流体力学边界层理论

合集下载

流体力学中的流体中的湍流边界层

流体力学中的流体中的湍流边界层

流体力学中的流体中的湍流边界层流体力学是研究流体的运动规律和性质的学科,湍流边界层则是流体力学中一个重要概念。

本文将对流体力学中的湍流边界层进行详细的介绍和论述。

一、湍流边界层的定义湍流边界层是指在流体中,当流动达到一定速度时,边界层内会出现湍流现象。

边界层是指流体靠近固体边界时速度逐渐减小,同时摩擦力逐渐增大的区域。

湍流边界层的形成使得流体流动变得非常复杂,是流体力学中的一个重要研究对象。

二、湍流边界层的特征1. 非线性:湍流边界层的速度和摩擦力分布呈现出非线性分布,即速度和摩擦力随着距离的增加而发生剧烈变化。

2. 随机性:湍流边界层的湍流运动是随机的,速度和摩擦力的变化具有不可预见性。

3. 涡旋结构:湍流边界层中存在大量的涡旋结构,这些涡旋会不停地生成、移动和消失,对流体的运动产生明显的影响。

三、湍流边界层的数学模型为了研究湍流边界层的运动规律,研究者提出了一系列的数学模型。

其中最著名的是雷诺平均纳维-斯托克斯(RANS)方程。

RANS方程是一组描述湍流边界层中平均速度和摩擦力变化的偏微分方程,通过求解这组方程可以得到湍流边界层的平均流动特性。

四、湍流边界层的应用湍流边界层在工程领域有着广泛的应用。

在飞机设计中,研究湍流边界层可以帮助减小气动阻力,提高飞行效率。

在水利工程中,研究湍流边界层可以帮助提高水泵效率和减少流体阻力。

在能源领域,湍流边界层的研究可以改善风力发电机的叶片设计,提高电能转化效率。

五、湍流边界层的挑战和前景湍流边界层的研究仍然面临着一些挑战。

湍流边界层的数学模型仍然不够精确,目前还没有能够完全描述湍流边界层的理论。

此外,湍流边界层的计算复杂度较高,需要大量的计算资源支持。

然而,随着计算机技术的不断进步,湍流边界层的研究将会取得更大的突破,为各个领域的工程应用提供更多的可能性。

六、结论湍流边界层是流体力学中的一个重要概念,具有非线性、随机性和涡旋结构等特征。

通过数学模型的建立和求解,可以揭示湍流边界层的运动规律。

边界层理论在流体力学中的应用

边界层理论在流体力学中的应用

边界层理论在流体力学中的应用引言流体力学研究的是流体在受力作用下的运动规律和性质。

在理论研究和工程应用中,边界层理论是流体力学的一个重要组成部分。

边界层理论描述了流体在靠近壁面的区域内,流动速度、压力、温度等物理量的变化规律。

本文将介绍边界层理论在流体力学中的应用,包括边界层的定义、边界层分析的方法以及边界层理论在实际工程中的应用案例。

1. 边界层的定义边界层是指流体靠近壁面的区域,其性质与远离壁面的流体存在明显差异。

一般来说,边界层的厚度相对较小,但对流体运动和传热传质过程有着重要影响。

边界层理论的研究对象主要是属于牛顿流体的不可压缩流体情况。

2. 边界层分析的方法边界层分析是研究边界层的关键方法之一,常用的方法包括速度边界层分析和能量边界层分析。

2.1 速度边界层分析速度边界层分析主要考虑流体在边界层内的速度分布情况。

一般来说,边界层靠近壁面时流速接近零,随着距离壁面的增加逐渐增大。

根据速度剖面的特征,可以将边界层划分为无滑移层、过渡层和主层三个区域。

•无滑移层:靠近壁面的区域,流体速度接近壁面速度,可以视为无滑移状态。

•过渡层:在无滑移层之上的区域,流体速度逐渐增大,但流体分子之间还存在相对滑移。

•主层:在过渡层之上的区域,流体速度增大趋势基本保持不变。

2.2 能量边界层分析能量边界层分析主要研究流体在边界层内的温度和压力变化情况。

在无滑移层内,温度和压力基本保持不变;在过渡层和主层内,存在温度和压力的变化。

3. 边界层理论在实际工程中的应用案例边界层理论在实际工程中有着广泛的应用,下面将介绍一些典型的案例。

3.1 汽车空气动力学研究汽车行驶时会与周围空气发生相互作用,而边界层理论可以帮助研究汽车在高速行驶时的空气动力学特性。

通过分析边界层的速度和压力分布,可以优化汽车外形和设计,减小空气阻力,提高燃油经济性。

3.2 航空气动力学研究在航空工程中,边界层理论被广泛应用于飞机机翼和机身的设计和改进。

