经典卡尔曼滤波ppt
合集下载
《卡尔曼滤波教学》PPT课件
AS ˆ((k k 1 ) )H(K C )[(X k S ˆ(()k k A 1))(]
(6-61) 由(6-56)~(6-61)可以画出卡尔 曼滤波对 S (k )进行估计的递推模型,如 图6.13所示
• 输入为观测值X(k),输出为信号估计 值 Sˆ (k) 。
X(k) X~(k) H(k)
X ~(k)X(k X ˆ()k) (6-60)
显然,新息的产生是由于我们前面忽略 了w1(k)与 w(k)所引起的
• 用新息X~(k)乘以一个修正矩阵 H(k ),用 它来代替式(6-56)的w1(k来) 对S (k )进 行估计:
S ˆ(k A )S ˆ( k 1 )H ) X ~ ((k k))
令 Cε ((kk))τ C R (k (k S ) τ )S ,Uε(k)C(kτ ) 代入上式化简:
ε(k ) ε(k H ) (τK U)H τ U H (k (τ ) H k)τ(S kS
ε ( k U )τ ) ( 1 U S τ [S H U (τ ) k 1 ( ]S ) [S H U τ ( ) 1 ( ] k τS
Xˆ (k) C(k)
Sˆ (k)
z 1
A(k ) Sˆ (k 1)
图6.13 卡尔曼滤波的一步递推法模型
6.2.2 卡尔曼滤波的递推公式 从图6.13容易看出,要估计出 Sˆ (k) 就必须 要先找到最小均方误差下的修正矩阵
H (k ),结合式(6-61)、(6-56)、 (6-57)得:
S ˆ(k A )S ˆ( ( k k 1 H ) ) (K (k w )) [ ( C C k()S ˆ k ( k ) 1S A )
z w1(k ) S(k1) 1
S (k ) C(k)
(6-61) 由(6-56)~(6-61)可以画出卡尔 曼滤波对 S (k )进行估计的递推模型,如 图6.13所示
• 输入为观测值X(k),输出为信号估计 值 Sˆ (k) 。
X(k) X~(k) H(k)
X ~(k)X(k X ˆ()k) (6-60)
显然,新息的产生是由于我们前面忽略 了w1(k)与 w(k)所引起的
• 用新息X~(k)乘以一个修正矩阵 H(k ),用 它来代替式(6-56)的w1(k来) 对S (k )进 行估计:
S ˆ(k A )S ˆ( k 1 )H ) X ~ ((k k))
令 Cε ((kk))τ C R (k (k S ) τ )S ,Uε(k)C(kτ ) 代入上式化简:
ε(k ) ε(k H ) (τK U)H τ U H (k (τ ) H k)τ(S kS
ε ( k U )τ ) ( 1 U S τ [S H U (τ ) k 1 ( ]S ) [S H U τ ( ) 1 ( ] k τS
Xˆ (k) C(k)
Sˆ (k)
z 1
A(k ) Sˆ (k 1)
图6.13 卡尔曼滤波的一步递推法模型
6.2.2 卡尔曼滤波的递推公式 从图6.13容易看出,要估计出 Sˆ (k) 就必须 要先找到最小均方误差下的修正矩阵
H (k ),结合式(6-61)、(6-56)、 (6-57)得:
S ˆ(k A )S ˆ( ( k k 1 H ) ) (K (k w )) [ ( C C k()S ˆ k ( k ) 1S A )
z w1(k ) S(k1) 1
S (k ) C(k)
经典kalman滤波PPT经典实用
•经典kalman滤波PPT
•7
Conceptual Overview
prediction ŷ-(t2)
0.16 0.14 0.12
corrected optimal estimate ŷ(t2)
0.1
0.08
measurement
z(t2)
0.06
0.04
0.02
0 0 10 20 30 40 50 60 70 80 90 100
•11
Conceptual Overview
0.16
0.14
Corrected optimal estimate ŷ(t3)
0.120.1来自Measurement z(t3)
0.08
0.06
Prediction ŷ-(t3)
0.04
0.02
0 0 10 20 30 40 50 60 70 80 90 100
Blending Factor
• If we are sure about measurements:
– Measurement error covariance (R) decreases to zero – K decreases and weights residual more heavily than prediction
Measurement Error Sources
• System state cannot be measured directly
• Need to estimate “optimally” from measurements
•经典kalman滤波PPT
•2
What is a Kalman Filter?
