记的内容.12.(3分)已知|2a+1|+=0,则=4.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2a+1=0,b+2=0,解得a=﹣,b=﹣2,所以,==4.故答案为:4.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(3分)一个正数x的平方根是a+1,a﹣3,则a=1,x=4.考点:平方根.分析:由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a,然后可求得x的值.解答:解:由题意得:a+1+a﹣3=0,解得:a=1,则x=(a+1)2=4.故答案为:1,4.点评:本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.14.(3分)如图,已知∠1=∠2,则图中互相平行的线段是AB∥CD.考点:平行线的判定.专题:探究型.分析:直接根据平行线的判定定理进行解答即可.解答:解:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行).故答案为:AB∥CD.点评:本题考查的是平行线的判定定理,即内错角相等,两直线平行.15.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.点评:本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.16.(3分)如图,已知AC⊥BC,CD⊥AB,其中AC=6,BC=8,AB=10,CD=4.8,那么点B到AC的距离是8.考点:点到直线的距离.分析:由题意即可推出点B到AC的距离即为点B到AC的垂线段的长度即为BC的长度.解答:解:∵AC⊥BC,BC=8,∴点B到AC的距离为8.故答案为8.点评:本题主要考查了点到直线的距离,关键在于推出点B到AC的距离为BC的长度.三、解答题:(本大题共8小题,17--22题,每题6分,23、24每题8分,共52分)17.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.考点:作图—基本作图.专题:作图题.分析:(1)过点P作∠PQA=∠DCA即可.(2)过点P作∠QPR=90°即可.解答:解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)点评:本题主要考查了最基本的作图﹣﹣﹣﹣平行线和垂线的画法.18.(6分)如图,已知:∠1=∠2,∠3=108°,求∠4的度数.考点:平行线的判定与性质.分析:由∠1=∠2,根据同位角相等,两直线平行,即可求得AB∥CD,又由两直线平行,同旁内角互补,即可求得∠4的度数.解答:解:∵∠1=∠2,∴AB∥CD.∴∠3+∠4=180°,∵∠3=108°,∴∠4=72°.点评:此题考查了平行线的判定与性质.注意同位角相等,两直线平行与两直线平行,同旁内角互补.19.(6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD的度数.考点:平行线的性质.分析:先根据平行线的性质求出∠ABC的度数,再由角平分线的定义即可得出结论.解答:解:∵AB∥CD,∠DCB=140°,∴∠ABC=180°﹣140°=40°.∵BE平分∠ABC,∴∠ABD=∠ABC=×40°=20°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.20.(6分)已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.考点:平行线的判定.专题:证明题.分析:由AB⊥BC,BC⊥CD,根据垂直的定义可得:∠ABC=∠DCB=90°,由∠1=∠2,根据等式的性质可得:∠CBE=∠BCF,然后根据内错角相等两直线平行可得:BE∥CF.解答:证明:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠1=∠2,∴∠ABC﹣∠1=∠DCB﹣∠2,∴∠CBE=∠BCF,∴BE∥CF.点评:此题考查了平行线的判定,解题的关键是:根据等式的性质得到∠CBE=∠BCF.21.(6分)如图,AE∥BC,AE平分∠CAD,观察图中∠B与∠C有什么关系?并说明理由.考点:平行线的性质.专题:计算题.分析:根据平行线的性质得到∠1=∠B,∠2=∠C,而根据角平分线的定义得到∠1=∠2,即可得到∠B与∠C的关系.解答:解:∠B=∠C.理由如下:∵AE∥BC,∴∠1=∠B,∠2=∠C,而AE平分∠CAD,∴∠1=∠2,∴∠B=∠C.点评:本题考查了平行线的性质:两直线平行,内位角相等;两直线平行,内错角相等.也考查了角平分线的定义.22.(6分)已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是8,求a+2b的平方根.考点:立方根;平方根;算术平方根.分析:根据立方根与算术平方根的定义得到2a﹣1=27,3a+b﹣1=64,则可计算出a=14,b=23,然后计算a+2b后利用平方根的定义求解.解答:解:根据题意得2a﹣1=27,3a+b﹣1=64,解得a=14,b=23,所以a+2b=14+46=60,而60的平方根为±,所以a+2b的平方根为±2.点评:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.也考查了平方根与算术平方根.23.(8分)如图,∠1=40°,∠B=50°,AB⊥AC①∠DAB+∠B=180°②AD与BC平行吗?AB与CD平行吗?试说明理由.考点:平行线的判定.分析:①根据垂直定义求得∠BAC,然后根据角度的和、差即可求解;②根据平行线的判定定理即可作出判断.解答:解:①∵AB⊥AC,∴∠BAC=90°,∴∠DAB=∠BAC+∠1=90°+40°=130°,∴∠DAB+∠B=130°+°50°=180°;(2)∵∠DAB+∠B=180°,∴AD∥BC;AB与CD平行不能确定.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.24.(8分)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=180°;(2)∠1+∠2+∠3=360°;(3)∠1+∠2+∠3+∠4=540°;(4)试探究∠1+∠2+∠3+∠4+…+∠n=(n﹣1)180°.考点:平行线的性质.专题:探究型.分析:(1)中,根据两条直线平行,同旁内角互补作答;(2)过点E作平行于AB的直线,运用两次两条直线平行,同旁内角互补即可得到三个角的和;(3)分别过点E,F作AB的平行线,运用三次平行线的性质,即可得到四个角的和;(4)同样作辅助线,运用(n﹣1)次平行线的性质,则n个角的和是(n﹣1)180°.解答:解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).点评:注意此类题要构造平行线,运用平行线的性质进行解决.。
2015-2016学年七年级下第一次月考数学试卷含答案解析.doc
2015-2016 学年七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH 的是()A .∠FEB= ∠ECD B.∠AEG= ∠DCH C .∠GEC= ∠HCF D.∠HCE= ∠AEG2.如图,已知∠1=∠2=∠3=∠4,则图形中平行的是()A . AB ∥CD ∥EF B. CD ∥EFC. AB ∥EF D. AB ∥CD ∥EF, BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的 4 倍少 30°,那么这两个角是()A . 42°、138°B .都是 10°C. 42°、 138°或 42°、 10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A...D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A .不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB ∥CD ,则∠α、∠β、∠γ之间的关系为()A .∠α+∠β+∠γ=360°B .∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180 °D.∠α+∠β+∠γ=180°10.不能判定两直线平行的条件是()A .同位角相等B.内错角相等C.同旁内角相等.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A .第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图, CD⊥AB ,垂足为 D ,AC ⊥BC ,垂足为 C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条 B.3条 C.5条 D.7条二、填空题(注释)13.如图,设AB ∥CD,截线 EF 与 AB 、 CD 分别相交于M 、 N 两点.请你从中选出两个你认为相等的角.14.如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移格,再向上平移格.∥∠° ∠°∠15.如图, AE BD ,1=120 , 2=40 ,则 C 的度数是.16.如图,已知AB ∥CD,则∠1 与∠2,∠3 的关系是.∥∠° ∠°∠17.如图, AB CD ,B=68 , E=20 ,则 D 的度数为度.18.如图,直线 DE 交∠ABC 的边 BA 于点 D,若 DE ∥BC ,∠B=70 °,则∠ADE 的度数是度.三、解答题(注释)19.如图, AB ∥DE ∥GF,∠1:∠D:∠B=2 :3: 4,求∠1 的度数?20.已知:如图所示,∠1=∠2,∠3=∠B,AC ∥DE,且 B,C,D 在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC, EF 平分∠AED , EF⊥AB , CD⊥AB ,试说明CD 平分∠ACB .22.如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°(1)求∠DCA 的度数;(2)求∠DCE 的度数.23.如图,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠ACB.24.如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC ∥AB .25.