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。

a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动。

c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。

边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

流体力学中的层流边界层

流体力学中的层流边界层

流体力学中的层流边界层层流边界层是流体力学中的一个重要概念,它在各种工程和科学领域中都有广泛应用。

层流边界层是指在流动过程中,由于粘滞力的作用,流体贴近固体壁面的区域产生的流动状态。

本文将对层流边界层的定义、特征、形成原因以及应用进行阐述。

一、层流边界层的定义在流体运动中,当流体通过固体壁面时,靠近壁面的流体具有不同于远离壁面的流体的特殊运动状态。

这个靠近固体壁面的区域称为边界层。

边界层内的流动状态受到粘滞力的影响,呈现出较为平稳、有序的特征,这种流动状态被称为层流边界层。

二、层流边界层的特征1. 速度剖面层流边界层内,流体的速度垂直于壁面方向的分布规律可以用速度剖面表达。

速度剖面呈现出在壁面附近速度接近零,向边界层外逐渐增加的趋势。

2. 流体性质变化层流边界层内,由于粘滞力的作用,流体的速度梯度较大,温度和浓度剖面也会发生变化。

例如,流体靠近壁面处的温度较高,随着距离壁面的增加,温度逐渐接近远离壁面的流体的温度。

3. 可压缩性忽略在大多数情况下,层流边界层内的流动速度相对较低,压力梯度较小,因此可以忽略流体的可压缩性。

三、层流边界层的形成原因层流边界层的形成是由于流体与壁面之间的粘滞力。

当流体通过固体壁面时,由于粘滞力的作用,流体贴近壁面处的速度受到壁面的摩擦力约束,而远离壁面的流体则不受这种约束,导致边界层的形成。

四、层流边界层的应用层流边界层的研究对于各个领域都具有重要意义。

以下是几个典型的应用示例:1. 汽车空气动力学设计在汽车设计中,了解层流边界层的运动特征对于减小气动阻力、提高燃油效率至关重要。

通过优化车身的形状、降低边界层内压力梯度等方法,可以改善车辆的空气动力学性能。

2. 飞机气动设计在飞机设计中,减小层流边界层的粘性阻力,提高飞机的升力性能是一个重要的目标。

通过使用特殊材料、采用新的构造方法和减小边界层厚度等措施,可以改善飞机的气动性能。

3. 水力学工程设计在水力学领域,层流边界层的研究对于水流速度分布、压力分布和腐蚀等问题都有着重要的影响。

《水力学》课件——第九章 边界层理论基础

《水力学》课件——第九章 边界层理论基础

位移厚度 1
因为有了边界层,使通
y
过断面的流量比理想流体
流动时减少了
(U ux ) d y
0
δ
0.99U ux
把这些流量折合成理想
流体流动通过一个厚度 1
δ
的流量,这个厚度就叫做
1
位移厚度。
根据定义
u
1 = (1
0
x )d y U
y
0.99U
边界层使来流的流线
向外排挤了位移厚度的
δ
ux
距离,所以位移厚度也
u x (U
0
根据定义
u
2=
x (1 0U
ux) d y u x)d y U
显然, 2< 1
§9—4 平板边界层动量积分方程
对平板绕流的如图区域应用动量方程,进口断面选在平板前缘 处,出口断面离前缘距离为x,出口断面厚度为当地边界层厚度 δ(x),进口断面厚度取为出口断面的δ(x)-δ1(x),这样通过进 口断面和出口断面的流量是相等的,必有一条流线可以连接两 个断面的厚度,用它作为区域的上边界。
一侧摩擦力
Cf =
摩阻系数
1
D
= 1.328 el
U 2 (bl)
R 1/2
2
二.平板紊流边界层
平板紊流边界层兼有 壁面紊流和自由紊流的
① 粘性底层 0 < y+ < 5 ② 过渡区 5 < y+ < 70
性质,在边界层的外 区,流动特性与圆管紊 流有所不同。
③ 紊流区
+>
<
④ 不稳定区
y 0.4
由于平板首部转捩点前必有一段层流边界层,所以不存在全 程为紊流的边界层,只能是混合边界层。按全程为紊流边界层 的摩擦阻力计算应作修正。

