北师大版高中数学必修一第四章章末检测B.docx
北师大版高一数学必修1第四章函数应用测试题及答案
高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1. ()f x 函数在[a,b]上为单调函数,则 ( )A 、()f x 在[a,b]上不可能有零点B 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯>C 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯≤D 、以上都不对2.某商场对顾客实行购物优惠活动,规定一次购物付款总额: ( )(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元3.已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于 ( )A.2B.4C.6D.74.设()33-8x f x x =+, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间 ( ).A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能5.函数21()322⎛⎫=+- ⎪⎝⎭xf x x 的零点有( )个。
( )A .0B .1C .2D .36.方程3log 280x x +-=的解所在区间是 ( ) A .(5,6) B.(3,4) C .(2,3) D.(1,2)7.不论m 为何值,函数2()1f x x mx =+-,x R ∈的零点有 ( ) A. 2个 B.1个 C.0个 D.都有可能8.对于函数2()f x x mx n =++,若()0,()0f a f b >>,则函数()f x 在区间(a,b)内( ) A.一定有零点 B.一定没有零点 C.至多有一个零点 D.可能有两个零点 9.若关于x 的方程2210x ax --=在区间[0,2]上有解,则实数a 的取值范围是 ( ) A.34a >-B.34a <C.34a ≥- D 34a ≤. 10.将1个单位长度厚的纸对折x 次后,厚度y 与x 的函数关系是 ( )A.2x y =B.2y x =C.2y x =D.12x y +=二、填空题(本大题共5小题,每小题5分,共25分)把答案填第Ⅱ卷题中横线上11.函数2()2f x x x m =--的零点有两个,则实数m 的取值范围是_________________ 12.某电脑公司计划在2010年10月1日将500台电脑投放市场,经市场调研范县,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司在10月1日至10月10日的平均销售量是_______________台 13.已知函数()y f x =的图像是连续不断的,x,y 有如下对应值表:14.已知函数()1kf x x x=++在其定义域内有两个零点,则k ∈______________ 15.已知函数2()log 26f x x =+-在区间(n, n+1)()n N +∈内有唯一零点,则n=_______金台区高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.________________________ 12._______________________13._________________________ 14.______________________15._________________________三、解答题(本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(15分)已知函数2()(3)4,()f x ax a x f x =-++若的两个零点为,αβ,且满足024αβ<<<<,求实数a 的取值范围17. (15分)一种放射性元素,其最初的质量为500g,按每年10%的速度衰减,(1)求t 年后,这种放射性元素的质量m 的表达式;(2)求这种放射性元素的半衰期(精确到0.1年,0.9log 0.5 6.5788≈)18.(15分)某商店如果将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应该将售价定为多少时,才能使所赚利润最大,并求出最大利润.19.(15分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数()21 4002 80000 {R xx x=-(0400)(400)xx≤≤>.其中x表示仪器的月产量(单位:台).试问该公司的利润与月产量x有什么样的函数关系?写出其函数关系式. 20.(15分)某市电力公司在电力供大于求时期为了鼓励居民用电,采用分段计费方法计算电费,每月用电不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度仍按原标准收费,超过部分按每度0.5元计费.(1)设每月用电x度,应交电费y元,写出y关于x的函数关系.(2)小王家第一季度共用了多少度电?问:小王家第一季度共用了多少度电?金台区高一年级数学学科必修1第四章质量检测试题参赛试卷试卷说明学校:卧龙寺中学命题人吴亮李丰明一、命题意图函数与方程是新课标中函数部分的新增内容,其中既有一些基本概念,也蕴含了丰富的数学思想方法,新课程标准要求重视数学的应用,培养和发展数学应用意识,所以应用题型必将成为高考的核心考点。
北师大版高中数学必修一版第4章章末综合测评
及y=k的图像(如下图).
可知,当0<k<1时,y=k与y=f(x)的图像有两个交点,即方程f(x)=k有两个不同的实根.
【答案】(0,1)
用二分法求函数的零点或方程的近似解
1.看清题目的精度,它决定着二分法的结束.
2.根据f(a0)·f(b0)<0确定初始区间,高次方程要先确定有几个解,再确定初始区间.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
【精彩点拨】
【规范解答】(1)由题意知:
当0≤x≤20时,v(x)=60;
当20≤x≤200时,设v(x)=ax+b,
由已知得
解得
故函数v(x)的表达式为
v(x)=
(2)依题意并由(1)可得
f(x)=
当0≤x≤20时,f(x)为增函数,
故当x=20时,其最大值为60×20=1 200;
当20≤x≤200时,
f(x)= x(200-x)
=- (x-100)2+ .
所以,当x=100时,f(x)在区间[20,200]上取得最大值 .
其中“建模”是最关键的一步.建模就是将实际问题数学化,准确建模的前提是了解常见的函数模型.
2.函数是重要的数学模型,对于函数模型的应用,一方面是利用已知的函数模型解决问题;另一方面是根据实际问题建立恰当的函数模型,并利用所得的函数模型解释有关现象,或对发展趋势进行预测.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
高中北师大版数学必修1第1章至第四章学业质量标准检测
第一章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( A )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}[解析]A∩B={x|-2<x<1}∩{x|x<-1或x>3}={x|-2<x<-1},故选A.2.下列集合中表示同一集合的是( B )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}[解析]A选项中,元素为点,且不是同一点,C,D选项中的元素,一个为点,一个为数,都不可能为同一集合,故B正确.3.设集合A={a,b},B={x|x∈A},则( D )A.B∈A B.B AC.A∉B D.A=B[解析]由已知可得B={a,b},∴A=B4.设全集U=R,A={x|x>0},B={x|x>1},则A∩∁U B=( B )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[解析]易得∁U B={x|x≤1},故A∩∁U B={x|0<x≤1}.5.(2019·全国卷Ⅱ理,1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( A )A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)[解析]∵A={x|x2-5x+6>0}={x|(x-2)(x-3)>0}={x|x<2或x>3},B={x|x-1<0}={x|x<1}.∴A∩B={x|x<2或x>3}∩{x|x<1}={x|x<1},故选A.6.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的范围是( C )A.a≤-1 B.a≥1C.-1≤a≤1 D.a≥1或a≤-1[解析]∵P={x|-1≤x≤1},P∪M=P,∴a∈P.即-1≤a≤1.7.设集合A ={x|x≤13},a =11,那么( D ) A .a A B .a ∉A C .{a}∉AD .{a} A[解析] A 是集合,a 是元素,两者的关系应是属于与不属于的关系.{a}与A 是包含与否的关系,据此,A 、C 显然不对.而11<13,所以a 是A 的一个元素,{a}是A 的一个子集.故选D .8.设全集U ={x ∈N|x≥2},集合A ={x ∈N|x 2≥5},则∁U A =( B ) A .∅ B .{2} C .{5}D .{2,5}[解析] 本题考查集合的运算.A ={x ∈N|x 2≥5}={x ∈N|x≥5},故∁U A ={x ∈N|2≤x<5}={2}.选B .9.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于( D ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}[解析] 因为A∩B={3},所以集合A 中必有元素3.因为(∁U B)∩A={9},所以属于集合A 不属于集合B 的元素只有9.综上可得A ={3,9}.10.已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},且B≠∅,若A ∪B =A ,则m 的取值范围为( D )A .-3≤m≤4B .-2<m<4C .2<m<4D .2<m≤4[解析] 因为A ∪B =A ,所以B ⊆A . 又因为B≠∅,所以⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,所以2<m≤4.11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若(∁U A)∩B≠∅,则a 的取值范围为( A ) A .a>3 B .a≥3 C .a≥7D .a>7[解析] 因为A ={x|x<3或x≥7},所以∁U A ={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.12.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R|x 2-2x +1=0}有两个元素;④集合{x ∈Q|6x∈N}是有限集.其中正确命题的个数是( D )A .1B .2C .3D .0[解析] ①{0}是含有一个元素0的集合,不是空集, ∴①不正确.②当a =0时,0∈N ,∴②不正确. ③∵x 2-2x +1=0,x 1=x 2=1, ∴{x ∈R|x 2-2x +1=0}={1}, ∴③不正确.④当x 为正整数的倒数时6x ∈N ,∴{x ∈Q|6x ∈N}是无限集,∴④不正确.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.已知集合A ={x|x -2>0},若a ∈A ,则集合B ={x|x 2-ax +1=0}中元素的个数为2.[解析] ∵A ={x|x -2>0},a ∈A ,∴a -2>0,即a>2,∴a 2-4>0,则方程x 2-ax +1=0有两个不相等的实数根.故集合B 中元素的个数为2.14.设集合A ={x||x|<2},B ={x|x>a},全集U =R ,若A ⊆∁U B ,则a 的取值范围是a≥2. [解析] ∵|x|<2,∴-2<x<2,∴A ={x|-2<x<2}.而∁U B ={x|x≤a},故当A ⊆∁U B 时,a≥2. 15.设全集U =R ,A ={x ∈N|1≤x≤10},B ={x ∈R|x 2+x -6=0},则图中阴影表示的集合为{-3}.[解析] 如图阴影部分为(∁U A)∩B.∵A ={x ∈N|1≤x≤10}={1,2,3,4,…,9,10}, B ={x|x 2+x -6=0}={2,-3}, ∴(∁U A)∩B={-3}.16.集合M ={x|x =3k -2,k ∈Z},P ={y|y =3l +1,l ∈Z},S ={z|z =6m +1,m ∈Z}之间的关系是SP =M.[解析] M 、P 是被3除余1的数构成的集合,则P =M ,S 是被6除余1的数,则S P. 三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x ∈Z|-6≤x≤6},B ={1,2,3},C ={3,4,5,6}.求: (1)A ∪(B∩C); (2)A∩[∁A (B ∪C)].[解析] 由题意知A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (1)易知B∩C={3},故A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}, ∴A∩[∁A (B ∪C)]={-6,-5,-4,-3,-2,-1,0}.18.(本小题满分12分)已知M ={1,2,a 2-3a -1},N ={-1,a,3},M∩N={3},求实数a 的值. [解析] ∵M∩N={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.19.(本小题满分12分)已知A ={x|x 2-3x +2=0},B ={x|mx -2=0}且A ∪B =A ,求实数m 组成的集合C .[解析] 由A ∪B =A 得B ⊆A ,因此B 有可能等于空集. ①当B =∅时,此时方程mx -2=0无解, 即m =0符合题意.②当B≠∅时,即m≠0,此时A ={1,2},B ={2m },∵B ⊆A .∴2m =1或2m =2,∴m =2或m =1.因此,实数m 组成的集合C 为{0,1,2}.20.(本小题满分12分)集合A ={x|-2<x<4},集合B ={x|x -m<0}. (1)若m =3,求A∩B,A ∪B ;(2)若A∩B=∅,求实数m 的取值范围; (3)若A∩B=A ,求实数m 的取值范围. [解析] (1)当m =3时,B ={x|x<3}. 又A ={x|-2<x<4},∴A∩B={x|-2<x<4}∩{x|x<3}={x|-2<x<3}, A ∪B ={x|-2<x<4}∪{x|x<3}={x|x<4}. (2)∵A ={x|-2<x<4},B ={x|x<m},又A∩B=∅, ∴m≤-2,即m 的取值范围是{m|m≤-2}. (3)∵A∩B=A ,∴A ⊆B .又A ={x|-2<x<4},B ={x|x<m}, ∴m≥4,即m 的取值范围是{m|m≥4}.21.(本小题满分12分)已知M ={x|x 2-5x +6=0},N ={x|ax =12},若N ⊆M ,求实数a 所构成的集合A ,并写出A 的所有非空真子集.[解析]∵M={x|x2-5x+6=0},解x2-5x+6=0得x=2或x=3,∴M={2,3}.∵N⊆M,∴N为∅或{2}或{3}.当N=∅时,即ax=12无解,此时a=0;当N={2}时,则2a=12,a=6;当N={3}时,则3a=12,a=4.所以A={0,4,6},从而A的所有非空真子集为{0},{4},{6},{0,4},{0,6},{4,6}.22.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.(1)请你写出符合条件,且分别含有1个、2个、3个元素的集合S各一个.(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由.(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?[解析](1)由题意可知,若集合S中含有一个元素,则应满足10-x=x,即x=5,故S={5}.若集合S中含有两个元素,设S={a,b},则a,b∈N+,且a+b=10,故S可以是下列集合中的一个:{1,9},{2,8},{3,7},{4,6},若集合S中含有3个元素,由集合S满足的性质可知5∈S,故S是{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}中的一个.(2)存在含有6个元素的非空集合S如下所示:S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}共4个.(3)答案不唯一,如:①S⊆{1,2,3,4,5,6,7,8,9};②若5∈S,则S中元素个数为奇数个,若5∉S,则S中元素个数为偶数个.第二章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)[解析] 要使x +1有意义,须满足x +1≥0,即x≥-1;要使12-x 有意义,须满足2-x≠0,即x≠2,所以函数f(x)的定义域为{x|x≥-1,且x≠2},用区间可表示为[-1,2)∪(2,+∞).2.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( D )A .2B .1C .0D .-2[解析] ∵f(x)为奇函数, ∴f(-1)=-f(1)=-(1+11)=-2.3.下列四个图像中,表示的不是函数图像的是( B )[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.4.二次函数y =-2(x +1)2+8的最值情况是( C ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值.5.已知集合A 和集合B 的元素都属于N ,映射f :A→B,若把集合A 中的元素n 映射到集合B 中为元素n 2+n ,则在映射f 下,像20的原像是( A )A .4B .5C.4或-5 D.-4或5[解析]由题意,得n2+n=20,∴n2+n-20=0,∴(n+5)(n-4)=0,∴n=-5或n=4.∵n∈N,∴n=4,故选A.6.(2019·山东烟台高一期中测试)已知函数y=f(x)的部分x与y的对应关系如下表:则f[f(4)]=(A.-1 B.-2C.-3 D.3[解析]由图表可知,f(4)=-3,∴f[f(4)]=f(-3)=3.7.函数f(x)在(-∞,+∞)上单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( D )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析]∵f(x)为R上的奇函数,f(1)=-1,∴f(-1)=-f(1)=1,由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1),又∵f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3,故选D.8.若奇函数f(x)在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上是( B )A.增函数且最小值是-1 B.增函数且最大值是-1C.减函数且最大值是-1 D.减函数且最小值是-1[解析]∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y=f(x)在[-7,-3]上有最大值-1且为增函数.9.定义在[1+a,2]上的偶函数f(x)=ax2+bx-2在区间[1,2]上是( B )A.增函数B.减函数C.先增后减函数D.先减后增函数[解析]∵函数f(x)是偶函数,∴b=0.定义域为[1+a,2],则1+a=-2,∴a=-3.又二次函数f(x)=-3x2-2的图像开口向下,对称轴为y轴,则在区间[1,2]上是减函数.10.若函数y=kx+5kx2+4kx+3的定义域为R,则实数k的取值范围为( D )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[解析] ∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立; k≠0时,Δ<0,也成立.∴0≤k<34.11.函数y =ax 2-bx +c(a≠0)的图像过点(-1,0),则a b +c +b a +c -c a +b的值是( A ) A .-1 B .1 C .12D .-12[解析] ∵函数y =ax 2-bx +c(a≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b. ∴a b +c +b a +c -c a +b=-1. 12.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( B )A .0B .mC .2mD .4m[解析] 因为y =f(x),y =|x 2-2x -3|都关于x =1对称,所以它们交点也关于x =1对称,当m 为偶数时,其和为2×m 2=m ,当m 为奇数时,其和为2×m -12+1=m ,因此选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y =x 2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是y =x 2+4x +2.[解析] y =(x +2)2+1-3=(x +2)2-2 =x 2+4x +2.14.(2019·陕西黄陵中学高一期末测试)函数f(x)=4-2x +1x +1的定义域是{x|x≤2且x≠-1}. [解析] 由题意得⎩⎪⎨⎪⎧4-2x≥0x +1≠0,解得x≤2且x≠-1,∴函数f(x)的定义域为{x|x≤2且x≠-1}.15.已知函数f(x)=x 2-|x|,若f(-m 2-1)<f(2),则实数m 的取值范围是(-1,1).[解析] 因为f(x)=x 2-|x|=|x|2-|x|=(|x|-12)2-14,所以f(x)为偶函数,且在区间(12,+∞)上为增函数.又f(-m 2-1)=f(m 2+1)<f(2), 所以m 2+1<2.所以m 2<1,即-1<m<1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y =2x 2+1,值域为{9}的“孪生函数”有三个:①y =2x 2+1,x ∈{-2};②y =2x 2+1,x ∈{2};③y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有3个.[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f(x)=⎩⎪⎨⎪⎧x +2(x≤-1)x 2(-1<x<2)2x (x≥2).(1)求f{f[f(3)]}的值; (2)求f(a)=3,求a 的值; (3)画出函数的图像.[解析] (1)∵-1<3<2,∴f(3)=(3)2=3. 又 3≥2,∴f[f(3)]=f(3)=2×3=6. 又6≥2,∴f{f[f(3)]}=f(6)=2×6=12.(2)当a≤-1时,f(a)=a +2.若f(a)=3,则a +2=3, ∴a =1(舍去).当-1<a<2时,f(a)=a 2.若f(a)=3,则a 2=3, ∴a =3,或a =-3(舍去).当a≥2时,f(a)=2a.若f(a)=3,则2a =3, ∴a =32(舍去).综上可知,a = 3.(3)函数f(x)的图像如图所示,18.(本小题满分12分)已知函数f(x)=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f(x)=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5,所以当x =-3时,f(x)min =-19,当x =3时,f(x)max =41.(2)函数f(x)=(x -a)2+2-a 2的图像的对称轴为x =a ,因为f(x)在[-3,3]上是单调函数, 所以a≤-3或a≥3.19.(本小题满分12分)已知函数f(x)=1a -1x (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增加的;(2)若f(x)在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2. 则f(x 1)-f(x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f(x 1)<f(x 2). ∴函数f(x)在(0,+∞)上是增加的. (2)∵f(x)在[12,2]上的值域是[12,2],又∵f(x)在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f (12)=12f (2)=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f(x)=x -2m2-m +3,其中m ∈{x|-2<x<2,x ∈Z},满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f(-x)+f(x)=0.求同时满足(1),(2)的幂函数f(x)的解析式,并求x ∈[0,3]时f(x)的值域. [解析] 由{x|-2<x<2,x ∈Z}={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m<1,∴m =-1或0.由(2)知f(x)是奇函数.当m =-1时,f(x)=x 2为偶函数,舍去. 当m =0时,f(x)=x 3为奇函数. ∴f(x)=x 3.当x ∈[0,3]时,f(x)在[0,3]上为增函数, ∴f(x)的值域为[0,27].21.(本小题满分12分)设函数f(x)=x 2-2|x|-1(-3≤x≤3). (1)证明:f(x)是偶函数;(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称, f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数.(2)当x≥0时,f(x)=x 2-2x -1=(x -1)2-2, 当x<0时,f(x)=x 2+2x -1=(x +1)2-2,即f(x)=⎩⎪⎨⎪⎧(x -1)2-2,x≥0(x +1)2-2,x<0.根据二次函数的作图方法,可得函数图像,如图函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1),[0,1]上为减函数, 在[-1,0),[1,3]上为增函数.(3)当x≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2. 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2. 故函数f(x)的值域为[-2,2].22.(本小题满分12分)已知函数f(x)=x +x 3,x ∈R. (1)判断函数f(x)的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b>0,试比较f(a)+f(b)与0的大小. [解析] (1)函数f(x)=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)=x +x 3,x ∈R 是增函数. (2)由a +b>0,得a>-b ,由(1)知f(a)>f(-b), 因为f(x)的定义域为R ,定义域关于坐标原点对称, 又f(-x)=(-x)+(-x)3=-x -x 3=-(x +x 3)=-f(x), 所以函数f(x)为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·山东潍坊高一期末测试)函数f(x)=ln (x +1)x -2的定义域是( B )A .(-1,+∞)B .(-1,2)∪(2,+∞)C .(-1,2)D .[-1,2)∪(2,+∞)[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧x +1>0x -2≠0,∴x>-1且x≠2,故函数f(x)的定义域为(-1,2)∪(2,+∞). 2.下列计算正确的是( B ) A .log 26-log 23=log 23 B .log 26-log 23=1 C .log 39=3D .log 3(-4)2=2log 3(-4)[解析] 在B 选项中,log 26-log 23=log 263=log 22=1,故该选项正确.3.(2019·安徽合肥众兴中学高一期末测试)已知函数f(x)=⎩⎪⎨⎪⎧log 2x (x>0)3x(x≤0),则f[f(14)]的值是( B )A .9B .19 C .-19D .-9[解析] ∵x>0时,f(x)=log 2x , ∴f(14)=log 214=log 22-2=-2,又∵x<0时,f(x)=3x ,∴f(-2)=3-2=19.∴f[f(14)]=f(-2)=19.4.(2019·山东潍坊高一期末测试)已知x =log 512,y =(12)0.1,z =213 ,则( A )A .x<y<zB .x<z<yC .y<x<zD .z<x<y[解析] log 512<log 51=0,∴x<0;(12)0.1<(12)0=1,∴0<y<1;213 >20=1,∴z>1,∴x<y<z.5.函数y =a x与y =-log a x(a>0,且a≠1)在同一坐标系中的图像形状只能是( A )[解析] 排除法:∵函数y =-log a x 中x>0,故排除B ;当a>1时,函数y =a x为增函数,函数y =-log a x 为减函数,故排除C ;当0<a<1时,函数y =a x 为减函数,函数y =-log a x 为增函数,故排除D ,所以选A . 6.(2019·北京文,3)下列函数中,在区间(0,+∞)上单调递增的是( A ) A .y =x 12 B .2-xC .y =log 12xD .y =1x[解析] 函数y =x 12=x ,在(0,+∞)上单调递增,函数y =2-x=(12)x ,y =log 12x ,y =1x 在(0,+∞)上都是单调递减的,故选A .7.已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R).若f[g(1)]=1,则a =( A ) A .1 B .2 C .3D .-1[解析] 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A .8.给出f(x)=⎩⎪⎨⎪⎧12x (x≥4)f (x +1)(x<4),则f(log 23)的值等于( D )A .-238B .111C .119D .124[解析] 因为log 23∈(1,2), 所以f(log 23)=f(log 23+1)=f(log 26)=f(log 26+1) =f(log 212)=f(log 212+1) =f(log 224)=12log 224=124.9.若a>b>0,0<c<1,则( B ) A .log a c<log b c B .log c a<log c b C .a c<b cD .c a>c b[解析] 对于选项A :log a c =lgc lga ,log b c =lgclgb,∵0<c<1,∴lgc<0,而a>b>0,所以lga>lgb ,但不能确定lga 、lgb 的正负,所以它们的大小不能确定; 对于选项B :log c a =lga lgc ,log c b =lgb lgc ,而lga>lgb ,两边同乘以一个负数1lgc 改变不等号方向所以选项B 正确;对于选项C :利用y =x c在第一象限内是增函数即可得到a c>b c,所以C 错误;对于选项D :利用y =c x在R 上为减函数易得为错误.所以本题选B .10.设函数f(x)=x 2-4x +3,g(x)=3x-2,集合M ={x ∈R|f[g(x)]>0},N ={x ∈R|g(x)<2},则M∩N =( D )A .(1,+∞)B .(0,1)C .(-1,1)D .(-∞,1)[解析] ∵f[g(x)]>0,∴g 2(x)-4g(x)+3>0. ∴g(x)>3或g(x)<1, ∴M∩N={x|g(x)<1}.∴3x-2<1,3x<3,∴x<1.故选D .11.已知函数f(x)=⎩⎪⎨⎪⎧ 2x -1-2,-log 2(x +1),x≤1,x>1,且f(a)=-3,则f(6-a)=( A )A .-74B .-54C .-34D .-14[解析] 由已知条件可得函数图像:故f(a)=-3=-log 2(a +1),可得a =7; f(6-a)=f(-1)=2-1-1-2=-74.故本题正确答案为A .12.已知f(x)=log 12(x 2-ax +3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是( C )A .(-4,4)B .[-4,4)C .(-4,4]D .[-4,4][解析] 要使f(x)在[2,+∞)上是减函数,则需g(x)=x 2-ax +3a 在[2,+∞)上递增且恒大于零. ∴⎩⎪⎨⎪⎧a 2≤2g (2)=22-2a +3a>0,解得-4<a≤4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·大连市高一期末测试)已知16a=4,lg x =a ,则x =10. [解析] ∵16a=4,∴a =12,∴lg x =12,∴x =1012=10,∴x =10.14.(2019·安徽安庆二中高一期中测试)计算:(49)12 +(12)log23+lne =2.[解析] 原式=23+12log 23+1=23+13+1=2. 15.(2019·全国卷Ⅱ理,14)已知f(x)是奇函数,且当x<0时,f(x)=-e ax,若f(ln2)=8,则a -3.[解析] 解法一:设x>0,则-x<0, ∴f(-x)=-e-ax,∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=-e -ax,∴f(x)=e-ax=1eax =1(e x )a , ∵ln2>0,∴f(ln2)=1(e ln2)a =12a =8,∴2a=18=2-3,∴a =-3.解法二:∵ln2>0,∴-ln2<0, 又∵当x<0时,f(x)=-e ax, ∴f(-ln2)=-e -aln2=-1e aln2=-1(e ln2)a=-12a ,又∵f(x)为奇函数,∴f(-ln2)=-f(ln2) =-8, ∴-12a =-8,∴2a=18=2-3,∴a =-3.16.关于函数y =2x2-2x -3有以下4个结论:①定义域为(-∞,-1)∪(3,+∞); ②递增区间为[1,+∞); ③是非奇非偶函数; ④值域是(116,+∞).则正确的结论是②③.(填序号即可)[解析] ①不正确,因为y =2x 2-2x -3的定义域为R ; ④不正确,因为x 2-2x -3=(x -1)2-4≥-4, ∴2x2-2x -3≥2-4=116,即值域为[116,+∞);②正确,因为y =2u为增函数,u =x 2-2x -3在(-∞,1]上为减函数,在[1,+∞)上为增函数,所以y =2x2-2x -3的递增区间为[1,+∞);③正确,因为f(-x)≠f(x)且f(-x)≠-f(x).三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2019·安徽太和中学高一期中测试)计算下列各式的值: (1)(12)-2+(12)0-2713 +38;(2)log 327-log 33+lg25+2lg2+lne 2. [解析] (1)原式=22+1-(33) 13 +323=4+1-3+2=4.(2)原式=log 3332 -log 3312 +lg25+lg4+2=32-12+lg100+2 =32-12+2+2=5. 18.(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x +2). (1)求g(x)的解析式及定义域; (2)求函数g(x)的最大值和最小值. [解析] (1)∵f(x)=2x, ∴g(x)=f(2x)-f(x +2)=22x-2x +2.