已知∠AGE= ∠DHF ,∠1=∠2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b, b∥c, c∥d,则 a 与 d 的关系是什么,为什么?2015-2016 学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH 的是()A .∠FEB= ∠ECD B.∠AEG= ∠DCH C .∠GEC= ∠HCF D.∠HCE=∠AEG 【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“”三线八角而产生的被截直线.【解答】解:∠FEB= ∠ECD ,∠AEG= ∠DCH ,∠HCE= ∠AEG 错误,因为它们不是GE、 CH 被截得的同位角或内错角;∠∠GE、 CH 被截得的内错角.GEC= HCF 正确,因为它们是故选 C.2.如图,已知∠1= ∠2= ∠3= ∠4,则图形中平行的是()A . AB ∥CD ∥EF B. CD ∥EFC. AB ∥EF D. AB ∥CD ∥EF, BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∵∠1=∠2=∠3=∠4,∴AB ∥CD ,BC∥DE, CD∥EF,∴AB ∥CD ∥EF.故选: D.3.如果两个角的两边分别平行,而其中一个角比另一个角的 4 倍少 30°,那么这两个角是()A . 42°、138°B .都是 10°°°°°D.以上都不对C. 42 、 138 或 42 、 10【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则 x=4x ﹣30°,解得 x=10°,4x﹣30°=4×10°﹣30°=10 °;(2)两个角互补,则 x+ ( 4x﹣30°)=180°,解得 x=42°,4x﹣30°=4×42°﹣30°=138 °.所以这两个角是42°、 138°或 10°、 10°.以上答案都不对.故选 D.4.如图的图形中只能用其中一部分平移可以得到的是()A...D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解: A 、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选 B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得 A 、B 、C 都是平移得到的,选项 D 中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解: A 、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选: D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A .B .C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知 C 中的图形是平移得到的.故选 C.7.下列说法中正确的是()A .两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选 D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C 错误; D 正确;故选: D.9.已知,如图,AB ∥CD ,则∠α、∠β、∠γ之间的关系为()A .∠α+∠β+∠γ=360°B .∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180 °【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点 E 作 EF∥AB ,则 EF∥CD .∵EF∥AB ∥CD ,∴∠α+∠AEF=180 °,∠FED=∠γ,∴∠α+∠β=180 °+∠γ,即∠α+∠β﹣∠γ=180°.故选 C.10.不能判定两直线平行的条件是()A .同位角相等B.内错角相等C.同旁内角相等.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选 C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A .第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选: A.12.如图, CD⊥AB ,垂足为 D ,AC ⊥BC ,垂足为 C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1 条B.3 条C.5 条D.7 条【考点】点到直线的距离.【分析】本题图形中共有 6 条线段,即: AC 、 BC、CD 、 AD 、 BD、 AB ,其中线段 AB 的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点 C 到直线 AB 的距离的线段为 CD,表示点 B 到直线 AC 的距离的线段为 BC,表示点 A 到直线 BC 的距离的线段为 AC ,表示点 A 到直线 DC 的距离的线段为AD ,表示点 B 到直线 DC 的距离的线段为BD ,共五条.故选 C.二、填空题(注释)13.如图,设 AB ∥CD,截线 EF 与 AB 、 CD 分别相交于 M 、 N 两点.请你从中选出两个你认为相等的角∠1=∠5 .【考点】平行线的性质.【分析】 AB ∥CD ,则这两条平行线被直线EF 所截;形成的同位角相等,内错角相等.【解答】解:∵AB ∥CD ,∴∠1=∠5(答案不唯一).14.如图,为了把△△ ′′′△5 格,再向上平移ABC 平移得到 A B C ,可以先将ABC 向右平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点 A 看,向右移动 5 格,向上移动 3 格即可得到 A ′.那么整个图形也是如此移动得到.故两空分别填: 5、 3.15.如图, AE ∥BD ,∠1=120°,∠2=40°,则∠C 的度数是20° .【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∠AEC 的度数,再根据三角形的内角和等于 180 °列式进行计算即可得解.【解答】解:∵AE ∥BD ,∠2=40 °,∴∠AEC= ∠2=40°,∵∠°1=120 ,∴∠C=180°∠1 ∠AEC=180 °120°40°=20°.﹣﹣﹣﹣故答案为: 20°.16.如图,已知AB ∥CD,则∠1 与∠2,∠3 的关系是∠1=∠2+∠3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∵AB ∥CD ,∴∠1+∠C=180°,又∵∠C+∠2+∠3=180°,∴∠1=∠+∠3.17.如图, AB ∥CD ,∠B=68 °,∠E=20 °,则∠D 的度数为48 度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∠BFD=∠B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∠D=∠BFD﹣∠E,由此即可求∠D.【解答】解:∵AB ∥CD ,∠B=68 °,∴∠BFD= ∠B=68 °,而∠D= ∠BFD ﹣∠E=68 °﹣20°=48 °.故答案为: 48.18.如图,直线 DE 交∠ABC 的边 BA 于点 D ,若 DE∥BC ,∠B=70 °,则∠ADE 的度数是 70 度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∵DE∥BC,∠B=70 °,∴∠ADE= ∠B=70 °.故答案为: 70.三、解答题(注释)19.如图, AB ∥DE ∥GF,∠1:∠D:∠B=2 :3: 4,求∠1 的度数?【考点】平行线的性质.【分析】首先设∠1=2x °,∠D=3x °,∠B=4x °,根据两直线平行,同旁内角互补即可表示出∠GCB、∠FCD 的度数,再根据∠GCB 、∠1、∠FCD 的为 180°即可求得 x 的值,进而可得∠1 的度数.【解答】解:∵∠1:∠D :∠B=2 : 3: 4,∴设∠1=2x°,∠D=3x °,∠B=4x °,∵AB ∥DE ,∴∠GCB= °,∵DE ∥GF,∴∠FCD= °,∵∠1+∠GCB+ ∠FCD=180 °,∴180﹣4x+x+180 ﹣3x=180 ,解得 x=30,∴∠1=60°.20.已知:如图所示,∠1=∠2,∠3=∠B,AC ∥DE,且 B,C,D 在一条直线上.求证:AE∥BD.【考点】平行线的判定与性质.【分析】根据平行线的性质求出∠2=∠4.求出∠1=∠4,根据平行线的判定得出AB ∥CE,根据平行线的性质得出∠B+ ∠BCE=180 °,求出∠3+∠BCE=180 °,根据平行线的判定得出即可.【解答】证明:∵AC ∥DE ,∴∠2=∠4.∵∠1=∠2,∴∠1=∠4,∴AB ∥CE,∴∠B+∠BCE=180 °,∵∠B=∠3,∴∠3+∠BCE=180 °,∴AE ∥BD .21.如图,已知DE∥BC, EF 平分∠AED , EF⊥AB , CD⊥AB ,试说明CD 平分∠ACB .【考点】平行线的判定与性质.【分析】求出 EF∥CD ,根据平行线的性质得出∠AEF=∠ACD,∠EDC=∠BCD,根据角平分线定义得出∠AEF= ∠FED,推出∠ACD= ∠BCD ,即可得出答案.【解答】解:∵DE∥BC,∴∠EDC= ∠BCD ,∵EF 平分∠AED ,∴∠AEF= ∠FED ,∵EF⊥AB , CD⊥AB ,∴EF∥CD,∴∠AEF= ∠ACD ,∴∠ACD= ∠BCD ,∴CD 平分∠ACB .22.如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°(1)求∠DCA 的度数;(2)求∠DCE 的度数.【考点】平行线的判定与性质.【分析】(1)利用角平分线的定义可以求得∠DAB的度数,再依据∠DAB+∠D=180°求得∠D 的度数,在△ACD 中利用三角形的内角和定理.即可求得∠DCA的度数;(2)根据( 1)可以证得: AB ∥DC ,利用平行线的性质定理即可求解.【解答】解:( 1)∵AC 平分∠DAB ,∴∠CAB= ∠DAC=25 °,∴∠DAB=50 °,∵∠DAB+ ∠D=180 °,∴∠D=180 °﹣50°=130°,∵△ACD 中,∠D+∠DAC+ ∠DCA=180 °,∴∠DCA=180 °﹣130°﹣25°=25 °.