流体力学中的边界层理论

流体力学中的边界层理论

流体力学中的边界层理论流体力学是研究流体运动和相互作用的学科。

在流体力学中,边界层理论是一个重要的概念,它描述了流体靠近固体壁面时的流动特性。

本文将介绍流体力学中的边界层理论,从基本原理到应用实例,全面探讨这一理论的重要性和实际价值。

一、边界层现象的定义和意义在流体力学中,边界层是指流体流动中靠近固体表面的一层,其流动特性与远离边界的无限远处的流体不同。

边界层现象的产生和发展对于很多实际问题都具有重要意义。

例如,当空气流过汽车的外表面时,边界层的存在会对气流的分离和阻力产生影响。

准确理解和掌握边界层理论,对于优化设计和改善物体运动性能具有重要作用。

二、边界层理论的基本原理1. 平衡条件边界层理论的基本假设是边界层内的流动是定常流动和局部平衡的。

在这一假设下,可以利用物理量的守恒方程和牛顿运动定律来进行分析和计算。

2. 边界层方程边界层方程是描述边界层内流体运动的关键方程组。

它包括连续性方程、动量方程和能量方程。

这些方程考虑了流体内部各个物理量的平衡和变化,并通过求解边界层方程组可以得到流体在边界层内的运动状态。

3. 粘性效应粘性是边界层理论考虑的一个重要因素。

由于流体的粘性特性,边界层会出现剪切应力和速度剖面变化。

这些粘性效应对于固体表面的摩擦力和阻力产生重要影响,因此必须在边界层理论中加以考虑。

三、边界层理论的应用实例1. 空气动力学在航空航天工程中,边界层理论被广泛应用于翼型设计和气动力分析。

通过准确计算边界层内的流动特性,可以优化飞行器的升力和阻力性能,提高飞行效率。

2. 水力学在水力学领域,边界层理论被用于河流和水泥工程的设计和分析。

通过控制边界层内的水流运动,可以减小底摩擦阻力,提高水流的输送能力。

3. 汽车工程在汽车设计中,边界层理论被用于研究车体表面的空气流动。

通过优化车体形状和减小边界层厚度,可以降低空气阻力,提高汽车的燃油经济性。

四、结语流体力学中的边界层理论是研究流体流动与固体界面相互作用的重要理论框架。

流体力学中的湍流流动与边界层

流体力学中的湍流流动与边界层

流体力学中的湍流流动与边界层流体力学是研究流体运动规律的学科,其中的湍流流动和边界层是流体力学中的重要概念和研究内容。

本文将详细介绍流体力学中的湍流流动和边界层,并探讨它们在实际应用中的重要性。

一、湍流流动湍流是流体力学中流动状态的一种,具有不规则、随机、混沌等特点。

相比于层流流动,湍流流动更为复杂和难以预测,主要体现在流速和压力的不规则变化上。

湍流流动的产生与流体的运动粘滞性、速度梯度和流速等因素有关。

当流体速度达到一定值时,流体内的涡旋和涡核开始发生不断变化与演化,从而形成湍流。

湍流的特点包括涡旋的旋转、涡核的运动、速度的乱流扩散等。

湍流流动在自然界和工程领域中广泛存在。

例如,在大气环流中,气候系统中的飓风和龙卷风就是湍流现象的典型表现。

此外,湍流流动还广泛应用于船舶、飞机、汽车等交通工具的设计和流体动力学的研究中。

二、边界层边界层是流体力学中的一个概念,指的是流体运动中与边界接触的区域。

边界层中的流体速度和压力分布具有明显的变化,可以用来描述流体在壁面附近的流动特性。

边界层主要有两种类型:层流边界层和湍流边界层。

层流边界层是指流体在边界附近以有序的方式流动,流速梯度较小,流体粘性起主导作用。

湍流边界层是指在湍流环境下,流体在边界附近的混乱流动。

边界层的存在对流体运动过程起到了重要作用。

首先,边界层中的摩擦力会对物体表面施加阻力,影响物体的运动。

其次,边界层中的速度分布对流动的稳定性和流体的传热性能产生重要影响。

三、湍流流动与边界层的关系湍流流动与边界层密切相关。

在边界层内,由于速度和压力的不规则变化,往往会导致流动变为湍流。

特别是当流速较大或受到外界扰动时,湍流的发展更加明显。

湍流边界层的存在使得流体在边界附近的运动更为复杂,涡旋和涡核的形成与演化对流动的稳定性和传热传质过程产生了影响。

同时,湍流边界层的存在也为流体的混合和动量交换提供了机会,使得流体的运动更为强烈和混乱。

在实际工程应用中,湍流边界层的研究对于流体动力学分析、流体传热传质等方面具有重要意义。

工程流体力学中的边界层理论与应用

工程流体力学中的边界层理论与应用

工程流体力学中的边界层理论与应用在工程流体力学中,边界层理论是一种重要的理论工具,用于研究流体与固体界面之间的相互作用过程。

边界层理论的应用范围广泛,涉及到多个工程领域,包括工程设计、流动控制、能源开发等。

边界层是流体靠近固体表面处的一层流动区域,其特点是速度梯度大、压力梯度小。

边界层理论的研究主要关注以下几个方面:1. 边界层的形成与发展:在流体运动中,边界层的形成是由于流体与固体表面间接触而发生的。

随着流体沿着固体表面流动,边界层逐渐发展,由初始边界层转变为稳定边界层。

边界层的形成与发展过程对于理解流体力学现象具有重要意义。

2. 边界层中的速度剖面特征:边界层中,流体速度与距离固体表面的距离之间存在一定的关系。

速度剖面特征可以通过边界层厚度、速度剖面形状等参数来描述。

深入研究边界层中速度剖面的特征,有助于预测流体力学现象,优化工程设计。

3. 边界层与摩擦阻力:在工程流体力学中,减小摩擦阻力是一个重要的目标。

边界层的理论研究可以揭示与摩擦阻力相关的机理,提供降低摩擦阻力的方法。

例如,在飞机设计中,通过改变机翼表面的纹理,可以改善边界层的流动特性,减小阻力。

4. 边界层的控制技术:边界层理论的研究还涉及到边界层的控制技术。

通过改变固体表面的形状或施加外部控制手段,可以调控边界层的发展,从而实现对流体运动的控制。

例如,在汽车设计中,通过改变车身形状和设计尾翼来控制边界层的发展,减小阻力,提高汽车的燃油经济性。

边界层理论在工程流体力学中的应用主要包括以下几个方面。