卡尔曼滤波法( Kalman滤波)用于SOC估算共37页PPT
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
卡尔曼滤波法( Kalman滤波) 用于SOC估算
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
经典kalman滤波PPT
• Recursive?
– Doesn’t need to store all previous measurements and reprocess all data each time step
2021/3/10
4
Conceptual Overview
• Simple example to motivate the workings of the Kalman Filter
2021/3/10
10
Conceptual Overview
0.16
0.14
Introduction to Kalman Filters
Michael Williams 5 June 2003
2021/3/10
1
Overview
• The Problem – Why do we need Kalman Filters?
• What is a Kalman Filter? • Conceptual Overview • The Theory of Kalman Filter • Simple Example
2021/3/10
6
Conceptual Overview
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0 0 10 20 30 40 50 60 70 80 90 100
• Sextant Measurement at t1: Mean = z1 and Variance = z1
• GPS Measurement at t2: Mean = z2 and Variance = z2
• Need to correct the prediction due to measurement to get ŷ(t2)
卡尔曼滤波方法资料课件
采用最小均方误差准则,通过最小化估计误 差的平方和实现状态估计。
线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
卡尔曼滤波介绍ppt课件(共29张PPT)
卡尔曼滤波是一种利用目标动态信息去除噪声影响,得到目标位置良好估计的方法。它适用于雷达跟踪等场景,其中目标位置、速度、加速度的测量值常含有噪声。通过贝叶斯理论推导,卡尔曼滤波能够实现对当前、未来或过去位置的估计,分别对应滤波、预测和插值或平滑操作。典型实例包括从有限且包含噪声的观察序列中预测物体位置坐标及速度。此外,文档还探讨了扩展卡尔曼滤波(EKF)的推导过程,并展示了其在无人车定位等实际应用中的价值。紧组,突显了卡尔曼滤波在处理有色噪声及提高导航系统性能方面的重要性。
经典kalman滤波PPT
K = P-kHT(HP-kHT + R)-1 (2) Update estimate with measurement zk
ŷk = ŷ-k + K(zk - H ŷ-k ) (3) Update Error Covariance
Pk = (I - KH)P-k
17
Quick Example – Constant Model
– Initial conditions (ŷk-1 and k-1) – Prediction (ŷ-k , -k)
• Use initial conditions and model (eg. constant velocity) to make prediction
– Measurement (zk)
7
Conceptual Overview
0.16
0.14
prediction ŷ-(t2)
0.12
0.1
0.08
measurement z(t2)
0.06
0.04
0.02
0 0 10 20 30 40 50 60 70 80 90 100
• So we have the prediction ŷ-(t2) • GPS Measurement at t2: Mean = z2 and Variance = z2 • Need to correct the prediction due to measurement to get ŷ(t2) • Closer to more trusted measurement – linear interpolation?
12
Conceptual Overview
0.16
0.14
ŷk = ŷ-k + K(zk - H ŷ-k ) (3) Update Error Covariance
Pk = (I - KH)P-k
17
Quick Example – Constant Model
– Initial conditions (ŷk-1 and k-1) – Prediction (ŷ-k , -k)
• Use initial conditions and model (eg. constant velocity) to make prediction
– Measurement (zk)
7
Conceptual Overview
0.16
0.14
prediction ŷ-(t2)
0.12
0.1
0.08
measurement z(t2)
0.06
0.04
0.02
0 0 10 20 30 40 50 60 70 80 90 100
• So we have the prediction ŷ-(t2) • GPS Measurement at t2: Mean = z2 and Variance = z2 • Need to correct the prediction due to measurement to get ŷ(t2) • Closer to more trusted measurement – linear interpolation?