(2)∵∠DAC=25 °,∠DCA=25 °,∴∠DAC= ∠DCA ,∴AB ∥DC ,∴∠DCE= ∠B=95 °.23.如图,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠ACB.【考点】平行线的判定与性质.【分析】首先判断∠AED 与∠ACB 是一对同位角,然后根据已知条件推出 DE ∥BC ,得出两角相等.【解答】证明:∵∠1+∠4=180 °(平角定义),∠1+∠2=180°(已知),∴∠2=∠4,∴EF∥AB (内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),∴∠AED= ∠ACB (两直线平行,同位角相等).24.如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC ∥AB .【考点】平行线的判定.【分析】根据角平分线的性质可得∠ ∠∠ ∠∠ ∠1= CAB ,再加上条件1= 2,可得2= CAB ,再根据内错角相等两直线平行可得CD ∥AB .∵∠,【解答】证明: AC 平分DAB∴∠1=∠CAB ,∵∠1=∠2,∴∠2=∠CAB ,∴CD∥AB .25.已知∠AGE= ∠DHF ,∠1=∠2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.∠∠根据同位角相等,两直线平行,得到∥【分析】先由 AGE= DHF AB CD ,再根据两直线平行,同位角相等,可得∠AGF= ∠CHF,再由∠1= ∠2,根据平角的定义可得∠MGF= ∠NHF ,根据同位角相等,两直线平可得GM ∥HN .【解答】解:图中的平行线有∥∥2 对,分别是 AB CD , GM HN ,∵∠AGE= ∠DHF ,∴AB ∥CD ,∴∠AGF= ∠CHF ,∵∠MGF+ ∠AGF+ ∠1=180°∠NHF+ ∠CHF+ ∠2=180°,又∵∠1=∠2,∴∠MGF= ∠NHF ,∴GM ∥HN .26.已知直线a∥b, b∥c, c∥d,则 a 与 d 的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解: a 与 d 平行,理由如下:因为 a∥b, b∥c,所以 a∥c,因为 c∥d,所以 a∥d,即平行具有传递性.。
2015年七年级下册第一次月考数学试卷答案
解:(1)①两直线平行,内错角相等;60;②30;③60. (2)∵AB∥CD,∴∠B+∠BCE=180°,∵∠B=40°,∴∠BCE=180°-∠B=180°-40°=140°. (3)∵CN 是∠BCE 的平分线,∴∠BCN=140°÷2=70°.∵CN⊥CM,∴∠BCM=90°-∠BCN=90° -70°=20°
3.下列各组数中互为相反数的是( A )
A. 2与 (2)2 B. 2与3 8 C. 2与( 2 )2
D. 9 D. 2 与 2
4.下列说法假.命.题.是( B )
A.两直线平行,同位角相等; B.两点之间直线最短
考
C.对顶角相等;
生
D.垂线段最短.
答 题
5.如图(1),能判定 EB∥AC 的条件是( D )
9.将一直角三角板与两边平行的纸条如图(5)所示放置,下列结论:
(5) (1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,
(6) (7)
19.如图(6),把矩形 ABCD 沿 EF 对折后使两部分重合,若 1 50 , 则 AEF =_115°_.
20.如图(7),直线 AB∥CD∥EF,则∠ +∠ -∠ = 180 度. 三、解答题(共 70 分) 21. 计算:(每题 6 分,共 12 分)
2015年七年级数学下册第一次月考试卷及答案
一、精心选一选(每小题:4分,共32分)1.如图1,直线a、b相交于点O,则图中共有__________对对顶角,共有__________对邻补角。
O2.如图2,直线AB,CD相交于点O,OA平分EOC,EOC=80,则BOD=______ 图13.如图3,1和2是______角,2和3是______角。
4.命题两直线平行,内错角相等的题设是__________,结论是__________。
5.如图4,a∥b,1=1180,则2=____6.在同一平面内,两条直线的位置关系是__________。
图37.已知x轴上点P到y轴的距离是1,则点P的坐标是__________。
8.若ABCD,垂足为D,则ADC=____________二、细心填一填(每小题:4分,共32分)9.已知:a0、b-1,则点(a,b+1)在( )A、第一象限 B、第二象限C、第三象限D、第四象限10.在下图中,2是对顶角的图形是( )11.下列语句中,错误的是( )A、一条直线有且只有一条垂线 B、不相等的两个角一定不是对顶角,C、直角的补角必是直角 D、两直线平行,同旁内角互补12.点P为直线m外一点,点A,B,C为直线m 上三点,PA=5cmPB=6cm,PC=3cm,则点P到直线m的距离为( )A、小于3cm B、5cm C、3cm D、不大于3cm13.如图5,1=150 , AOC=900,点B、O、D在同一直线上,则2的度数为( )A、750 B、150 C、1050 D、 165014.如图6,不能推出a∥b的条件是( )A、3 B、4 C、3 D、3=180015.已知,点(m,-1)与点(-2,n+1)是关于原点对称,则( )A、m=-2,n=1 B、m=2,n=0 C、m=-2,n=0 D、m=2,n=116.下列说法正确的是 ( )A、 a、b、c是直线,且a∥b, b∥c,则a∥cB、a、b、c是直线,且ab, bc ,则acC、 a、b、c是直线,且a∥b, bc则a∥cD、 a、b、c 是直线,且a∥b, b∥c,则ac三、耐心做一做17.作图题:在下图中平移三角形ABC,使点A移到点D,点B和点C应移到什么位置?请在图中画出平移后图形(保留作图痕迹)。
15学年下学期七年级第一次月考数学试卷(附答案)
贵州省遵义二中2014-2015学年七年级下学期第一次月考数学试卷一、选择题(本题共10题,每题3分,共30分.)1.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.(3分)下列7个实数中无理数有()3.141,﹣,,π,0,4.2,0.1010010001…A.2个B.3个C.4个D.5个3.(3分)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c4.(3分)下列各式表示正确的是()A.B.C.D.5.(3分)下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直6.(3分)如图,下列条件中,能判断直线a∥b的是()A.∠3=∠2 B.∠1=∠3 C.∠4+∠5=180°D.∠2=∠47.(3分)如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,a∥b B.当a∥b时,∠1=∠2C.当a∥b时,∠1+∠2=90°D.当a∥b时,∠1+∠2=180°8.(3分)如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=20°,则∠2的度数为()A.20°B.25°C.30°D.35°9.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°10.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°二.填空题:(每小题4分,共24分)11.(4分)25的算术平方根是,的平方根是,﹣8的立方根是.12.(4分)把命题“等角的补角相等”改写成“如果…那么…”的形式是.13.(4分)如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.14.(4分)若=0,则m=,n=.15.(4分)如图,AD∥BC,AB∥CD,E在CB的延长线上,EF经过点A,∠C=50°,∠FAD=60°,则∠EAB=.16.(4分)对同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,另一个论断为结论,组成一个你认为正确的命题:(填序号).三.解答题:(17题12分,18题6分,19题10分,20题8分,21题10分,22题为附加题不计分,共46分)17.(12分)计算.(1)﹣(2)﹣﹣(3)+﹣+.18.(6分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().19.(10分)如图,AD∥BC,∠α=50°,∠B=∠C,请求出∠B,∠C,∠D的度数.20.(8分)一个正数x的两个平方根分别是2a﹣1与﹣a+2,求a的值和这个正数x的值.21.(10分)如图,直线AB、CD相交于点O,OE⊥CD于O,OD平分∠BOF,若∠BOE=55°,试求∠AOC和∠AOF的度数.22.观察:===,即=;===,即=;猜想:等于什么,并通过计算验证你的猜想.贵州省遵义二中2014-2015学年七年级下学期第一次月考数学试卷参考答案与试题解析一、选择题(本题共10题,每题3分,共30分.)1.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.点评:本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2.(3分)下列7个实数中无理数有()3.141,﹣,,π,0,4.2,0.1010010001…A.2个B.3个C.4个D.5个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:π,0.1010010001…共有2个.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c考点:平行线的判定;垂线.分析:根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.解答:解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.点评:此题主要考查了平行线及垂线的性质.4.(3分)下列各式表示正确的是()A.B.C.D.考点:平方根.专题:计算题.分析:利用平方根的定义化简各项,即可做出判断.解答:解:A、=5,本选项错误;B、±=±5,本选项错误;C、±=±5,本选项正确;D、±=±5,本选项错误.故选C.点评:此题考查了平方根,熟练掌握平方根的定义是解本题的关键.5.