1. 工程设计:边界层理论可以用于优化工程设计,提高流体系统的性能。

例如,通过研究边界层的流动特性,可以确定合适的管道尺寸、形状和布局,以减小阻力、提高流量。

边界层理论还可以用于研究涡轮机械中叶轮叶片的设计,以减小流体与叶片间的阻力,提高能量转化效率。

2. 流动控制:边界层理论可以指导流动控制技术的设计与实施。

通过对边界层的控制,可以改变流体的速度剖面和流动阻力,实现对流动的精确控制。

流体力学chap.7 边界层理论基础

流体力学chap.7  边界层理论基础
Re = Ux
ν
x为离平板前缘点的距离
对于平板,层流转变为湍流的临界雷诺数为 对于平板,层流转变为湍流的临界雷诺数为: 临界雷诺数
R e kp
U x kp
ν
= 5 × 105
层流边界层转为湍流边界层转捩点的位置坐标 层流边界层转为湍流边界层转捩点的位置坐标
x kp = 5 × 1 0
7 边界层理论基础 ( Elementary on Boundary layer theory) )
• 7. 1 边界层的基本概念
• 7. 2 层流边界层 • 7. 3 紊流边界层方程 • 7.4 边界层的动量积分及能量积分 • 7.5 边界层分离 • 7.6 绕流阻力
1
7. 1 边界层的基本概念
∂ ux U ∂ u′ x = 2 2 ∂x 2 α L L ∂y′2
2 2
,
∂ 2u y
∂ 2u ′ U y = αU 2 2 ∂x L ∂x′2
∂ ux U ∂ u′ x = 2 2 ∂y 2 α L L ∂y′2 ∂p p0 ∂p′ = ∂x L ∂x′
2 2
∂ 2 u y αU U ∂ 2 u ′ y , 2 = 2 2 ∂y α L L ∂y′2 p0 ∂p′ ∂p , = ∂y α L L ∂y′
y
′ ′ ′ ′ ∂ux αU ∂ux ∂p′ 1 ∂2ux 1 ∂2ux u′ M′ : x ′ + u′ ′ =− ′ + ( 2 + 2 2 ) x ∂x αL y ∂y ∂x ReL ∂x′ αL ∂y′
∂u′ αU ∂u′ ∂2u′ 1 ∂2u′ y ′ y + u y y = − 1 ∂p′ + 1 ( y + 2 ) u M′y:x ∂x′ α ∂y′ α α ∂y′ Re ∂x′2 α L ∂y′2 L U L L

工程流体力学中的边界层理论与应用分析

工程流体力学中的边界层理论与应用分析

工程流体力学中的边界层理论与应用分析工程流体力学是研究流体在工程中的力学性质和运动规律的学科,对于工程流体力学的研究,边界层理论与应用分析是一个重要的方向。

边界层是指在流体与固体表面接触处形成的一层流体,其性质和流动规律与远离固体表面的自由流体存在差异。

边界层理论主要研究边界层内的速度剖面、压力分布等参数。

边界层可以分为无粘和粘性边界层,其中粘性边界层是指存在粘性阻力的情况。

边界层理论在工程流体力学中的应用非常广泛,下面将从不同的领域介绍边界层理论的应用分析。

在空气动力学领域中,边界层理论被广泛用于研究飞行器表面的阻力和升力。

通过分析边界层内的速度剖面和压力分布,可以确定表面阻力的大小和性质,从而设计出形状合理的飞行器,并进行飞行性能的预测和优化。

在船舶工程中,边界层理论可以用于研究船体表面的水动力性能。

由于船体往往是复杂的几何形状,通过边界层理论可以对船体表面的粘性阻力进行分析和计算,为减少阻力、提高速度和降低耗能提供指导。

在地下水力学中,边界层理论可以用于研究地下水的渗流过程。

地下水与地下土壤之间的边界层对渗流的速度分布和水力梯度有重要影响,通过边界层理论的分析,可以更好地理解和预测地下水的渗流行为,为地下水资源的管理和利用提供科学依据。

在石油工程领域中,边界层理论被应用于油井开采过程中的油水两相流动研究。

边界层理论可以用于分析油井壁面上的粘性阻力和表面张力对油水两相流动的影响,从而指导油井的生产优化和多相流模拟。

此外,边界层理论还可以应用于工程中的热传导和传热问题、湍流流动和紊流的研究、污染物输运和混合过程的分析等。

总之,边界层理论与应用分析在工程流体力学中起着重要的作用。

通过对边界层内的速度剖面、压力分布等参数的研究,可以更准确地描述流体在工程中的行为并进行性能分析。

边界层的研究和应用将为工程设计、优化和控制提供重要的理论依据和实践指导。

边界层理论及边界层分离现象

边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。

但对于工程流动问题,绝大多数的Re很大。

这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。

突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。

”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。

2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。

(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。

所以可忽略粘性力(即忽略法向动量传递)。

可按理想流体处理,Euler方程适用。

这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。

Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。

(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。

通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts-t0) ≈ ts-t0,δt 为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。