12
Conceptual Overview
0.16
0.14
卡尔曼滤波算法含详细推导.ppt
动态系统在时间n的状态到n+1的状态之间的转移,应为已知。
而M 1向量 v为1(过n)程噪声向量,它描述状态转移中间的
加性噪声或误差。
1、kalman滤波问题
(1)、观测方程
y(n)C (n)x(n)v2(n)....2 .)....(
式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,
卡尔曼滤波算法及 推导
1、kalman滤波问题
考虑一离散时间的动态系统,它由描述状态向量的过程方程 和描述观测向量的观测方程共同表示。
(1)、过程方程
x (n 1 ) F (n 1 ,n )x (n ) v 1 (n )...1 )....
式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是 不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述
变成可预测的),要求也是已知的;v2(n)表示观测噪声向 量,其维数与观测向量的相同。过程方程也称为状态方程, 为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n) 均为零均值的白噪声过程,它们的相关矩阵分别为:
1、kalman滤波问题
E { v 1 (n )v 1 H (k ) }Q 0 ,1 n ( n k )n , k ..3 .)...(
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
表示(一步)预测状态误差的相关矩阵
3、kalman滤波算法
由上一节的的新息过程的相关知识和信息后,即可转入 kalman滤波算法的核心问题的讨论:如何利用新息过程估计 状态向量的预测?最自然的方法是用新息过程序列a(1),…a(n) 的线性组合直接构造状态向量的一布预测:
而M 1向量 v为1(过n)程噪声向量,它描述状态转移中间的
加性噪声或误差。
1、kalman滤波问题
(1)、观测方程
y(n)C (n)x(n)v2(n)....2 .)....(
式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,
卡尔曼滤波算法及 推导
1、kalman滤波问题
考虑一离散时间的动态系统,它由描述状态向量的过程方程 和描述观测向量的观测方程共同表示。
(1)、过程方程
x (n 1 ) F (n 1 ,n )x (n ) v 1 (n )...1 )....
式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是 不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述
变成可预测的),要求也是已知的;v2(n)表示观测噪声向 量,其维数与观测向量的相同。过程方程也称为状态方程, 为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n) 均为零均值的白噪声过程,它们的相关矩阵分别为:
1、kalman滤波问题
E { v 1 (n )v 1 H (k ) }Q 0 ,1 n ( n k )n , k ..3 .)...(
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
表示(一步)预测状态误差的相关矩阵
3、kalman滤波算法
由上一节的的新息过程的相关知识和信息后,即可转入 kalman滤波算法的核心问题的讨论:如何利用新息过程估计 状态向量的预测?最自然的方法是用新息过程序列a(1),…a(n) 的线性组合直接构造状态向量的一布预测:
卡尔曼滤波方法PPT课件
17
第17页/共28页
联邦滤波器算法
• 信息分配
在进入下一次递推之前,需将主滤波器中的信息 (状态、方差)在各子滤波器中按如下规则进行分配:
N
Xˆ i Xˆ g ,
Pii
P 1
ig
,
Q1
Qi1 Qm1
i 1
其中,Qi m1Q , i , i 1,, N, m 为信息分配系数,m 为
主滤波器的信息分配系数,满足守恒原则
方差估值 Pk k [I Kk Hk ]Pk k1
6
第6页/共28页
3.5 卡尔曼滤波的结构图
上述递推公式,称为卡尔曼滤波器。实际上,卡尔曼 滤波器也是一个系统,其结构框图如下:
Zk + -
+
Kk
+
Z k|k 1
当前估计值
Xˆ k
延时 一步
Hk
k ,k 1
一步预测
上一步估计值
Xˆ k|k 1
第27页/共28页
感谢您的观看!