∵f(x)的定义域是[0,3],∴⎩⎪⎨⎪⎧0≤2x≤30≤x+2≤3,解得0≤x≤1.∴g(x)的定义域是[0,1]. (2)g(x)=(2x )2-4×2x=(2x-2)2-4. ∵x ∈[0,1], ∴2x ∈[1,2].∴当2x =1,即x =0时,g(x)取得最大值-3; 当2x=2,即x =1时,g(x)取得最小值-4.19.(本小题满分12分)已知定义域为R 的偶函数f(x)在[0,+∞)上是增函数,且f(12)=0,求不等式f(log 4x)>0的解集.[解析] 因为f(x)是偶函数, 所以f(-12)=f(12)=0,又f(x)在[0,+∞)上是增函数, 所以f(x)在(-∞,0)上是减函数. 所以f(log 4x)>0⇒log 4x>12或log 4x<-12,解得:x>2或0<x<12,则不等式f(log 4x)>0的解集是 {x|x>2,或0<x<12}.20.(本小题满分12分)已知a>0且a≠1,函数f(x)=log a x ,x ∈[2,4]的值域为[m ,m +1],求a 的值.[解析] 当a>1时,f(x)=log a x ,在[2,4]上是增加的,∴x =2时,f(x)取最小值;x =4时,f(x)取最大值,即⎩⎪⎨⎪⎧log a 2=m log a 4=m +1,∴2log a 2=log a 2+1.∴log a 2=1,得a =2 当0<a<1时,f(x)=log a x 在[2,4]上是减少的,∴当x =2时,f(x)取最大值;x =4时,f(x)取最小值,即⎩⎪⎨⎪⎧log a 2=m +1log a 4=m ,∴log a 2=2log a 2+1,∴log a 2=-1.∴a =12.综上所述,a =2或a =12.21.(本小题满分12分)已知函数f(x)=(12x -1+12)·x 3.(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明:f(x)>0.[解析] (1)因为要使题中函数有意义,需2x-1≠0,即x≠0, 所以所求定义域为(-∞,0)∪(0,+∞). (2)因为f(x)=2+(2x-1)2(2x-1)·x 3=2x+12(2x -1)·x 3, 又f(-x)=2-x+12(2-x -1)·(-x)3=1+2x2(1-2x )·(-x 3)=2x+12(2x-1)·x 3, 所以f(-x)=f(x),即f(x)是偶函数. (3)证明:因为x>0时,2x>1,所以2x-1>0. 又因为x 3>0,所以f(x)>0;因为x<0时,0<2x<1,所以-1<2x-1<0. 又因为x 3<0,所以f(x)>0.所以当x ∈(-∞,0)∪(0,+∞)时,f(x)>0.22.(本小题满分12分)某商品的市场日需求量Q 1和日产量Q 2均为价格P 的函数,且Q 1=144·(12)P +12,Q 2=6×2P ,日总成本C 关于日产量Q 2的关系式为:C =10+13Q 2.(1)Q 1=Q 2时的价格为均衡价格,求此均衡价格P 0;(2)当P =P 0时,求日利润L 的大小.[解析] 均衡价格即供需相等时所对应的价格,利润=收益-成本,列出方程即可求解. (1)根据题意有Q 1=Q 2, 144·(12)P +12=6×2P,即(2P )2-2·2P-24=0. 解得2P=6,2P=-4(舍去). ∴P =log 26,故P 0=P =log 26. 即均衡价格为log 26元. (2)由于利润=收益-成本,故L =Q 1P -C =36log 26-(10+13×36)=36log 26-22,故P =P 0时,利润为(36log 26-22)元.第四章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)的图像与x轴有3个交点,则方程f(x)=0的实数解的个数是( D )A.0 B.1C.2 D.3[解析]因为函数f(x)的图像与x轴有3个交点,所以函数f(x)有3个零点,即方程f(x)=0有3个实数解.2.函数y=x的零点是( A )A.0 B.(0,0)C.(1,0) D.1[解析]函数y=x的零点是其图像与横轴交点的横坐标0,它是一个实数,而不是点,故选A.3.方程lgx+x=0的根所在区间是( B )A.(-∞,0) B.(0,1)C.(1,2) D.(2,4)[解析]若lgx有意义,∴x>0,故A不正确,又当x>1时,lgx>0,lgx+x>0,C、D不正确,故选B.4.函数f(x)的图像如图所示,则函数f(x)的零点个数为( D )A.1 B.2C.3 D.4[解析]因为f(x)与x轴有4个交点,所以共有4个零点.5.若f(x)是一个二次函数,且满足f(2+x)=f(2-x),该函数有两个零点x1,x2,则x1+x2=( C ) A.0 B.2C.4 D.无法判断[解析]由f(2+x)=f(2-x)知f(x)的图像关于x=2对称.∴x1+x2=4.6.下图是函数f(x)的图像,它与x轴有4个不同的公共点.在下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( B )A .[-2,-1]B .[1,2]C .[4,5]D .[5,6][解析] 在区间[1,2]上的零点为不变号零点,故不能用二分法求.7.夏季高山温度从山脚起每升高100m ,降低0.7摄氏度,已知山顶的温度是14.1摄氏度,山脚的温度是26摄氏度,则山的相对高度为( C )A .1 750mB .1 730mC .1 700mD .1 680m[解析] 设从山脚起每升高x 百米时,温度为y 摄氏度,根据题意得y =26-0.7x ,山顶温度是14.1摄氏度,代入得14.1=26-0.7x.∴x =17(百米),∴山的相对高度是1 700m.8.函数f(x)=2x+3x 的零点所在的一个区间是( B ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)[解析] ∵f(x)=2x+3x ,∴f(-1)=-52<0,f(0)=1>0,故选B .9.若方程lnx +x -4=0在区间(a ,b)(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为( B ) A .1 B .2 C .3D .4[解析] 设f(x)=lnx +x -4,f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0, ∴根在区间(2,3)内,∴a =2.故选B .10.若方程x 2+(m -2)x +(5-m)=0的两根都大于2,则m 的取值范围是( A ) A .(-5,-4] B .(-∞,-4]C .(-∞,-2)D .(-∞,-5)∪(-5,-4][解析] 考查函数f(x)=x 2+(m -2)x +(5-m),由条件知它的两个零点都大于2,其图像如图所示.由图可知,⎩⎪⎨⎪⎧-m -22>2f 2=m +5>0m -22-45-m≥0,即⎩⎪⎨⎪⎧m<-2m>-5m≥4或m≤-4,∴-5<m≤-4.故选A .11.已知函数f(x)在区间[0,a]中有唯一的变号零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为[0,a 2],[0,a 4],[0,a8],则下列说法正确的是( D )A .函数f(x)在区间[0,a16]中有零点B .函数f(x)在区间[0,a 16]或[a 16,a8]中有零点C .函数f(x)在区间[a16,a]中无零点D .函数f(x)在区间[0,a 16]或[a 16,a 8]中有零点,或零点是a16[解析] 由二分法的定义可知,只有D 正确.12.已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x 2-3x.则函数g(x)=f(x)-x +3的零点的集合为( D )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析] 令x<0,则-x>0,∴f(-x)=(-x)2-3(-x)=x 2+3x , 又∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+3x , ∴f(x)=-x 2-3x(x<0),∴f(x)=⎩⎪⎨⎪⎧x 2-3x x≥0-x 2-3x x<0.∴g(x)=⎩⎪⎨⎪⎧x 2-4x +3x≥0-x 2-4x +3x<0.当x≥0时,由x 2-4x +3=0,得x =1或x =3. 当x<0时,由-x 2-4x +3=0,得x =-2-7, ∴函数g(x)的零点的集合为{-2-7,1,3}.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.函数f(x)=(x 2-3)(x 2-2x -3)的零点为±3,3,-1 . [解析] 令f(x)=0,得x =±3,或x =3,或x =-1.14.用一根长为12m 的细铁丝弯折成一个矩形的铁框架,则能弯成的框架的最大面积是9m 2. [解析] 设框架的一边长为xm ,则另一边长为(6-x)m.设框架面积为ym 2,则y =x(6-x)=-x 2+6x =-(x -3)2+9(0<x<6),y max =9(m 2).15.已知f(x)是定义域为R 的奇函数,且在(-∞,0)内的零点有2012个,则f(x)的零点的个数为4_025.[解析] 因为f(x)为奇函数,且在(-∞,0)内有2 012个零点,由奇函数的对称性知,在(0,+∞)内也有2 012个零点,又x ∈R ,所以f(0)=0,因此共4 025个零点.16.函数f(x)=⎩⎪⎨⎪⎧x 2-2x≤02x -6+lnx x>0的零点个数是2.[解析] 当x≤2,令x 2-2=0,得x =-2; 当x>0时,令2x -6+lnx =0, 即lnx =6-2x ,在同一坐标系中,画出函数y =6-2x 与y =lnx 的图像如图所示.由图像可知,当x>0时,函数y =6-2x 与y =lnx 的图像只有一个交点,即函数f(x)有一个零点. 综上可知,函数f(x)有2个零点.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数y =x 3-7x +6的零点. [解析] ∵x 3-7x +6=(x 3-x)-(6x -6) =x(x 2-1)-6(x -1) =x(x +1)(x -1)-6(x -1) =(x -1)(x 2+x -6) =(x -1)(x -2)(x +3),∴由x 3-7x +6=0即(x -1)(x -2)(x +3)=0得x 1=-3,x 2=1,x 3=2. ∴函数y =x 3-7x +6的零点为-3,1,2.18.(本小题满分12分)已知函数f(x)=x 2-x +m 的零点都在区间(0,2)内,求实数m 的范围.[解析] 由题意可得⎩⎪⎨⎪⎧Δ≥0f 0>0f 2>0,即⎩⎪⎨⎪⎧1-4m≥0m>04-2+m>0,解得0<m≤14.所以实数m 的取值范围是(0,14].19.(本小题满分12分)(济南一中月考,有改动)判断方程x 3-4x -2=0在区间[-2,0]内实数根的个数.[解析] 设f(x)=x 3-4x -2,则f(x)的图像是连续曲线,而f(-2)=-2<0,f(0)=-2<0,若取区间[-2,0]内一点-1,得f(-1)=1>0,取x =3,得f(3)=13>0,因此函数f(x)满足f(-2)·f(-1)<0,f(-1)·f(0)<0,f(0)·f(3)<0,∴f(x)分别在[-2,-1),(-1,0),(0,3)内至少存在一个零点, 又∵x 3-4x -2=0最多有3个根,∴方程x 3-4x -2=0在区间[-2,0]内有2个实数根.20.(本小题满分12分)某公司从2009年的年产值100万元,增加到10年后2019年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)[解析] 设每年年增长率为x , 则100(1+x)10=500,即(1+x)10=5, 两边取常用对数,得 10·lg(1+x)=lg5,∴lg(1+x)=lg510=110(lg10-lg2)=0.710.又∵lg(1+x)=ln1+xln10,∴ln(1+x)=lg(1+x)·ln10.∴ln(1+x)=0.710×ln10=0.710×2.30=0.161=16.1%.又由已知条件ln(1+x)≈x 得x≈16.1%. 故每年的平均增长率约为16.1%.21.(本小题满分12分)是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.[解析] 若实数a 满足条件,则只需f(-1)f(3)≤0即可.f(-1)f(3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a)(5a +1)≤0,所以a≤-15或a≥1.检验:(1)当f(-1)=0时a =1,所以f(x)=x 2+x. 令f(x)=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a≠1. (2)当f(3)=0时a =-15,此时f(x)=x 2-135x -65.令f(x)=0,即x 2-135x -65=0.解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).22.(本小题满分12分)某房地产公司要在荒地ABCDE(如图所示)上划出一块长方形地面建造一幢公寓,问:如何设计才能使公寓占地面积最大?求出最大面积(尺寸单位:m).[解析] 如图所示,设计长方形公寓分三种情况:(1)当一顶点在BC 上时,只有在B 点时长方形BCDB 1面积最大, ∴S 1=SBCDB 1=5 600m 2.(2)当一顶点在EA 边上时,只有在A 点时长方形AA 1DE 的面积最大, ∴S 2=SAA 1DE =6 000m 2.(3)当一顶点在AB 边上时,设该点为M ,则可构造长方形MNDP ,并补出长方形OCDE. 设MQ =x(0≤x≤20),∴MP =PQ -MQ =80-x. 又OA =20,OB =30,则OA OB =MQ QB ,∴23=x QB ,∴QB =32x ,∴MN =QC =QB +BC =32x +70,∴S 3=S MNDP =MN·MP=(70+32x)·(80-x)=-32(x -503)2+18 0503,当x =503时,S 3=18 0503.比较S 1,S 2,S 3,得S 3最大,此时MQ =503m ,BM =25 133m ,故当长方形一顶点落在AB 边上离B 点25133m 处时公寓占地面积最大,最大面积为18 0503m 2.。
2024-2025年北师大版数学必修第一册第四章单元质量评估卷(带答案)
第四章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =xlg (2-x )的定义域是( )A .[0,2)B .[0,1)∪(1,2)C .(1,2)D .[0,1)2.计算log 225·log 32 2 ·log 59的结果为( )A .3B .4C .5D .63.若a =lg 3,b =log 43,c =22,则( ) A .a<b<c B .a<c<b C .c<a<b D .b<a<c4.已知函数f(x)=⎩⎪⎨⎪⎧3x -2,x<2,log 3(x 2-1),x≥2, 若f(a)=1,则a 的值是( ) A .2 B .1 C .1或2 D .1或-25.若log a 3=m ,log a 5=n ,则a2m +n的值是( )A .15B .75C .45D .2256.函数f(x)=ln (x +x 2+1 ),若实数a ,b 满足f(2a +5)+f(4-b)=0,则2a -b =( )A .1B .-1C .-9D .97.已知函数f(x)=|lg (x -1)|,若a≠b,且f(a)=f(b),则a +b 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(3,+∞)D .(4,+∞)8.已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +1,x≥0,-x 2+2x +1,x<0. 若a =f(log 316 ),b =f(log 5110 ),c =f(log 612),则( )A .c <b <aB .b <a <cC .a <c <bD .a <b <c二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.已知a>0,且a≠1,下列说法不正确的是( )A .若M =N ,则log a M =log a NB .若log a M =log a N ,则M =NC .若log a M 2=log a N 2,则M =ND .若M =N ,则log a M 2=log a N 210.已知函数f(x)=|lg x|,0<a<b ,且f(a)>f(b),则下列结论可能成立的是( )A .0<a<b<1B .0<a<1<bC .0<ab<1D .(a -1)(b -1)>011.已知函数f(x)=lg (x 2+ax -a),下列说法中正确的是( )A .若f(x)的定义域为R ,则-4≤a ≤0B .若f (x )的值域为R ,则a ≤-4或a ≥0C .若a =2,则f (x )的单调减区间为(-∞,-1)D .若f (x )在(-2,-1)上单调递减,则a ≤1212.若f (x )是定义在R 上的奇函数,f (x +2)是偶函数,当x ∈(0,2]时,f (x )=log 2x ,则( )A .f (x )在(-4,-2)上单调递减B .f (92)=-1C .f (x )在[-4,4]上恰有5个零点D .f (x -2)是偶函数第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.(-2)0+lg 25+(lg 2)2+lg 2·lg 50+2log 213-1=________.14.已知函数f (x )=log a (x -3)+2(a >0,且a ≠1)的图象恒过定点P ,且幂函数g (x )=x α的图象经过点P ,则g (2)的值为________.15.已知f (x )是在定义域(0,+∞)上的单调函数,且对任意x ∈(0,+∞)都满足:f (f (x )-2log 2x )=4,则满足不等式f (x )-2<log 2(3x )的x 的取值范围是________.16.给出下列四个结论: ①函数y =(12)−x2+1的最大值为12;②已知函数y=log a(2-ax)(a>0,且a≠1)在(0,1)上是减函数,则a的取值范围是(1,2);③在同一平面直角坐标系中,函数y=log2x与y=log12x的图象关于y轴对称;④在同一平面直角坐标系中,函数y=2x与y=log2x的图象关于直线y=x对称.其中正确结论的序号是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=log a x(a>0且a≠1),且f(a)+f(9a)=4.(1)求实数a的值;(2)解关于x的不等式f2(x)-4f(x)-5<0.18.(本小题满分12分)已知f(x)=(log12 x)2-2log12x+4,x∈[2,4].(1)设t=log12x,x∈[2,4],求t的最大值与最小值;(2)求f(x)的值域.19.(本小题满分12分)函数f(x)=log3(a x-1),a>0且a≠1.(1)求该函数的定义域;(2)若该函数的图象经过点M(2,1),讨论f(x)的单调性并证明.20.(本小题满分12分)已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A 又在函数f(x)=log3(x+a)的图象上.(1)求实数a的值并解不等式f(x)<log3a;(2)函数h(x)=|g(x+2)-2|的图象与直线y=2b有两个不同的交点时,求b的取值范围.21.(本小题满分12分)已知函数f (x )=kx -ln (e x+1). (1)当k =1时,用单调性的定义证明f (x )是增函数;(2)当f (x )是偶函数时,y =f (x )的图象在函数g (x )=-12 x +b 图象下方,求b 的取值范围.22.(本小题满分12分)已知函数g (x )=log 22xx +2. (1)证明:g (x -2)+g (-x )=2;(2)若存在一个平行四边形的四个顶点都在函数f (x )的图象上,则称函数f (x )具有性质P ,判断函数g (x )是否具有性质P ,并证明你的结论;(3)设点A (-4,0),函数h (x )=2g (x ).设点B 是曲线y =h (x )上任意一点,求线段AB 长度的最小值.第四章 单元质量评估卷1.答案:B解析:若使函数有意义,则⎩⎪⎨⎪⎧x ≥0,2-x >0,2-x ≠1,解得0≤x <2且x ≠1.选B.2.答案:D解析:利用换底公式,则原式=lg 25lg 2 ×lg 22lg 3 ×lg 9lg 5 =2lg 5lg 2 ×32lg 2lg 3 ×2lg 3lg 5 =2×32×2=6. 3.答案:B解析:因为lg 3<lg 10 =12 ,所以a <12 ,因为12 <22 <1.52 =34 ,所以12 <c <34 ,因为log 43>log 48 =34 ,所以b >34 ,所以a <c <b .故选B. 4.答案:A解析:若f (a )=1,则⎩⎪⎨⎪⎧a <2,3a -2=1 或⎩⎪⎨⎪⎧a ≥2,log 3(a 2-1)=1,解得a =2,故选A. 5.答案:C解析:∵log a 3=m ,∴a m =3,∵log a 5=n ,∴a n =5,∴a 2m +n=(a m )2·a n =32×5=45.选C.6.答案:C解析:由题意,f (-x )+f (x )=ln (-x +x 2+1 )+ln (x +x 2+1 )=ln (x 2+1-x 2)=0,所以f (-x )=-f (x ),f (x )为奇函数,故由f (2a +5)+f (4-b )=0得2a +5+4-b =0,则2a -b =-9.故选C.7.答案:D解析:f (x )=|lg (x -1)|=⎩⎪⎨⎪⎧lg (x -1),x ≥2-lg (x -1),1<x <2 ,由对数型函数的单调性可知:该函数在1<x <2时,单调递减,在x ≥2时,单调递增,且f (2)=0,因为a ≠b ,f (a )=f (b ),所以不妨设1<a <2<b ,则有-lg (a -1)=lg (b -1),即(b -1)(a -1)=1, 因为a -1≠b -1,所以a +b =a -1+b -1+2>2(a -1)(b -1) +2=4. 故选D. 8.答案:D解析:令g (x )=x 2+2x +1,知其在[0,+∞)上单调递增. 令h (x )=-x 2+2x +1,知其在(-∞,0)上单调递增, 又g (0)=h (0)=1, 得f (x ) 在R 上单调递增.因函数y =log 6x ,y =log 3x ,y =log 5x 均在(0,+∞)上单调递增, 则log 612>log 66=1,log 316 <log 31=0,log 5110<log 51=0.又log 316 =-log 36=-(1+log 32),log 5110 =-log 510=-(1+log 52),log 52=log 32log 35 <log 32log 33 =log 32,则log 316 <log 5110.故log 316 <log 5110 <log 612,又由函数f (x ) 在R 上单调递增,则f (log 316 )<f (log 5110 )<f (log 612),即a <b <c .故选D. 9.答案:ACD解析:若M =N ≤0,则log a M ,log a N 无意义,A 错误;因为log a M =log a N ,且y =log a x 为单调函数,所以M =N ,B 正确; 因为log a M 2=log a N 2,则M 2=N 2,所以M =N 或M =-N ,C 错误; 若M =N =0,则log a M 2,log a N 2无意义,D 错误.故选ACD. 10.答案:ABC解析:由题意得0<a <b <1或0<a <1<b .当0<a <b <1时,显然0<ab <1;当0<a <1<b 时,有-lg a >lg b ,∴lg a +lg b =lg ab <0,∴0<ab <1.综上可知,0<ab <1,故选ABC.11.答案:BD解析:对于A ,若f (x )的定义域为R ,则x 2+ax -a >0在R 上恒成立,所以a 2+4a <0,所以-4<a <0,所以A 错误;对于B ,若f (x )的值域为R ,则a 2+4a ≥0,所以a ≥0或a ≤-4,所以B 正确; 对于C ,若a =2,则f (x )=lg (x 2+2x -2),函数的定义域为(-∞,-1-3 )∪(-1+3 ,+∞),设u =x 2+2x -2,v =lg u ,即求函数u =x 2+2x -2的减区间,由复合函数的单调性原理得函数的单减区间为(-∞,-1-3 ),所以C 错误;对于D ,若f (x )在(-2,-1)上单调递减,则(-1)2+a (-1)-a ≥0且-a2 ≥-1,所以a ≤12,所以D 正确.故选BD.12.答案:AD解析:由f (x )是定义在R 上的奇函数得f (x )=-f (-x ),f (0)=0, 由f (x +2)是偶函数得f (x +2)=f (-x +2),即f (x )关于x =2对称, 结合f (x )是奇函数可得f (x )关于x =-2对称, ∴f (x +2)=f (-x +2)=-f (x -2),∴ f (x )=-f (x -4)=f (x -8),∴函数的周期为8.当x ∈(0,2]时,f (x )=log 2x ,则f (x )在(-6,2](1个周期)的图象如图所示.对A ,由图易得,f (x )在(-4,-2)上单调递减,A 对;对B ,由函数的奇偶性、周期性可得f (92 )=f (-72 )=f (-12 )=-f (12 )=1,B 错;对C ,由图易得,f (x )在[-4,4]上恰有7个零点,C 错;对D ,因为函数关于x =-2对称,所以f (x -2)=f (-x -2),故f (x -2)是偶函数,D 对.故选AD.13.答案:196解析:原式=1+2lg 5+lg 2(lg 2+lg 50)+13 ×12 =1+2lg 5+2lg 2+16 =76+2(lg5+lg 2)=196.14.答案:2解析:令x =4,则f (4)=log a 1+2=2恒成立,故函数f (x )恒过点(4,2),即P (4,2),则g (4)=4α=2,解得α=12,故g (2)=2 .15.答案:(0,3)解析:由题意得f (x )-2log 2x 为正常数,令f (x )-2log 2x =t ,t >0,则f (x )=2log 2x +t ,且f (t )=2log 2t +t =4,解得t =2,原不等式为2log 2x <log 2(3x ),可得⎩⎪⎨⎪⎧x >0x 2<3x ,解得0<x <3,故x 的取值范围为(0,3). 16.答案:④解析:函数t =-x 2+1的最大值为1, ∴y =(12)-x2+1的最小值为12,∴①错误;函数y =log a (2-ax )(a >0,且a ≠1)在(0,1)上是减函数,∴⎩⎪⎨⎪⎧a >1,2-a ≥0, 解得a 的取值范围是(1,2],②错误;在同一平面直角坐标系中,函数y =log 2x 与y =log 12x 的图象关于x 轴对称,③错误;在同一平面直角坐标系中,函数y =2x与y =log 2x 的图象关于直线y =x 对称,④正确.综上,正确结论的序号是④.17.解析:(1)由题知,log a a +log a (9a )=2+log a 9=4, 则log a 9=2,即a 2=9, 又a >0,故a =3.(2)令t =f (x ),不等式转化为t 2-4t -5<0, 即(t +1)(t -5)<0,解得-1<t <5,即-1<log 3x <5,又-1=log 313,5=log 3243,且f (x )=log 3x 在(0,+∞)上单调递增,则13 <x <243,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13<x <243 .18.解析:(1)因为函数t =log 12x 在[2,4]上是单调递减函数,所以t max =log 122=-1,t min =log 124=-2.(2)令t =log 12x ,则g (t )=t 2-2t +4=(t -1)2+3,由(1)得t ∈[-2,-1],因此当t =-2,即x =4时,f (x )max =12;当t =-1,即x =2时,f (x )min =7.因此,函数f (x )的值域为[7,12].19.解析:(1)要使函数式有意义,需a x -1>0,即a x>1. 当a >1时,可得x >0,所以a >1时,x ∈(0,+∞); 当0<a <1时,可得x <0,所以0<a <1时,x ∈(-∞,0).(2)因为函数的图象经过点M (2,1),所以1=log 3(a 2-1),所以a 2-1=3,即a 2=4,又a >0,所以a =2,所以f (x )=log 3(2x-1).显然x >0,f (x )在(0,+∞)上是增函数.证明如下:任取x 2>x 1>0,则2x 2>2x 1>1,所以2x 2-1>2x 1-1>0,又y =log 3x 在(0,+∞)上单调递增,所以log 3(2x 2-1)>log 3(2x 1-1),即f (x 2)>f (x 1),所以f (x )在(0,+∞)上是增函数.20.解析:(1)函数g (x )的图象恒过定点A ,当x -2=0时,即x =2,y =2, ∴A 点的坐标为(2,2),又A 点在f (x )上, ∴f (2)=log3(2+a )=2,解得a =1,f (x )<log3a ,∴log 3(x +1)<log31=0,∴0<x +1<1,∴-1<x <0,∴不等式的解集为(-1,0). (2)由(1)知g (x )=2x -2+1,∴h (x )=|g (x +2)-2|=|2x-1|=2b , 分别画出y =h (x )与y =2b 的图象,如图所示:由图象可知:0<2b <1,故b 的取值范围为(0,12).21.解析:(1)证明:当k =1时,f (x )=x -ln (e x+1)=ln exe x +1,设∀x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=ln e x 2e x 2+1-ln e x 1e x 1+1=ln (e x 2e x 2+1·e x 1+1e x 1)=ln e x 1+x 2+e x 2e x 1+x 2+e x 1,∵x 2>x 1,∴e x 1+x 2+e x 2>e x 1+x 2+e x 1>0, ∴e x 1+x 2+e x 2e x 1+x 2+e x 1>1,∴ln e x 1+x 2+e x 2e x 1+x 2+e x 1>0,∴f (x 2)-f (x 1)>0,即f (x 1)<f (x 2),所以当k =1时f (x )是增函数,(2)由f (-x )=f (x ),得-kx -ln (e -x +1)=kx -ln (e x +1),整理得2kx =ln e x +1e -x +1=ln e x =x , 则2kx =x 对任意x ∈R 恒成立,所以k =12. 所以f (x )=12x -ln (e x +1), 函数y =f (x )的图象在g (x )=-12x +b 图象下方, 等价于f (x )+12 x -b =x -ln (e x +1)-b <0,即b >x -ln (e x +1)=ln e x e x +1恒成立. ∵e x >0,∴e x +1>1,∴0<1e x +1<1, ∴-1<-1e x +1<0, ∴0<1-1e x +1 <1,即0<e x e x +1<1, ∴ln e x e x +1<0,所以b ≥0,即b 的取值范围是[0,+∞). 22.解析:(1)因为g (x )=log 22x x +2 , 所以g (x -2)+g (-x )=log 22(x -2)x +log 2-2x 2-x =log 2⎣⎢⎡⎦⎥⎤2(x -2)x ·-2x 2-x =log 24=2.(2)由(1)知,g (x )的图象关于点M (-1,1)中心对称,且g (2)=0,g (-4)=log 22×(-4)-4+2 =2,g (23 )=log 22×2323+2 =-1,g (-83 )=log 22×(-83)-83+2 =3, 取函数g (x )图象上两点C (2,0),D (-4,2),显然线段CD 的中点恰为点M ;再取函数g (x )图象上两点E (23 ,-1),F (-83,3),显然线段EF 的中点也恰为点M . 因此四边形CEDF 的对角线互相平分,所以四边形CEDF 为平行四边形,所以函数g (x )具有性质P .(3)因为g (x )=log 22x x +2 ,则2x x +2>0,解得x >0或x <-2, 所以g (x )的定义域为(-∞,-2)∪(0,+∞),所以h (x )=2g (x )=2x x +2 ,x ∈(-∞,-2)∪(0,+∞), 令B (x 0,2x 0x 0+2 )(x 0<-2或x 0>0), 则|AB |2=(x 0+4)2+(2x 0x 0+2 )2=(x 0+4)2+(2-4x 0+2)2=(x 0+2)2+4(x 0+2)+4+16(x 0+2)2 -16x 0+2+4,记x 0+2=t (t <0或t >2), 则|AB |2=t 2+4t +16t 2 -16t +8=(t -4t )2+4(t -4t)+16, 记t -4t=u ,则|AB |2=u 2+4u +16=(u +2)2+12, 所以当u =-2,即x 0=-3-5 时,|AB |min =23 .。
数学试题-北师大版必修1-第四章小节练习