(3分)下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.点评:此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)如图,下列条件中,能判断直线a∥b的是()A.∠3=∠2 B.∠1=∠3 C.∠4+∠5=180°D.∠2=∠4考点:平行线的判定.分析:根据平行线的判定方法,对各选项分析判断后利用排除法求解.解答:解:A、∠3=∠2,不符合判定方法的任何一种位置关系的角,所以不能判定a∥b,故本选项错误;B、∠1=∠3,符合内错角相等,两直线平行,所以能判定a∥b,故本选项正确;C、∠4与∠5是同位角,如果相等,则a∥b,故本选项错误;D、∠2与∠4是同旁内角,如果互补,则a∥b,故本选项错误.故选B.点评:本题考查了平行线的判定,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,解题时要认准各角的位置关系.7.(3分)如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,a∥b B.当a∥b时,∠1=∠2C.当a∥b时,∠1+∠2=90°D.当a∥b时,∠1+∠2=180°考点:平行线的性质;平行线的判定.分析:根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.解答:解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a∥b时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D正确.故选D.点评:本题考查了平行线的性质,对顶角相等,是一道较为简单的题目.8.(3分)如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=20°,则∠2的度数为()A.20°B.25°C.30°D.35°考点:平行线的性质.分析:过点B作BD∥l,然后根据平行公理可得BD∥l∥m,再根据两直线平行,内错角相等可得∠3=∠1,然后求出∠4,再根据两直线平行,内错角相等可得∠2=∠4,即可得解.解答:解:如图,过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠3=∠1=20°,∵△ABC是有一个角是45°的直角三角板,∴∠4=45°﹣∠3=45°﹣24°=25°,∴∠2=∠4=25°.故选B.点评:本题考查的是平行线的性质,根据题意作出平行线是解答此题的关键.9.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°考点:平行线的判定.分析:根据平行线的判定分别进行分析可得答案.解答:解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.10.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°考点:平行线的性质.分析:延长BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据三角形外角的性质即可求解.解答:解:延长BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选C.点评:本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.二.填空题:(每小题4分,共24分)11.(4分)25的算术平方根是5,的平方根是±2,﹣8的立方根是﹣2.考点:算术平方根;平方根;立方根.分析:根据开平方和开立方的方法求解.解答:解:25的算术平方根是5,=4,所以的平方根是±2,﹣8的立方根是﹣2.故答案为:5,±2,﹣2.点评:本题主要考查了开平方和开立方的知识,关键是注意得数的符号.12.(4分)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.考点:命题与定理.分析:命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解答:解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.(4分)如图,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10.考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.解答:解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.(4分)若=0,则m=1,n=2.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:首先根据非负数的性质可得m﹣1=0,n﹣2=0,即可求出m、n的值.解答:解:∵=0,∴m﹣1=0,n﹣2=0,∴m=1,n=2.故答案分别填1,2.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.(4分)如图,AD∥BC,AB∥CD,E在CB的延长线上,EF经过点A,∠C=50°,∠FAD=60°,则∠EAB=70°.考点:平行线的性质.分析:由AD∥BC,AB∥CD,∠C=50°,∠FAD=60°,根据平行线的性质,可求得∠E 与∠ABE的度数,又由三角形内角和定理,求得答案.解答:解:∵AD∥BC,AB∥CD,∠C=50°,∠FAD=60°,∴∠E=∠FAD=60°,∠ABE=∠C=50°,∴∠EAB=180°﹣∠E﹣∠ABE=70°.故答案为:70°.点评:此题考查了平行线的性质以及三角形内角和的定理.此题比较简单,注意掌握数形结合思想的应用.16.(4分)对同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,另一个论断为结论,组成一个你认为正确的命题:若①②,则④(填序号).考点:命题与定理.分析:如果两条直线都和第三条平行,那么这两条直线也平行,是平行公理的推论,由此即可求出答案.解答:解:若①②,则④.点评:本题考查的是两直线平行的判定定理,比较简单.三.解答题:(17题12分,18题6分,19题10分,20题8分,21题10分,22题为附加题不计分,共46分)17.(12分)计算.(1)﹣(2)﹣﹣(3)+﹣+.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根的定义计算即可得到结果;(2)原式利用平方根,立方根以及二次根式的性质计算即可得到结果;(3)原式利用平方根及立方根的定义计算即可得到结果.解答:解:(1)原式=9﹣5=4;(2)原式=3﹣6+3=0;(3)原式=2+0﹣﹣=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).考点:平行线的判定与性质.专题:推理填空题.分析:先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD.解答:解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行.点评:本题考查了平行线的判定与性质:内错角相等,两直线平行;同位角相等,两直线平行;两直线平行,同位角相等.19.(10分)如图,AD∥BC,∠α=50°,∠B=∠C,请求出∠B,∠C,∠D的度数.考点:平行线的性质.分析:先根据AD∥BC求出∠B的度数,再由∠B=∠C可得出∠C的度数,进而可得出结论.解答:解:∵AD∥BC,∠α=50°,∴∠B=∠α=50°,∠C+∠D=180°.∵∠B=∠C,∴∠C=50°,∴∠D=180°﹣∠C=180°﹣50°=130°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.20.(8分)一个正数x的两个平方根分别是2a﹣1与﹣a+2,求a的值和这个正数x的值.考点:平方根.分析:正数x有两个平方根,分别是﹣a+2与2a﹣11,所以﹣a+2与2a﹣1互为相反数;即﹣a+2+2a﹣1=0解答可求出a;根据x=(﹣a+2)2,代入可求出x的值.解答:解:∵正数x有两个平方根,分别是﹣a+2与2a﹣1,∴﹣a+2+2a﹣1=0解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9.点评:本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.21.(10分)如图,直线AB、CD相交于点O,OE⊥CD于O,OD平分∠BOF,若∠BOE=55°,试求∠AOC和∠AOF的度数.考点:垂线;角平分线的定义;对顶角、邻补角.分析:根据垂直的定义得出∠EOD=90°,由∠BOE=55°得到∠BOD=35°,再根据对顶角相等得出∠AOC=35°,由角平分线的定义得出∠BOF=70°,然后根据邻补角定义即可求出∠AOF=110°.解答:解:∵OE⊥CD于点O,∴∠EOD=90°,∵∠BOE=55°,∴∠BOD=35°,∴∠AOC=35°;∵OD平分角∠BOF,∴∠BOF=2∠BOD=70°,∴∠AOF=110°.故∠AOC=35°,∠AOF=110°.点评:本题主要考查垂直的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.22.观察:===,即=;===,即=;猜想:等于什么,并通过计算验证你的猜想.考点:实数的运算.专题:规律型.分析:注意观察所给例子中的最后结果和第一个被开方数之间的关系:根号外的是被减数,根号内的是减数.解答:解:=,验证如下:左边====5=右边.故猜想正确.点评:此题主要考查了实数的运算,解题关键是要求学生既会根据例子观察猜想,还要会进一步从理论上进行验证.。
七年级数学下学期第一次月考试卷(含解析)新人教版