28
第28页/共28页
Yi f ( i )
24
第24页/共28页
Unscented卡尔曼滤波(续) 变换样本点Yi 即可近似表示 y 的分布。下面利用 Yi 来计算 y 的均值和方差。
3. 计算 y 的均值和方差
p
y Wi(m)Yi
i0
p
Py Wi(c) (Yi y)(Yi y)T i0
其中,
Wi(m)
Wi(c)
得预测测量估计偏差: Z~k|k1 Zk Zˆk|k1 Zk Hk Xˆ k|k1
利用此偏差修正预测估计:
Xˆ k|k Xˆ k k1 Kk [Zk Hk Xˆ k k1]
第17页/共28页
联邦滤波器算法
• 信息分配
在进入下一次递推之前,需将主滤波器中的信息 (状态、方差)在各子滤波器中按如下规则进行分配:
N
Xˆ i Xˆ g ,
Pii
P 1
ig
,
Q1
Qi1 Qm1
i 1
其中,Qi m1Q , i , i 1,, N, m 为信息分配系数,m 为
主滤波器的信息分配系数,满足守恒原则
方差估值 Pk k [I Kk Hk ]Pk k1
6
第6页/共28页
3.5 卡尔曼滤波的结构图
上述递推公式,称为卡尔曼滤波器。实际上,卡尔曼 滤波器也是一个系统,其结构框图如下:
Zk + -
+
Kk
+
Z k|k 1
当前估计值
Xˆ k
延时 一步
Hk
k ,k 1
一步预测
上一步估计值
Xˆ k|k 1
第27页/共28页
感谢您的观看!
28
第28页/共28页
Yi f ( i )
24
第24页/共28页
Unscented卡尔曼滤波(续) 变换样本点Yi 即可近似表示 y 的分布。下面利用 Yi 来计算 y 的均值和方差。
3. 计算 y 的均值和方差
p
y Wi(m)Yi
i0
p
Py Wi(c) (Yi y)(Yi y)T i0
其中,
Wi(m)
Wi(c)
得预测测量估计偏差: Z~k|k1 Zk Zˆk|k1 Zk Hk Xˆ k|k1
利用此偏差修正预测估计:
Xˆ k|k Xˆ k k1 Kk [Zk Hk Xˆ k k1]
Kalman滤波简介ppt课件
2021/4/26
精选2021版alman滤波是一种实时递推算法,它所处理的是随机信号, 利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤 波器的输入,以所要估计值(状态或参数)作为滤波器的输出 ,滤波器输入与输出是由时间更新和观测更新算法联系在一起 的,根据系统方程和观测方程估计出所需要处理的信号——实 质是一种最优估计方法。 卡尔曼滤波就是在有随机干扰和噪声的情况下,以线性最小方 差估计方法给出状态的最优估计值,卡尔曼滤波是在统计的意 义上给出最接近状态真值的估计值。
2021/4/26
精选2021版课件
10
随机信号没有确定的频谱.无法用常规滤波提取或抑制信号.但
随机信号具有确定的功率谱,所以可根据有用信号和干扰信 号的功率谱设计滤波器。维纳滤波是解决此类问题的方法之一 。但设计维纳滤波器须作功率谱分解,只有当被处理信号为平 稳的,干扰信号和有用信号均为一维,且功率谱为有理分式时 ,维纳滤波器的传递函数才可用伯特一香农设计法较容易地求
2021/4/26
精选2021版课件
4
Kalman滤波控制系统结构图
由于系统的状态x是不确定的,卡尔曼滤波器的任 务就是在有随机干扰w和噪声v的情况下给出系统状态x
的最优估算值 xˆ ,它在统计意义下最接近状态的真值x ,从而实现最优控制u( xˆ)的目的。
2021/4/26
精选2021版课件
5
Use For
解出。否则设计维纳滤波器存在着诸多困难。维纳滤波除设
计思想与常规滤波不同外.对信号作抑制和选通这一点是相似 的。
2021/4/26
精选2021版课件
11
卡尔曼滤波从与被提取信号有关的量测量中通过算法估计出
所需信号。其中被估计信号是由白噪声激励引起的随机响应 ,激励源与响应之问的传递结构(系统方程)已知.量测量与被 估计量之间的函数关系(量测方程)也已知。估计过程中利用 了如下信息:系统方程、量测方程、白噪声激励的统计特性、 量测误差的统计特性。由于所用信息都是时域内的量。所以
《卡尔曼滤波》课件
3
无迹卡尔曼滤波线性系统的 估计。
卡尔曼滤波的应用案例
飞行器姿态估计
卡尔曼滤波在航空领域中被广泛应用于飞行器姿态估计,用于提高飞行器的稳定性和导航准 确性。
目标跟踪
卡尔曼滤波可用于跟踪移动目标的位置和速度,常见于机器人导航和视频监控等领域。
3 卡尔曼滤波的应用领
域
卡尔曼滤波被广泛应用于 航空航天、机器人、金融 等领域,用于提高系统的 状态估计精度。
卡尔曼滤波的数学模型
状态空间模型
卡尔曼滤波使用状态 空间模型表示系统的 状态和观测值之间的 关系,包括状态方程 和测量方程。
测量方程
测量方程描述观测值 与系统状态之间的关 系,用于将观测值纳 入到状态估计中。
了解更多关于卡尔曼滤波的内容和应用,推荐文献、学术论文和在线课程等资源。
《卡尔曼滤波》PPT课件
卡尔曼滤波是一种优秀的状态估计方法,被广泛用于目标跟踪、姿态估计和 股票预测等领域。
介绍卡尔曼滤波
1 什么是卡尔曼滤波?