第四章 4.1.1A 级 基础巩固1.函数y =x 2-5x +6的零点是( A ) A .2,3 B .-2,-3 C .1,6D .-1,-6[解析] 由x 2-5x +6=0得x =2或3,所以y =x 2-5x +6的零点是2,3,故选A . 2.函数f(x)=x 3+x -1的零点所在的区间是( C ) A .(32,2)B .(1,32)C .(12,1)D .(0,12)[解析] 因为f(12)·f(1)=-38×1=-38<0,且函数f(x)在R 上连续,所以函数f(x)=x 3+x -1的零点所在区间是(12,1).3.若方程2ax 2-x -1=0在区间(0,1)内恰有一解,则a 的取值范围是( D ) A .a<-1 B .-1<a<1 C .0≤a<1D .a>1[解析] 令f(x)=2ax 2-x -1,因为方程f(x)=0在区间(0,1)内恰有一解,所以函数f(x)在区间(0,1)内恰有一个零点. 所以f(0)·f(1)<0,即-1·(2a-2)<0. 所以a>1.故选D .4.函数f(x)=x 3-2x 2+2x 的零点个数为( B ) A .0 B .1 C .2D .3[解析] ∵f(x)=x 3-2x 2+2x =x(x 2-2x +2), 又x 2-2x +2=0,Δ=4-8<0,∴x 2-2x +2≠0,∴f(x)的零点只有1个,故选B .5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3(x≤0)-2+x 2(x>0)的零点个数为( B )A .3B .2C .1D .0[解析] 令f(x)=0,则x 2+2x -3=0(x≤0)或x 2-2=0(x>0), 解得:x =-3或x =2符合题意,故选B .6.(2019·山东临沂高一期末测试)函数f(x)=lnx +12x -2有零点的一个区间是( C )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] f(1)=12-2=-32<0,f(2)=ln2+1-2=ln2-1<0, f(3)=ln3+32-2=ln3-12>0.∴f(2)·f(3)<0,故选C .7.已知函数f(x)=x 2+ax +b(a ,b ∈R)的值域为[0,+∞),若关于x 的方程f(x)=c(c ∈R)有两个实根m ,m +6,则实数c 的值为9.[解析] 由函数f(x)=x 2+ax +b 的值域为[0,+∞)知方程x 2+ax +b =0有两相等实根,从而Δ=a 2-4b =0,①,方程f(x)=c 可化为x 2+ax +b -c =0,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧m +m +6=-am (m -6)=b -c ,∴⎩⎪⎨⎪⎧a =-2m -6b =m 2-6m +c,代入①,得(-2m -6)2-4(m 2-6m +c)=0, 整理,得c =9.8.设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c (x≤0)2 (x>0),若f(-4)=2,f(-2)=-2,则关于x 的方程f(x)=x 的解的个数是3.[解析] 由已知⎩⎪⎨⎪⎧16-4b +c =24-2b +c =-2,得⎩⎪⎨⎪⎧b =4c =2,∴f(x)=⎩⎪⎨⎪⎧x 2+4x +2 (x≤0)2 (x>0),作图像如图所示.由图像可知f(x)=x 的解的个数为3.9.若函数f(x)=x 2-ax -b 的两个零点是2和3,求函数g(x)=bx 2-ax -1的零点. [解析] 由已知方程得x 2-ax -b =0的两根为2和3.∴⎩⎪⎨⎪⎧2+3=a 2×3=-b,∴⎩⎪⎨⎪⎧a =5b =-6.∴g(x)=-6x 2-5x -1.令-6x 2-5x -1=0得6x 2+5x +1=0, ∴x =-12或x =-13.∴函数g(x)=-6x 2-5x -1的零点是-12,-13.10.已知二次函数f(x)=x 2-(k -2)x +k 2+3k +5. (1)当函数f(x)有两个不同零点时,求k 的取值范围; (2)若-1和-3是函数的两个零点,求k 的值.[解析] (1)令f(x)=0,得x 2-(k -2)x +k 2+3k +5=0. 由Δ=(k -2)2-4(k 2+3k +5)=-3k 2-16k -16>0, 知3k 2+16k +16<0,即(3k +4)(k +4)<0,∴-4<k<-43.∴当函数有两个不同零点时,k 的取值范围为(-4,-43).(2)∵-1和-3是函数f(x)的两个零点,∴-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两根.∴⎩⎪⎨⎪⎧-1-3=k -2(-1)×(-3)=k 2+3k +5,解之得k =-2.B 级 素养提升1.已知函数f(x)=6x-log 2x.在下列区间中,包含f(x)零点的区间是( C )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析] 因为f(1)=6-log 21=6>0,f(2)=3-log 22=2>0,f(4)=32-log 24=-12<0,所以函数f(x)的零点所在区间为(2,4),故选C .2.若函数f(x)=a x-x -a(a>0且a≠1)有两个零点,则实数a 的范围是( A ) A .(1,+∞) B .(0,1) C .(2,+∞)D .(0,1)∪(1,2)[解析] 令y 1=a x ,y 2=x +a ,则f(x)=a x-x -a 有两个零点,即函数y 1=a x与y 2=x +a 有两个交点. (1)当a>1时,y 1=a x过(0,1)点,而y 2=x +a 过(0,a)点,而(0,a)点在(0,1)点上方,∴一定有两个交点.(2)当0<a<1时,(0,a)点在(0,1)点下方,由图像知只有一个交点.∴a 的取值范围为a>1.3.关于x 的方程mx 2+2x +1=0至少有一个负根,则m 的范围为m≤1. [解析] ①m =0时,x =-12适合题意.②m≠0时,应有m<0或⎩⎪⎨⎪⎧m>0-22m <0,Δ≥0解得m<0或0<m≤1.综合①②可得,m≤1.4.方程lgx +x =0的实数解的存在区间为(110,1).[解析] 令f(x)=lgx +x ,则f(110)=lg 110+110=-910<0,f(1)=lg1+1=1>0.∴f(110)f(1)<0.而f(x)=lgx +x 在(0,+∞)上单调递增.∴f(x)仅有一个零点,且在(110,1)内.5.设函数f(x)=ax +2a +1(a≠0)在[-1,1]上存在一个零点,求实数a 的取值范围. [解析] 因为函数f(x)在[-1,1]上存在零点,所以⎩⎪⎨⎪⎧f (-1)≥0f (1)≤0或⎩⎪⎨⎪⎧f (-1)≤0f (1)≥0.即f(-1)·f(1)≤0.所以(-a +2a +1)·(a+2a +1)≤0, 即(a +1)(3a +1)≤0.解得-1≤a≤-13.6.讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由. [解析] 令f(x)=4x 3+x -15,∵y =4x 3和y =x -15在[1,2]上都为增函数. ∴f(x)=4x 3+x -15在[1,2]上为增函数,∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0, ∴f(x)=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解.C 级 能力拔高求函数y =(ax -1)(x +2)的零点. [解析] (1)当a =0时,令y =0得x =-2; (2)当a≠0时,令y =0得x =1a 或x =-2.①当a =-12时,函数的零点为-2;②当a≠-12时,函数的零点为1a ,-2.综上所述:当a =0或-12时,零点为-2;当a≠0且a≠-12时,零点为1a ,-2.第四章 4.1.2A级基础巩固1.函数f(x)=-x2+4x-4在区间[1,3]上( B )A.没有零点B.有一个零点C.有两个零点D.有无数个零点[解析]∵f(x)=-(x-2)2=0,∴x=2∈[1,3],故选B.2.函数y=f(x)在区间[a,b]上的图像是不间断的,并且f(a)·f(b)<0,则这个函数在该区间上( D ) A.只有一个零点B.有二个零点C.不一定有零点D.至少有一个零点[解析]若y=f(x)在[a,b]上单调,f(a)·f(b)<0说明只有一个零点且为变号零点.若不单调,零点个数有可能多于一个.故选D.3.函数f(x)=x3-x2-x+1在[0,2]上( C )A.有3个零点B.有2个零点C.有1个零点D.没有零点[解析]∵f(0)=1>0,f(1)=0,f(2)=3>0,∴有一个零点.4.下列图像表示的函数中能用二分法求零点的是( C )[解析]A中函数没有零点,因此不能用二分法求零点;B中函数的图像不连续;D中函数在x轴下方没有图像,故选C.5.已知连续函数y=f(x),有f(a)·f(b)<0(a<b),则y=f(x)( B )A.在区间[a,b]中可能没有零点B.在区间[a,b]中至少有一个零点C.在区间[a,b]中零点的个数为奇数D.在区间[a,b]中零点的个数为偶数[解析] 因为f(a)·f(b)<0,所以由函数零点的性质判断,得f(x)在区间[a ,b]中至少存在一个零点.6.设f(x)=3x+3x -8,用二分法求方程3x+3x -8=0,在x ∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( A )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定[解析] ∵f(1.5)>0,f(1.25)<0, ∴根落在区间(1.25,1.5)间,故选A .7. 若函数y =mx 2+x -2没有零点,则实数m 的取值范围是(-∞,-18).[解析] 当m =0时,函数有零点,所以应有⎩⎪⎨⎪⎧m≠0Δ=1+8m<0,解得m<-18.8.已知函数f(2x)=3x 2+1,则f(x +5)有0个零点. [解析] ∵f(2x)=3x 2+1,∴f(x)=3x24+1,∴y =f(x +5)=3x +524+1,令y =0,方程无解. 即f(x +5)无零点.9.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上. [解析] 设f(x)=5x 2-7x -1, 则f(-1)·f(0)=11×(-1)=-11<0, f(1)·f(2)=(-3)×5=-15<0. 而二次函数f(x)=5x 2-7x -1是连续的, ∴f(x)在(-1,0)和(1,2)上各有一个零点,即方程5x 2-7x -1=0的根一个在(-1,0)上,另一个在(1,2)上. 10.求函数y =x 3-4x 的零点,并画出它的图像. [解析] ∵x 3-4x =x(x 2-4)=x(x -2)(x +2),∴函数y =x 3-4x 的零点为0,-2,2,这三个零点把x 轴分成4个区间:(-∞,-2],(-2,0],(0,2],(2,+∞),在这4个区间内,取x 的一些值(包括零点).列出这个函数的对应值表: x … -2.5 -2 -1 -0.5 0 0.5 1 2 2.5 … y…-5.62531.875-1.875-35.625…B级素养提升1.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.7)的一个根所在的区间是( C )x -1 0 1 2 3e x0.37 1 2.72 7.39 20.09x+2 1 2 3 4 5A.(-1,0) B.(0,1)C.(1,2) D.(2,3)[解析]判断e x-(x+2)=0的一个根所在的区间转化为f(x)=e x-(x+2)零点的位置,∵f(1)=e1-(1+2)<0,f(2)=7.39-4>0.∴零点在(1,2)内.2.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则函数f(x)在区间(a,b)内( C )A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点[解析]如图,若函数f(x)的图像及给定的区间(a,b)如图(1)或图(2)所示,可知A错,若如图(3)所示,可知B错、D错,C对.3.已知函数f(x)的图像是连续不断的,且有如下的对应值表:x -2 -1 0 1 2 3 4 5 6 7f(x) -136 -21 6 19 13 -1 -8 -2 4 29 则下列判断正确的是(1)(2)(3).(1)函数f(x)在区间(-1,0)内至少有一个零点;(2)函数f(x)在区间(2,3)内至少有一个零点;(3)函数f(x)在区间(5,6)内至少有一个零点;(4)函数f(x)在区间(-1,7)内有三个零点.[解析]观察对应值表,不难得到f(-1)·f(0)<0,f(2)·f(3)<0,f(5)·f(6)<0,故函数f(x)在区间(-1,0),(2,3),(5,6)内至少各有一个零点.而(-1,7)内至少有三个零点.故应填(1)(2)(3).4.设函数f(x)=⎩⎪⎨⎪⎧2x-a x <14x -ax -2a x≥1.①若a =1,则f(x)的最小值为-1;②若f(x)恰有2个零点,则实数a 的取值范围是12≤a<1或a≥2.[解析] ①a =1时f(x)=⎩⎪⎨⎪⎧2x-1x<14x -1x -2x≥1.函数f(x)在(-∞,1)上为增函数,函数值大于1,在⎣⎢⎡⎦⎥⎤1,32为减函数,在⎣⎢⎡⎭⎪⎫32,+∞为增函数,当x=32时,f(x)取得最小值为-1. ②若函数f(x)=2x-a 在x<1时与x 轴有一个交点,则a>0,并且当x =1时,f(1)=2-a>0,则0<a<2,函数f(x)=4(x -a)(x -2a)与x 轴有一个交点,所以2a≥1且a<1⇒12≤a<1;若函数f(x)=2x-a 与x 轴无交点,则函数f(x)=4(x -a)(x -2a)与x 轴两个交点,当a≤0时f(x)与x 轴无交点,f(x)=4(x -a)(x -2a)在x≥1与x 轴无交点,不合题意;当f(1)=2-a≥0时,a≥2,f(x)与x 轴有两个交点,x =a 和x =2a ,由于a≥2,两交点横坐标均满足x≥1;综上所述a 的取值范围12≤a<1或a≥2.5.图像连续不间断的函数f(x)的部分对应值如表所示:x 1 2 3 4 5 6 7 8 9 f(x)148-2273-2-18试判断函数[解析] ∵f(2)=8>0,f(3)=-2<0,函数f(x)图像又是连续不间断的, ∴一定存在x 0∈(2,3),使f(x 0)=0, 即f(x)在(2,3)内有零点.同理,f(x)在区间(3,4),(6,7),(8,9)上也有零点,而且是变号零点.6.中央电视台曾有一档娱乐节目“幸运52”,主持人李咏会给选手在限定时间内猜某一物品售价的机会,如果猜中,就把物品奖励给选手,同时获得一枚商标.某次猜一种品牌的手机,手机价格在500~1 000元之间.选手开始报价:1 000元,主持人回答:高了;紧接着报价900元,高了;700元,低了;800元,低了;880元,高了;850元,低了;851元,恭喜你,你猜中了,表面上看猜价格具有很大的碰运气的成分,实际上,游戏报价的过程体现了“逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?[解析] 取价格区间[500,1 000]的中点750,如果主持人说低了,就再取[750,1 000]的中点875;否则取另一个区间[500,750]的中点;若遇到小数,则取整数.照这样的方案,游戏过程猜价如下:750,875,812,843,859,851,经过6次可以猜中价格.C级能力拔高求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点(精确到0.1).[解析]由于f(1)=1-1-1=-1<0,f(1.5)=3.375-1.5-1=0.875>0,∴f(x)在区间[1,1.5]内存在零点,取区间[1,1.5]作为计算的初始区间,用二分法逐次计算列表如下:为1.3.第四章 4.2A 级 基础巩固1.一段导线,在0℃时的电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R(Ω)表示为温度t(℃)的函数关系式为( B )A .R =0.008tB .R =2+0.008tC .R =2.008tD .R =2t +0.008[解析] 由题意知电阻R 与温度t 构成一次函数关系,故选B .2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( A ) A .3 B .4 C .6D .12[解析] 设隔墙的长为x ,则矩形的长为24-4x 2.由24-4x 2=12-2x>0,得0<x<6.设矩形面积为y ,则y =x·24-4x2=2x(6-x),0<x<6. 由y =2x(6-x)=-2x 2+12x =-2(x -3)2+18,知当x =3时,y 最大且y max =18.3.据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2018年北冰洋冬季冰雪覆盖面积为m ,则从2018年起,经过x 年后,北冰洋冬季冰雪覆盖面积y 与x 的函数关系式是( A )A .y =0.95x50 ·m B .y =(1-0.05x50 )·m C .y =0.9550-x·mD .y =(1-0.0550-x)·m[解析] 设北冰洋冬季冰雪覆盖面积每年为上一年的q%,则(q%)50=0.95,∴q%=0.95150 , 即x 年后北冰洋冬季冰雪覆盖面积为y =0.95x50 ·m.4.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林( C ) A .14 400亩 B .172 800亩 C .17 280亩D .20 736亩[解析] 因为年增长率为20%,所以第四年造林为10 000×(1+20%)3=17 280(亩),故选C .5.某种植物生长发育的数量y 与时间x 的关系如下表:A .y =log 2(x +1)B .y =2x-1 C .y =2x -1D .y =(x -1)2+1[解析] 代入数值检验,把x =2代入可排除A 、B 、C ,把x =1,2,3 代入D 选项,符合题意. 6.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( B )(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年D .2021年[解析] 设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x =log 1.12200130=lg2-lg1.3lg1.12≈3.80,因资金需超过200万,则x 取4,即2019年,选B .7.为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文――→加密密文――→发送密文――→解密明文已知加密函数为y =a x-2(x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是4.[解析] 依题意y =a x -2中,当x =3时,y =6, 故6=a 3-2,解得a =2, 所以加密函数为y =2x-2, 因此当y =14时,由14=2x-2, 解得x =4.8.已知气压p(hPa)与海拔高度h(m)的关系式为p =1 000×(7100)h3000 ,则海拔6 000m 处的气压为4.9hPa.[解析] 把h =6 000代入p =1 000(7100)h 3000 ,得p =4.9.9.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x 件,服装的实际出厂单价为P 元,写出函数P =f(x)的表达式;(2)当销售商一次订购450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂的单价-成本)[解析] (1)当0<x≤100时,P =60;当100<x≤500时,P =60-0.02(x -100)=62-x50.所以P =f(x)=⎩⎪⎨⎪⎧60(0<x≤100)62-x50(100<x≤500)(x ∈N +).(2)设销售商一次订购量为x 件时,工厂获得的利润为L 元, 则L =(P -40)x =⎩⎪⎨⎪⎧20x (0<x≤100)22x -x250(100<x≤500)(x ∈N +).当x =450时,L =5 850,因此,当销售商一次订购450件服装时,该厂获得的利润是5 850元.10.某化工厂生产一种溶液,按市场要求,杂质含量不能超过1‰,若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.301 0,lg3=0.477 1)[解析] 解法1:∵每次过滤杂质含量降为原来的23,过滤n 次后杂质含量为2100·⎝ ⎛⎭⎪⎫23n.依题意,得2100·⎝ ⎛⎭⎪⎫23n ≤11 000,即⎝ ⎛⎭⎪⎫23n ≤120,∵⎝ ⎛⎭⎪⎫237=1282 187>120,⎝ ⎛⎭⎪⎫238=2566 561<120,∴由题意知至少应过滤8次才能使产品达到市场要求. 解法2:接解法1:(23)n ≤120,则n(lg2-lg3)≤-(1+lg2), 即n≥1+lg2lg3-lg2≈7.4,又n ∈N +,∴n≥8,即至少应过滤8次才能使产品达到市场要求.B 级 素养提升1.如右图所示的是某池塘中的浮萍蔓延的面积y(m 2)与时间t(月)的关系:y =a t,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30m 2; ③浮萍从4m 2蔓延到12m 2只需1.5个月; ④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2m 2、4m 2、8m 2所经过的时间分别为t 1、t 2、t 3,则t 1+t 2=t 3. 其中正确的是( D ) A .①② B .①②③④ C .②③④⑤D .①②⑤[解析] 设此指数函数为y =a x(a>0且a≠1), 由图像可知:(1,2),(2,4)代入可得: a =2,∴y =2x,故①正确. 当x =5时,y =25=32>30,②正确.当y =4时,x =2,当y =12时,x =log 212>log 2272 ,从而可知浮萍从4m 2蔓延到12m 2用时超过1.5个月,③错,显然④错误.把y =2,4,8代入y =2t分别得t 1=1,t 2=2,t 3=3,故⑤正确.因此选D . 2.某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是( C )A .16hB .20hC .24hD .21h[解析] 由题意,⎩⎪⎨⎪⎧192=eb48=e22k +b,得⎩⎪⎨⎪⎧192=e b12=e 11k.于是当x =33时,y =e33k +b=(e 11k )3·e b=(12)3×192=24(h).3.日本东京为成功举办2020年奥运会,决定从2016年底到2019年底三年间更新市内全部出租车,若每年更新的车辆数比前一年递增10%,则2017年底已更新现有总车辆数的百分比约为30.2%(保留3位有效数字).[解析] 设现有车辆总数为a,2017年底更新了现有总车辆数的百分比为x ,则a·x+a·x(1+10%)+ax(1+10%)2=a.∴x(1+1.1+1.12)=1.∴x≈30.2%.4.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a(a 为常数),如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(mg)与时间t(h)之间的函数关系式为;(2)据测定,当空气中每立方米的含药量降低到0.25mg 以下时,学生方可进教室,那么从药物释放开始,至少需要经过0.6h 后,学生才能回到教室.[解析] 由图像可知,当0≤t<0.1时,y =10t ;当t =0.1时,由1=⎝ ⎛⎭⎪⎫1160.1-a ,得a =0.1,∴当t >0.1时,y =⎝ ⎛⎭⎪⎫116t-110 .5.某工厂生产商品A ,每件售价80元,每年产销80万件,工厂为了开发新产品,经过市场调查,决定提出商品A 的销售金额的p%作为新产品开发费(即每销售100元提出p 元),并将商品A 的年产销量减少了10p 万件.(1)若工厂提出的新产品开发费不少于96万元,求p 的取值范围; (2)若工厂仅考虑每年提出最高的开发费,求此时p 的值.[解析] 由题意知,当开发费是商品A 的销售金额的p%时,销售量为(80-10p)万件,此时销售金额为80×(80-10p)万元,新产品开发金额f(p)=80×(80-10p)×p%(万元).(1)由题设知⎩⎪⎨⎪⎧80×(80-10p )×p%≥96,0<p<8,解得2≤p≤6.即新产品开发费不少于96万元时,p 的取值范围为2≤p≤6. (2)当0<p<8时,f(p)=80×(80-10p)×p% =-8(p -4)2+128. ∴当p =4时,f(p)max =128.即当p =4时,开发金额最多,可达到128万元.6.要在墙上开一个上部为半圆,下部为矩形的窗户(如图所示),在窗框为定长l 的条件下,要使窗户透光面积最大,窗户应具有怎样的尺寸?[解析] 设半圆的直径为x ,矩形的高度为y ,窗户透光面积为S ,则窗框总长l =πx2+x +2y ,y =2l -(2+π)x 4,由y>0,得x ∈(0,2l π+2).S =π8x 2+xy =π8x 2+2l -(2+π)x4·x=-4+π8(x -2l 4+π)2+l 22(4+π),x ∈(0,2l π+2).当x =2l 4+π时,S max =l 22(4+π),此时,y =l 4+π=x 2.答:窗户中的矩形高为l 4+π,且半径等于矩形的高时,窗户的透光面积最大.C 级 能力拔高某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件.为了估计以后每个月的产量,以这三个月的产品数量为依据,用一个函数来模拟该产品的月产量y 与月份x 的关系.模拟函数可以选择二次函数或函数y =a·b x+c(其中a ,b ,c 为常数),已知4月份该产品的产量为1.37万件,试问用以上哪个函数作为模拟函数较好?并说明理由.[解析] 设两个函数y 1=f(x)=px 2+qx +r(p≠0);y 2=g(x)=a·b x+c.依题意,有⎩⎪⎨⎪⎧f (1)=p +q +r =1f (2)=4p +2q +r =1.2f (3)=9p +3q +r =1.3,解得⎩⎪⎨⎪⎧p =-0.05q =0.35r =0.7.∴y 1=f(x)=-0.05x 2+0.35x +0.7, ∴f(4)=1.3(万件),依题意,也有⎩⎪⎨⎪⎧g (1)=ab +c =1g (2)=ab 2+c =1.2g (3)=ab 3+c =1.3,解得⎩⎪⎨⎪⎧a =-0.8b =0.5c =1.4.∴y 2=g(x)=-0.8×(0.5)x+1.4, g(4)=-0.8×(0.5)4+1.4=1.35(万件).经比较可知,g(4)=1.35(万件),比f(4)=1.3(万件)更接近于4月份的产量1.37万件. ∴选用y 2=g(x)=-0.8×(0.5)x+1.4作为模拟函数较好.。
高中数学章末综合测评四北师大版必修1word版本
章末综合测评(四) 函数应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y=(x-1)(x2-2x-3)的零点为( )A.1,2,3B.1,-1,3D.无零点C.1,-1,-3【解析】令y=(x-1)(x2-2x-3)=0,解得x=1,-1,3.【答案】B 2.下图函数图像与x轴均有交点,其中不能用二分法求图中交点横坐标的是( )【解析】由二分法的定义知应选C.【答案】C 3.(2015·泉州高一检测)某同学骑车上学,离开家不久,发现作业本忘家里了,于是返回家找到作业本再上学,为了赶时间快速行驶.下图中横轴表示出发后的时间,纵轴表示离学校的距离,则较符合该同学走法的图是( )【解析】该同学离学校距离先减小,后增大,再减小到0,由上述特点可知符合的是D.【答案】D4.(2015·余姚高一检测)在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14 C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34【解析】 因为f ⎝ ⎛⎭⎪⎫-14=e -14-1-3=e -14-4<0,f (0)=1-3=-2<0,f ⎝ ⎛⎭⎪⎫14=e 14+1-3=e 14-2<0,f ⎝ ⎛⎭⎪⎫12=e 12+2-3=e 12-1>0,故零点所在区间为⎝ ⎛⎭⎪⎫14,12.【答案】 C5.函数y =x 2的图像与函数y =|lg x |的图像的交点个数为( )A .0B .1C .2D .3【解析】 在同一平面直角坐标系中分别作出y =x 2和y =|lg x |的图像,如图,可得交点个数为1.【答案】 B6.(2016·山东滕州市高一期中)函数f (x )=x -3+log 3x的零点所在的区间是( )A .(0,1)B .(1,3)C .(-∞,0)D .(3,+∞)【解析】f (1)=1-3+log 31=-2<0,f (3)=3-3+log 33=1>0,且f (x )在(1,3)上图像连续不断,∴f (x )零点所在的区间是(1,3),故选B.【答案】 B7.某企业产值连续三年持续增长,这三年年增长率分别为P 1,P 2,P 3,则这三年的年平均增长率为( )A.13(P 1+P 2+P 3)B.3P1P1P3C.3+++-1D .1+12(P 1+P 2+P 3)【解析】 设三年的年平均增长率为x ,三年前的产值为a .则a (1+x )3=a (1+P 1)(1+P 2)(1+P 3), 则x =3+++-1.【答案】 C8.若函数f (x )=3ax +1-3a 在(-1,1)上存在零点,则a 的取值范围是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a <16 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ a >16 C .{a |a <-1} D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <-1或a >16 【解析】 当a =0时,f (x )=1,无零点; 当a ≠0时,f (x )=3ax +1-3a 为一次函数,在(-1,1)上存在零点, 即f (-1)·f (1)<0,即(-3a +1-3a )(3a +1-3a )<0,解得a >16.【答案】 B9.设方程3x=|lg(-x )|的两个根为x 1,x 2,则( )【导学号:04100083】A .x 1x 2<0B .x 1x 2=1C .x 1x 2>1D .0<x 1x 2<1【解析】 函数y =3x与函数y =|lg(-x )|的图像如图所示,由图示可设x 1<-1<x 2<0,则0<3x 1<3x 2<1,且⎩⎪⎨⎪⎧3x1=-,3x2=--,可得3x 1-3x 2=lg(-x 1)+lg(-x 2)=lg x 1x 2,∵3x 1-3x 2<0,∴0<x 1x 2<1.故选D.【答案】 D10.某商店将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为( )A .45元B .55元C .65元D .70元【解析】 设每件商品定价为x 元,利润为y 元,则y =(x -40)·[500-10(x -50)]=-10x 2+1400x -40 000=-10(x -70)2+9 000,50≤x ≤100,则当每件商品定价为70元时,利润最大,故选D.【答案】 D11.若方程m x -x -m =0(m >0,m ≠1)有两个不同的实数根,则m 的取值范围是( )A .m >1B .0<m <1C .m >0D .m >2【解析】 方程m x-x -m =0有两个不同的实数根,即函数y =m x与y =x +m 的图像有两个不同的交点.显然,当m >1时,两图像有两个不同交点,当0<m <1时,只有1个交点,故m 的取值范围是m >1.【答案】 A12.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2·x(a >0).若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )A.5B .5C .±5D .-5【解析】 设投放x 万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x4+a 2·20-x.令y ≥5,则x 4+a 2·20-x ≥5,a 20-x ≥10-x 2,即a ≥1220-x 对0≤x <20恒成立.而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,a min =5,故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________.【解析】 因为y =ln x 的增长越来越慢.y =x ln x 增长与y =x 2相比会越来越慢,故y =x2的增长较快.【答案】y =x214.函数f (x )=x +b 有一个零点2,那么函数g (x )=bx 2+x 的零点是________.【解析】 由题意2+b =0,b =-2,则令g (x )=0,即-2x 2+x =0, 解得x =0或12.【答案】 0或1215.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是________.【解析】 设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).【答案】 (2,3)16.(2016·湖南长沙一中高一期中)计算机成本不断降低,若每隔三年计算机价格就降低13,现价格为8 100元的计算机,则9年后的价格为________元.【解析】∵计算机每隔三年计算机价格就降低13,现价格为8 100元,∴计算机价格y 与年份n 之间的关系为y =8 100×⎝ ⎛⎭⎪⎫23n3,∴9年后的价格y =8 100×827=2 400元.【答案】 2 400三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=2|x -1|-x +1. (1)请在所给的平面直角坐标系中画出函数f (x )的图像.图1(2)根据函数f (x )的图像回答下列问题:①求函数f (x )的单调区间;②求函数f (x )的值域;③求关于x 的方程f (x )=2在区间[0,2]上解的个数.(回答上述3个小题都只需直接写出结果,不需给出演算步骤) 【解】 (1)当x -1≥0时,f (x )=2(x -1)-x +1=x -1,当x -1<0时,f (x )=2(1-x )-x +1=3-3x .所以f (x )的图像如下:(2)①函数f (x )的单调递增区间为[1,+∞),函数f (x )的单调递减区间为(-∞,1];②函数f (x )的值域为[0,+∞);③方程f (x )=2在区间[0,2]上解的个数为1.18.(本小题满分12分)定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 012x+log 2 012x ,试确定f (x )在R 上的零点个数.【解】∵函数f (x )是定义在R 上的奇函数,∴f (0)=0.∵log 2 01212 0122=-2,2 01212 0122≈1,log 2 01212 012=-1,2 01212 012>1,∴f ⎝⎛⎭⎪⎫12 0122<0,f ⎝ ⎛⎭⎪⎫12 012>0,∴f (x )=2 012x+log 2 012x 在区间⎝⎛⎭⎪⎫12 0122,12 012内存在零点.易知f (x )在(0,+∞)上是单调增函数, ∴f (x )在(0,+∞)内有且只有一个零点,根据奇函数的对称性可知,函数f (x )在(-∞,0)内有且只有一个零点.综上可知函数在R 上的零点个数为3.19.(本小题满分12分)(2015·东营高一检测)已知关于x 的函数y =(m +6)x 2+2(m -1)x +m +1恒有零点.(1)求m 的取值范围;(2)若函数有两个不同零点,且其倒数之和为-4,求m 的值.【解】 (1)当m +6=0,即m =-6时,函数为y =-14x -5显然成立.当m +6≠0时,由Δ=4(m -1)2-4(m +6)(m +1)=-36m -20≥0,得m ≤-59,∴当m ≤-59且m ≠-6时,二次函数有零点.综上所述,m ≤-59.(2)设x 1,x 2是函数的两个零点,则有:x 1+x 2=--m +6,x 1x 2=m +1m +6.∵1x1+1x2=x1+x2x1x2=-4,∴--m +1=-4.解得m =-3,且当m =-3时,m +6≠0,Δ>0,符合题意.∴m 的值为-3.20.(本小题满分12分)已知函数f (x )=log 2(1-x )-log 2(1+x ).(1)求函数f (x )的定义域. (2)判断f (x )的奇偶性.(3)方程f (x )=x +1是否有实根?如果有实根x 0,请求出一个长度为14的区间(a ,b ),使x 0∈(a ,b );如果没有,请说明理由(注:区间(a ,b )的长度为b -a ).【解】 (1)∵⎩⎪⎨⎪⎧1-x >0,1+x >0,∴-1<x <1,故函数的定义域为(-1,1).(2)∵f (-x )=log 2(1+x )-log 2(1-x )=-f (x ),∴f (x )为奇函数.(3)由题意知方程f (x )=x +1等价于log 2(1-x )-log 2(1+x )=x +1,可化为(x +1)2x +1+x -1=0.设g (x )=(x +1)2x +1+x -1,x ∈(-1,1),则g ⎝ ⎛⎭⎪⎫-12=12×212-12-1=2-32<0,g (0)=2-1=1>0,∴g ⎝ ⎛⎭⎪⎫-12g (0)<0,故g (x )在⎝ ⎛⎭⎪⎫-12,0上必有零点.又∵g ⎝ ⎛⎭⎪⎫-14=34×234-14-1=348-54=4648-46254>0,∴g ⎝ ⎛⎭⎪⎫-12g ⎝ ⎛⎭⎪⎫-14<0,故g (x )在⎝ ⎛⎭⎪⎫-12,-14上必有零点,即f (x )=x +1有实根x 0且x 0∈⎝⎛⎭⎪⎫-12,-14.∴满足题意的一个区间为⎝ ⎛⎭⎪⎫-12,-14.21.(本小题满分12分)(2016·湖南永顺一中高一期中)某上市股票在30天内每股的交易价格P (元)与时间t (天)组成有序数对(t ,P ),点(t ,P )落在图2中的两条线段上,该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如表所示:图2(1)根据提供的图像,写出该种股票每股交易价格P (元)与时间t (天)所满足的函数关系式;(2)根据表中数据求出日交易量Q (万股)与时间t (天)的一次函数关系式;(3)在(2)的结论下,用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?【解】 (1)P =⎩⎪⎨⎪⎧15t +2,0<t≤20,-110t +8,20<t≤30,(t ∈N *).(2)设Q =at +b (a ,b 为常数),把(4,36),(10,30)代入,得⎩⎪⎨⎪⎧4a +b =36,10a +b =30,解得a =-1,b =40.所以日交易量Q (万股)与时间t (天)的一次函数关系式为Q =-t +40,0<t ≤30,t ∈N *.(3)由(1)(2)可得y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫15t +2-,0<t≤20,⎝ ⎛⎭⎪⎫-110t +8-,20<t≤30,(t ∈N *)即y =⎩⎪⎨⎪⎧-15-+125,0<t≤20,110--40,20<t≤30,(t ∈N *)当0<t ≤20时,y 有最大值y max =125万元,此时t =15;当20<t ≤30时,y 随t 的增大而减小,y max <110(20-60)2-40=120万元.所以,在30天中的第15天,日交易额取得最大值125万元.22.(本小题满分12分)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e-kt(P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k 的值.(2)试计算污染物减少到40%至少需要多少时间.(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4=-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11)【解】 (1)由已知,当t =0时,P =P 0;当t =5时,P =90%P 0. 于是有90%P 0=P 0e-5k,解得k =-15ln 0.9(或0.022).(2)由(1)知P =P 0e(15ln 0.9)t ,当P =40%P 0时,有0.4P 0=P 0e(15ln 0.9)t ,解得t =ln 0.415ln 0.9≈-0.9215-=4.600.11≈42.故污染物减少到40%至少需要42小时.。