流体力学第六章 边界层理论

流体力学第六章 边界层理论
v ? y
流体力学第六章
流体力学第六章
Q
v
uv
u dy
udy U
y x 0 0 x
x 0

0
uK1
v y
dy
0
uK1
u x
dy
1 K
2
0
x
uK2dy
1 K
2
x
0
uK2dy
U K2
于是第二个积分
vuKudy
v
0
y K10 y
uK1
dyK1(x10u(dyU uK2)U dyK1UK2)
流体力学第六章
u
u x
v
u y
p x
2u y 2
已知普朗特方程组
p y
0
u x
v y
0
0
uk 1
udy x
0
ukv
udy y
p x
0
uk dy
0
uk
2u y2 dy
积分一
积分二
积分三
其中 (x)
(6 2 1)
流体力学第六章
b(x) a(x)
ddxx(x)dx
x 0
0
uk1
u y
2
dy
uk2dy Uk1
udy
k 1 x 0
k 1 x 0
p x
0
uk
dy
k
0
uk1
u y
2 dy
(6-2-3)
流体力学第六章
uk2dyUk1 udy
k1 x 0
k1x0
px0ukdyk0uk1uy2dy
(6-2-3)
上式为哥路别夫积分方程。

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。

a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动。

c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。

边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

流体力学第六章边界层理论(附面层理论)

流体力学第六章边界层理论(附面层理论)
减阻和节能
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。

边界层理论

边界层理论
19世纪中,随着航海、水利工程等的迅速发展,流体力学的另一个重要分支,研究不可压缩粘性流体流动的 水力学得到很大的发展。它是建立在大量实验测量的基础上。当时如哈根、泊肃叶、雷诺等用实验研究水和其他 粘性流体在管道和槽渠中流动时的阻力和压强损失问题、得到的有关粘性流体的实验研究成果,有助于解决某些 工程实际问题。但由于水力学在理论指导上的不足,由实验成果得出的经验公式和半经验理论公式有一定的局限 性。于是在19世纪中叶产生了粘性流体运动的理论,1827年,纳维尔在欧拉运动微分方程中加上粘性项,第一个 得到粘性流体运动微分方程。1846年,斯托克斯严格地导出了这个方程,称为纳维尔-斯托克斯方程,简称N-S方 程。虽然N-S方程对粘性流体流动问题的研究分析有所帮助,但对这个方程数学上的求解是十分复杂和困难的。 1851年,斯托克斯对N-S方程作了某些简化,略去方程中的惯性项,也就是在非常缓慢的流体流动条件下,计算 出球体在流动的粘性流体中所受到的阻力。
边界层方程组
边界层方程组
不可压缩流体在大雷诺数的层流情况下绕过平滑壁面的情况。在此考虑二维定常不可压缩流动。规定沿物体 壁面的方向为x轴,垂直于壁面的方向为y轴。由于边界层厚度δ比物面特征尺寸L小得多,因此对二维的忽略重 力的纳维-斯托克斯方程逐项进行数量级分析,在忽略数量级小的各项后,可近似认为边界层垂直方向的压力不 变,从而得到层流边界层方程组为:
发展
1907年,布拉修斯成功地应用边界层理论计算在流体中运动物体的摩擦阻力。1921年,卡门和波耳豪森提 出了边界层动能积分方程,以计算边界层问题,这个方程经霍尔斯坦-博伦(1940)和瓦茨进行简化和改进,到 现在还被广泛应用。另外边界层动能积分方程和热能积分方程分别由莱本森和弗兰克尔提出。这三个边界层的近 似计算方法使边界层理论在工程界中很快地推广开来。1925年,普朗特提出的混合长度理论和1930年卡门提出的 相似性理论,将边界层理论推广到紊流边界层、射流和物体后的尾迹流中去。从层流向紊流的转捩现象是流体动 力学中的基本现象。早在19世纪末,雷诺就首先对转捩现象进行了研究。1914年,普朗特做了著名的圆球实验, 正确地指出:边界层中的流动可以是层流的,也可以是紊流的,还指出边界层分离的问题,因此计算阻力的问题 是受这种转捩支配的。从层流向紊流的转捩过程的理论研究,是以雷诺的假设为基础的,即承认紊流是由于层流 边界层产生不稳定性的结果。1921年,普朗特开始进行转捩的理论研究,1929年获得成功。当时托尔明从理论上 算出零冲角平板转捩的临界雷诺数,后被别人所进行非常仔细的实验所证实。稳定性理论能够考虑到对转捩有影 响的压强梯度、抽吸、马赫数和传热等许多因素。这个理论已得到很多重要的应用,如设计阻力非常小的层流翼 型。

第七章 边界层理论

第七章 边界层理论

其中 Re = ρV∞ L μ
因为δ * = δ L ~ 1
Re ,所以当Re很大时, ∗ δ
<< 1
根据这点,来估计N-S方程中的各项量级大 * x * ~ O (1), Vx ~ O (1),这样 ∂Vx* ∂x* ~ O (1, ) 小。首先假设 又因为 y* ~ O (δ * ),所以按照连续方程,可得