卡尔曼滤波是一种递归状 态估计算法,用于通过系 统模型和测量信息估计系 统状态。
2 卡尔曼滤波的基本原
理
卡尔曼滤波基于贝叶斯估 计理论,通过最小化估计 误差的均方差来优化状态 估计。
股票预测
卡尔曼滤波可以应用于股票市场,通过对历史数据进行分析和预测,提供股票价格的预测和 趋势分析。
卡尔曼滤波的优化算法
粒子滤波
粒子滤波是一种基于蒙特卡洛 方法的状态估计算法,适用于 非线性和非高斯系统,提供更 广泛的估计能力。
自适应滤波
自适应滤波是一种根据系统的 特点自动调整滤波参数的方法, 提供更好的适应性和鲁棒性。
非线性滤波
非线性滤波是对卡尔曼滤波算 法的改进,用于处理非线性系 统和测量模型,提供更准确的 状态估计。
卡尔曼滤波算法ppt课件
初始值x(0)、P(0)
ppt课件.
测量更新(修正) (1)计算加权矩阵(卡尔曼增益)
Kg(k)=P(k|k-1)H’/(HP(k|k-1) H’ +R) (2)对预测值进行修正
x(k|k)=x(k|k-1) + Kg(k) (Z(k)-H X(k|k-1)) (3)更新修正值的协方差
P(k|k)=(I-Kg(k)H)P(k|k-1)
二:状态估计原理简介
状态估计是卡尔曼滤波的重要组成部分。
观测数据
定量判断 随机状态量
估计问题: (可以直接得到)
(很难直接得到)
例如,飞机实时的位置、速度等状态参数需要通过雷达或其它
测量装置进行观测,而雷达等测量装置也存在随机干扰, 因此在观测到飞机的位置、速度等信号中就夹杂着随机干 扰,要想正确地得到飞机的状态参数是不可能的,只能根 据观测到的信号来估计和预测飞机的状态。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法, 建立了后来被自动控制界称道的“卡尔曼滤波”。
ppt课件.
7
三:卡尔曼滤波引例
卡尔曼滤波:是一种高效率的递归滤波器(自回归滤波器) ,它能够从
一系列完全包含噪声的测量中, 估计动态系统的状态。
➢ 基本思想:采用信号与噪声的状态空间模型,利用前一时
刻的估计值和现时刻的观测值来更新对状态变量的估计,求 出现在时刻的估计值。它适合于实时处理和计算机运算。
各局部最优估计
。
2.将全部局部最优估计送到融合中心进行
全局融合。
3.融合中心按照“信息分配”原则形成 的信息分配量,向雷达与电视进行信息 反馈。
ppt课件.
பைடு நூலகம்
滤波结构框图
29
ppt课件.