2023_2024学年新教材高中数学第四单元作业课件北师大版必修第一册
多项选择题 答案
名师点津 名师教方法
解含参数的一元二次不等式时,需对参数进行分类讨论.一般有四种情况: (1)二次项系数不含参数,且二次三项式可分解时,根据两根大小分情况进行讨论. (2)二次项系数不含参数,且二次三项式不能分解时,对Δ的取值分三种情况进行讨论. (3)二次项系数含参数,且二次三项式可分解时,先考虑二次项系数是否为0,当二次项系数不为0时,再对二次项系数的 正负情况,结合两根的大小分类进行讨论. (4)二次项系数含参数,且二次三项式不可分解时,先考虑二次项系数是否为0,当二次项系数不为0时,再对二次项系数 的正负情况,结合Δ的取值分类进行讨论.
第四单元
单项选择题
1.[2023芜湖一中高一期末]不等式x(x+1)<2的解集是( )
A.{x|-1<x<2} C.{x|x<-1或x>2}
B.{x|-2<x<1} D.{x|x<-2或x>1}
答案
1.B 【解析】 由x(x+1)<2,解得-2<x<1,即原不等式的解集为{x|-2<x<1}.故选B.
答案
答案
(3)由题设,x2+2mx-2m+1>2即x2+2mx-2m-1=(x+2m+1)(x-1)>0, 当-(2m+1)>1,即m<-1时,解集为(-∞,1)∪(-2m-1,+∞);(9分) 当-(2m+1)=1,即m=-1时,解集为{x|x≠1};(11分) 当-(2m+1)<1,即m>-1时,解集为(-∞,-2m-1)∪(1,+∞). (12分)
Байду номын сангаас
(北师大版)高中数学必修第一册 第四章综合测试试卷03及答案
第四章综合测试一、选择题(本大题共10小题,共50分)1.若3log 14a ,则实数a 的取值范围是( )A .304æöç÷èø,B .34æö+¥ç÷èøC .314æöç÷èø,D .()3014æö+¥ç÷èøU ,,2.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c<<B .a c b<<C .c a b<<D .b c a<<3.设227a =,则3log 2等于( )A .3aB .3a C .13aD .3a4.已知a ,b ,c 均大于1,且1log log 4c c a b =g ,则下列不等式一定成立的是( )A .ac b≥B .bc a≥C .ab c≥D .ab c≤5.已知5log 2x =,2log y =123z -=,则下列关系正确的是( )A .x z y<<B .x y z<<C .z x y<<D .z y x<<6.“{}12m Î,”是“ln 1m <”成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件7.已知函数()()log 2a f x x =+,若图象过点()63,,则()2f 的值为( )A .2-B .2C .12D .12-8.已知2510a b ==,则11a b+=( )A .1B .2C .12D .159.已知函数()ln xf x x=,若()2a f =,()3b f =,()5c f =,则a ,b ,c 的大小关系是( )A .b c a<<B .b a c<<C .a c b<<D .c a b<<10.如果函数()f x 的图象与函数()x g x e =的图象关于直线y x =对称,则()24f x x -的单调递增区间为( )A .()0+¥,B .()2+¥,C .()02,D .()24,二、填空题(本大题共6小题,共30分)11.已知函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,则a 取值范围是________.12.不等式()2log 1020x -≥的解集为________.13.已知函数()()2log 13f x x =++,若()25f a +=,则a =________.14.已知()12log 11x +≥,则实数x 的取值范围是________.15.若()lg lg 2lg 2x y x y +=-,则xy=________.16.已知函数()()()log 201a f x x a a =-¹>,恒过定点M 的坐标为________;若2a =则()34f =________.三、解答题(本大题共5小题,共70分)17.(1)()()3122log 22641log ln 349e p -+æö+-+++ç÷èø;(2)若lg 2a =,lg3b =,求5log 12的值(结果用a ,b 表示)18.(1()1132081274e p -æöæö--++ç÷ç÷èøèø;(2(3)已知a ,b ,c 为正实数,x y z a b c ==,1110x y z++=,求abc 的值.19.函数()()2log 21x f x =-.(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围.20.已知函数()()()()log 2log 201a a f x x x a a =+--¹>,且.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性;(3)解关于x 的不等式()()log 3a f x x ≥.21.设函数()13lg 1x xf x x-=++.(1)试判断函数()()()2f x f xg x +-=和函数()()()2f x f x h x --=在定义域内的奇偶性;(2)令()()3x x f x j =-,求不等式()()2x x j j --<的解集.第四章综合测试答案解析一、1.【答案】C【解析】解:3log 14a 等价于:3log log 4a a a >,可得134a a ìïíïî>>(无解)或034a a ìïíïî<<1>,解得314a æöÎç÷èø.故选:C.2.【答案】B【解析】解:22log 0.2log 10a ==<,0.20221b ==>,0.3000.20.21=∵<<,()0.30.201c =Î∴,,a c b ∴<<,故选B.3.【答案】D【解析】因为227a =,所以2233log 273log 3log 2a ===,则33log 2a=.4.【答案】C【解析】a ∵,b ,c 均大于1,且1log log 4c c a b =g ,log c a ∴、log c b 大于零,则2log log log log 2c c c c a b a b +æöç÷èøg ≤,即2log log 142c c a b +æöç÷èø≤,()log 1c ab ∴≥或()log 1c ab -≤,当且仅当log log c c a b =,即a b =时取等号,a ∵,b ,c 均大于1,则log 1c ab ≥,解得ab c ≥,故答案选C.5.【答案】A【解析】解:551log 2log 2x ==<,2log 1y =,121312z -æö==ç÷èø,.x z y ∴<<.故选:A.6.【答案】A【解析】解:对数函数的性质知ln10=,ln 2ln 1e =<,从而知{}12m Î,是ln 1m <的充分条件,反过来由ln 0m <得到0m e <<,m ∴并不是只能为1,2,“{}12m Î,”是“ln 1m <”成立的充分不必要条件,故选A.7.【答案】B【解析】解:将点()63,代入()()log 2a f x x =+中,得()3log 62log 8a a =+=,即38a =,2a =,所以()()2log 2f x x =+,所以()()22log 222f =+=.故选B.8.【答案】A【解析】解:2510a b ==∵,2log 10a =∴,5log 10b =,101010251111log 2log 5log 101log 10log 10a b +=+=+==∴,故选A.9.【答案】D【解析】解:由已知ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <,ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >,c a b ∴<<.故选D.10.【答案】C【解析】解:由题意可得函数()f x 与()x g x e =的互为反函数,故()ln f x x =,()()224ln 4f x x x x -=-,令240t x x =->,解得04x <<.故()24f x x -的定义域为()04,,本题即求函数()24f x x -在()04,上的增区间.再利用二次函数的性质可得函数()24f x x -在()04,上的增区间为()02,,故选:C.二、11.【答案】()14,【解析】解:因为0a >,所以4t ax =-是减函数,又因为函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,所以log a y t =是增函数,所以得1410a a ìí-´î>>,解得14a <<,a 取值范围是()14,.故答案为()14,.12.【答案】92æù-¥çúèû,【解析】解:不等式()2log 1020x -≥可化为()22log 102log 1x -≥,即1021x -≥,解得92x ≤;所以函数()f x 的解集为92æù-¥çúèû,.故答案为:92æù-¥çúèû,.13.【答案】1【解析】解:由题意可得()()22log 335f a a +=++=,故()2log 32a +=,解得1a =.故答案为1.14.【答案】[)1112æù--+¥çúèûU ,,【解析】解:()12log 11x +≥,()12log 11x +∴≥或()12log 11x +-≤,解得1012x +<≤或12x +≥,即112x --<≤或1x ≥;∴实数x 的取值范围是[)1112æù--+¥çúèûU ,,.故答案为:[)1112æù--+¥çúèûU ,,.15.【答案】4【解析】因为()lg lg 2lg 2x y x y +=-,所以()22xy x y =-,即22540x xy y -+=,解得x y =或4x y =.由已知得0x >,0y >,20x y ->,所以x y =不符合题意,当4x y =时,得4xy=.故答案为4.16.【答案】()30,5【解析】解:令()()log 20a f x x =-=,解得3x =,所以点()30M ,,当2a =时,()52234log 32log 25f ===.故答案为()30,;5.三、17.【答案】(1)解:()()3122log 22641log ln 349e p -+æö+-+++ç÷èø12281109278æö´-ç÷èøæö=++++´ç÷èø711182088=+++=;(2)lg 2a =∵,lg3b =,5lg122lg 2lg32log 12lg51lg 21a ba++===--∴.18.【答案】(1)解:原式1312325252121223333´æö-´-ç÷èøæö=--+=--+=ç÷èø;(2)原式()28125lg lg1025411lg10lg1022´´===-´--;(3)a ∵,b ,c 为正实数,0x y z a b c k ===>,1k ¹.lg lg k x a =∴,lgk lg y b =,lg lg k z c=,1110x y z ++=∵,()lg lg lg lg 0lg lg abc a b c k k ++==∴,1abc =∴.19.【答案】(1)解:()1f x <即()2log 211x -<,0212x -∴<<,123x ∴<<,20log 3x ∴<<,故不等式()1f x <的解集为{}20log 3x x <<;(2)()()24log 21log 4x x m -=-∵有实数解, 210x -∵>,0x ∴>,且40x m ->,()2214x x m -=-∴,在0x >上有解,即22241x x m =-++g g 在0x >上有解,设()21x t t =>即2221m t t =-+在1t >上有解,当1t >时,22112212122m t t t æö=-+=-+ç÷èø,故实数m 的取值范围:1m >.20.【答案】(1)解:要是函数有意义,则2020x x +ìí-î>>,解得22x -<<,故函数()f x 的定义域为()22-,;(2)()()()()()()log 2log 2log 2log 2a a a a f x x x x x f x -=--+=-é+--ù=-ëû,所以函数()f x 为奇函数;(3)()()()2log 2log 2log 2a a axf x x x x+=+--=-∵,()()log 3a f x x ≥.()2log log 32aa xx x+-∴≥,02x <<.当01a <<时,232x x x +-0<,解得213x ≤;当1a >时,2302x x x +->,解得12x ≤<或203x <≤.21.【答案】(1)解:()g x 和()h x 的定义域都是()11-,,且()()()3322x xf x f xg x -+-+==,()()()331lg 221x x f x f x xh x x-----==++,所以对任意()11x Î-,有,()()332x xg x g x -+-==,()()331331lg lg 2121x x x x x xh x h x x x---+---=+=--=--+,故函数()g x 在()11-,内是偶函数,函数()h x 在()11-,内是奇函数;(2)因为()()13lg1x xx f x x j -=-=+,所以()()2x x j j --<就是11lg lg 211x xx x-+-+-<,即1lg 11x x -+<,10101x x -+<<,解得9111x -<<.故此不等式的解集是9111æö-ç÷èø.。
北师大版高中数学必修一第四单元《函数应用》测试卷(答案解析)
一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫--⎪⎝⎭C .(-3,-1)D .(-3,-1]3.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)- C .(1,0)- D .[1,0)-4.已知()f x 是定义在R 上的奇函数,且当0x <时,|2|()12x f x +=-,若关于x 的方程2()|1|f x a f -+2()0x a +=恰好有四个不同的根1x ,2x ,3x ,4x ,则()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦的取值范围是( )A .160,81⎛⎫⎪⎝⎭B .10,16⎛⎫⎪⎝⎭C .116,1681⎡⎫⎪⎢⎣⎭D .11,164⎡⎫⎪⎢⎣⎭5.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.56.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]27.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点8.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( ) A .25B .35C .42D .509.函数()211f x x x=-+的零点个数为( ) A .0B .1C .2D .310.已知函数()()f x x R ∈是奇函数且当(0,)x ∈+∞时是减函数,若(1)0f =,则函数2(2||)y f x x =-的零点共有( )A .4个B .5个C .6个D .7个11.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .812.已知函数21,0()log ,0x x f x x x ⎧+≤=⎨>⎩,若123123()()(),(,,f x f x f x x x x ==互不相等),则123x x x ++的取值范围是( )A .(2,0]-B .(1,0)-C .(1,0]-D .(2,0)-二、填空题13.已知函数()220x a x f x x ax x +<⎧=⎨-≥⎩,,,若关于x 的方程()()0f f x =有8个不同的实根,则a 的取值范围__________.14.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.15.某汽车厂商生产销售一款电动汽车,每辆车的成本为4万元,销售价格为6万元,平均每月销量为800辆,今年该厂商对这款汽车进行升级换代,成本维持不变,但为了提高利润,准备提高销售价格,经过市场分析后发现,如果每辆车价格上涨0.1万元,月销量就会减少20辆,为了获取最大利润,每辆车的销售价格应定为__________万元. 16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,()21,02413,224x x x f x x ⎧-≤≤⎪⎪=⎨⎛⎫⎪--> ⎪⎪⎝⎭⎩,若关于x 的方程()()27016af x af x ++=⎡⎤⎣⎦,a R ∈有且仅有8个不同实数根,则实数a 的取值范围是__________.17.已知函数()f x 定义域为D ,若存在0x D ∈,使()()()0011f x f x f +=+成立,则称()f x 具有性质P .现给出下列四个函数: ① ()1f x x=; ②()2xf x =; ③()()2log 2f x x =+; ④()sin f x x π= 其中具有性质P 的函数为_____________(注:填上你认为正确的所有函数序号) 18.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.19.已知函数24()ln(1)x f x e -=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______. 20.已知()14f x x=-,若存在区间[]()0a b ⊆+∞,,,使得()[]{}[]|y y f x x a b ma mb =∈=,,,.则实数m 的取值范围是__________.三、解答题21.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每千件商品售价为50万元.通过市场分析,该厂生产的产品能全部售完. (1)写出年利率()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 22.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+(万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 23.已知函数()()22()1,20f x ax x g x x bx x =-+=+->,()()()5101x h x f x x x -=-<-. (1)()()1,3,0x f x ∀∈>恒成立,求实数a 的取值范围;(2)当1a =时,若函数()g x 的图象上存在,A B 两个不同的点与()h x 图象上的'',A B 两点关于y 轴对称,求实数b 的取值范围.24.某市近郊有一块大约400m 400m ⨯的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)求S 关于x 的函数关系式,并写出定义域; (2)当x 为何值时S 取得最大值,并求最大值,25.某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为0.5万元,每件珠宝售价(万元)与加工时间t (单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间t (天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.(1)如果每件珠宝加工天数分别为5,13,预计销量分别会有多少件?(2)设工厂生产这批珠宝产生的纯利润为S (万元),请写出纯利润S (万元)关于加工时间t (天)之间的函数关系式,并求纯利润S (万元)最大时的预计销量. 注:毛利润=总销售额 — 原材料成本,纯利润=毛利润 — 工人报酬.26.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围 (3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=--, 若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.C解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-, ∴112a a <-⎧⎨--<⎩,解得31a -<<-. 故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.3.B解析:B 【分析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可. 【详解】因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B. 【点睛】已知函数有零点(方程有根),求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合求解.4.A解析:A 【分析】由奇函数得出()f x 的性质,作出函数图象,可知()f x t =的解的个数,令()t f x =,原方程变为2210t a t a -++=,根据()f x t =的解的情形,可得2210t a t a -++=有两不等实根且实根12,t t 都在(0,3)上,由二次方程根的分布可得a 的范围,应用韦达定理得1212,t t t t +,这样()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦就可能用a 表示,并根据a 的求得结论. 【详解】由题意(0)0f =,0x >时,2()()21x f x f x -+=--=-,作出函数()f x 的图象,如图,若0a =,则方程2()|1|f x a f -+2()0x a +=为2()()0f x f x -=,()0f x =或()1f x =()0f x =三个解,()1f x =有两个解,原方程共有5个解,不合题意,设()t f x =,因此关于t 方程2210t a t a -++=必有两个不等实根,又12212100t t a t t a ⎧+=+>⎨=>⎩,所以120,0t t >>,从而103t <<,203t <<且12t t ≠.若其中一根为1,则由2110a a -++=,1a ≤-时,2110a a +++=无实数解,1a >-,2110a a --+=,0a =或1a =,不合题意.因此121,1t t ≠≠,由2222103209310140a a a a a a ⎧+<<⎪⎪⎪>⎨⎪-++>⎪∆=+->⎪⎩,解得113-<<a 且0a ≠.不妨设121()()f x f x t ==,342()()f x f x t ==, 则()()()()222212341212121111[(1)(1)][1()][11]f x f x f x f x t t t t t t a a ----=--=-++=-++⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦22()a a =-,∵113-<<a 且0a ≠.∴21449a a -≤-<且20a a -≠,∴2160,81a a ⎛⎫-∈ ⎪⎝⎭. 故选:A .【点睛】关键点点睛:本题考查方程根的分布问题,解题关键是两个:一是研究函数()f x 的性质,二是换元后得出二次方程,问题转化为二次方程根的分布,求出参数a 的范围.5.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =,所以0.40()tI t N e =,由0()2I t N =,得0.4002tN eN =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题6.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解 【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题7.D解析:D 【解析】解:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,结合图象可得函数f (x )必在区间(0,4)内有零点因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的, 函数的图象与x 轴相交有多种可能,如图所示:所以函数f (x )必在区间(0,4)内有零点, 故选D .8.C解析:C 【分析】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点. 【详解】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=. 解得210.41442%x =≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C . 【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.B解析:B 【分析】 令f(x)=0得211x x -+=0,所以211x x +=,再作出函数211y x y x=+=与的图像得解.【详解】令f(x)=0得211x x -+=0,所以211x x +=,再作出函数211y x y x=+=与的图像, 由于两个函数的图像只有一个交点,所以零点的个数为1.故答案为B【点睛】(1)本题主要考查函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)零点问题的处理常用的方法有方程法、图像法、方程+图像法.10.D解析:D 【解析】根据题意,函数y=f (x )是定义域为R 的奇函数,则f (0)=0,当x ∈(0,+∞)时是减函数,且f (1)=0,则函数在(0,+∞)上只有一个零点, 若函数y=f (x )是奇函数且当x ∈(0,+∞)时是减函数,则f (x )在(-∞,0)为减函数,又由f (1)=0,则f (-1)=-f (1)=0,则函数在(-∞,0)上只有一个零点, 故函数y=f (x )共有3个零点,依次为-1、0、1, 对于函数()22y f x x =-, 当221x x -=-时,解得1x =±, 当220x x -=时,解得2x =±或0x =,当221x x -=时,解得12x =+12x =--故函数()22y f x x =-的零点共有7个. 故选D点睛:本题考查函数的零点的判断,涉及函数的奇偶性与单调性的综合运用,关键是分析得到函数y=f (x )的零点,注意计算的准确性.11.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝, 所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.12.C解析:C 【分析】做出函数图像,由图象得出三个交点的横坐标关系,以及交点横坐标的取值范围,即可求解. 【详解】做出函数()f x 的图象如图,设()()()123===f x f x f x a ,则01a <≤, 因此12232(1)2,0log 1+=⨯-=-<≤x x x ,得312<≤x 于是12310-<++≤x x x , 故选:C.【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题.二、填空题13.【分析】先讨论结合函数解析式确定显然不满足题意;再讨论画出的图象利用数形结合的方法即可求出结果【详解】若当时恒成立;当时由得;即仅有一个根;所以由可得则;即方程仅有一个实根;故不满足有8个不同的实根 解析:()8,+∞【分析】先讨论0a ≤,结合函数解析式,确定显然不满足题意;再讨论0a >,画出()f x 的图象,利用数形结合的方法,即可求出结果. 【详解】若0a ≤,当0x <时,()20f x x a =+<恒成立;当0x ≥时,由()()20f x x ax x x a =-=-=得0x =;即()0f x =仅有0x =一个根;所以由()()0ff x =可得()0f x =,则0x =;即方程()()0f f x =仅有一个实根;故不满足()()0f f x =有8个不同的实根;若0a >时, 画出()220x a x f x x ax x +<⎧=⎨-≥⎩,,的大致图象如下,由()()0ff x =可得()12f x a =-,()20f x =,()3f x a =,又()()0f f x =有8个不同的实根,由图象可得,()20f x =显然有三个根,()3f x a =显然有两个根,所以()12f x a =-必有三个根,而20a -<,2222244a a a y x ax x ⎛⎫=-=--≥- ⎪⎝⎭,为使()12f x a =-有三个根,只需224a a ->-,解得8a >;综上可知,8a >. 故答案为:()8,+∞. 【点睛】 方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.15.7【分析】设每辆车的销售价格为万元求出每月的销售数量乘以每一辆的获利可得每月的利润再由二次函数求最值【详解】解:设每辆车的销售价格为万元则月销售为辆由解得获利当时取得最大值为1800万元为了获取最大解析:7 【分析】设每辆车的销售价格为x 万元,求出每月的销售数量,乘以每一辆的获利可得每月的利润,再由二次函数求最值. 【详解】解:设每辆车的销售价格为x 万元,则月销售为68002020002000.1x x --⨯=-辆, 由20002000x ->,解得10x <,∴获利2(2000200)(4)20028008000(010)y x x x x x =--=-+-<<,当28007400x ==时,y 取得最大值为1800万元. ∴为了获取最大利润,每辆车的销售价格应定为7万元.故答案为:7. 【点睛】本题考查函数模型的选择及应用,二次函数最值的求法,是基础题.16.【分析】判断出函数的单调性求出函数的最值可得要使关于的方程有且仅有个不同实数根转化为的两根均在区间由二次函数的零点分布列出不等式组解得即可【详解】当时递减当时递增由于函数是定义域为的偶函数则函数在和解析:716,49⎛⎫⎪⎝⎭【分析】判断出函数()y f x =的单调性,求出函数的最值,可得要使关于x 的方程()()27016a f x af x ++=⎡⎤⎣⎦,a R ∈有且仅有8个不同实数根,转化为27016a t at++=的两根均在区间31,4⎛⎫-- ⎪⎝⎭,由二次函数的零点分布列出不等式组,解得即可. 【详解】当02x ≤≤时,214y x =-递减,当2x >时,1324xy ⎛⎫=-- ⎪⎝⎭递增,由于函数()y f x =是定义域为R 的偶函数,则函数()y f x =在(),2-∞-和()0,2上递减,在()2,0-和()2,+∞上递增,当0x =时,函数()y f x =取得最大值0;当2x =±时,函数()y f x =取得最小值1-.当02x ≤≤时,[]211,04y x =-∈-;当2x >时,1331,244xy ⎛⎫⎛⎫=--∈-- ⎪ ⎪⎝⎭⎝⎭. 要使关于x 的方程()()27016af x af x ++=⎡⎤⎣⎦,a R ∈,有且仅有8个不同实数根,设()t f x =,则27016at at ++=的两根均在区间31,4⎛⎫-- ⎪⎝⎭. 则有2704312471016937016416a a a a a a a ⎧∆=->⎪⎪⎪-<-<-⎪⎨⎪-+>⎪⎪⎪-+>⎩,即为70432216995a a a a a ⎧><⎪⎪⎪<<⎪⎨⎪<⎪⎪⎪<⎩或,解得71649a <<.因此,实数a 的取值范围是716,49⎛⎫ ⎪⎝⎭. 故答案为:716,49⎛⎫⎪⎝⎭.【点睛】本题考查函数的单调性和奇偶性的运用,主要考查方程与函数的零点的关系,掌握二次函数的零点分布是解题的关键,属于中档题.17.②④【分析】构造函数解方程即可得出结论【详解】构造函数对于①令得整理得方程无实解①中的函数不具备性质;对于②令得解得②中的函数具备性质;对于③③中的函数不具备性质;对于④令得得解得④中的函数具备性质解析:②④ 【分析】构造函数()()()()11g x f x f x f =+--,解方程()0g x =,即可得出结论. 【详解】构造函数()()()()11g x f x f x f =+--. 对于①,()1111g x x x =--+,令()0g x =,得111x x x+=+,整理得210x x ++=, 1430,方程210x x ++=无实解,①中的函数不具备性质P ;对于②,()122222x x x g x +=--=-,令()0g x =,得22x =,解得1x =.②中的函数具备性质P ;对于③,()()()()()22222log 3log 2log 1log 3log 20g x x x x x =+-+-=+-+≠, ③中的函数不具备性质P ;对于④,()()()sin sin sin sin sin 2sin g x x x x x x ππππππππ=+--=+-=-, 令()0g x =,得sin 0x π=,得()x k k Z ππ=∈,解得()x k k Z =∈, ④中的函数具备性质P . 故答案为:②④. 【点睛】本题考查函数新定义“性质P ”,本质上就是函数的零点问题或方程根的问题,考查化归与转化思想的应用,属于中等题.18.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠ 【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.19.2【分析】由题意得令显然为偶函数则方程有四个实根函数x >0有两个零点令x >0则关于t 的方程即在内有两个不相等的实根结合函数的图象可得由此可求出答案【详解】解:方程令则显然为偶函数∴方程有四个实根函数解析:2 【分析】由题意得242()()10x x a f x g x ee-+-=⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x ee -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案. 【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->的图象,得222a e e e -<<+, 即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =, 故答案为:2. 【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.20.