δ
0
ρu (U − u )dy
不可压流
=

δ
0
u U
u⎞ ⎛ ⎜1 − ⎟ ⎝ U⎠
◎能量损失厚度 能量损失为
1 δ (ρ0 uU 2 − ρu 3 )dy 2 ∫0
主流在单位时间内通过某个厚度δ 3 的能量为
1 2 ρ 0U 3δ 3 因此能量(损失)厚度为
不可压流 δ u 1 δ δ3 = ρu (U 2 − u 2 )dy = ∫ 0 U ρ 0U 3 ∫0
关于湍流边界层中的速度分布,形式和经 验公式都很多。 有时,着眼于边界层内的流速与外部主流 流速的差额,因此可采用所谓的亏损律分布形 式。所谓亏损,是主流流速减去边界层内的流 速,而亏损律是把这个差值通过摩擦速度和无 量纲离壁距离表示的函数。 对于湍流边界层的外层,因为湍流是间歇 性的,所以采用另一个分布函数形式,称为尾 迹律。 请参见Schlishting的《边界层理论》。
[5]边界层的厚度 ◎位移厚度——由于边界层的存在,实际流过 边界层内的流体质量比理想情况时的减小,其 δ 减小量为
∫ (ρ U − ρu )dy
0 0
设这个减小量与主流流过的厚度为δ 1 的流层内 的流量 ρ 0Uδ 1 相等,则
1 δ1 = ρ0U
∫ (ρ U − ρu )dy

流体力学教案第8章边界层理 论

流体力学教案第8章边界层理    论
§8-3 边界层动量积分方程
一、边界层动量积分方程 由卡门在1921年提出。 推导前提:二元定常,忽略质量力,且u>>υ(由边界层微分方程的数
量级比较可看出),所以只考虑x方向的动量变化,不引入y方向的流速 υ。
w d p
dx x
A C B D
x y y dy 图 8-6 边界层微元控制体
取控制体如图所示,沿边界层取一块面积ABDC,AB、CD为两通直 线,且垂直壁面的两者相距dx,BD为壁面,并且也为x轴。AC为边界层 的外边界线(并非流线)。垂直纸面(黑板面)方向的尺寸为1,则单位时间 内:
再把上面的五个系数代入(2)式,得第一个补充关系式,即层流边界层 中的速度分布规律为:
再对上式求导,并利用牛顿内摩擦定律,得: (3)
再将上式代入(1)式求积分,则得到: (4) (5)
将(3),(4),(5)代入(1)式,得:
,积分得:
确定积分常数C,x=0,=0,C=0,于是得: , 它的精确解为,并且的表达式为的三次方时,得出的解比四次方精 确。其系数为4.64。因此,不能认为选择速度分布时,多项式数越多越 好。 由上式可看出:x—>;V—>。 将表达式,代入(c)式,得切向应力: 从上式可以看出:沿平板长度方向(x方向),越来越小,这是因随x, 速度边界层越来越厚,边界层内速度变化渐趋缓和之故。 总摩擦阻力为:
边界条件中,y=0,u=υ=0;y=δ,u=u(x),对沿平壁面而 言y=δ,u=1。 上式即为层流边界层微分方程,又称为普朗特边界层方程,由普朗特在 1904年提出。
从(3)还可以得到一个重要结论,在边界层内,即边界层横截面上应 点压力相等,即p=f(x),而边界层外界上及边界层以外,由势流伯努利 方程: 求导,则:

流体力学中的边界层

流体力学中的边界层

流体力学中的边界层流体力学是研究流体运动的科学,涵盖了很多重要的概念和理论。

其中之一就是边界层,它在流体力学中扮演着重要的角色。

本文将介绍边界层的概念、作用以及其在工程和科学中的应用。

一、边界层的概念边界层是指在流体与固体物体的接触面附近,流体运动速度发生显著变化的层次。

在边界层内,流体分子与固体表面的相互作用,导致了速度、压力和温度等物理量的变化。

边界层可以分为无粘边界层和粘性边界层,具体取决于流体是否具有粘性。

二、边界层的作用边界层对于流体的运动和传热过程具有重要的影响,它在以下几个方面起着关键作用:1. 摩擦阻力:边界层内的粘性作用会导致摩擦阻力的产生。

流体在流过固体物体表面时,边界层内的粘性力会减慢流体的速度,从而产生摩擦阻力。

2. 热传导:边界层内的温度梯度会导致热传导的发生。

热源与冷源之间存在温度差异时,边界层内的热传导可以将热量从高温区域传递到低温区域。

3. 质量传递:边界层在质量传递中也发挥重要作用。

例如,当气体与固体表面接触时,边界层内的质量传递可以导致蒸发或脱湿的发生。

三、边界层的应用边界层的研究在许多工程和科学领域中具有广泛的应用。

以下是一些典型的应用案例:1. 空气动力学:在航空航天领域,边界层的研究对于飞行器的气动设计至关重要。

了解边界层的流动特性可以优化飞行器的气动性能和减小阻力。

2. 汽车工程:在汽车设计中,了解边界层有助于减小车辆的气动阻力,并提高燃油效率。

例如,在车身的设计上,通过合理地改变车身形状,可以降低边界层内的摩擦阻力。

3. 能源工程:在能源领域,边界层的研究有助于提高燃烧过程的效率。

通过优化燃烧室内的边界层流动,可以实现更充分的燃烧和减少有害气体的排放。

4. 生物医学:在生物医学领域,边界层的研究对于理解血液流动和呼吸系统等生理过程至关重要。

深入了解边界层内的流体动力学可以帮助研究人员更好地理解相关疾病并提出相应的治疗方法。

总结:边界层在流体力学中扮演着重要的角色,对于流体的运动特性和传热过程具有关键的影响。

边界层理论及边界层分离现象

边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。

但对于工程流动问题,绝大多数的Re很大。

这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。

突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。

”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。

2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。

(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。

所以可忽略粘性力(即忽略法向动量传递)。

可按理想流体处理,Euler方程适用。

这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。

Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。

(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。

通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts -t0) ≈ ts-t0,δt为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y=
νL U
y
ϕ =ψϕ
将(11-9)代入(11-7)式,得
ψ 2 ∂ϕ (
L(νUL ) ∂y
∂ 2ϕ ∂x∂y
− ∂ϕ ∂x
∂2ϕ ∂y 2
)
=
ν
ψ (νUL )3/ 2
∂3ϕ ∂y3
ψ νUL
( ∂ϕ ∂y
∂2ϕ ∂x∂y

∂ϕ ∂x
∂2ϕ ∂y2 )
=
∂3ϕ ∂y3
边界条件化为:
ν L y = 0, ψ ∂ϕ = 0, ψ ∂ϕ = 0
讨论:
Prandtl 边界层方程中第二个方程: ∂p = 0 。说明了什么? ∂y
说明了: P1 = P2 = P3 = 0
p0 p1
p2
Prandtl 边界层方程的求解:
Blasius 解----顺流放置无限长平板上的层流边界层流动。 均匀来流平行于平板,x轴平行于板面,原点在平板前缘,平板极薄且无曲 度,边界层外缘处速度为来流速度U。沿边界层外缘上各点上压力相同,即 dp = 0 。 dx
U
ν L ∂y
L ∂x
U
ν L y → ∞ , ψ ∂ϕ = U
U
ν L ∂y
U
(11-9) (11-10) (11-11)
(11-12)
若令ψ = νUL ,则方程和边界条件都将变成无量纲的形式,并且其中不再
显含ν和U。
∂ ϕ ∂ 2ϕ − ∂ ϕ ∂ 2ϕ
∂y ∂x∂y
∂x ∂y2
y = 0,
∂ϕ = 0, ∂x

U⎤
ν
x
⎥ ⎦
将ψ代入(11-17)式求解
(11-17)
∂ϕ = νUx dϕ dη = νUxϕ ⋅ 1 U = 1 Uϕ′(η)
∂y
dη dy
2 νx 2
∂ 2ϕ ∂y 2
=
1U 4
U ϕ′′(η) νx
∂3ϕ = 1 U 2 ϕ′′′(η) ∂y3 8 ν x
∂ϕ = 1 Uν [ϕ(η) −ηϕ′(η)] ∂x 2 ν x ∂2ϕ = − 1 U ηϕ′′(η) ∂x∂y 4 x
表 11-1 给出问题的数值解,其中 1 ϕ′(η) = vx 就是边界层内无量纲的速
2
U
度分布。
例 11.1 本例说明上表 11-1 的用法。
(1) 欲求边界层内点(x,y)的速度 Vx(x,y)可将x及y的值代入η = 1 y U , 2 νx
1
中得出η值,由此值从上表中找出相应的
ϕ
′ (η
)
平板上u=0u=0
边界层内粘 性力不可忽
一薄层内速度这
∂vx
梯度 ∂y 很大
边界层外边界
U99%
边界层名义厚度 :外边界上流速达到 U99%的点到物面的法向距离 边界层厚度:
根据速度分布的特点,可将流场分为两个区域:
一、边界层:
∂vx 1.这一薄层内速度梯度 ∂y 很大。
2.边界层内的流动是有旋流动 ωz
Karman 动量积分方程方程,就是一种近似求解边界层问题的方法。
§8-3 边界层动量积分方程
应用动量定理来研究边界层内单位时间内沿x方向的动量变化 和外力之间的关系。
设流动定
控制体边界ABCD
单位时间内经过AB面流入的质量和带入的动量分别为:
∫ ∫ mAB =
δ 0
ρuxdy
K AB =
δ 0
上述边界层方程简化为:
vx
∂vx ∂x
+
vy
∂vx ∂y

∂ 2vx ∂x2
∂vx + ∂vy = 0
∂x
∂y
(11-5)
边界条件: y=0, Vx = 0,Vy = 0 ; y→∞,Vx = U 。
严格上,速度从零增至U须经过无限远距离,近似认为y=δ,Vx = U 。
引入流函数ψ,与速度的关系为:
1) 边界层厚度较物体特征长度小得多,即:
δ′= δ
1
L
2)边界层内粘性力和惯性力具有相同的数量级以此作为基本假定,将
N-S 方程(二维)化简:
vx
∂vx ∂x
+
vy
∂vx ∂y
=−
1 ρ
∂p ∂x