测量更新(修正) (1)计算加权矩阵(卡尔曼增益)
Kg(k)=P(k|k-1)H’/(HP(k|k-1) H’ +R) (2)对预测值进行修正
x(k|k)=x(k|k-1) + Kg(k) (Z(k)-H X(k|k-1)) (3)更新修正值的协方差
P(k|k)=(I-Kg(k)H)P(k|k-1)
二:状态估计原理简介
状态估计是卡尔曼滤波的重要组成部分。
观测数据
定量判断 随机状态量
估计问题: (可以直接得到)
(很难直接得到)
例如,飞机实时的位置、速度等状态参数需要通过雷达或其它
测量装置进行观测,而雷达等测量装置也存在随机干扰, 因此在观测到飞机的位置、速度等信号中就夹杂着随机干 扰,要想正确地得到飞机的状态参数是不可能的,只能根 据观测到的信号来估计和预测飞机的状态。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法, 建立了后来被自动控制界称道的“卡尔曼滤波”。
ppt课件.
7
三:卡尔曼滤波引例
卡尔曼滤波:是一种高效率的递归滤波器(自回归滤波器) ,它能够从
一系列完全包含噪声的测量中, 估计动态系统的状态。
➢ 基本思想:采用信号与噪声的状态空间模型,利用前一时
刻的估计值和现时刻的观测值来更新对状态变量的估计,求 出现在时刻的估计值。它适合于实时处理和计算机运算。
各局部最优估计
。
2.将全部局部最优估计送到融合中心进行
全局融合。
3.融合中心按照“信息分配”原则形成 的信息分配量,向雷达与电视进行信息 反馈。
ppt课件.
பைடு நூலகம்
滤波结构框图
29
卡尔曼滤波教学课件PPT
5.卡尔曼滤波控制系统结构图
由于系统的状态x是不确定的,卡尔曼滤波 器的任务就是在有随机干扰w和噪声v的情 ˆ ,它在 况下给出系统状态x的最优估算值 x 统计意义下最接近状态的真值x,从而实现 最优控制u( x ˆ )的目的。
状态方程:X(k)=AX(k-1)+BU(k)+W(k) 输出方程:y(k)=CX(k)+Z(k) 系统测量值:Z(k)=HX(k)+V(k) 在上述方程中,X(k)是k时刻的系统状态, U(k)是k时刻对系统的控制量。A和B是系 统参数,对于多模型系统,它们为矩阵。 Z(k)是k时刻的测量值,H是测量系统的参 数,对于多测量系统,H为矩阵。W(k)和 V(k)分别表示过程噪声和测量噪声。它们被 假设成高斯白噪声,它们的协方差分别是Q, R。
6.2
更新阶段
新息或测量余量:y(k)=Z(k)-H X(k|k-1) 新息协方差:S(k)=H P(k|k-1) H’ +R 卡尔曼增益(Kalman Gain): Kg(k)= P(k|k1) H’ / (H P(k|k-1) H’ + R) …… (3) 状态估计更新:收集现在状态的测量值,结 合预测值和测量值,可以得到现在状态的 最优化估算值。
6.卡尔曼滤波过程
卡尔曼滤波包括两个阶段:预测和更新。 在预测阶段,滤波器应用上一状态的估计 做出对当前状态的估计。在更新阶段,滤 波器利用在当前状态的观测值优化预测阶 段的预测值,以获的一个更精确的当前状 态的估计。
6.1预测阶段
状态估计: 根据系统的模型,可以基于系统的上一状态而预 测出现在的状态。 X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1) 式(1)中,A是作用在前一状态的状态转移模型(状 态转移矩阵),B是作用在控制向量上的控制输入模 型(输入输出矩阵), X(k|k-1)是利用上一状态预测 的结果,X(k-1|k-1)是上一状态最优的结果,U(k) 为现在状态的控制量,如果没有控制量,它可以 为0 。
卡尔曼滤波算法(含详细推导)PPT
v1(n)G (n)v2(n)..........3 ...).0 ..19..(
3、kalman滤波算法
求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:
K(n1,n)E{e(n1,n)e]H(n1,n)} [F(n1,n)G (n)C (n)K ](n,n1)F [(n1,n) G (n)C (n)H ]Q 1(n)G (n)Q 2(n)G H(n)........3 ...).1 .(.
n
(n )(n 1y(1 ),y .(n .). ),
1
W 1 (k)(k)
式中W1(k)表示与一步预测项对应的权矩k 阵 1 ,且k为离散时间。
现在的问题是如何确定这个权矩阵?