【分析】依题意在上单调增则(a )(b )从而可得必须有两个不相等的正根利用该方程有二异正根的条件即可求得实数的取值范围【详解】在是增函数在上值域为(a )(b )所以(a )且(b )即且所以且所以必须有两个 解析:(0,4)【分析】 依题意,1()4f x x=-在[a ,]b 上单调增,则f (a )ma =,f (b )mb =,从而可得210mx x -+=必须有两个不相等的正根,利用该方程有二异正根的条件即可求得实数m 的取值范围.【详解】 1()4f x x=-在(0,)+∞是增函数, ()f x ∴在[x a ∈,]b 上值域为[f (a ),f (b )]所以f (a )ma =且f (b )mb =, 即14ma a-=且14mb b -=,所以2410ma a -+=且2410mb b -+=,所以2410mx x -+=必须有两个不相等的正根,故0m ≠,∴40101640m mm ⎧>⎪⎪⎪>⎨⎪=->⎪⎪⎩,解得04m <<. ∴实数m 的取值范围是(0,4).故答案为:(0,4).【点睛】本题主要考查函数单调性的性质,着重考查二次函数根的分布问题,将所求的问题转化为210mx x -+=必须有两个不相等的正根是关键,属于中档题.三、解答题21.(1)2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩;(2)30千件;250万元.【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】(1)∵每千件商品售价为50万元.则x 千件商品销售额50x 万元当080x <<时,2211()50202003020022L x x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭当80x 时,1000010000()5051600200400L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪∴=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(30)2502L x x =--+ 此时,当30x =时,即()(30)250L x L =万元当80x时,10000()400400L x x x ⎛⎫=-+≤- ⎪⎝⎭400200200=-=此时10000x x=,即100x =,则()(100)200L x L =万元 由于250200>所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.22.(1)2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元, 依题意得:当080x <<时,2211()(0.051000)(20)2003020022L x x x x x x =⨯-+-=-+-, 当80x ≥时,1000010000()(0.051000)(51600)200400()L x x x x x x=⨯-+--=-+, 所以2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当080x <<时,21()(30)2502L x x =--+, 此时,当30x =时,即()(30)250L x L ≤=万元.当80x ≥时,10000()400()400400200200L x x x =-+≤-=-=, 此时10000,100x x x==,即()(100)200L x L ≤=万元, 由于250200>,所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出. 23.(1)14a >;(2)51b <<. 【分析】(1)讨论0a =、0a >、0a <满足恒成立情况下a 的取值范围,取并集; (2)由题意知()g x 关于y 轴对称的函数为()k x 必与()h x 在0x <上有两个不同的交点,利用二次函数的性质求b 的取值范围.【详解】(1)当0a =时,()1f x x =-,在()1,3x ∈上有()(2,0)f x ∈-,故不符题意; 若0a ≠有()f x 对称轴为12x a=,14a ∆=-,要使()()1,3,0x f x ∀∈>恒成立, 当0a >时,102a >且(1)0f a => ,即∆<0或112a ≤或132(3)0a f ⎧≥⎪⎨⎪≥⎩,解得14a >;当0a <时,102a <,即仅需(3)0f ≥即可,无解; 综上,有14a >; (2)0x <时,()g x 关于y 轴对称的函数为2()2k x x bx =--,由题意知()h x 与()k x 有两个不同的交点.由1a =时,()25111x h x x x x -=-+--,令()()k x h x =,整理得2(1)(1)20b x b x --+-=,∴令2()(1)(1)2t x b x b x =--+-,即()t x 在0x <上有两个不同的零点,而(0)20t =-<,∴()()()2101{0211810b b x b b b -<+=<-∆=++->,解得51b <<,【点睛】思路点睛:()g x 存在两点关于y 轴对称点在()h x 上,将其转化为函数交点问题. 确定()g x 关于y 轴对称的函数解析式()k x . 有()h x 、()k x 有两个不同交点. 结合二次函数的性质求参数的范围. 24.(1)1500030306S x x---,定义域为(4,400];(2)50x =,max 2430S =. 【分析】(1)用x 求出矩形的长,然后减去道路宽后计算塑胶运动场地面积S ,注意中间三个小矩形存在,同时400可得定义域; (2)由基本不等式求得最值. 【详解】 (1)由题意30003000(4)(6)(6)(6)22x x x x S ----=+250030306x x ⎛⎫=-+ ⎪⎝⎭.4060300060x x x⎧⎪->⎪->⎨⎪⎪->⎩,又400x ≤,所以6400x <≤. 综上1500030306S x x---,定义域为(4,400]. (2)由(1)250030306()303062430S x x=-+≤-⨯=,当且仅当2500x x=,即50x =时,等号成立. 所以50x =,max 2430S =. 【点睛】关键点点睛:本题考查函数的应用,解题关键是列出函数解析式,在定义域时,要注意变量的实际意义,本题中一是小矩形存在,二是场地长、宽不超过400米,这样才能得定义域.25.(1)分别为25件,42件;(2)s (t )=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩;26件. 【分析】(1)先求出预计订单函数()()f t t N ∈为45,010,()55,1055.t t f t t t +⎧=⎨-+<⎩再求解;(2)先求出利润函数为2(1.55 3.5)(45),010,3()2(1.55 3.5)(55),1055.3t t t S t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩再分段求函数的最大值即得解. 【详解】解:(1)预计订单函数()()f t t N ∈为45,010()55,1055t t f t t t +≤≤⎧=⎨-+<≤⎩;f (5)=20+5=25; f (13)=-13+55=42;∴每件珠宝加工天数分别为5,13,预计订单数分别为25件,42件. (2)售价函数为() 1.55g t t =+;∴利润函数为2(1.550.5)(45),0103()2(1.550.5)(55),10553t t t s t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩,s (t )=(3)(45),010(3)(55),1055t t t t t t ++⎧⎨-+-<⎩=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩; 当010t ≤≤时,2()41715s t t t =++的最大值为(10)585s =; 当1055t <≤时,2()(52t 165)s t t =---的最大值为(26)841585s =>;故利润最大时,26t =,此时预计的销量为26件 【点睛】关键点睛:解题得关键在于根据题目条件,分段列出函数表达式,计算时,注意分段成立的条件,难度属于中档题26.(1)2()34f x x x =-+;(2)(2,)+∞;(3)(,1)(3,)-∞+∞【分析】(1)根据题意,设出()f x 的解析式,根据题中条件,求得对应的参数,得到结果; (2)利用一元二次方程根的分布,列出对应的不等式,求得结果; (3)根据题中所给的条件,列出对应的不等式,求得结果. 【详解】(1)由已知可设2()(0)f x ax bx c a =++≠,因为()04f =,所以4c =,因为()20f x -<,即220ax bx ++<的解集为{}12x x <<, 所以1x =与2x =是方程220ax bx ++=的两根,则由韦达定理可知12212b aa ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=-⎩,所以2()34f x x x =-+;(2)令234()()h x f x m x x m --=+=-,若()0h x =有一实根大于1,一实根小于1, 则(1)20h m =-<,解得2m >, 故实数m 的取值范围是:(2,)+∞;(3)若存在x 使()y f x =的图象在()y g x =图象的上方, 则存在x 使()()f x g x >,即2341x x x -+>+, 即2430x x -+>,所以(1)(3)0x x -->, 解得1x <或3x >,故满足条件的实数x 的取值范围是:(,1)(3,)-∞+∞.【点睛】该题考查的是有关二次函数以及一元二次不等式的问题,在解题的过程中,涉及到的知识。
最新北师大版高中数学必修一第四单元《函数应用》测试(包含答案解析)
一、选择题1.已知汽车从踩刹车到停车所滑行的距离()m s 与速度()km/h v 之间有如下关系式:2s k M v =⋅⋅,其中k 是比例系数,且0,k M >是汽车及其载重质量之和.若某辆卡车不装货物(司机体重忽略不计)以36km/h 的速度行驶时,从刹车到停车需要走20m .当这辆卡车装载等于车重的货物行驶时,为保证安全,要在发现前面20m 处有障碍物时能在离障碍物5m 及以外处停车,则最高速度是(设司机发现障碍物到踩刹车经过1s )( ) A .36km/hB .30km/hC .24km/hD .18km/h2.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006B .1007C .2016D .20173.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,24.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .35.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]26.函数2cos ()x xx xf x e e-=-的图象大致是( ) A . B .C .D .7.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是 A .(0,1) B .(e ,e 3) C .(e ,e 2)D .(1,e 3)8.设函数3,()log ,x x af x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( )A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞9.函数()32xy x x =-的图象大致是( )A .B .C .D .10.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==-> 其中满足“倒负”变换的函数是( ) A .①②B .①③C .②③D .①11.若函数()f x 的图象是连续不断的,且(0)0f >,(1)(2)(4)0f f f <,则下列命题正确的是( ).A .函数()f x 在区间(0 , 1)内有零点B .函数()f x 在区间(1 , 2)内有零点C .函数()f x 在区间(0 , 2)内有零点D .函数()f x 在区间(0 , 4)内有零点12.函数()f x 对于任意实数x ,都()()f x f x -=与(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是( )A .2020B .2019C .1010D .1009二、填空题13.已知函数227,03()1108,333x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若()y f x =的图象与y m =的图象有A ,B ,C ,D 四个不同的交点,交点横坐标为1234,,,x x x x ,满足1234x x x x <<<,则()()341233222x x x x --++的取值范围是________14.已知函数()333xxf x -=+-,若函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,则实数a 的取值范围是__________.15.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)16.已知函数f(x)=若关于x 的方程f(x)=k 有三个不同的实根,则实数k的取值范围是________.17.函数2()23f x x x a =---有四个零点,则a 的取值范围为_______. 18.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.19.密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠劵一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:优惠券1:若标价超过50元,则付款时减免标价的10%; 优惠券2:若标价超过100元,则付款时减免20元; 优惠券3:若标价超过100元,则超过100元的部分减免18%.如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是__________元.20.某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费P (万元)与仓库到停车库的距离x (公里)成反比,而每月库存货物的运费K (万元)与仓库到停车库的距离x (公里)成正比.如果在距停车库18公里处建仓库,这两项费用P 和K 分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x = ________ 公里.三、解答题21.有A 、B 两城相距120km ,某天然气公司计划修建一条管道为两城供气,并在两城之间设立供气站点D (如图),为保证城市安全,规定站点D 距两城市的距离均不得少于15km .又已知A 城一边有段10km 长的旧管道AC ,准备改造利用,改造费用为5万元//km ,其余地段都要新建,新建的费用(含站点D )与站点D 到A 、B 两城方向上新修建的长度的平方和成正比.........,并且当站点D 距A 城距离为40km 时,新建的费用为1825万元.设站点D 距A 城的距离为km x ,A ,B 两城之间天然气管道的建设总费用为y 万元.(1)求y 与x 之间的函数关系式,并写出其定义域;(2)天然气站点D 距A 城多远时,建设总费用最小?最小总费用多少? 22.设()ln ,f x x =,a b 为实数,且0a b <<, (1)求方程()1f x =的解;(2)若,a b 满足()()f a f b =,求证:①1;a b ⋅=②12a b+>; (3)在(2)的条件下,求证:由关系式()2()2a bf b f +=所得到的关于b 的方程()0,h b =存在0(3,4)b ∈,使0()0,h b =23.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:3221805040,[120,144)3120080000,[144,500)2x x x x y x x x ⎧-+∈⎪⎪=⎨⎪--∈⎪⎩且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当[200,300]x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?24.党的十九大报告明确要求继续深化国有企业改革,发展混合所有制经济,培育具有全球竞争力的世界一流企业.这为我们深入推进公司改革发展指明了方向,提供了根本遵循.某企业抓住机遇推进生产改革,从单一产品转为生产A 、B 两种产品,根据市场调查与市场预测,A 产品的利润与投资成正比,其关系如图(1);B 产品的利润与投资的算术平方根成正比,其关系如图(2)(注:所示图中的横坐标表示投资金额,单位为万元)(1)分别求出A 、B 两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?25.已知函数4()log (41)x f x kx =++与44()log (2)3x g x a a =⋅-,其中()f x 是偶函数. (Ⅰ)求实数k 的值; (Ⅱ)求函数()g x 的定义域;(Ⅲ)若函数()()()F x f x g x =-只有一个零点,求实数a 的取值范围.26.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N ∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x . (1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据v =36km/h 时,20m s =,求出5324k M ⋅=,求出司机发现障碍物到踩刹车经过1s ,汽车行驶的距离,再由不等式25202518vk Mv --⋅可解得结果. 【详解】因为2s k M v =⋅⋅,且当v =36km/h 时,20m s =, 所以22036k M =⋅⋅,∴5324k M ⋅=, 司机发现障碍物到踩刹车经过1s ,汽车行驶的距离为10005(m)360018vv ⋅=, 由25202518v k Mv --⋅,得25520518162v v --, 即294860v v +-≤,解得2718v -≤≤. ∴则最高速度是18km/h . 故选:D. 【点睛】关键点点睛:理解题意,找出题目中的不等关系是解题关键.2.D解析:D 【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=, 故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+, 即有()()f x f x -=,1()02f =, 1()02f ∴-=,再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点, 即函数()f x 在每两个整数之间都有一个零点, ()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D . 【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.3.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C 【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.5.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m ⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题6.A解析:A 【分析】利用函数的奇偶性,排除选项,再根据102x <<,时()0f x >即可得到正确的图像. 【详解】2cos ()x x x x f x e e -=-,()()22cos cos ()()x x x x x x x x f x f x e e e e-----==-=---∴, 因此函数()f x 为奇函数,图像关于原点对称,排除,C D , 又当102x <<时,cos 0,0x xx e e ->->,()0f x ∴>,排除B . 故选:A . 【点睛】本题主要考查的是函数图像,考查利用函数的奇偶性看图形,排除法的应用,考查学生的分析问题的能力,是中档题.7.B解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.8.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.9.B解析:B 【分析】先根据函数的奇偶性排除部分选项,然后令y =0,结合图象分析求解. 【详解】因为函数()32xy x x =-定义域为R ,且()()()()()()3322xxf x x x x x f x --=---=--=-,所以函数是奇函数,故排除C ,由()()()32112xxy x x x x x =-=-+,令y =0得x =-1,x =0,x =1,当01x <<时,0y <,当1x >时,0y >,排除AD故选:B 【点睛】本题主要考查函数图象的识别以及函数的奇偶性和零点的应用,还考查了数形结合的思想和分析求解问题的能力,属于中档题.10.C解析:C 【解析】①1ln1xyx-=+;1111()ln ln()111xxf f xx xx--==≠-++所以不符合题意;②2211xyx-=+;22221111()()111xxf f xx xx--===-++所以符合题意;③,01,{0,1,1, 1.x xy xxx<<==->当01x<<时11x>,故1()()f x f xx=-=-,当1,x=时11x=显然满足题意,当1x>时,101x<<,故11()()f f xx x==-符合题意,综合得选C点睛:新定义倒负函数,根据题意逐一验证()1f f xx⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论11.D解析:D【解析】解:因为f(0)>0,f(1)f(2)f(4)<0,则f(1),f(2),f(4)恰有一负两正或三个都是负的,结合图象可得函数f(x)必在区间(0,4)内有零点因为f(0)>0,f(1)f(2)f(4)<0,则f (1),f(2),f(4)恰有一负两正或三个都是负的,函数的图象与x轴相交有多种可能,如图所示:所以函数f(x)必在区间(0,4)内有零点,故选D .12.A解析:A 【分析】由题意明确函数的周期性,数形结合即可得到方程()02019xf x -=的根的个数. 【详解】 对任意实数x 都有f (x +2)=f [1+(1+x )]=f [1﹣(1+x )]=f (﹣x ), 由于f (x )为偶函数,f (﹣x )=f (x ) ∴f (x +2)=f (x )∴函数f (x )是以2为周期的周期函数,且值域为[]0,1. 方程()02019x f x -=的根的个数即函数()f x 图象与直线y 2019x=的交点个数, 当2019x =时,y 12019x ==,当x 2019>时,函数()f x 图象与直线y 2019x=无交点,由图像可得二者的交点个数为2020个 故选A 【点睛】本题考查的知识点是函数的奇偶性,函数的周期性,函数的图象,方程根与函数零点的关系,难度中档.二、填空题13.【分析】根据题意得进而得由于故的取值范围是【详解】解:如图根据题意得满足:即关于直线对称故所以所以由于所以所以故答案为:【点睛】本题考查函数与方程的综合应用考查数形结合思想与运算求解能力是中档题本题 解析:(15,22)【分析】根据题意得122214x x +=,3410x x +=,进而得()()2334312103321142222x x x x x x -+---=+++,由于()33,4x ∈,故()()341233222x x x x --++的取值范围是(15,22).【详解】解:如图,根据题意得12,x x 满足:1227270x x -+-=,即122214x x +=.34,x x 关于直线5x =对称,故3410x x +=,所以4310x x =-,()33,4x ∈所以()()()()23343331210333721141422222x x x x x x x x --+----=+=+++,由于()33,4x ∈,()()3232321540,031x x x -=--+∈-+,所以()233120121,8x x --+∈所以()()()()()233433312103337211414215,222222x x x x x x x x -+-----++=+=+∈故答案为:(15,22) 【点睛】本题考查函数与方程的综合应用,考查数形结合思想与运算求解能力,是中档题.本题解题的关键在于根据题意作图得122214x x +=,3410x x +=,()33,4x ∈,故将问题转化为求2331102142x x -+-+,()33,4x ∈的值域问题.14.【分析】将函数(且)在区间上有4个不同的零点转化为函数与函数的图象在区间上有4个不同的交点再根据函数的奇偶性和单调性作出函数的图象与函数的图象利用图象【详解】所以为偶函数设则因为所以即因为所以所以所 解析:27a ≥【分析】将函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点转化为函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点,再根据函数()f x 的奇偶性和单调性作出函数|()|f x 的图象与函数log (2)a y x =+的图象,利用图象 【详解】()333()x x f x f x --=+-=,所以()f x 为偶函数,设120x x ≤<,则112212()()333333x x x xf x f x ---=+---+12121(33)(1)3x x x x +=--,因为12,x x <所以1233x x <,即12330x x -<,因为120x x ≤<,所以120x x +>,所以1231x x +>,所以121103x x +->,所以12())0(f x f x -<,即12()()f x f x <, 所以()f x 在[0,)+∞上递增,因为()f x 为偶函数,所以()f x 在(,0)-∞上递减, 所以当0x =时,()f x 取得最小值(0)1f =-,因为函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,所以函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点, 作出两个函数的图象如图:由图可知,log (02)(0)log (12)(1)1a a f f a ⎧+<⎪+≤⎨⎪>⎩,即log 211log 331a aa <⎧⎪⎪≤⎨⎪>⎪⎩,解得27a ≥. 故答案为:27a ≥. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解15.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①②【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③. 【详解】()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=,9天后,小菲的单词记忆保持量低于40%,故②正确;()1219126265205f -=+⋅>,故③错误,故答案为①②.【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.16.【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x 的方程f(x)=k 有三个不同的实根等价于函数y=f(x)的图象与函数y =k 的图象有三个 解析:()1,0-【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点,画出函数()y f x =的图象,然后结合图象求解即可. 【详解】关于x 的方程f(x)=k 有三个不同的实根,等价于函数y=f(x)的图象与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.17.【分析】函数零点转化为的解即函数与直线的交点的横坐标由数形结合思想可得解【详解】由得作函数的图象和直线如图函数在和上递减在和上递增由图象知当时的图象和直线有四个交点即有4个零点故答案为:【点睛】本题 解析:(0,4)【分析】函数零点转化为223x x a --=的解,即函数2()23g x x x =--与直线y a =的交点的横坐标,由数形结合思想可得解. 【详解】由()0f x =得223x x a --=,作函数2()23g x x x =--的图象和直线y a =,如图,函数()g x 在(,1)-∞-和(1,3)上递减,在(1,3)-和(3,)+∞上递增,(1)4f =,由图象知当04a <<时,2()23g x x x =--的图象和直线y a =有四个交点.即()f x 有4个零点.故答案为:(0,4).【点睛】本题考查函数的零点个数,解题时把问题转化为函数图象与直线交点个数,通过数形结合思想求解.18.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3 【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =. 答案:319.201【分析】根据题意构造函数由函数的值域即可容易求得【详解】设标价为则当时优惠金额;当时优惠券2的优惠金额优惠券3的优惠金额故当标价在之间只能用优惠券1故不满足题意;当标价超过100时若满足题意且解析:201 【分析】根据题意,构造函数,由函数的值域即可容易求得. 【详解】 设标价为x ,则当50x >时,优惠金额10x y =; 当100x >时,优惠券2的优惠金额20y =,优惠券3的优惠金额()910050y x =-. 故当标价在(]50,100之间,只能用优惠券1,故不满足题意; 当标价超过100时,若满足题意,2010x >,且()91001050x x >-, 解得200225x <<.则答案不唯一,只需在区间()200,225内任取一个元素即可.本题中选取标价为201. 故答案为:201. 【点睛】本题考查实际问题中函数模型的应用,属中档题.20.3【分析】由条件设将条件代入可解得的值可以得到两项费用之和的表达式利用均值不等式可求得答案【详解】设由和分别为万元和万元即时可得则两项费用之和为:所以当且仅当即时取得等号故答案为:3【点睛】本题考查解析:3 【分析】 由条件设,nP K mx x==,将条件4,144P K ==代入,可解得,m n 的值,可以得到两项费用之和的表达式,利用均值不等式可求得答案. 【详解】设,nP K mx x==,由P 和K 分别为4万元和144万元. 即18x =时4P =,144K =,可得,72,8n m ==.则两项费用之和为:()7280y P K x x x=+=+>.所以72848x x +≥=,当且仅当728x x =,即3x =时取得等号. 故答案为:3 【点睛】本题考查了实际问题转化为数学问题的能力及基本不等式求最值,属于中档题.三、解答题21.(1)y 21(1307350)2x x =-+,定义域为[15,105](2)天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元.【分析】(1)根据站点D 距两城市的距离均不得少于15km .可求得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,根据当40x =时,1825501875y =+=,求出k ,从而可得y 与x 之间的函数关系式; (2)根据二次函数知识可求得最值. 【详解】(1)因为站点D 距两城市的距离均不得少于15km .所以1512015x x ≥⎧⎨-≥⎩,解得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,15105x ≤≤,当40x =时,1825501875y =+=,所以22(3080)501875k ++=,解得14k =, 所以221[(10)(120)]5104y x x =-+-+⨯21(1307350)2x x =-+,15105x ≤≤. (2)y 21(1307350)2x x =-+21(65)1562.52x =-+, 所以当65x =时,min 1562.5y =万元.所以当天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元. 【点睛】关键点点睛:理解题意,建立正确的数学模型是解决函数应用题的关键.22.(1)x e =或1=x e;(2)证明见解析;(3)证明见解析; 【分析】(1)由()1f x =,得1lnx =±,即可求方程()1f x =的解; (2)①证明()0ln ab =即可;②令1()x b bφ=+,((1,))b ∈+∞,证明φ(b )在(1,)+∞上为增函数,即可证明结论; (3)令()22124h b b b b=++-,因为()30h <,()40h >,即可得出结论. 【详解】(1)解:由()1f x =,得1lnx =±,所以x e =或1=x e. (2)证明:①因为()()f a f b =,且0a b <<,可判断(0,1)∈a ,(1,)b ∈+∞, 所以lna lnb -=,即0lna lnb +=,即()0ln ab =,则1ab =②由①得122ba b b ++=,令1()x b b φ=+,((1,))b ∈+∞任取1b ,2b ,且121b b <<, 因为12121211()()()()b b b b b b φφ-=+-+ 2112121221121212111()()()()()b b b b b b b b b b b b b b b b --=-+-=+-=- 121b b <<,210b b ∴->,1210b b -<,120b b >, 12()()0b b φφ∴-<,()b φ∴在(1,)+∞上为增函数,()()12b φφ∴>=,∴12a b+> (3)证明:()2()2a b f b f +=,1,12a b b +>>,∴22()22a b a b lnb ln ln ++==, ∴2()2a b b +=,得2242b a b ab =++, 又1a b =,∴221240b b b++-=. 令()22124h b b b b=++-,因为()30h <,()40h >, 根据函数零点的判断条件可知,函数()h b 在(3,4)内一定存在零点, 即存在0(3,4)b ∈,使0()0h b =. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.23.(1)不能获利,政府每月至少需要补贴5000元才能使该项目不亏损,(2)400 【分析】(1)先确定该项目获得的函数,再利用配方法确定不会获利,从而可求政府每月至少需要补贴的费用;(2)确定食品残渣的每吨的平均处理成本函数,分别求出分段函数的最小值,即可求得结论 【详解】解:(1)当[200,300]x ∈时,该项目获利为S ,则2211200(20080000)(400)22S x x x x =--+=--,所以当[200,300]x ∈时,0S <,因此该项目不会获利,当300x =时,S 取得最大值5000-,所以政府每月至少需要补贴5000元才能使项目不亏损,(2)由题意可知,生活垃圾每吨的平均处理成本为21805040,[120,144)3180000200,[144,500)2x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,当[120,144)x ∈时,21(120)2403y x x =-+, 所以当120x =时,yx取得最小值240; 当[144,500)x ∈时,1800002002002002y x x x =+-≥=,当且仅当1800002x x =,即400x =时,yx取得最小值200, 因为240200>,所以当每月处理量为400吨时,才能使每吨的平均处理成本最低 【点睛】关键点点睛:此题考查基本不等式在最值问题中的应用,函数模型的选择与应用,考查函数模型的构建,考查函数的最值,解题的关键是根据题意确定函数关系式,属于中档题24.(1)A 产品的利润为1()(0)2f x x x =≥,B产品的利润为()0)g x x =≥;(2)A 产品投入6万元,B 产品投入4万元时取得最大利润,最大利润为7万元. 【分析】(1)由题设1()f x k x =,()g x k =(2)列出企业利润的函数解析式21()(10)10)y f x g x x x =+-=+≤≤换元法求得函数最值得解. 【详解】(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元由题设1()f x k x =,()g x k =, 由图知()21f =,故112k =,又(4)4g =,∴22k =.从而1()(0)2f x x x =≥,()0)g x x =≥. (2)设A 产品投入x 万元,则B 产品投入10x -万元,设企业利润为y 万元21()(10)10)y f x g x x x =+-=+≤≤令t =21(2)7(02y t t =--+≤≤ 当2t =时,max 7y =,此时6x =. 【点睛】函数最值问题中函数表达式中若含有根式,通常采用换元法求解函数最值. 25.(Ⅰ)12k =-;(Ⅱ)分类讨论,答案见解析;(Ⅲ){}()31,-⋃+∞. 【分析】(Ⅰ)由偶函数的性质,运算即可得解; (Ⅱ)转化条件为4203xa a ⋅->,按照0a >、0a <分类,即可得解; (Ⅲ)由对数的运算性质转化条件得方程()()22421223xxxa a +=-⋅有且只有一个实根,换元后,结合一元二次方程根的分布即可得解. 【详解】(Ⅰ)∵()f x 是偶函数,∴()()f x f x =-,∴44log (41)log (41)x xkx kx -++=+-,∴441log 241x x kx -+=-+,∴44(41)log 241x x xx kx +==-+, 即(21)0k x +=对一切x ∈R 恒成立,∴12k =-; (Ⅱ)要使函数()g x 有意义,需4203xa a ⋅->,。