(
∂ 2v x ∂x 2
+
∂ 2v x ∂y 2
)
vx
∂vy ∂x
+
vy
∂vy ∂y
=−
1 ρ
∂p ∂y
Rekp
=
(Ux ν
)
kp
= Uxkp ν
= 5×105
层流边界层转为湍流边界层转捩点的位置坐标
§8-2
xkp
=
5 ×105
ν U
边界层基本微分方程
(11-1)
粘性不可压缩流体,不计质量力,定常流过小曲率物体,物体表 面可近似当作平面。
取物面法线为y轴。在大 Re 数情况下的边界层流动有下面两个主要性质:
N-S 方程理论上完备但求解困难。解决(求解)工程实际问题大多局限于小雷 诺数流动问题。高 Re 时(量级在106 ~ 109 的范围),粘性力与惯性力相比是很小的。 1904 年,L.Prandtl 指出,对于粘性很小的流体(如空气、水),粘性对流动的影 响仅限于贴近固体表面的一个薄层内,这一薄层以外,粘性完全可以忽略。
ux
=
∂ψ ∂y
ux
=

∂ψ ∂x
(11-6)
将其代入简化后的边界层方程第一式有:
∂ ψ ∂ 2ψ − ∂ ψ ∂ 2ψ = ν ∂ 3ψ
∂y ∂x∂y ∂x ∂y 2
∂y3
(11-7)
边界条件: y = 0
∂ψ = 0 ∂y
∂ψ = 0 x>0 ∂x
y→∞
∂ψ = U ∂y
若求出了流函数ψ,便可求出速度,ψ应是x,y的函数,且ψ中包含ν和
所以
∂v′x = ∂v′x , ∂y′ ∂x′
∂v′x ~ 1, ∂x′
所以
∂v′y ~ 1, ∂y′
v′y ~ δ ′
∂ 2 v′x ∂x′2
~ 1,
∂v′y ~ δ ′,
∂x′
∂v′y ~ 1 ,
∂y′ δ ′ ∂2v′y ~ δ ′
∂x′2
∂v′x ~ 1
∂y′ δ ′′
(a )
(b )
(c)
(11-14)式应采取如下形式:
ϕ(x, y) = xϕ( y ) x
(11-16)
返回为有量纲解时,不出现L,即 :
ϕ = ν U x ϕ (η )
η=1y U 2 νx
(11-18)
通过以上分析,来求解下列形式的ψ。
⎡y⎤
ϕ=
νUL
x
⎢ ⎢
L⎢
⎢ ⎣
νL ⎥
U ⎥=
x⎥
L
⎥ ⎦
⎡ νUxϕ ⎢ y
y → ∞,
∂ϕ = 1 ∂y
= ∂ 3ϕ ∂y 3 ∂ϕ = 0 ∂y
(11-13)
这就是无量纲运动方程及边界条件,可见不再显含ν及U,其解也应该不包
含ν及U。
即 :ψ =ψ (x, y) (11-14)
ϕ = νULϕ ( x , y )
求出 ϕ ,则ψ为:
L νL
U
(11-15)
注意:
平板为半无限长即没有任何特征长度,故其解不应包含L(只是任选的长度 比例尺),而只应该包含ν和U。
边界层:在固体壁面附近,显著地受到粘性影响的这一薄层。从边界层厚
度很小这个前提出发,Prandtl 率先建立了边界层内粘性流体运动的简化方程,
开创了近代流体力学的一个分支—边界层理论。
均匀来流绕一薄平板流动,微型批托管测得沿平板垂直方向的速度分布如 下图:
与来流速度相同的量级,U99% 均 匀 来 流 速 度
于是
τ 0 = 0.332
μρU 2 x
上式可看出平板层流边界层局部摩擦切应力与x坐标的平方根成反比的规
律随着x的增加而减小。
现计算整个平板上总摩擦阻力。设板长为L,板宽为b,则平板单面总摩擦
阻力是:
∫ ∫ Rf =

0
0bdx
=b
L
0.332
0
μρU 3 dx = 0.664 x
μρ LU 3
总摩擦阻力系数 C f 由下式确定:
第 8 章 粘性流体动力学基础
本章内容:
1.边界层基本概念 2.边界层基本微分方程 3.边界层动量方程 4.边界层排挤厚度和动量损失厚度 5.平板层流边界层 6.平板湍流边界层 7.平板混合边界层 8. 船体摩擦阻力计算 9.曲面边界层分离现象 10. 绕流物体的阻力 11.减少粘性阻力的方法
§8-1 边界层的概念
(11-19)
将上式代入方程(11-7),有
φ′′′ + φφ′′ = 0
φ满足的是三阶非线性常微分方程
(11-20)
边界条件为:
η=0, φ=0, φ′=0 η→∞, φ′=2 非线性的微分方程,得不到解析解。采用级数展开办法,或者直接进行数值 积分。由于φ和η均为无量纲量,且在方程及边界条件中只有纯数而不显含ν及 U,故所得结果可以一劳永逸地应用。
∂v′x ∂x′
+ v′y
∂v′x ∂y′
=

∂p′ ∂x′
+
1 Re
(
∂ 2 v′x ∂x′2
+
∂ 2 v′x ∂y′2
)
1⋅1
δ2⋅1
δ
(δ 2 )
相关文档
最新文档