(1)、状态向量的一布预测
根据正交性原理,最优预测的估计误差
e(1 nn, )x(n1)x1(n1)
12
3、kalman滤波算法
C (n )K (n ,n 1 )C H (n ) Q 2(n ).................1.).(6..
式中Q2(n)是观测噪声v2(n)的相关矩阵,而
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
这里使用了状态向量与观测噪声不相关的事实。 进一步地,由正交原理引
理知,在最小均方误差准则下求得的一步预测估 x 1 ( n )与预测误差e(n,n-1)彼
此正交,即
E{x1(n)eH(N,N1)}0
17
3、kalman滤波算法
因此,由式(26)及式(27)易得:
E {x(n1)H(n)} F(n1,n)E {x[(n)e(n,n1)e]H(n,n1)C }H(n)
3、kalman滤波算法
求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:
K(n1,n)E{e(n1,n)e]H(n1,n)} [F(n1,n)G (n)C (n)K ](n,n1)F [(n1,n) G (n)C (n)H ]Q 1(n)G (n)Q 2(n)G H(n)........3 ...).1 .(.
n
(n )(n 1y(1 ),y .(n .). ),
1
W 1 (k)(k)
式中W1(k)表示与一步预测项对应的权矩k 阵 1 ,且k为离散时间。
现在的问题是如何确定这个权矩阵?
(1)、状态向量的一布预测
根据正交性原理,最优预测的估计误差
e(1 nn, )x(n1)x1(n1)
12
3、kalman滤波算法
C (n )K (n ,n 1 )C H (n ) Q 2(n ).................1.).(6..
式中Q2(n)是观测噪声v2(n)的相关矩阵,而
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
这里使用了状态向量与观测噪声不相关的事实。 进一步地,由正交原理引
理知,在最小均方误差准则下求得的一步预测估 x 1 ( n )与预测误差e(n,n-1)彼
此正交,即
E{x1(n)eH(N,N1)}0
17
3、kalman滤波算法
因此,由式(26)及式(27)易得:
E {x(n1)H(n)} F(n1,n)E {x[(n)e(n,n1)e]H(n,n1)C }H(n)
卡尔曼滤波ppt教学35页文档
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
卡尔曼滤波ppt教学
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地ห้องสมุดไป่ตู้使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的新信息。 反之,新测量样值中不包含任何新信息。
显然,当我们测得k时刻的新测量样值y(k)之后,可
利用第k次测量中的新信息
式中:参数a<1
E(k) 0
E(k)2
2
E
(k
)
(
j
)
2
k j
0
k j
二、信号测量过程的数学模型
信号测量过程的数学模型:
y(k) cx(k) v(k)
(2)
式中: x(k)为k时刻的信号值。 y(k)为该时刻对 x(k)进行测量所得到的信号测量样值。 v(k)为此时在 测量过程中所引入的独立的附加噪声 。
(16)
利用 式12,将a(k)替换
P(k
)
E
ax(k
1)
w(k
1)
a[1
cb(k
)]
x(k
1)
cb(k
)
x(k
)
b(k
)v(k
)
2
E a[1 cb(k)]e(k 1) [1 cb(k)]w(k 1) b(k)v(k)2
(17)
交叉乘积项的均值都为零
E
e(k
)
x
(k 1) 0
Ee(k)y(k) 0
由(7)式可得
(9) a(k) (10)
e(kE) x(ak)(ka)(kx)
(k
x(k)
b(1k )) y(kx)
经过一系列的代换可求出
(k
1)
Ex(k
)
b(k
)
y(k
)
P(k)
Ee(k ) x(k )