10-全章综合检测高中数学必修一北师大版
B. − = 1
C. < 2
D. + > 3
)
【解析】 由3 = 12, = 2log 3 2,得 = log 3 12, = log 3 4,
2 = log 3 16,则 − = log 3 3 = 1, < 2,
+ = log 3 48 > log 3 27 = 3.故选BCD.
也在函数 = 3 + 的图象上,则 log 9 4 =( A )
8
A.
9
7
B.
9
5
C.
9
2
D.
9
【解析】 分析知 −2, −1 .因为点A在函数 = 3 + 的图象上,所以
−2
−1 = 3
+ ,解得 =
10
− ,所以
9
=3 −
10
.因为
9
log 9 4 = log 32 22 = log 3 2,所以
ln
.由
1+
1+
意的, ∈ −1,1 ,有 + =
+
1+
+
= ln
1−1+
+
1+1+
=
> 0,得 ∈ −1,1 ,故A正确;对于任
1−
ln
1+
1+−−
ln
,所以
1+++
1−
+ ln
1+
=
1−−+
ln
,
1+++
北师大版高中数学必修一第四单元《函数应用》检测卷(含答案解析)
一、选择题1.已知函数()22020,0,,0,x x f x x x x <⎧=⎨-≥⎩若关于x 的方程()()21610f x kf x ++=有四个不同的实数根,则k 的取值范围为( ) A .(4,)+∞B .(8,)+∞C .(,4)-∞-D .(,8)-∞-2.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞3.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .3 4.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①6.若对任意[]0,1m ∈,总存在唯一[]1,1x ∈-使得2e 0x m x a +-=成立,则实数a 的取值范围是( ) A .[]1,eB .11,e e ⎛⎤+⎥⎝⎦C .(]0,e D .11,e e ⎡⎤+⎢⎥⎣⎦7.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-8.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( )A .a<0B .0<a<C . <a<1D .a≤0或a>19.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)10.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .311.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-12.下列方程在区间()1,1-内存在实数解的是( ) A .230x x +-=B .10x e x --=C .()3ln 10x x -++=D .2lg 0x x -=二、填空题13.已知函数()f x 定义域为D ,若存在0x D ∈,使()()()0011f x f x f +=+成立,则称()f x 具有性质P .现给出下列四个函数: ① ()1f x x=; ②()2xf x =; ③()()2log 2f x x =+; ④()sin f x x π= 其中具有性质P 的函数为_____________(注:填上你认为正确的所有函数序号)14.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.15.函数()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,,如果方程()f x b =有四个不同的实数解1x ,2x ,3x ,4x ,则1234x x x x +++=______.16.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.17.已知函数21,0()(1),0x x f x f x x ⎧-≥=⎨+<⎩,若方程()f x x a =--有两个不同实根,则实数a的取值范围为________.18.已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若关于x 方程()f x ax =有三个不相等的实数根,则实数a 的取值范围是_______________.19.已知当0,4x π⎡⎤∈⎢⎥⎣⎦时,函数()2sin 16f x x πω⎛⎫=+- ⎪⎝⎭(0>ω)有且仅有5个零点,则ω的取值范围是______.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.已知函数()()222f x ax a x =-++,()a R ∈.(1)()32f x x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式()0f x ≥的解集; (3)若存在0m >使关于x 的方程()11f x m m=++有四个不同的实根,求实数a 的取值范围.22.已知函数()91xf x =-,()31xg x a =-.(1)若函数()()()h x f x g x =-有两个零点,求实数a 的取值范围; (2)当R x ∈时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (3)当0a >时,求函数()()()x f x g x ϕ=+在区间[]1,1-上的最值.23.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资80万元,根据行业规定,每个城市至少要投资20万元,由前期市场调研可知:甲城市收益1y 与投入x (单位:万元)满足145040,2040{25,4060x y x x -+≤<=≤≤,乙城市收益2y 与投入x (单位:万元)满足21202y x =+(1)当甲项目的投入为25万元时,求甲乙两个项目的总收益; (2)试问如何安排甲、乙两个城市的投资,才能使总收益最大? 24.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.25.某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为0.5万元,每件珠宝售价(万元)与加工时间t (单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间t (天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.(1)如果每件珠宝加工天数分别为5,13,预计销量分别会有多少件?(2)设工厂生产这批珠宝产生的纯利润为S (万元),请写出纯利润S (万元)关于加工时间t (天)之间的函数关系式,并求纯利润S (万元)最大时的预计销量. 注:毛利润=总销售额 — 原材料成本,纯利润=毛利润 — 工人报酬.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设()f x t =,可得方程21610t kt ++=有两个不同的实数根214t <- ,1104t -<<,再利用一元二次方程根的分布列不等式求解即可. 【详解】作出()f x 的图象如图所示,设()f x t =, 要使方程()()21610fx kf x ++=有四个不同的实数根,则方程()21610g t t kt =++=有两个不同的实数根1t ,2t .且()1f x t =有三个根,方程()2f x t =有一个根, 由图可知,214t<-1104t -<<. 设2()161g t t kt =++,则()10,400,g g ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪>⎩,解得8k >. 故选:B.【点睛】函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.2.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.3.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论.【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-,当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C 【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.4.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.5.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论6.B解析:B 【解析】分析:由m+x 2e x ﹣a=0成立,解得x 2e x =a ﹣m ,根据题意可得:a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1,解出并且验证等号是否成立即可得出. 详解::由m+x 2e x ﹣a=0成立,得x 2e x =a ﹣m ,∴对任意的m ∈[0,1],总存在唯一的x ∈[﹣1,1],使得m+x 2e x ﹣a=0成立, ∴a ﹣1≥(﹣1)2e ﹣1,且a ﹣0≤12×e 1, 解得1+1e≤a≤e , 其中a=1+1e时,x 存在两个不同的实数,因此舍去, a 的取值范围是(1+1e,e]. 故选B .点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.7.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴23123334224(2,0]x ax x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.8.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2xx a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.9.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根, 即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.10.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x=和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数11.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.12.B解析:B 【分析】利用方程和函数之间的关系分别进行判断即可得到结论. 【详解】A :令2()3f x x x =+-,因为抛物线开口向上,()()1010f f -<<,,所以在区间()1,1-内无实数解;B :令()10xf x e x =--=,解得0x =,所以在区间()1,1-内有实数解;C :令()()3ln 1f x x x =-++,则1()101f x x '=+>+在()1,1-成立,所以函数在()1,1-上单调递增,又(1)0f <,故在区间()1,1-内无实数解;D :当(0,1)x ∈时,()20,1x ∈,lg (,0)x ∈-∞,则2lg 0x x ->,此时方程在()1,1-内无解. 故选:B. 【点睛】本题主要考查函数与方程以及零点存在定理,还考查了运算求解的能力,属于中档题.二、填空题13.②④【分析】构造函数解方程即可得出结论【详解】构造函数对于①令得整理得方程无实解①中的函数不具备性质;对于②令得解得②中的函数具备性质;对于③③中的函数不具备性质;对于④令得得解得④中的函数具备性质解析:②④ 【分析】构造函数()()()()11g x f x f x f =+--,解方程()0g x =,即可得出结论. 【详解】构造函数()()()()11g x f x f x f =+--. 对于①,()1111g x x x =--+,令()0g x =,得111x x x+=+,整理得210x x ++=, 1430,方程210x x ++=无实解,①中的函数不具备性质P ;对于②,()122222x x x g x +=--=-,令()0g x =,得22x =,解得1x =.②中的函数具备性质P ;对于③,()()()()()22222log 3log 2log 1log 3log 20g x x x x x =+-+-=+-+≠, ③中的函数不具备性质P ;对于④,()()()sin sin sin sin sin 2sin g x x x x x x ππππππππ=+--=+-=-, 令()0g x =,得sin 0x π=,得()x k k Z ππ=∈,解得()x k k Z =∈, ④中的函数具备性质P . 故答案为:②④. 【点睛】本题考查函数新定义“性质P ”,本质上就是函数的零点问题或方程根的问题,考查化归与转化思想的应用,属于中等题.14.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.15.【分析】作出的图象可得和的图象有四个不同的交点不妨设交点横坐标由关于原点对称关于点对称即可得到所求的和【详解】作出的图象方程有四个不同的实数解等价为和的图象有四个不同的交点不妨设交点横坐标为且由关于 解析:4【分析】作出()f x 的图象,可得()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标1234x x x x <<<,由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称,即可得到所求的和.【详解】作出()()2121x x f x x x ⎧≤⎪=⎨->⎪⎩,,的图象,方程()f x b =有四个不同的实数解,等价为()y f x =和y b =的图象有四个不同的交点,不妨设交点横坐标为1x ,2x ,3x ,4x 且1234x x x x <<<, 由1x ,2x 关于原点对称,3x ,4x 关于点()2,0对称, 可得12=0x x +,344x x +=, 则12344x x x x +++=, 故答案为:4 【点睛】本题主要考查了函数方程的转化思想,考查数形结合的思想以及对称性的运用,属于中档题.16.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠ 【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.17.【分析】先画出当时函数的图象当时利用周期性画出函数的图象在同一直角坐标系内画出直线的图象利用数形结合进行求解即可【详解】当时画出函数的图象当时当时画出函数的图象如下图所示:Failedtodownl 解析:(1,)-+∞【分析】先画出当0x ≥时函数()f x 的图象,当0x <时,利用周期性画出函数()f x 的图象,在同一直角坐标系内画出直线y x a =--的图象,利用数形结合进行求解即可. 【详解】当0x ≥时,画出函数()f x 的图象, 当10x -≤<时,1()21x f x +=-,当21x -≤<-时,2()21x f x +=-,画出函数()f x 的图象如下图所示: [Failed to download image :http://192.168.0.10:8086/QBM/2020/4/16/2442971918139392/2444041550692352/EXPLANATION /d0eaa7b33ddc4636b9cc52164f3abcc4.png]因为方程()f x x a =--有两个不同实根,所以函数()f x 和函数y x a =--的图象有两个不同的交点.由直线y x a =--过(0,1),得1a =-; 由直线y x a =--过(0,0),得0a =;由直线y x a =--过(1,0)-,得1a =;而函数()f x 不过(0,1),(1,1),(2,1)--因此有当1a >-时,函数()f x 和函数y x a =--的图象有两个不同的交点.,即方程()f x x a =--有两个不同实根.故答案为:(1,)-+∞ 【点睛】本题考查了已知方程根的个数求参数取值范围问题,考查了数形结合思想,考查了函数的周期性,考查了数学运算能力.18.【分析】作出函数图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点数形结合即可得解【详解】作出函数的图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点由图可得:【点睛】此题考解析:1[,1)2.【分析】作出函数图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点,数形结合即可得解. 【详解】作出函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,,的图象,关于x 方程()f x ax =有三个不相等的实数根,即()f x 图象与直线y ax =有三个不同的公共点由图可得:1[,1)2a ∈ 【点睛】此题考查方程的根的问题,根据函数图象,数形结合求解,需要熟练掌握常见基本初等函数的图象和性质,准确作出函数图象求解.19.【分析】令利用正弦函数的性质解方程得出非负根中较小的六个根根据题意得出且整理即可得出答案【详解】令得则或整理得或则非负根中较小的有则且解得:故答案为:【点睛】本题主要考查了根据函数零点的个数求参数范 解析:56163ω≤<【分析】令()0f x =,利用正弦函数的性质解方程1sin 62x πω⎛⎫+= ⎪⎝⎭,得出非负根中较小的六个根,根据题意,得出44ππω≤且2434πππωω+>,整理即可得出答案. 【详解】令()0f x =,得1sin 62x πω⎛⎫+= ⎪⎝⎭ 则266x k ππωπ+=+或52,66x k k Z ππωπ+=+∈ 整理得2k x πω=或22,3k x k Z ππωω=+∈ 则非负根中较小的有22224240,,,,,333πππππππωωωωωωω++ 则44ππω≤且2434πππωω+> 解得:56163ω≤<故答案为:56163ω≤< 【点睛】本题主要考查了根据函数零点的个数求参数范围,属于中档题.20.【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实数的取值 解析:[)1,0-【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)(] 4,0-;(2)答案见解析;(3)(,423-∞--. 【分析】(1)将()32f x x <-,x ∈R 恒成立,转化为210ax ax --<,x ∈R 恒成立求解. (2)由()()120x ax --≥,分02a <<,2a =, 2a >讨论求解. (3)由0m >时,得到11213t m m=+++=≥,令x s =,将问题转化为存在3t ≥,()2220as a s t -++-=有两个不等正根求解.【详解】(1)因为()32f x x <-,x ∈R 恒成立, 所以210ax ax --<,x ∈R 恒成立;0a =时,10-<恒成立,满足题意;0a ≠时,只需0a <,∆<0,即40a ;综上,实数a 的取值范围是(] 4,0-; (2)()0f x ≥即()()120x ax --≥,当02a <<时,21>a ,不等式解集为(]2,1,a ⎡⎫-∞+∞⎪⎢⎣⎭;当2a =时,21a,不等式解集为R ;当2a >时,21a <,不等式解集为[)2,1,a ⎛⎤-∞+∞⎥⎝⎦;(3)0m >时,令11213t m m=+++=≥, 则存在3t ≥,()fx t =有四个不等实根,即()2220a x a x t -++-=有四个不等实根,令x s =,0s >时一个s 对应两个x ;0s =时一个x 对应一个x ;0s <时无x 与之对应;则存在3t ≥,()2220as a s t -++-=有两个不等正根,则0a ≠,存在3t ≥,2020a at a+⎧>⎪⎪⎨-⎪>⎪⎩,即存在3t ≥,()()224202a a t a ⎧+-->⎪⎨<-⎪⎩,即2a <-,且存在3t ≥,24440a a at -++>, 0a <时,3t ≥时22441284a a a a a -++=++最大值为22441284a a a a a -++=++,则2840a a ++>,由2a <-可得4a <--所以实数a的取值范围是(,4-∞--. 【点睛】方法点睛:含有参数的不等式的解法:,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.22.(1)(1,2)(2,)⋃+∞;(2)(,2]-∞-;(3)最大值为28a +,最小值为0 【分析】(1)由()()3131xxh x a =-⋅+-,易知0x =是函数()h x 的一个零点,可知31=-x a ()0x ≠有解,进而可求出a 的范围;(2)原不等式可化为()()313131+-≥-xxxa ,分0x =,0x >和0x <两种情况,分别讨论,可求出实数a 的取值范围;(3)()9131=-+-xxx a ϕ,当01x ≤≤时,令3(13)xt t =≤≤,可将()ϕx 转化为二次函数,可求出最大值与最小值;当10x -≤<时,令1313xk k ⎛⎫=≤< ⎪⎝⎭,可将()ϕx 转化为二次函数,进而可求()ϕx 的取值范围,综合两种情况,可求得()ϕx 的最大值与最小值. 【详解】(1)由()()()()3131313131=+---=-⋅+-xxx xxh x a a , 由(0)0h =,可知0x =是函数()h x 的一个零点, 若函数()f x 有两个零点,只需要31=-x a (0x ≠)有解,因为30x>,所以1011a a ->⎧⎨-≠⎩,可得1a >且2a ≠.故若函数()h x 有两个零点,则实数a 的取值范围为(1,2)(2,)⋃+∞.(2)若不等式()()f x g x ≥恒成立,有9131-≥-x xa ,可化为()()313131+-≥-xx x a .①当0x =时,显然原不等式恒成立;②当0x >时,31x >,原不等式可化为31+≥x a , 因为312x +>,所以2a ≤;③当0x <时,031x <<,原不等式可化为31--≥x a , 因为2311x -<--<-,所以2a ≤-.由上知,当x ∈R 时,不等式()()f x g x ≥恒成立,则实数a 的取值范围为(,2]-∞-. (3)()9131=-+-xxx a ϕ,①当01x ≤≤时,令3(13)x t t =≤≤,则()ϕx 可化为()221(1)1y t a t t at a =-+-=+--,令2()1=+--t t at a μ(13)t ≤≤,二次函数()t μ的对称轴为2a t =-, 故()t μ在区间[1,3]上单调递增,可得()ϕx 的最小值为(1)110a a μ=+--=,()ϕx 的最大值为(3)93128a a a μ=+--=+; ②当10x -≤<时,令1313xk k ⎛⎫=≤<⎪⎝⎭,则()ϕx 可化为()221(1)1y k a k k ak a =--+-=--++,令21()113k k ak a k σ⎛⎫=--++≤<⎪⎝⎭,二次函数()k σ的对称轴为02=-<a k ,故函数()k σ在区间1,13⎡⎫⎪⎢⎣⎭单调递减,由211128()133339a a a σ⎛⎫=--++=+ ⎪⎝⎭,(1)110a a σ=--++=,得280()39k a σ<≤+. 因为282839+>+a a ,所以函数()ϕx 在[1,1]-上的最大值为28a +,最小值为0. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)1392万元 (2)甲城市的投入为30万元,乙城市的投入为50万元 【分析】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元,直接分别代入对应的收益表达式中,得出答案.(2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元,分2040x ≤<和4060x ≤≤分别求出甲、乙两个城市的投资的总收益,再分别求出其最大值,再比较得出答案. 【详解】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元 则甲城市收益1450402225y =-+=万元 乙城市收益2195552022y =⨯+= 所以甲、乙两个城市的投资的总收益为951392222+=万元 (2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元 当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+即4501100100702y x x⎛⎫=-+≤-= ⎪⎝⎭,当且仅当45012x x =即30x =时,取等号.当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+ 即()112580208522y x x =+⨯-+=- 当40x =时,1852y x =-有最小值65 综上,当30x =时,甲、乙两个城市的投资的总收益最大.所以甲城市的投入为30万元,乙城市的投入为50万元,甲、乙两个城市的投资的总收益最大 【点睛】关键点睛:本题考查函数的实际应用问题,解答的关键是分段得出甲、乙两个城市的投资的总收益的表达式,当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+,当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+,分别求出最大值,从而可解,属于中档题. 24.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.25.(1)分别为25件,42件;(2)s (t )=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩;26件. 【分析】(1)先求出预计订单函数()()f t t N ∈为45,010,()55,1055.t t f t t t +⎧=⎨-+<⎩再求解;(2)先求出利润函数为2(1.55 3.5)(45),010,3()2(1.55 3.5)(55),1055.3t t t S t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩再分段求函数的最大值即得解. 【详解】解:(1)预计订单函数()()f t t N ∈为45,010()55,1055t t f t t t +≤≤⎧=⎨-+<≤⎩;f (5)=20+5=25;f (13)=-13+55=42;∴每件珠宝加工天数分别为5,13,预计订单数分别为25件,42件. (2)售价函数为() 1.55g t t =+;∴利润函数为2(1.550.5)(45),0103()2(1.550.5)(55),10553t t t s t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩,s (t )=(3)(45),010(3)(55),1055t t t t t t ++⎧⎨-+-<⎩=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩; 当010t ≤≤时,2()41715s t t t =++的最大值为(10)585s =;当1055t <≤时,2()(52t 165)s t t =---的最大值为(26)841585s =>;故利润最大时,26t =,此时预计的销量为26件 【点睛】关键点睛:解题得关键在于根据题目条件,分段列出函数表达式,计算时,注意分段成立的条件,难度属于中档题26.(1)()()2,04,15,420,82x x N v x x x N**⎧≤<∈⎪=⎨-+≤≤∈⎪⎩;(2)当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大为252千克/立方米. 【分析】(1)由题意:当04x ≤<时,()2v x =.当420x ≤时,设()v x ax b =+,()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,能求出函数()v x .(2)依题意并由(1),22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果. 【详解】解:(1)由题意:当04x ≤<时,()2v x =.当420x ≤≤时,设()v x ax b =+,显然()v x ax b =+在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,解得18a =-,52b =,故函数**2,04,()15.420,82x x N v x x x x N ⎧≤<∈⎪=⎨-+≤≤∈⎪⎩ (2)依题意并由(1)得22,04,*()12,420,*85x x x N f x x x x x N ≤<∈⎧⎪=⎨-+≤≤∈⎪⎩,当04x ≤<时,()f x 为增函数, 且()4428f =⨯=.当420x ≤≤时,22121()(10)12.5858f x x x x =-+=--+,()(10)12.5max f x f ==.所以,当020x ≤≤时,()f x 的最大值为12.5. 当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米. 【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型. (2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.。
高中数学 第四章单元检测(B)(含解析)北师大版选修1-1