七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.06.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是;的算术平方根是.12.用“<”或“>”填空: +1 4.13.点到直线的距离是指这点到这条直线的.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF()∴∠C+∠=180°()∵∠C=∠D∴∠D+∠DEC=180°()∴BD∥CE ().22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.2015-2016学年河南省安阳市滑县大寨一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直【考点】平行线.【专题】常规题型.【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.0【考点】直线、射线、线段.【专题】计算题.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.【解答】解:交点个数最多时, ==6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【点评】本题考查了相交线的交点问题,熟记公式是解题的关键.6.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等【考点】算术平方根;平方根;垂线;同位角、内错角、同旁内角.【分析】根据平方根的概念、平行公理和平行线的性质判断即可.【解答】解:1的平方根是±1,A错误;6是36的算术平方根,B正确;同一平面内的三条直线满足a⊥b,b⊥c,则a∥c,C错误;两直线被第三条直线所截,内错角不一定相等,D错误,故选:B.【点评】本题考查的是平方根、算术平方根的概念、垂直的定义,正确理解相关的概念和性质是解题的关键.7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.【解答】解:相等的锐角有:∠B=∠CAD,∠C=∠BAD共2对.故选C.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°【考点】平行线的判定.【分析】直接利用平行线的判定定理判定,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵∠3=50°,∠4=50°,∴∠3=∠4,∴AD∥BC,故错误;B、∵∠B=40°,∠DCB=140°,∴∠B+∠DCB=180°,∴AB∥CD,正确;C、∵∠1=60°,∠2=60°,∴∠1=∠2,∴AB∥CD,正确;D、∵∠D+∠DAB=180°,∴AB∥CD,正确.故选A.【点评】此题考查了平行线的判定.此题比较简单,注意掌握数形结合思想的应用.9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°【考点】平行线的性质.【专题】计算题.【分析】首先根据BC∥DE,依据两直线平行,同位角相等求得∠1的度数,然后根据AB∥EF,依据两直线平行,同旁内角互补即可求解.【解答】解:∵BC∥DE,∴∠1=∠B=70°,∵AB∥EF,∴∠E+∠1=180°,∴∠E=180°﹣∠1=180°﹣70°=110°.故选B.【点评】本题利用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°【考点】平行线的性质.【分析】由AB∥CD∥EF,∠ABE=38°,∠ECD=110°,根据平行线的性质,即可求得∠BEF与∠CEF 的度数,继而求得答案.【解答】解:∵AB∥CD∥EF,∠ABE=38°,∠ECD=110°,∴∠BEF=∠ABE=38°,∠CEF=180°﹣∠ECD=70°,∴∠BEC=∠CEF﹣∠BEF=32°.故选B.【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是±6 ;的算术平方根是.【考点】算术平方根;平方根.【分析】根据平方根的定义和算术平方根的定义进行计算即可得解.【解答】解:∵(±6)2=36,∴36的平方根是±6;∵()2=,∴的平方根是.故答案为:±6;.【点评】本题考查了算术平方根、平方根的定义,是基础题,熟记概念是解题的关键.12.用“<”或“>”填空: +1 >4.【考点】实数大小比较.【分析】首先估算出的取值范围,再进一步确定+1的范围,进一步得出结论解决问题.【解答】解:∵3<<4,∴4<+1<5,所以+1>4.故答案为:>.【点评】此题考查实数的大小比较,估算的取值范围是解决问题的关键.13.点到直线的距离是指这点到这条直线的垂线段的长度.【考点】点到直线的距离.【分析】根据点到直线的距离的定义解答.【解答】解:点到直线的距离是指这点到这条直线的:垂线段的长度.故答案为:垂线段的长度.【点评】本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为 3 .【考点】平方根.【分析】根据一个正数的平方根有两个,它们互为相反数,根据互为相反数的两个数的和为0,可得答案.【解答】解:一个正数的平方根为2﹣m与3m﹣8,(2﹣m)+(3m﹣8)=0m=3,故答案为:3.【点评】本题考查了平方根,注意一个正数的两个平方根的和为0.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有 2 个.【考点】平行线的性质.【分析】根据两直线平行,同位角相等,内错角相等找出与∠1相等的角即可.【解答】解:如图,∵EG∥BC,∴∠1=∠2,∠1=∠3,∴与∠1相等的角有2个角.故答案为:2.【点评】本题考查了平行线的性质,熟记性质并准确识图,找出∠1的同位角、内错角是解题的关键.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为72°.【考点】平行线的判定与性质.【分析】根据“同位角相等,两直线平行”判定AB∥CD,然后由“两直线平行,同旁内角互补”得到∠3+∠4=180°,由此易求∠4的度数.【解答】解:如图,∵∠1=∠2,∴AB∥CD,∴∠3+∠4=180°.又∵∠3=108°,∴∠4=72°.故答案是:72°.【点评】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是平行.【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故答案为:平行.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.【考点】作图—基本作图;余角和补角;平行线的性质.【分析】(1)根据平行线的画法画图即可;(2)根据平行线的性质:两直线平行,同旁内角互补可得答案;(3)根据平行线的性质:两直线平行,同位角相等可得答案.【解答】解:(1)如图所示:(2)与∠O互补的角有∠PDO,∠PCO;(3)与∠O相等的角有∠PDB,∠PCA.【点评】此题主要考查了平行线的画法,以及平行线的性质,关键是掌握平行线性质定理;定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.【考点】立方根.【分析】(1)根据移项,可得乘方的形式,根据开方,可得答案;(2)根据移项,等式的性质,可得乘方的形式,根据开方,可得答案.【解答】解:(1)x2=81,x=±9;(2)36x2=49,xx=±.【点评】本题考查了平方根,先化成乘方的形式,再开方运算.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC =180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠DEC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).【考点】平行线的判定与性质.【专题】推理填空题.【分析】由已知的一对内错角相等,利用内错角相等两直线平行得出AC与DF平行,再由两直线平行内错角相等得到∠D=∠1,而∠C=∠D,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到BD与CE平行.【解答】证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠D EC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).故答案是:内错角相等,两直线平行;DEC;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【考点】算术平方根.【专题】计算题.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x==7∴4x=4×7=28 (cm) 3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【点评】本题考查了算术平方根,开平方是求边长的关键,注意算术平方根都是非负数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。
七年级数学下册第一次月考试题
谯城中学2014----2015学年度第二学期第一次月考七年级数学试题一、选择题(每小题4分,共40分)1、下列实数2π,722,0.1414,39, 3.141592 ,2中,无理数的个数是( )A 、2个B 、3个C 、4个D 、5个2、若m =4,则估计m 的值所在的范围是 ( )A 、1<m <2B 、2<m <3C 、3<m <4D 、4<m <5 3、下列各组数中互为相反数的是( )A 、-2与、-2与 C 、-2 与12- D 、2与2-4、-27的立方根与4的平方根的和是( )A 、-1B 、-5C 、-1或-5D 、±5或±1 5、设x ,y 为实数,且554-+-+=x x y ,则y x -的平方根是( )A 、1B 、±1C 、3D 、±3 6、不等式组240,10x x -<⎧⎨+≥的解集在数轴上表示正确的是( )A B C D 7、不等式732122x x --+<的负整数解有:( ) A 、1 个 B 、 2个 C、3个 D 、4个8、如果一元一次不等式组3x x a >⎧⎨≥⎩的解集为3x >,则a 的取值范围是( )A 、3a >B 、a ≥3C 、3a <D 、a ≤3 9、计算423(3)a b -的结果是( )A 、1269a b -B 、7527a b -C 、1269a bD 、12627a b -10、下列计算正确的是( )A 、(ab 2)2=ab 4B 、(3xy)3=9x 3y 3C 、(-2a 2)2=-4a 4D 、(-3a 2bc 2)2=9a 4b 2c 42-1 2 2-1二、填空题(每小题5分,共40分) 11、若264x =,则x 的立方根为 。
12、比较大小:2。
13、已知一个正数的两个平方根是分别为32x -和6+x ,则这个数是 。
14、若代数式5y -4的值不大于y+2,那么y 的最大整数解为 。
2015年七年级数学下学期第一次月考试题及答案
时间: 90 分钟
一、选择题(每小题 3 分,共 30 分)
1.下列运算正确的是
(
)