a(k ) E e(k )
x
(k 1) b(k)Ee(k) y(k)
由9和10两式化简后得:
(13)
P(k) Ee(k)x(k)
由量测方程
可得:
x(k)
1
y(k
)
v(k)
c
(14)
代入式14中
P(k ) 1 E(e(k ) y(k )) 1 E(e(k )v(k ))
P(k) a2 1 cb(k)2 P(k 1) 1 cb(k)2
2 b2(k)
w
2
v (18)
整理后求解得
b(k)
c a2P(k 1) 2 w
2 c2 2 c2a2P(k 1)
v
w
(19)
此式即经过最优化所得到的 b(k) 的表达式。
x(k 1)
出发
,由于信号数学模型中的动态噪声的确切数
值w(k-1)无从得知,故对x(k)的预估值只能取作
a
x(k
1)
当我们测得k时刻的新测量样值y(k)后,若所测得的
y(k)值与其预估值
y (k
)
ac
x(k
1)之差不为零,就说明k时
刻的新测量样值y(k)中包含有前(k-1)次测量中所没有
卡尔曼滤波算法
卡尔曼滤波算法是卡尔曼等 人在20世纪60年代提出的一种递 推滤波算法。它的实质是以最小 均方误差为估计的最佳准则,来 寻求一套递推估计的算法。其基 本思想是:采用信号与噪声的状 态空间模型,利用前一时刻地估 计值和现时刻的观测值来更新对 状态变量的估计,求出现时刻的 估计值。它的广泛应用已经超过 30年,包括机器人导航,控制, 传感器数据融合甚至军事方面的 雷达系统以及导弹追踪等等。
P(k) b(k)
2Ex(k)
a(k)
x
(k
1)
b(k
)
y(k)
y(k)
0
(7) (8)
解出的a(k)和b(k)将保证该递归型估计器的 均方估计误差为最小。
根据 e(k) x(k) a(k) x (k 1) b(k) y(k)
由(7)和(8)式得
当增益 a(k) 和 b(k) 经过最优化,即分别有(12)式和(19)式给出时
就是一个最优递归型估计k
1)
b(k
)
y
(k
)
ac
x
(k 1)
(20)
20式物理意义的说明:在尚未获得k时刻的新测量样值
y(k)以前,我们只能从(k-1)时刻对信号所作出的估计
Ev(k) 0
Ev(k)2
2 v
Ev(k
)v(
j
)
2 v
k j
0
k j
所以,可以得到一维时变随机信号及其测量过程 的数学模型。
三、标量卡尔曼滤波器设计
一维随机信号的递归型估计器的一般表达式:
x(k) a(k) x(k 1) b(k) y(k)
2
(4) (5)
代入递归型估计器的一般表达式 得:
P(k
)
E
x(k
)
a(k
)
x
2
(k 1) b(k) y(k)
令P(k)对a(k)和b(k)的偏导数为零,得
(6)
P(k) a(k)
2Ex(k)
a(k)
x
(k
1)
b(k
)
y(k
)
x
(k 1) 0
Kalman
一、一维时变随机信号的数学模型
对每一确定的取样时刻k,x(k)是一个随机 变量。当取样时刻的时标k变化时,就得到一个离 散的随机序列{x(k)}。
假设待估随机信号的数学模型是一个由白噪声 序列 W{(k)}驱动的一阶自递归过程,其动态 方程为:
x(k) ax(k 1) (k 1) (1)
c
c
1
E ((
x(k
)
a(k
)
x
(k 1) b(k ) y(k ))v(k ))
c
1 b(k )E( y(k )v(k )) c
(15)
1 b(k) 2
c
v
最优递归型估计器对信号的均方估计误差还可写成
P(k
)
E
ax(k
1)
w(k
1)
a(k
)
x
2
(k 1) b(k)cx(k) v(k)
x
(k 1)
左式
a(k
)E
x(k
1)
x(k
1)
a(1
cb(k
))E
x(k
1)
x(k
1)
a(k) a1 cb(k)
此式为经过最优化得到的 a(k)表达式
(11) 右式 (12)
最优递归型估计器对信号 x(k) 的均方估计误差可写成
(3)
在信号、测量过程的数学模型为条件下 以均方估计 误差最小为准则对估计器的加权系数a(k)和b(k)进行最优 化,并推导出标量卡尔曼滤波器的最优估计的递推算法。
递归型估计器在k时刻对信号的估计误差为
e(k) x(k) x(k)
均方估计误差为
P(k
)
E
x(k
)
x(k
)