第四章 导数应用(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A .5.若函数f (x )=a sin x +sin x 在x =π3处有极值,那么a 等于( )A .2B .-1 C.233D .06.函数f (x )=x 3-3x 2+1的单调减区间为( ) A .(2,+∞) B .(-∞,2) C .(-∞,0) D .(0,2)7.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )8.方程x 3+x 2+x +a =0 (a ∈R )的实数根的个数为( ) A .0个 B .1个 C .2个 D .3个9.函数y =4x -x 4在x ∈上的最大值,最小值分别是( ) A .f (1)与f (-1) B .f (1)与f (2) C .f (-1)与f (2) D .f (2)与f (-1)10.函数f (x )=2x 2-13x 3在区间上的最大值是( )A.323B.163C .12D .9 11.对于函数f (x )=x 3-3x (|x |<1),正确的是( ) A .有极大值和极小值 B .有极大值无极小值 C .无极大值有极小值 D .无极大值无极小值12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a ,b 的值是( ) A .a =-11,b =4 B .a =-4,b =11二、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=-12x 2+b ln x +2在(0,+∞)上是减函数,则b 的取值范围是__________.14.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于x ∈,都有f (x )≥0,则实数a 的值为________. 15.如图所示,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈. ②f (x )的极值点有且只有一个.③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.(12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.(1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈,不等式f (x )<c 2恒成立,求c 的取值范围.19.(12分)已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调减区间;(2)若f(x)在区间上的最大值为20,求它在该区间上的最小值.20.(12分)某大型商厦一年内需要购进电脑5 000台,每台电脑的价格为4 000元,每次订购电脑的其它费用为1 600元,年保管费用率为10%(例如,一年内平均库存量为150台,一年付出的保管费用60 000元,则60 000150×4 000=10%为年保管费用率),求每次订购多少台电脑,才能使订购电脑的其它费用及保管费用之和最小?21.(12分)设a 为实数,函数f (x )=e x-2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.22.(12分)已知函数f (x )=x 2+ln x . (1)求函数f (x )在上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图像在g (x )=23x 3+12x 2的下方.第四章 导数应用(B)1.B 2.D 3.C 4.A 5.B 6.D 7.A 8.B 9.B 10.A 11.D 12.D13.(-∞,0]解析 ∵f ′(x )=-x +b x =-x 2+bx,又f (x )在(0,+∞)上是减函数, 即f ′(x )≤0在(0,+∞)上恒成立,又x >0,故-x 2+b ≤0在(0,+∞)上恒成立,即b ≤x 2在(0,+∞)上恒成立. ∴b ≤0.14.4解析 若x =0,则不论a 取何值,f (x )≥0,显然成立;当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可转化为a ≥3x2-1x 3, 设g (x )=3x 2-1x3,则g ′(x )=-2xx 4. 所以g (x )在区间⎝ ⎛⎭⎪⎫0,12上单调递增, 在区间⎝ ⎛⎦⎥⎤12,1上单调递减, 因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4; 当x <0,即x ∈.故①正确.由f ′(x )=3x 2-4=0得x 1=-233,x 2=233.根据x 1,x 2分析f ′(x )的符号、f (x )的单调性和极值点.∴x =-233是极大值点也是最大值点.x =233是极小值点也是最小值点. f (x )min +f (x )max =0.∴②错,③正确.17.解 f ′(x )=x 2-ax +a -1,由题意知f ′(x )≤0在(1,4)上恒成立, 且f ′(x )≥0在(6,+∞)上恒成立.由f ′(x )≤0得x 2-ax +a -1≤0,即x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),∴a ≥x 2-1x -1=x +1.又∵x +1∈(2,5),∴a ≥5,①由f ′(x )≥0得x 2-ax +a -1≥0,即x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,∴a ≤x 2-1x -1=x +1.又∵x +1∈(7,+∞),∴a ≤7,② ∵①②同时成立,∴5≤a ≤7. 经检验a =5或a =7都符合题意, ∴所求a 的取值范围为5≤a ≤7.18.解 (1)f (x )=x 3+ax 2+bx +c , f ′(x )=3x 2+2ax +b ,由f ′⎝ ⎛⎭⎪⎫-23=129-43a +b =0,f ′(1)=3+2a +b =0得a =-12,b =-2.f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )>0,得x <-23或x >1,令f ′(x )<0,得-23<x <1.所以函数f (x )的递增区间是⎝ ⎛⎭⎪⎫-∞,-23和(1,+∞),递减区间是⎝ ⎛⎭⎪⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈,由(1)知,当x =-23时,f ⎝ ⎛⎭⎪⎫-23=2227+c 为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值,要使f (x )<c 2,x ∈恒成立,则只需要c 2>f (2)=2+c ,得c <-1或c >2.19.解 (1)f ′(x )=-3x 2+6x +9. 令f ′(x )<0,解得x <-1或x >3, 所以函数f (x )的单调递减区间为 (-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a , f (2)=-8+12+18+a =22+a , 所以f (2)>f (-2).因为在(-1,3)上f ′(x ) >0,所以f (x )在上单调递增,又由于f (x )在上单调递减,因此f (2)和f (-1)分别是f (x )在区间上的最大值和最小值. 于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2.因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间上的最小值为-7.20.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元.令y =5 000x ·1 600+12x ·4 000·10%,y ′=-1x 2·5 000·1 600+12·4 000·10%.令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.21.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x.∵x >1时,f ′(x )>0, ∴f (x )在上是增函数,∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明 令F (x )=f (x )-g (x ) =12x 2-23x 3+ln x , ∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =-x x 2+x +x.∵x >1,∴F ′(x )<0,∴F (x )在(1,+∞)上是减函数,∴F (x )<F (1)=12-23=-16<0.∴f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图像在g (x )=23x 3+12x 2的下方.。
新培优同步北师大高中数学必修一练习:第四章检测 含解析
第四章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x),g(x)如下表:x0123则函数y=f(g(x))的零点是()A.0B.1C.2D.3解析:由题意知,当g(x)=1时,y=f(g(x))=0,∴y=f(g(x))的零点为x=1.答案:B2.函数f(x)=10x3-80的零点为()A.(2,0)B.(0,2)C.2D.0解析:令10x3-80=0,解得x=2.答案:C3.已知定义在R上的奇函数f(x)在(-∞,0)内有1 008个零点,则函数f(x)的零点个数为()A.2 014B.2 015C.2 016D.2 017解析:定义在R上的奇函数f(x)满足f(0)=0,且f(x)的图像关于原点对称,所以f(x)的零点个数为1 008×2+1=2 017.故选D.答案:D4.方程lg x+x-2=0一定有解的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:令f(x)=lg x+x-2.∵f(1)=-1<0,f(2)=lg 2>0,∴f(x)在(1,2)内必有零点.答案:B5.已知函数f(x)与g(x)的图像在R上连续不断,由下表知方程f(x)=g(x)的实数解所在的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)解析:构造函数F (x )=f (x )-g (x ),则由题意,F (0)=3.011-3.451<0,F (1)=5.432-5.241>0, ∴函数F (x )=f (x )-g (x )的零点所在的区间是(0,1). ∴方程f (x )=g (x )的实数解所在的区间是(0,1), 故选B . 答案:B6.已知函数f (x )=(13)x−log 2x,实数x 0是函数y =f(x)的零点,且0<x 1<x 0,则f(x 1)的值( ) A.恒为正值 B.等于0 C.恒为负值 D.不大于0解析:因为函数y =(13)x 在定义域上是减函数,y=log 2x 在定义域上是增函数,所以函数f (x )=(13)x−log 2x 在定义域上是减函数. 因为0<x 1<x 0,所以f (x 1)>f (x 0)=0. 答案:A7.已知函数f (x )是R 上的单调函数,且f (x )的零点同时在区间(0,4),(0,2),(1,2),(1,32)内,则与f(0)符号相同的是( ) A.f (4)B.f (2)C.f (1)D.f (32)解析:由题意知f (x )的零点在区间(1,32)内,由f (x )是R 上的单调函数,可得f (1)与f (2)的符号相反,f (1)与f (0)的符号相同,故选C . 答案:C8.设函数f (x )对x ∈R 都满足f (3+x )=f (3-x ),且方程f (x )=0恰有6个不同的实数根,则这6个实根之和为( ) A.0 B.9 C.12 D.18解析:由f (3+x )=f (3-x )知,f (x )的图像关于直线x=3对称,方程f (x )=0的6个实根在x 轴上的对应点关于直线x=3对称.依次设为3-t 1,3-t 2,3-t 3,3+t 1,3+t 2,3+t 3,故6个实根之和为18. 答案:D9.如图,在直角梯形OABC 中,AB ∥OC ,AB=1,OC=BC=2,直线l :x=t 截此梯形所得位于l 左方图形面积为S ,则函数S=f (t )的图像大致为图中的 ( )解析:解析:式为S=f (t )={12t ·2t ,0≤t ≤1,12×1×2+(t -1)×2,1<t ≤2={t 2,0≤t ≤1,2t -1,1<t ≤2.故在[0,1]上为抛物线的一段,在(1,2]上为线段.答案:C10.某产品的利润y (万元)与产量x (台)之间的函数关系式为y=-2x 2+40x+300,则利润取最大值时,产量x 为 ( ) A.10 B.20 C.30 D.40解析:y=-2(x-10)2+500,当x=10时,y 取最大值. 答案:A11.已知a ,b ,c ,d 都是常数,且a>b ,c>d ,若f (x )=2 020-(x-a )(x-b )的零点为c ,d ,则下列不等式正确的是( ) A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d解析:由题意设g (x )=(x-a )(x-b ),则g (x )=0的两个根是a ,b ,f (x )=2 020-g (x ).由题意知f (x )=0的两个根为c ,d ,即c ,d 是g (x )=2 020的两个根.易知g (x )的图像与x 轴的交点的横坐标是a ,b ,与直线y=2 020的交点的横坐标是c ,d. 又a>b ,c>d ,画出函数y=g (x )的大致图像(开口向上)以及直线y=2 020,如图所示.由图得,c>a>b>d ,故选D . 答案:D12.已知函数f (x )=|lg x|−(12)x有两个零点x1,x2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析:f (x )=|lg x|−(12)x有两个零点x 1,x 2,即y=|lg x|与y =(12)x的图像有两个交点.由题意知x>0,分别画y =(12)x和y=|lg x|的图像发现在(0,1)和(1,+∞)内各有一个交点. 不妨设x 1∈(0,1),x 2∈(1,+∞), 那么在(0,1)内,有(12)x 1=−lg x 1,即−(12)x 1=lg x 1,①在(1,+∞)内,有−(12)x 2=lg x 2,② ①②相加有(12)x 2−(12)x 1=lg x 1x 2.∵x 2>x 1,∴(12)x 2<(12)x 1, 即(12)x 2−(12)x 1<0,∴lg x 1x 2<0.∴0<x 1x 2<1.故选D . 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为 . 解析:设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0,又f (12)=(12)3−6×(12)2+4>0,所以下一步可断定方程的根所在的区间为(12,1). 答案:(12,1)14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为 .解析:设正方形的周长为x ,则圆的周长为1-x , 则正方形与圆的面积和为S =(x 4)2+π·(1-x 2π)2=π+4x 2−1x +1(0<x <1), 故当x=−-12π2×π+416π=4π+4时,S 有最小值.答案:4π+415.已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x −2x 的零点,则g (x0)等于______________________. 解析:∵f (2)=ln 2-1<0,f (3)=ln 3−23>0, 又f (x )在(0,+∞)上是增加的,故x 0∈(2,3), ∴g (x 0)=[x 0]=2. 答案:216.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x ]([x ]表示不大于x 的最大整数)可以表示为 . 解析:当各班人数x 除以10,商为n ,余数为0,1,2,3,4,5,6时,即x=10n+m ,0≤m ≤6时,y=n ;当各班人数x 除以10商为n ,余数为7,8,9时,即x=10n+7,x=10n+8,x=10n+9时,即x+3=10(n+1),x+3=10(n+1)+1,x+3=10(n+1)+2时,y=n+1.故y =[x+310].答案:y =[x+310]三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)已知函数f (x )=x 3-x 2+x2+14.证明:存在x0∈(0,12),使f(x0)=x0. 证明令g (x )=f (x )-x.∵g (0)=14,g (12)=f (12)−12=−18, ∴g (0)·g (12)<0.又函数g (x )在(0,12)上的图像是连续曲线, 故存在x 0∈(0,12),使g (x 0)=0,即f (x 0)=x 0.18.(12分)若二次函数f (x )=-x 2+2ax+4a+1有一个零点小于-1,一个零点大于3.求实数a 的取值范围.解:∵二次函数f (x )=-x 2+2ax+4a+1的图像开口向下,且在区间(-∞,-1),(3,+∞)内各有一个零点,∴{f (-1)>0,f (3)>0,即{-(-1)2-2a +4a +1>0,-32+2a ×3+4a +1>0,即{2a >0,10a -8>0,解得a >45.故实数a 的取值范围为(45,+∞).19.(12分)用模型f (x )=ax+b 来描述某企业每季度的利润f (x )(亿元)和生产成本投入x (亿元)的关系.统计表明,当每季度投入1亿元时利润y 1=1亿元;当每季度投入2亿元时利润y 2=2亿元;当每季度投入3亿元时利润y 3=2亿元.定义:当f (x )使[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2的数值最小时为最佳模型.(1)当b =23,求相应的a 使f(x)=ax +b 成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4亿元时的利润. 解:(1)当b =23时,[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2=14(a -12)2+16, 即当a =12时,f (x )=12x +23为最佳模型.(2)f(x)=12x+23,则f(4)=83.20.(12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按2log5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y(单位:万元),销售利润为x(单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?解:(1)由题意,得y={0.1x,0<x≤15,1.5+2log5(x-14),x>15.(2)∵x∈(0,15]时,0.1x≤1.5,又y=5.5>1.5,∴x>15,∴1.5+2log5(x-14)=5.5,解得x=39.即老张的销售利润是39万元.21.(12分)已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.(1)写出函数y=f(x)的解析式;(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.解:(1)当x∈(-∞,0)时,-x∈(0,+∞),∵y=f(x)是奇函数,∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,∴f(x)={x2-2x,x≥0, -x2-2x,x<0.(2)当x∈[0,+∞)时,f(x)=x2-2x=(x-1)2-1,最小值为-1;当x∈(-∞,0)时,f(x)=-x2-2x=1-(x+1)2,最大值为1.据此可作出函数y=f(x)的图像,如图,根据图像得,若方程f(x)=a恰有3个不同的解,则a的取值范围是(-1,1).22.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (km/h)是车流密度x (辆/km)的函数,当桥上的车流密度达到200辆/km 时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km 时,车流速度为60 km/h,研究表明:当20<x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数)f (x )=x ·v (x )可以达到最大?并求出最大值.(精确到1辆/h) 解:(1)由题意得,当0≤x ≤20时,v (x )=60; 当20<x ≤200时,设v (x )=ax+b (a ≠0), 再由已知得{200a +b =0,20a +b =60,解得{a =-13,b =2003.故函数v (x )的表达式为v (x )={60,0≤x ≤20,13(200-x ),20<x ≤200.(2)由题意和第(1)问可得f (x )={60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )是增加的,故当x=20时,其最大值为60×20=1 200; 当20<x ≤200时,f (x )=13x(200−x) =13[−(x −100)2+10 000],当x=100时,f (x )在区间(20,200]上取得最大值10 0003.综上可知,当x=100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333.即当车流密度为100辆/km 时,车流量可以达到最大,最大值约为3 333辆/h .。
北师大版高中数学必修一第四章 §1.docx
高中数学学习材料鼎尚图文*整理制作第四章§1一、选择题1.函数f(x)=e x+x-2的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)[答案] C[解析]∵f(0)=-1<0,f(1)=e-1>0,即f(0)f(1)<0,∴由零点定理知,该函数零点在区间(0,1)内.2.二次函数y=mx2+x+n中,m·n<0,则函数的零点有()A.0个B.1个C.2个D.不确定[答案] C[解析]由题知m≠0,m·n<0,∴Δ=1-4mn>0.∴有2个零点.3.若f(x)是一个二次函数,且满足f(2+x)=f(2-x),该函数有两个零点x1,x2,则x1+x2=()A.0 B.2C.4 D.无法判断[答案] C[解析]由f(2+x)=f(2-x)知f(x)的图像关于x=2对称.∴x 1+x 2=4.4.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1) B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) [答案] C[解析] 本次考查一元二次方程根的个数问题.“方程x 2+mx +1=0有两个不相等实数根”⇔m 2-4>0,解得m >2或m <-2. 5.(2013·天津高考)函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4[答案] B[解析] 函数f (x )的零点个数,即方程f (x )=0的实数根个数,令f (x )=0得,2x |log 0.5x |=1, ∴|log 12x |=(12)x ,令g (x )=(12)x ,h (x )=|log 12x |,在同一坐标系中画出两函数的图像易知有两个交点,故f (x )有两个零点. 6.下列函数在区间[1,2]上一定有零点的是( ) A .f (x )=3x 2-4x +5 B .f (x )=x 3-5x -5 C .f (x )=ln x -3x +6 D .f (x )=e x +3x -6 [答案] D[解析] 对于A :f (1)=4,f (2)=9,f (1)·f (2)>0,无法判断f (x )在[1,2]上是否有零点; 对于B :f (1)=-9,f (2)=-7,f (1)·f (2)>0,同选项A 一样,无法判断; 对于C :f (1)=3,f (2)=ln2,f (1)·f (2)>0,同选项A 、B 一样,无法判断; 对于D :f (1)=e -3,f (2)=e 2,f (1)·f (2)<0,所以f (x )在[1,2]上有零点. 二、填空题7.函数f (x )=x 2-4x -2的零点是________ .[答案] -2[解析] f (x )=(x -2)(x +2)x -2=x +2(x ≠2),令f (x )=0,得x =-2.8.已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内的实根情况是________.[答案] 有唯一实根[解析] f (x )=-x -x 3图像在[a ,b ]上是连续的,并且是单调递减的,又因为f (a )·f (b )<0,可得f (x )=0在[a ,b ]内有唯一一个实根.三、解答题9.已知关于x 的函数y =(m +6)x 2+2(m -1)x +m +1的图像与x 轴总有交点. (1)求m 的取值范围;(2)若函数图像与x 轴的两个交点的横坐标的倒数和等于-4,求m 的值. [解析] (1)当 m +6=0即m =-6时, 函数y =-14x -5与x 轴有一个交点; 当m +6≠0即m ≠-6时,有Δ=4(m -1)2-4(m +6)(m +1)=4(-9m -5)≥0,解得m ≤-59,即当m ≤-59且m ≠-6时,抛物线与x 轴有一个或两个交点,综上可知,当m ≤-59时,此函数的图像与x 轴总有交点.(2)设x 1、x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个根, 则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4, ∴-2(m -1)m +1=-4,解得m =-3,当m =-3时,m +6≠0,Δ>0,符合题意, ∴m 的值是-3.一、选择题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0,在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定[答案] A[解析] ∵f (1.5)>0,f (1.25)<0,∴根落在区间(1.25,1.5)间,故选A.2.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的范围是( ) A .(1,+∞) B .(0,1) C .(2,+∞) D .(0,1)∪(1,2)[答案] A[解析] 令y 1=a x ,y 2=x +a ,则f (x )=a x -x -a 有两个零点,即函数y 1=a x 与y 2=x +a 有两个交点.(1)当a >1时,y 1=a x 过(0,1)点,而y 2=x +a 过(0,a )点,而(0,a )点在(0,1)点上方,∴一定有两个交点.(2)当0<a <1时,(0,a )点在(0,1)点下方,由图像知只有一个交点.∴a 的取值范围为a >1. 二、填空题3.关于x 的方程mx 2+2x +1=0至少有一个负根,则m 的范围为________. [答案] m ≤1[解析] ①m =0时,x =-12适合题意.②m ≠0时,应有m <0或⎩⎪⎨⎪⎧m >0-22m <0,Δ≥0解得m <0或0<m ≤1.综合①②可得,m ≤1.4.方程lg x +x =0的实数解的存在区间为________. [答案] (110,1)[解析] 令f (x )=lg x +x ,则f (110)=lg 110+110=-910<0,f (1)=lg1+1=1>0.∴f (110)f (1)<0.而f (x )=lg x +x 在(0,+∞)上单调递增.∴f (x )仅有一个零点,且在(110,1)内.三、解答题5.设函数f (x )=ax +2a +1(a ≠0)在[-1,1]上存在一个零点,求实数a 的取值范围. [解析] 因为函数f (x )在[-1,1]上存在零点,所以⎩⎪⎨⎪⎧ f (-1)≥0f (1)≤0或⎩⎪⎨⎪⎧f (-1)≤0f (1)≥0. 即f (-1)·f (1)≤0.所以(-a +2a +1)·(a +2a +1)≤0, 即(a +1)(3a +1)≤0.解得-1≤a ≤-13.6.方程x 2+(m -2)x +5-m =0的两个根都大于2,求m 的取值范围. [解析] 令y =f (x )=x 2+(m -2)x +5-m , 由题意画图如下要使f (x )=0两根都大于2则⎩⎪⎨⎪⎧Δ=(m -2)2-4(5-m )≥0,f (2)>0,2-m 2>2,解得-5<m ≤-4.7.(1)指出方程x 3-2x -1=0的正根所在的大致区间;(2)求证:方程x 3-3x +1=0的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2).[分析] 解答本题的关键是寻找合适的a 、b 使得f (a )·f (b )<0.[解析] (1)方程x 3-2x -1=0,即x 3=2x +1,令F (x )=x 3-2x -1,f (x )=x 3,g (x )=2x +1在同一平面直角坐标系中,作出函数f (x )和g (x )的图像如图,显然它们 在第一象限只有1个交点,两函数图像交点的横坐标就是方程的解.又∵F(1)=-2<0,F(2)=3>0,∴方程的正根在区间(1,2)内.(2)证明:令G(x)=x3-3x+1,它的图像一定是连续的,又G(-2)=-8+6+1=-1<0,G(-1)=-1+3+1=3>0,∴方程x3-3x+1=0的一根在区间(-2,-1)内.同理可以验证G(0)·G(1)=1×(-1)=-1<0,G(1)·G(2)=(-1)×3=-3<0,∴方程的另两根分别在(0,1)和(1,2)内.。
2018年高中数学习题北师大版必修1:第四章章末综合检
章末综合检测(四)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用二分法求如图所示的函数f (x )的零点时,可能求不出的零点是( )A .x 1B .x 2C .x 3D .x 4 解析:选C.x 3为不变号零点.2.函数f (x )=3x -log 2(-x )的零点所在区间是( ) A.⎝ ⎛⎭⎪⎫-52,-2 B .(-2,-1) C .(1,2) D.⎝ ⎛⎭⎪⎫2,52 解析:选B.f (x )=3x -log 2(-x )的定义域为(-∞,0),所以排除C ,D ;又f (-2)·f (-1)<0,且f (x )在定义域内是单调递增函数,故零点在(-2,-1)内.3.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图像大致为四个选项中的( )解析:选C.设|AB |=a (a >0),则f (x )=12a 2-12x 2 (a ≥x ≥0).故f (x )的大致图像是开口向下的抛物线.故选C.4.下列关于函数f (x )的图像中,可以直观判断方程f (x )-2=0在(-∞,0)上有解的是( )解析:选C.f (x )-2=0在(-∞,0)上有解,即函数y =f (x )与y =2在(-∞,0)上有交点,观察可知选C.5则x ,y )( ) A .y =a +b x B .y =a +bxC .y =a +log b xD .y =a +bx 解析:选A.画出散点图可知选A.6.洗衣服时,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( )A .3B .4C .5D .6解析:选B.设要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,所以x ≥1lg 2≈3.32,因此至少要洗4次,故选B.7.函数f (x )=|x |-cos x .x ∈(-∞,+∞)的零点个数为( ) A .1 B .2 C .3 D .0 解析:选B.问题等价于求方程|x |=cos x 在(-∞,+∞)上根的个数.设y 1=|x |,y 2=cos x ,在同一坐标系内作出y 1、y 2的图象,如图.当x >π2时,y =|x |>π2>1,y =cos x ≤1,当x <-π2,y =|x |>π2>1,y =cos x ≤1.故两函数图象只在⎝ ⎛⎭⎪⎫-π2,π2内有两个交点.故函数f (x )=|x |-cos x 在(-∞,+∞)内只有两个零点.8.若函数f (x )=2x -mx 在区间(-1,0)内有一个零点,则实数m 的取值可以是( )A .-1B .1C .-14 D.14解析:选A.由题意k (x )=2x ,h (x )=mx 在(-1,0)内有一个交点(如图),当f (x )零点为-1时,有2-1=m (-1),m =-12,所以符合题意的m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12.故选A.9.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为( )A .1B .2C .3D . 2 015 解析:选C.因为函数f (x )为R 上的奇函数,所以f (0)=0,当x >0时,f (x )=2 015x+log 2 015x 在区间⎝ ⎛⎭⎪⎫0,12 015内存在一个零点.又f (x )为增函数,因此函数在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一个零点,从而函数在R 上的零点的个数为3,故选C.10.某工厂2015年生产某种产品2万件,计划从2016年开始每年比上一年增长20%,那么这家工厂生产这种产品的年产量从哪一年年初开始超过12万件( )A .2023年B .2024年C .2025年D .2026年解析:选D.设经过x 年这种产品的年产量开始超过12万件,则2(1+20%)x>12,即1.2x >6,所以x >lg 6lg 1.2≈9.8,取x =10,故选D.11.将甲桶中的a 升水缓慢注入大小、形状都相同的空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =ae n t .若5分钟后甲桶和乙桶的水量相等,又过了m 分钟后甲桶中的水只有a8升,则m 的值为( )A .7B .8C .9D .10解析:选D.令18a =ae nt ,即18=e nt ,由已知得12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.12.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A .2 B .3 C .4 D .与a 的值有关解析:选A.设y 1=a |x |,y 2=|log a x |,分别作出它们的图像如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.某加油机接到指令,给附近空中一运输机加油.运输机的余油量为Q 2(吨),加油机加油箱内余油Q 1(吨),加油时间为t 分钟,Q 1、Q 2与时间t 的函数关系式的图像如图所示.若运输机加完油后以原来的速度飞行需11小时到达目的地,则运输机的油量________(填“够用”或“不够用”).解析:加油时间10分钟,Q1由30减小为0.Q2由40增加到69,因而10分钟时间内运输机用油40+30-69=1吨.以后的11小时需用油66吨.因69>66,故运输机的油量够用.答案:够用14.若关于x的方程log12x=m1-m在区间(0,1)上有解,则实数m的取值范围是________.解析:要使方程有解,只要m1-m在函数y=log12x(0<x<1)的值域内.因为x∈(0,1),所以log12x>0.所以m1-m>0.所以0<m<1.答案:0<m<115.函数y=lg(3-4x+x2)的定义域为M,当x∈M时,关于x的方程4x-2x+1=b(b∈R)有两不等实数根,则b的取值范围为________.解析:由3-4x+x2>0,解得x∈(-∞,1)∪(3,+∞).令t=2x,t∈(0,2)∪(8,+∞),方程4x-2x+1=b可化为t2-2t=b,令f(t)=t2-2t,t∈(0,2)∪(8,+∞),其图像如图.由图像可知,要使方程有两不等实根,需y=f(t)和y=b图像有两个交点,可得b∈(-1,0).答案:(-1,0)16.设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,则a+b=________.解析:将方程整理得2x=-x+3,log2x=-x+3.如图可知,a是指数函数y=2x的图像与直线y=-x+3交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3交点B的横坐标.由于函数y =2x 与y =log 2x 互为反函数,所以它们的图像关于直线y =x 对称,由题意可得出A ,B 两点也关于直线y =x 对称,于是A ,B 两点的坐标为A (a ,b ),B (b ,a ).而A ,B 都在直线y =-x +3上,所以b =-a +3(A 点坐标代入),a =-b +3,故a +b =3. 答案:3三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)解:因为函数的图像是连续不断的, 由对应值表可知f (-2)·f (-1.5)<0,f (-0.5)·f (0)<0,f (0)·f (0.5)<0.所以函数f (x )在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内一定有零点.18.(本小题满分12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按2log 5(A +1)进行奖励.记奖金为y (单元:万元),销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员老江获得5.5万元的奖金,那么他的销售利润是多少万元?解:(1)由题意知y =⎩⎨⎧0.15x ,0≤x ≤10,1.5+2log 5(x -9),x >10.(2)由题意知1.5+2log 5(x -9)=5.5, 2log 5(x -9)=4, log 5(x -9)=2, 所以x -9=52, 解得x =34.即老江的销售利润是34万元.19.(本小题满分12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域. 解:(1)因为f (x )的两个零点是-3和2, 所以函数图像过点(-3,0),(2,0), 所以有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③③代入②得4a +2a -a -a (a +8)=0, 即a 2+3a =0.因为a ≠0,所以a =-3. 所以b =a +8=5.所以f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18.=-3⎝ ⎛⎭⎪⎫x +122+34+18,图像的对称轴方程是x =-12,又0≤x ≤1,所以f (x )min =f (1)=12,f (x )max =f (0)=18, 所以函数f (x )的值域是[12,18].20.(本小题满分12分)某种商品进价为每个80元,零售价为每个100元,为了促销采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n +1)元时比礼品价值为n 元(n ∈N +)时的销售量增加10%,若未赠礼品时的销售量为m (m >0)件.(1)写出礼品的价值为n 元时,利润y n (元)与n (元)的函数关系式; (2)请你设计礼品的价值,以使商店获得最大利润. 解:(1)当礼品价值为n 元时,销售量为m (1+10%)n ; 利润y n =(100-80-n )·m ·(1+10%)n =(20-n )·m ·1.1n (0<n <20,n ∈N +). (2)令y n +1-y n ≥0,即(19-n )·m ·1.1n +1-(20-n )·m ·1.1n ≥0,解得n ≤9.所以y 1<y 2<y 3<…<y 9=y 10.令y n +1-y n +2≥0,即(19-n )·m ·1.1n +1-(18-n )·m ·1.1n +2≥0,解得n ≥8.所以y 9=y 10>y 11>y 12>y 13>…>y 19,所以当礼品价值为9元或10元时,商店获得最大利润.21.(本小题满分12分)已知函数f (x )=|x |+mx -1(x ≠0).(1)若对任意x ∈R ,不等式f (2x )>0恒成立,求m 的取值范围; (2)讨论函数f (x )零点的个数.解:(1)由f (2x )>0得|2x |+m2x -1>0, 变形为(2x )2-2x +m >0, 即m >2x -(2x )2,而2x -(2x )2=-(2x -12)2+14,当2x =12即x =-1时(2x -(2x )2)max =14,所以m >14.(2)由f (x )=0可得x |x |-x +m =0(x ≠0),变形为m =-x |x |+x (x ≠0),令g (x )=x -x |x |=⎩⎨⎧-x 2+x ,x >0,x 2+x ,x <0,作y =g (x )的图像及直线y =m ,由图像可得:当m >14或m <-14时,f (x )有1个零点.当m =14或m =0或m =-14时,f (x )有2个零点;当0<m <14或-14<m <0时,f (x )有3个零点.22.(本小题满分12分)设函数f (x )=⎩⎨⎧2x,x ≥0,-x ,x <0.(1)f (x )有零点吗?(2)设g (x )=f (x )+k ,为了使方程g (x )=0有且只有一个根,k 应该怎样限制? (3)当k =-1时,g (x )有零点吗?如果有,把它求出来,如果没有,请说明理由.解:(1)画出f (x )的图像,如图(1),从图像可以看出,图像与x 轴没有交点,f (x )没有零点.图(1)(2)从图(1)可以看出f (x )>0.图(2)对于g (x )=f (x )+k ,为了使方程g (x )=0有且只有一个根,f (x )的图像必须向下移动,但移动的幅度要小于1,否则g (x )=0就有两个根了.如图(2),k 应该限制为-1<k <0.(3)有,当x ≥0时,令2x -1=0,求得x =0, 当x <0时,令-x -1=0,求得x =-1. 所以g (x )的零点为0或-1.。