A. a 2 a a2
B. a a a2 C. a 6 a3 a2 D.
2.计算 ( x ) 2 x 3 所得的结果是
(
)
A. x5 B . x 5 C . x6
3.下列计算结果正确的是
(
D . x6
C、 a 6 a 2 D 、 a 6 a 2
5. PM2.5 是指大气中直径小于或等于 0.0000025m 的颗粒物,将 0.0000025 用科学记数法表示为(
)
A、 0.25 × 10-5
B、 0.25 × 10-6 C、 2.5 × 10-5
D、2.5 × 10- 6
6.下列多项式中是完全平方式的是 ( )
8.有三个连续奇数,若中间一个是 a,则它们三个数的积为(
)
A、 a3- 4a B 、 a3- 6a C 、 4a3- a D 、 4a3- 6a
9.若 3× 9m× 27m=311,则 m的值(
Hale Waihona Puke )A、 2B
、3
C
、4
D
、5
10. 为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长
了宽2 cm的木框,则这幅摄影 作品占的面积是(
12、计算: x 3=-8a6b9,则 x=___________
W w . X k b 1.c O m
13.计算 :8a 3b3· ( -2ab) 3 =_____________
14.月球距离地球大约 3.84 105 千米,一架飞机的速度约为 8 102 千米 / 时,若乘飞机飞行这么远的距离,大约需 要
七年级下学期数学第一次月考试卷
七年级下学期数学第一次月考试卷(2015.4.3)一:选择题(每小题3分,共30分)1.下列方程组是二元一次方程组的是()A x+y=3B x+y=5z+x=5 y2=4C x+y=3D x=y+11xy=5 x2-2x=y+x22下列选项,既是2x-y=3的解,又是3x+4y=10的解是( )A x=1,y=-1B x=2,y=4C x=2,y=1D x=4,y=53 若方程x-2y+3z=0,且当x=1时,y=2,则z=( )5A 1 B-1 C-5 D34方程组2x-y=5 用代入法消去y后得到的方程是( ) 3x-2y=8A 3x-4x-10=0B 3x-4x+5=8C 3x-2(5-2x)=8D 3x-4x+10=85方程 *x-2y=5-2x是二元一次方程,*覆盖处是被污染的x 的系数,则被污染的x的系数的值()A不可能是-1 B不可能是-2 C不可能是1 D不可能是2 6如果2x2a-b y a+b与-4x4y5是同类项,则a和b的值是()A 3,2 B -3, -2 C -3, 2 D 3, -27若(3x-y-7)2+|x+2y|=0,则x,y的值分别是()A 2,-1B 2, 1C -2,-1D-2, 18若2x2a-b-1- 3y3a+b-12=10是一个二元一次方程,则a,b的值分别是()A 3,4B -3,,4C 2,5D-2,-59若方程组ax-b y=1 的解是 x=1(a-3)x-3by=4 y=-1则a,b的值分别为()A-2,-3B-2, 3 C 2,-3 D-3,210在等式y=x2+mx+n中,当x=2时,y=5,当x=-3时,y=-5,则x=3时,y=()A 23 B-13C-5 D 13二填空题(每小空3分,共30分)11已知y=-3x+4,则当x=2时,y= ,当y=-1时,x= 12已知 x=1是方程2x+2my=-1的一组解,,则m= y=-213由5x+6y=8,用含x的代数式表示y,则。
七年级下第一次月考数学试卷含答案解析
七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若的算术平方根有意义,则a的取值范围是()A.一切数B.正数 C.非负数D.非零数2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④3.如图,满足下列条件中的哪一个,可得到AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠1=∠4 D.∠5=∠1+∠34.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A7.如图,已知:a⊥b,b∥c,∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.60°8.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8 B.C. D.189.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格10.实数a,b,c在数轴上的对应点的位置如图所示,下列各项成立的是()A.c﹣b>a B.b+a>c C.ac>b D.ab>c二、填空题(共10小题,每小题2分,满分20分)11.若一个数的算术平方根等于它的本身,则这个数是.12.如图,与∠CAB成内错角的是.13.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.若,则a=;若,则a=.15.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=度.16.如图,将一副三角板放在一块,AC与EF所夹的钝角的度数为.17.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD 为度.18.如果与互为相反数,那么x2+y=.19.在数轴上与原点的距离是的点所表示的实数是.20.如图,若要AB∥CE,则需满足的条件是.三、解答题(共8小题,满分50分)21.计算:(1)+;(2)×(﹣)2﹣.22.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.23.已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置;(2)在(1)的条件下,化简|a﹣b|﹣|b﹣c|+|c+a|.24.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.25.已知(2a+b)3=﹣27,=5,求(3a+b)2n+1.(其中n为正整数)26.如图,已知AB∥CD,∠B=96°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.27.如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF 过点O,且平行于BC,求∠BOC的度数.28.如图,∠B、∠D的两边分别平行.(1)在图(1)中,∠B与∠D的数量关系是;(2)在图(2)中,∠B与∠D的数量关系是;(3)用一句话归纳的结论为;试分别说明理由.2015-2016学年河南省漯河市召陵二中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若的算术平方根有意义,则a的取值范围是()A.一切数B.正数 C.非负数D.非零数【考点】算术平方根.【分析】根据开平方的被开方数都是非负数,可得答案.【解答】解:的算术平方根有意义,则a的取值范围是非负数,故选:C.2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④【考点】同位角、内错角、同旁内角.【分析】此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.3.如图,满足下列条件中的哪一个,可得到AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠1=∠4 D.∠5=∠1+∠3【考点】平行线的判定.【分析】由∠5=∠1+∠3,根据内错角相等,两直线平行可得AB∥CD.【解答】解:∵∠5=∠1+∠3,∴AB∥CD.故选D.4.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小.【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.6.如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选D.7.如图,已知:a⊥b,b∥c,∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】根据一条直线垂直两平行线中一条直线,那么它也垂直于另一条直线,由a⊥b,b∥c 可得a⊥c,即∠3=90°,然后根据三角形外角的性质得到∠1=∠3+∠2,则∠2=∠1﹣∠3=130°﹣90°=40°.