新版高中数学北师大版必修1习题:第四章函数应用 检测
第四章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图像是()解析:在A,B,C,D四个选项中只有D选项与直线y=2的交点在y轴左侧,即方程f(x)-2=0在(-∞,0)内有解.答案:D2函数f(x)=10x3-80的零点为()A.(2,0)B.(0,2)C.2D.0解析:令10x3-80=0,解得x=2.答案:C3无论m为何值时,函数f(x)=x2-mx+m-2的零点个数都为()A.2B.1C.0D.0或1解析:因为Δ=(-m)2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以无论m为何值,x2-mx+m-2=0都有两个不相等的实数根,故无论m为何值,所求零点个数都为2.答案:A4方程lg x+x-2=0一定有解的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:令f(x)=lg x+x-2.∵f(1)=-1<0,f(2)=lg 2>0,∴f(x)在(1,2)内必有零点.答案:B5已知函数f (x )与g (x )的图像在R 上连续不断,由下表知方程f (x )=g (x )有实数解的区间是( ) x -1 0 1 2 3A.(-1,0)B.(0,1)C.(1,2)D.(2,3)解析:构造函数F (x )=f (x )-g (x ),则由题意,F (0)=3.011-3.451<0,F (1)=5.432-5.241>0,∴函数F (x )=f (x )-g (x )有零点的区间是(0,1).∴方程f (x )=g (x )有实数解的区间是(0,1),故选B .答案:B6已知函数f (x )=(13)x -log 2x ,实数x 0是函数y=f (x )的零点,且0<x 1<x 0,那么f (x 1)的值( ) A.恒为正值B.等于0C.恒为负值D.不大于0解析:因为函数y=(13)x 在定义域上是减函数,y=log 2x 在定义域上是增函数,所以函数f (x )=(13)x -log 2x 在定义域上是减函数.又0<x 1<x 0,所以f (x 1)>f (x 0)=0.答案:A7若函数y=f (x )在区间(-2,2)上的图像是连续不断的曲线,且方程f (x )=0在区间(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A.大于0B.小于0C.无法判断D.等于0答案:C8设函数f (x )对x ∈R 都满足f (3+x )=f (3-x ),且方程f (x )=0恰有6个不同的实数根,则这6个实根之和为( )A.0B.9C.12D.18 解析:由f (3+x )=f (3-x )知,f (x )的图像关于x=3对称,方程f (x )=0的6个实根在x 轴上的对应点关于直线x=3对称,依次设为3-t 1,3-t 2,3-t 3,3+t 1,3+t 2,3+t 3,故6个实根之和为18.答案:D9如图,在直角梯形OABC 中,AB ∥OC ,AB=1,OC=BC=2,直线l :x=t 截此梯形所得位于l 左方图形面积为S ,则函数S=f (t )的图像大致为图中的 ( )解析:解析:式为S=f (t )={12t ·2t ,0≤t ≤1,12×1×2+(t -1)×2,1<t ≤2={t 2,0≤t ≤1,2t -1,1<t ≤2.故在[0,1]上为抛物线的一段,在(1,2]上为线段.答案:C10某产品的利润y (万元)与产量x (台)之间的函数关系式为y=-2x 2+40x+300,则利润y (万元)取最大值时,产量x (台)为( )A.10B.20C.30D.40 解析:y=-2(x-10)2+500,当x=10时,y 取最大值.答案:A11函数f (x )=mx 2-2x+1有且仅有一个正实数的零点,则实数m 的取值范围是( )A.(-∞,1]B.(-∞,0]∪{1}C.(-∞,0)∪(0,1]D.(-∞,1)解析:当m=0时,f (x )=-2x+1,此时函数f (x )的零点为12>0,所以m=0符合题意;当m ≠0时,则函数f (x )是二次函数,Δ=4-4m ,若Δ<0,则函数f (x )不存在零点,故此种情况不符合题意,若Δ=0,即m=1,此时f (x )=x 2-2x+1,则函数f (x )的零点为x=1>0,所以m=1符合题意,若Δ>0,即m<1且m ≠0时,函数f (x )有两个不相等的实数根x 1,x 2,则有x 1x 2<0,即有1m <0,所以m<0.综上所得,实数m 的取值范围是m=1或m ≤0. 答案:B12已知函数f (x )=|lg x|-(12)x 有两个零点x 1,x 2,则有( ) A.x 1x 2<0B.x 1x 2=1C.x 1x 2>1D.0<x 1x 2<1解析:f (x )=|lg x|-(12)x 有两个零点x 1,x 2,即y=|lg x|与y=(12)x 有两个交点.由题意x>0,分别画y=(12)x 和y=|lg x|的图像发现在(0,1)和(1,+∞)有两个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有(12)x 1=-lg x 1,即-(12)x 1=lg x 1, ①在(1,+∞)有-(12)x 2=lg x 2,② ①②相加有(12)x 2−(12)x 1=lg x 1x 2, ∵x 2>x 1,∴(12)x 2<(12)x 1,即(12)x 2−(12)x 1<0, ∴lg x 1x 2<0.∴0<x 1x 2<1.故选D .答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为 .解析:设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0,又f (12)=(12)3-6×(12)2+4>0,所以下一步可断定方程的根所在的区间为(12,1).答案:(12,1)14将长度为1的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为 .解析:设正方形的周长为x ,则圆的周长为1-x ,则正方形与圆的面积和为S=(x 4)2+π·(1-x 2π)2=π+416πx 2-12πx+14π(0<x<1), 故当x=--12π2×π+416π=4π+4时,S 有最小值. 答案:4π+4 15已知0<a<1,则方程a |x|=|log a x|的实根个数为 .解析:设y 1=a |x|,y 2=|log a x|,分别作出这两个函数的图像,如图.由图可知,有两个交点,故方程a |x|=|log a x|有两个实根.答案:216某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x ]([x ]表示不大于x 的最大整数)可以表示为 .解析:当各班人数x 除以10,商为n ,余数为0,1,2,3,4,5,6时,即x=10n+m ,0≤m ≤6时,y=n ;当各班人数x 除以10商为n ,余数为7,8,9时,即x=10n+7,x=10n+8,x=10n+9时,即x+3=10(n+1),x+3=10(n+1)+1,x+3=10(n+1)+2时,y=n+1.故y=[x+310].答案:y=[x+310]三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17(10分)判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=-8x 2+7x+1;(2)f (x )=x 2+x+2;(3)f (x )=x 3+1.解(1)因为f (x )=-8x 2+7x+1=-(8x+1)(x-1),令f (x )=0,可解得x=-18或x=1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x+2,令x 2+x+2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x+2=0无实数解.所以f (x )=x 2+x+2不存在零点.(3)因为f (x )=x 3+1=(x+1)(x 2-x+1),令(x+1)(x 2-x+1)=0,解得x=-1.所以函数f (x )的零点为-1.18(12分)用模型f (x )=ax+b 来描述某企业每季度的利润f (x )(亿元)和生产成本投入x (亿元)的关系.统计表明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).定义:当f (x )使[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2的数值最小时为最佳模型.(1)当b=23,求相应的a 使f (x )=ax+b 成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.解(1)当b=23时,[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2=14(a -12)2+16,即当a=12时,f (x )=12x+23为最佳模型.(2)f (x )=12x+23,则y 4=f (4)=83.19(12分)若二次函数f (x )=-x 2+2ax+4a+1有一个零点小于-1,一个零点大于3.求实数a 的取值范围.解∵二次函数f (x )=-x 2+2ax+4a+1的图像开口向下,且在区间(-∞,-1),(3,+∞)内各有一个零点,∴{f (-1)>0,f (3)>0,即{-(-1)2-2a +4a +1>0,-32+2a ×3+4a +1>0,即{2a >0,10a -8>0,解得a>45. 故实数a 的取值范围为(45,+∞).20(12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A 万元,则超出部分按2log 5(A+1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?解(1)由题意,得y={0.1x ,0<x ≤15,1.5+2log 5(x -14),x >15.(2)∵x ∈(0,15]时,0.1x ≤1.5,又y=5.5>1.5, ∴x>15,∴1.5+2log 5(x-14)=5.5,解得x=39.即老张的销售利润是39万元.21(12分)已知y=f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x.(1)写出函数y=f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.解(1)当x ∈(-∞,0)时,-x ∈(0,+∞),∵y=f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,∴f (x )={x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)当x ∈[0,+∞)时,f (x )=x 2-2x=(x-1)2-1,最小值为-1;当x ∈(-∞,0)时,f (x )=-x 2-2x=1-(x+1)2,最大值为1.据此可作出函数y=f (x )的图像,如图,根据图像得,若方程f (x )=a 恰有3个不同的解,则a 的取值范围是(-1,1).22(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:km/h)是车流密度x (单位:辆/km)的函数,当桥上的车流密度达到200辆/km 时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km 时,车流速度为60 km/h,研究表明:当20<x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/h)f (x )=x ·v (x )可以达到最大?并求出最大值.(精确到1辆/h)解(1)由题意得,当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax+b (a ≠0),再由已知得{200a +b =0,20a +b =60,解得{a =-13,b =2003.故函数v (x )的表达式为v (x )={60,0≤x ≤20,13(200-x ),20<x ≤200. (2)由题意和第(1)问可得f (x )={60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )是增加的,故当x=20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )=13[-(x-100)2+10 000],当x=100时,f (x )在区间(20,200]上取得最大值10 0003.综上可知,当x=100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333.即当车流密度为100辆/km 时,车流量可以达到最大,最大值约为3 333辆/h .。
北师大版高中数学必修一第四章章末检测A.docx
第四章 章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =1+1x的零点是( ) A .(-1,0) B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A.P P -1 B.11P -1 C.11P D.P -1114.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A.①③ B.②④C.①② D.③④5.如图1,直角梯形OABC中,AB∥OC,|AB|=1,|OC|=|BC|=2,直线l∶x=t截此梯形所得位于l左方图形面积为S,则函数S=f(t)的图像大致为图中的( )图16.已知在x 克a %的盐水中,加入y 克b %的盐水,浓度变为c %,将y 表示成x 的函数关系式为( )A .y =c -a c -b xB .y =c -a b -cx C .y =c -b c -a x D .y =b -c c -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( )(下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R (Q )=4Q -1200Q 2,则总利润L (Q )的最大值和这时产品的生产数量分别为(总利润=总收入-成本)( )A .250 300B .300 350C .250 350D .300 3009则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.4771)( )A .19B .20C .二、填空题(13.用二分法研究函数f (x )=x 3+2x -1的零点,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算的f (x )的值为f (________).14.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设备的价值为________万元.16.函数f (x )=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1 200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y (元)与小车停放辆次x (辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.477 1)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y (微克)与服药的时间t (小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t (t ≥1,a >0,且k ,a 是常数)的图像.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f (x )满足:f (1)=2,f (2)=3,(1)求f (x )的解析式;(2)判断函数g (x )=-1+lg f 2(x )在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f (x );(2)求函数y =f (x )的定义域;(3)判断函数f (x )是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)第四章 章末检测(A)1.B [ 由1+1x =0,得1x=-1,∴x=-1.] 2.B [由题意x 0为方程x 3=(12)x -2的根, 令f(x)=x 3-22-x ,∵f(0)=-4<0,f(1)=-1<0,f(2)=7>0,∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a(1+x)11, ∴x=11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.]5.C [解析式为S =f(t)=⎩⎪⎨⎪⎧ 12t·2t (0≤t≤1)12×1×2+(t -1)×2 (1<t≤2)=⎩⎪⎨⎪⎧ t 2 (0≤t≤1)2t -1 (1<t≤2)∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a%x +b%y =c%(x +y),即ax +by =cx +cy ,故y =c -a b -cx.] 7.B [设职工原工资为p ,平均增长率为x ,则p(1+x)6=8p ,x =68-1=2-1=41%.]8.A [L(Q)=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L(Q)的最大值是250万元,这时产品的生产数量为300.]9.B [∵x=0时,b x无意义, ∴D 不成立.由对应数据显示该函数是增函数,且增幅越来越快,∴A 不成立.∵C 是偶函数,∴x=±1的值应该相等,故C 不成立.对于B ,当x =0时,y =1,∴a+1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f(x)=2x 3+3x -3,f(0)<0,f(1)>0,f(0.5)<0,f(0.75)>0,f(0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内,∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%, 得n +1>-1lg 910=-12lg 3-1≈21.8, ∴n≥21.]13.(0,0.5) 0.25解析 根据函数零点的存在性定理.∵f(0)<0,f(0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f(x)的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,如下图,由函数的图像可知a>1时两函数图像有两个交点,0<a<1时两函数图像有唯一交点,故a>1.15.a(1-b%)n解析 第一年后这批设备的价值为a(1-b%);第二年后这批设备的价值为a(1-b%)-a(1-b%)·b%=a(1-b%)2;故第n 年后这批设备的价值为a(1-b%)n .16.(0,1]解析 设x 1,x 2是函数f(x)的零点,则x 1,x 2为方程x 2-2x +b =0的两正根, 则有⎩⎪⎨⎪⎧ Δ≥0x 1+x 2=2>0x 1x 2=b>0,即⎩⎪⎨⎪⎧ 4-4b≥0b>0.解得0<b≤1.17.解 (1)依题意得y =5x +10(1 200-x)=-5x +12 000,0≤x≤1 200.(2)∵1 200×65%≤x≤1 200×85%,解得780≤x≤1 020,而y =-5x +12 000在[780,1 020]上为减函数,∴-5×1 020+12 000≤y≤-5×780+12 000.即6 900≤y≤8 100,∴国庆这天停车场收费的金额范围为[6 900,8 100].18.解 (1)依题意:y =a·0.9x ,x ∈N +.(2)依题意:y ≤13a , 即:a ·0.9x ≤a 3,0.9x ≤13=0.91log 30.9, 得x ≥log 0.913=-lg 32lg 3-1≈-0.477 10.954 2-1≈10.42. 答 通过至少11块玻璃后,光线强度减弱到原来的13以下. 19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ ka =8,ka 7=1.∴⎩⎪⎨⎪⎧ a =22,k =8 2.∴y =⎩⎪⎨⎪⎧ 8t , 0≤t <1,82(22)t , t ≥1. (2)令82·(22)t ≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药.(3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克).故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克.20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1, 所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg 102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个.21.解 (1)2009年底人口数:13.56亿.经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿).经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1%=13.56×(1+1%)2(亿).经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1%=13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x 年后人口数为13.56×(1+1%)x (亿).∴y =f (x )=13.56×(1+1%)x .(2)理论上指数函数定义域为R .∵此问题以年作为时间单位.∴此函数的定义域是{x |x ∈N +}.(3)y =f (x )=13.56×(1+1%)x .∵1+1%>1,13.56>0,∴y =f (x )=13.56×(1+1%)x 是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550. 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x ≤100时,P =60;当100<x <550时,P =60-0.02·(x -100)=62-x 50; 当x ≥550时,P =51.所以P =f (x )=⎩⎪⎨⎪⎧ 60, 0<x ≤10062-x 50, 100<x <550,51, x ≥550(x ∈N ). (3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L =(P -40)x =⎩⎪⎨⎪⎧ 20x , 0<x ≤10022x -x 250, 100<x <550,11x ,x ≥550(x ∈N ).当x =500时,L =6 000;当x =1 000时,L =11 000.因此,当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料唐玲出品第四章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数f (x )的图像是连续不断的,且f (0)>0,f (1)f (2)·f (4)<0,则下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( ) A .每个110元 B .每个105元 C .每个100元 D .每个95元 3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )t 1.99 3.0 4.0 5.1 6.12 y 1.5 4.04 7.5 12 18.01A.y =log 2t B .y =12log tC .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠; (3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠. 某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞)C .[-235,1]D .(-∞,-235]6.设f (x )是区间[a ,b ]上的单调函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一实根7.方程x 2-(2-a )x +5-a =0的两根都大于2,则实数a 的取值范围是( ) A .a <-2 B .-5<a <-2 C .-5<a ≤-4 D .a >4或a <-48.四人赛跑,其跑过的路程f (x )和时间x 的关系分别是:f 1(x )=12x ,f 2(x )=14x ,f 3(x )=log 2(x+1),f 4(x )=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x )=12x B .f 2(x )=14xC .f 3(x )=log 2(x +1)D .f 4(x )=log 8(x +1)9.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f (x )=(x -a )(x -b )-2的两个零点分别为α,β,则( ) A .a <α<b <β B .α<a <b <β C .a <α<β<b D .α<a <β<b11.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (2x )=f (x +1x +4)的所有x 之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图像如图所示.现给出下面说法: ①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③题 号 1 2 3 4 5 6 7 8 9 10 11 12答 案二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)3x (x ≤0),且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3 m ,长与宽的和为20 m ,则仓库容积的最大值为________.15.已知函数f (x )=⎩⎪⎨⎪⎧2x -1, x >0,-x 2-2x , x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m的取值范围为________.16.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f (x )=23x -1+m 是奇函数,求常数m 的值;(2)画出函数y =|3x -1|的图像,并利用图像回答:k 为何值时,方程|3x -1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下:C (n )=⎩⎪⎨⎪⎧12n ,1≤n ≤24,n ∈N +,11n ,25≤n ≤48,n ∈N +,10n ,n ≥49,n ∈N +,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱? 20.(12分)是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有零点,求实数a 的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:月份 用水量(立方米) 水费(元)一4 17 二5 23 三2.5 11 试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m ,n ,a 的值.第四章 章末检测(B)1.D [由f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)三者中必有一个与其余两个异号,所以必有根在(0,4)内.]2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80) =-20(x 2-190x +8 800) =-20(x -95)2+4 500.∴当x =95时,y 最大为4 500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2, 则f (0)=-2<0,∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f (1)≤0f (5)≥0, 即⎩⎪⎨⎪⎧a -1≤023+5a ≥0, 解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f (2)>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图像,由图像可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln 2-22=ln 2-1<1-1=0,f (3)=ln 3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图像向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图像可得α<a <b <β.] 11.C [∵x >0时f (x )单调且为偶函数,∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1).∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图像是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.] 13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1.14.300 m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图像知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x -1, x >0,-x 2-2x , x ≤0的图像如图所示,该函数的图像与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点. 16.[-1,1]解析 分别作出两个函数的图像,通过图像的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图像如图所示,由图像可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1]. 17.解 令f (x )=4x 3+x -15,∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解.18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m . ∴2·3x 1-3x +m =21-3x-m , ∴2(3x -1)1-3x+2m =0.∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图像,如图.①当k <0时,直线y =k 与函数y =|3x -1|的图像无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图像有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x -1|的图像有两个不同的交点,所以方程有两解. 19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N +.①当1≤n ≤11且n ∈N +时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N +时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N +时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N +,n +360, 12≤n ≤24,n ∈N +,360, 25≤n ≤30,n ∈N +.∴当1≤n ≤11时,302≤f (n )≤322;当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1) =4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0, 得x =0或x =-1.方程在[-1,3]上有两根,不合题意,故a ≠1.(2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a (-3-a )≥0f (-1)·f (1)=(a -5)(a -1)≤0 或⎩⎪⎨⎪⎧Δ=4-8a (-3-a )=0-1≤-12a ≤1, 解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f (-1)f (1)≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a <1(a -5)(a -1)≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞).22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米. 将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a , 得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3. ∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。