【解答】解:a与b交于点A,如图,∵a⊥b,b∥c,∴a⊥c,∴∠3=90°,而∠1=∠3+∠2,∴∠2=∠1﹣∠3=130°﹣90°=40°.故选B.8.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8 B.C. D.18【考点】算术平方根.【分析】根据算术平方根,即可解答.【解答】解:64的算术平方根是8,8的算术平方根是.故选:B.9.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【考点】平移的性质.【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.10.实数a,b,c在数轴上的对应点的位置如图所示,下列各项成立的是()A.c﹣b>a B.b+a>c C.ac>b D.ab>c【考点】实数与数轴.【分析】根据数轴可以判断a、b、c的大小与正负情况,从而判断选项中的式子是否正确,本题得以解决.【解答】解:由数轴可得,a<0<b<c,∴c﹣b>0>a,故选项A正确;b+a<c,故选项B错误;ac<0<b,故选项C错误;ab<0<c,故选项D错误;故选A.二、填空题(共10小题,每小题2分,满分20分)11.若一个数的算术平方根等于它的本身,则这个数是0,1.【考点】算术平方根.【分析】根据开方运算,可得答案.【解答】解:若一个数的算术平方根等于它的本身,则这个数是0,1,故答案为:0,1.12.如图,与∠CAB成内错角的是∠HCA,∠ABI.【考点】同位角、内错角、同旁内角.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答即可.【解答】解:根据内错角定义,直线BH与直线DE被直线GF所截,与∠CAB成内错角的是∠HCA,直线GF与直线HB被直线DE所截,与∠CAB成内错角的是∠ABI,故答案为:∠HCA,∠ABI.13.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P.【考点】估算无理数的大小;实数与数轴.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵4<7<9,∴2<<3,∴在2与3之间,且更靠近3.故答案为:P.14.若,则a=10;若,则a=﹣1.【考点】算术平方根.【分析】根据算术平方根的概念列出算式,计算即可.【解答】解:∵=3,∴a﹣1=9,解得,a=10;∵=0,∴a+1=0,解得a=﹣1.故答案为:10;﹣1.15.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=40度.【考点】平行线的性质;对顶角、邻补角;垂线.【分析】∠1和∠2是对顶角相等,∠2和∠3为同位角,根据两直线平行,同位角相等可求出∠3,在直角三角形中,两锐角互余,即可求解.【解答】解:∵∠1=50°,∴∠1=∠2(对顶角相等),∵AB∥CD,∴∠3=∠2=50°,又∵EG⊥AB,∴∠E=90°﹣∠3=90°﹣∠50°=40°.故答案为:40.16.如图,将一副三角板放在一块,AC与EF所夹的钝角的度数为165°.【考点】三角形的外角性质.【分析】根据三角形的外角性质解答即可.【解答】解:∵∠A=30°,∠FEB=45°,∴AC与EF所夹的锐角的度数为15°,∴AC与EF所夹的钝角的度数为165°,故答案为:165°17.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD 为60度.【考点】三角形的外角性质;平行线的性质.【分析】由两直线平行可知∠B=∠C=20°,由外角定义可知∠BOD=∠C+∠D=60°.【解答】解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,又∵∠BOD=∠D+∠C,且∠D=40°,∴∠BOD=60°.18.如果与互为相反数,那么x2+y=7.【考点】非负数的性质:算术平方根.【分析】与互为相反数,即两个式子的和是0,根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则x2+y=9﹣2=7.故答案是:7.19.在数轴上与原点的距离是的点所表示的实数是.【考点】实数与数轴.【分析】分点在原点的左边与右边两种情况求解.【解答】解:①原点左边到原点的距离为的点是﹣;②原点右边到原点的距离为的点是.所以数轴上到原点的距离是的点所表示的实数是.故答案为:.20.如图,若要AB∥CE,则需满足的条件是∠DCE=∠B(答案不唯一).【考点】平行线的判定.【分析】能判定AB∥CE的,根据判别两条直线平行的方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.得出需满足的条件是:∠DCE=∠B 或∠ECA=∠A或∠B+∠BCE=180°.【解答】解:若要AB∥CE,则需满足的条件是:∠DCE=∠B或∠ECA=∠A或∠B+∠BCE=180°.故答案为:∠DCE=∠B(答案不唯一).三、解答题(共8小题,满分50分)21.计算:(1)+;(2)×(﹣)2﹣.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义,以及二次根式性质计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=2﹣2+2=2;(2)原式=4+1﹣4=1.22.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.【考点】平行线的判定与性质.【分析】先根据∠1=∠2,易证a∥b,那么有∠3+∠4=180°,而∠3=60°,易求∠4.【解答】解:如右图所示,∵∠1=∠2,∴a∥b,∴∠3+∠4=180°,∵∠3=60°,∴∠4=120°.23.已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置;(2)在(1)的条件下,化简|a﹣b|﹣|b﹣c|+|c+a|.【考点】数轴;绝对值.【分析】(1)根据题意判断出abc的符号及大小,再在数轴上表示出各数即可;(2)根据各点在数轴上的位置去绝对值符号,合并同类项即可.【解答】解:(1)∵ab<0,∴a,b异号.∵>0,∴a,c同号.∵|a|=﹣a,∴a<0,∴b>0,c<0.∵|c|>|b|>|a|,∴c<a<0,且点B到原点的距离大于点a到原点的距离,小于点C到原点的距离,∴各点在数轴上表示为:;(2)∵由图可知,a﹣b<0,b﹣c>0,c+a<0,∴原式=b﹣a﹣(b﹣c)+(﹣c﹣a)=b﹣a﹣b+c﹣c﹣a=﹣2a.24.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【考点】算术平方根;平方根.【分析】根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,然后代入代数式进行计算即可得解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.25.已知(2a+b)3=﹣27,=5,求(3a+b)2n+1.(其中n为正整数)【考点】立方根;算术平方根.【分析】利用立方根及算术平方根定义求出a与b的值,代入原式计算即可得到结果.【解答】解:∵(2a+b)3=﹣27,=5,∴,解得:,则原式=﹣1.26.如图,已知AB∥CD,∠B=96°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.【考点】平行线的性质.【分析】首先根据平行线的性质可得∠B+∠CEB=180°,进而可得∠CEB的度数,再根据角平分线的定义可得∠FEB的度数,然后再根据垂直定义可得∠GEB的度数;利用邻补角的性质可得∠BED,再根据角的和差关系可得∠DEG的度数.【解答】解:∵AB∥CD,∴∠B+∠CEB=180°,∵∠B=96°,∴∠CEB=180°﹣96°=84°,∵EF平分∠BEC,∴∠BEF=84°÷2=42°,∵EG⊥EF,∴∠FEG=90°,∴∠BEG=90°﹣42°=48°,∵∠CEB=84°,∴∠BED=96°,∴∠DEG=96°﹣48°=48°.27.如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF 过点O,且平行于BC,求∠BOC的度数.【考点】三角形内角和定理;平行线的性质.【分析】先根据角平分线的性质求出∠OBC+∠OCB的度数,再由三角形内角和定理即可得出结论.【解答】解:∵∠ABC=52°,∠ACB=60°,BO、CO分别是∠ABC和∠ACB的平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(52°+60°)=56°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣56°=124°.28.如图,∠B、∠D的两边分别平行.(1)在图(1)中,∠B与∠D的数量关系是相等;(2)在图(2)中,∠B与∠D的数量关系是互补;(3)用一句话归纳的结论为如果两个角的两条边分别平行,那么这两个角的关系是相等或互补;试分别说明理由.【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等,两直线平行,同旁内角互补及两直线平行内错角相等进行做题.【解答】解:(1)相等;(2)互补;(3)如果两个角的两条边分别平行,那么这两个角的关系是相等或互补.图(1)中,∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1=∠D,∴∠B=∠D.图(2)中,∵AB∥CD,∴∠B=∠2,∵BE∥DF,∴∠2+∠D=180°,∴∠B+∠D=180°.2016年4月30日。
中学14—15学年下学期七年级第一次月考数学试题(附答案)
2014-2015学年度第二学期月调研七 年 级 数 学(总分150分 时间120分钟) 一、选择题(每题3分,共24分)1.计算 b 2·(-b 3)2的结果是( )A 、b 8B 、b 11C 、-b 8D 、-b 11 2、下列各式中错误的是 ( )A .[(a -b) 3]2=(a -b)6B .(-2a 2)4=16a 8C .(-13m 2n)3=-127m 6n 3D. (-ab 3)3=-a 3b 6 3.如图1,阴影部分的面积是( )A .112xy ; B .132xy ; C . 6xy ; D .3xy . 4.02267,56,43⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-三个数中,最小的是( ) A.243-⎪⎭⎫ ⎝⎛ B.256⎪⎭⎫ ⎝⎛ C.067⎪⎭⎫⎝⎛ D.不能确定 5.在下列多项式的乘法中,可以用平方差公式计算的是( ) A 、(x +3)(3+x )B 、(a +b 21)(a b 21-) C 、(-x +y )(x -y ) D 、 (a 2-b )(a +b 2)6.多项式5mx 3+25mx 2-10mxy 各项的公因式是( )A .5mx 2B .5mxyC . mxD .5mx7.要使N x x M x ++=∙-2)3(成立,且M 是一个多项式,N 是一个整数,则( ) A . 12,4=-=N x M B . 15,5=-=N x M C . 12,4-=+=N x M D . 15,5-=+=N x M 8.(x 2+m x +1)(x -3)的积中x 的二次项系数为零,则m 的值是( ). A .3 B .-3 C . 1D .-1二、填空题(每题3分,共30分) 9.计算0.25100×4100=______________.10.遗传物质脱氧核糖核酸(DNA)的分子半径为0.000000115cm ,用科学记数法表示 为 cm .11.已知a=277 ,b=344 ,c=433,那么a 、b 、c 的大小关系是____________. 12、如果x+4y-3=0,那么2x ·16y = .13.在多项式241x +中,添加一个单项式使其成为一个二项式的完全平方,则加上的单项式可以是____________(填一个即可).14.分解因式:a a -3= .15.若分解因式x 2+mx -24=(x +3)(x +n ),则m 的值为 . 16.如果42++mx x 是一个完全平方式,那么m 的值是____________. 17、已知22y x +=17,xy=4,则x-y= .18、己知 2x+3y=5 , 代数式4x 2+30y-9y 2 的值是 . 三、解答题(共96分)19.计算或化简(幂的运算)(每题2分,共8分)(1).m 3·m ·(m 2)3 (2).(p -q)4÷(q -p)3·(p -q)2.(3).(-3a 3)3-a 5·(-3a 2)2 (4).22- (-2)-2 -32÷(3.14-π)0.20.计算或化简(整式乘法)(每题3分,共12分)(1). (-3ab)· (- 4b )2 ; (2).235)109()1034(⨯∙⨯.(3). 3x(x 2-2x-1)+6x (4).)2)(5(-+x x +(-x+1)(x-2)21.计算或化简(乘法公式)(每题3分,共12分) (1)(2x +7y )2(2). (1.0a 21-)2(3).(ab -c 41)(ab +c 41) (4)22)32()32(-+x x332332424.3,2,()()m n m n m n m n a b a b a b a b ==+-已知求22.分解因式:(每题3分,共18分)(1)25x x - (2) 25x 2﹣81y 2(3)x 3﹣2x 2y+xy 2 (4)()()a y a x -+-1122(5).a 4-1 (6).a 4-18a 2+8123.先化简,再求值:(每题4分,共12分) (1).的值(2). 先化简,再求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第一月月考试卷
一、填空题(本大题共8小题15空,每空2分,共30分). 1. 16 的平方根是 ;25
49的算数平方根是 .
2. 计算: 16-25= ;3
164
37
- . 3.=-2
)4( ;
=-3
3)6( .
4.对顶角的性质: ;邻补角的性质: .
5.将“同位角相等,两直线平行”改写成“如果”,“那么”的形式
.
6.命题“如果∠1=∠2,∠2=∠3,那么∠1=∠3”的题设为:
;
结论为: .
7.估计与40最接近的两个整数为 和 . 8.π 3.146;3 328(填“>”,“<”或“=”).
二、选择题(本大题共8小题,每小题3分,共24 分,每小题给出
的) 的四个选项中,只有一个选项符合要求)
9.16的算术平方根是( )
A ,4 A. 4 B.±4 C .2 D.±2
10.下列说法错误的是( )
A.5是25的算数平方根
B.6
5是
36
25
的一个平方根 C.16的平方根是4 D.0的平方根与算术平方根都是0
11.下列书写错误的是( )
A .-7
B .27
C .36-
D .8- 12.下列说法正确的是 ( )
A.相等的两个角是对顶角
B.邻补角是互补的角
C. 同旁内角互补
D.两个锐角的和是锐角 13.如图,已知直线a ∥b ,∠1=70°,则∠2等于( ) A .120° B .110°
C .100°
D .90°
14.如图,直线a ∥b ,直线c 是截线,如果∠1=50° ,那么∠2等于( )
A .150°
B .140°
C .130°
D .120°
15.如图,直线AB ∥CD,∠B=23°,∠D=42°,则∠E 等于( )
A .23°
B .42°
C. 65° D .19°
16.如图所示:下列说法正确的是()
A .若 A
B ∥CD ,则 ∠1=∠2
B .若 AD ∥B
C ,则 ∠3=∠4
C .若∠1=∠2 ,则 AB ∥CD
题号 一 二 三 四
五 六 七 八 得分
学校: 班级: 姓名:
2
3 5 1 4
A
C
H F
D
B E G
A
B
C
D
E
1
2
D .若∠1=∠2 ,则 AD ∥BC
三、求下列各数的平方根和算数平方根(本题共2小题,每小题3分,共6 分)
(1)81 (2)106
四、求下列各数的立方根(本题共2小题,每小题3分,共6分) (1)-125
64
(2)0.008
五、求下列χ的值(本题共2小题,每小题4分,共8分)
(1)16χ2—9=40 (2)8)12(3-=-x
六、填注理由:(本题10分)
如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2, 求证:∠3+∠4=180°.
证明:∵∠1=∠2 ( ) 又∵∠2=∠5 ( ) ∴∠1=∠5 ( )
∴AB ∥CD ( )
∴∠3+∠4=180° ( )
七、作图题(本题共8分)
如图,平移三角形ABC ,使点A 移动到点A',画出平移后的三 角形A'B'C'(不需要写作图步骤).
A'
八、证明题:(本题8分)
已知:如图AD ∥BE ,∠1=∠2,求证:∠A=∠E .。