重庆理工大学概率论与数理统计练习册(理工类)详细答案
重庆理工大学概率论试卷和答案
重庆理⼯⼤学概率论试卷和答案重庆理⼯⼤学概率论试卷和答案概率与数理统计复习资料⼀、单选1. 设随机事件与互不相容,且则()A. )B.C. D.2. 设,为随机事件,, ,则必有()A. B. C. D.3. 将两封信随机地投⼊四个邮筒中,则未向前⾯两个邮筒投信的概率为()A. B. C. D.4. 某⼈连续向⼀⽬标射击,每次命中⽬标的概率为,他连续射击直到命中为⽌,则射击次数为的概率是()A. B. C. D.5. 已知随机变量的概率密度为,令,则的概率密度为()A. B. C. D.6. 如果函数是某连续随机变量 X 的概率密度,则区间可以是()A. B. C. D.7. 下列各函数中是随机变量分布函数的为()A. B.C.D.8. 设⼆维随机向量( X,Y )的联合分布列为() Y X 01210 2则A. B. C. D.9. 已知随机变量和相互独⽴,且它们分别在区间和上服从均匀分布,则() A. B. C.D.10. 设为标准正态分布函数,,且,相互独⽴。
令,则由中⼼极限定理知 Y 的分布函数近似于()A. B. C. D.11. 设随机事件 A 与 B 互不相容,且有 P(A)>0 , P(B)>0 ,则下列关系成⽴的是( )A. A , B 相互独⽴B. A , B 不相互独⽴C. A , B 互为对⽴事件D. A , B 不互为对⽴事件12. 已知 P(A)=0.3 , P(B)=0.5 ,P(A ∪ B)=0.6 ,则 P(AB)=( ).A. 0.15B. 0.2 C . 0.8 D. 113. 设随机变量 X 的概率密度为 f(x) ,则 f(x) ⼀定满⾜()A.0 ≤ f(x) ≤ 1B.C.D.f(+ ∞ )=114. 从 0 , 1 ,…, 9 ⼗个数字中随机地有放回地接连抽取四个数字,则“ 8 ” ⾄少出现⼀次的概率为 ( )A.0. 1B. 0.3439C. 0.4D. 0.656115. 设⼀批产品共有 1000 个,其中有 50 个次品。
重庆理工大学2012-2013概率统计A(A卷)
2012~ 2013学年第一学期考查试卷课程序号 班级 学号 姓名 ____________1.设 5.0)(=A P ,4.0)(=B P ,则下列结论中正确的是 ( ) (A)9.0)(=B A P (B) 1.0)(=-B A P (C)2.0)(=AB P (D) B A ⊄.2.一个宿舍4个学生中恰好有2人生日在1月份的概率是 ( )(A)22441112C (B) 244111012C ⨯ (C) 241112 (D) 4111012⨯3.设随机变量1X ,2X 的分布函数分别为)(1x F ,)(2x F ,且1X 与2X 相互独立,则下列函数中为某个随机变量分布函数的是 ( ) (A) )(1x F )(2x F + (B) )(1x F )(2x F - (C) )()(21x F x F (D) )(1x F 1)(2-+x F4.设随机变量)1,0(~N X ,则X Y 2=的概率密度为 ( ) (A)8221y e-π(B)82221y e-π(C)22221y e-π(D)8222y e-π5.若X 服从(1,5)-上的均匀分布,则()E X ,()D X 分别为 ( ) (A) 2,3 (B) 3,3 (C) 3,2 (D) 2,26.设,21,4)(,1)(-===XY Y D X D ρ则=-)2(Y X D ( )(A) 8 (B) 9 (C) 10 (D) 127.据医学统计,心肌梗塞病人约70%有先兆症状,某医院收治了100名心肌梗塞病人,其中有先兆症状的病人数为X ,则下列结论中错误的是 ( ) (A) )7.0,100(~B X (B) 20803.07.0}80{==X P(C) )21,70(~N X 近似(D) 8070{80}21P X -⎛⎫≤≈Φ ⎪⎝⎭8.若2212()~(1)Y a X X χ=+,其中12,X X 是取自正态总体)1,0(N 的样本,则 ( )(A) 14a = (B) 4a = (C) 12a = (D) 2a =二、填空题(本题共8小题,每小题3分,共24分,将答案填在下面对应的空格中) 1.两个学生参加某个公司的招聘会,被聘用的概率分别为0.6和0.7,则两个学生至少有一人被该公司聘用的概率为 .2.设随机变量X 的概率密度为⎩⎨⎧∉∈+=)1,0(,0)1,0(),1()(x x x kx x f ,则常数=k .3.甲乙两支乒乓球队计划进行10场比赛,假设甲队获胜X 场,乙队获胜Y 场,则X 与Y 的相关系数=XY ρ .4.设总体X 服从参数为λ的泊松分布,X 为样本均值,容量为n ,则()D X = . 5.设总体X 的分布律为(210<<θ)为未其中θ知参数,若样本均值23=x ,则参数θ的矩估计值=θˆ . 6.设321,,X X X 是来自总体X 的样本,下列总体均值μ的无偏估计量中最有效的是 .3211213161X X X Y ++=,3212214141X X X Y ++=,3213313131X X X Y ++=7.从去年死亡的人中随机选取100人,其平均寿命为71.8岁,标准差为8.9岁,假设人的寿命服从正态分布,在显著水平01.0=α下,是否可以认为现在人的平均寿命μ已经超过了70岁?则在假设检验中,原假设0H 应选为 . 8.根据成年男性身高x (m)与体重y (kg)的抽样数据计算得到1.757,67.597,0.0384, 4.6464,678.4,xx xy yy x y L L L =====则成年男性体重y 关于身高x 的线性回归方程为=y ˆ .三、(10分)有个学生把钥匙丢了,钥匙丢在宿舍、教室或路上的概率分别为0.4、0.35、0.25,而在这些地方找到钥匙的概率分别为0.9、0.3、0.1,(1)求该学生找到钥匙的概率;(2)若钥匙已经找到,求当初钥匙的确是丢在了宿舍的概率.X 0 1 2 3k p 2θ )1(2θθ- 2θ θ21-四、(10分)设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧∉∈=Gy x Gy x y x f ),(,0),(,1),(,其中区域G 由1,==y x y 所围成.(1) 求关于X 、Y 的边缘概率密度)(x f X 、)(y f Y ,并由此判断X 与Y 是否相互独立? (2)求)(X E ,)(Y E ,)(XY E ,并由此判断X 与Y 是否互不相关?五、(10分)设总体X 的概率密度为x e x f λλ2)(-=(0>λ),求参数λ的极大似然估计.六、(7分)一台机器生产圆柱形金属片,从中提取样本,直径(cm )分别为1.01,0.97,1.03,1.04,0.99,0.98,0.99,1.01,1.03,1.02.假设金属片的直径服从正态分布,求这台机器生产的金属片直径均值置信度为99%的置信区间.七、(10分)在A 班随机抽取9位学生的线性代数课程的考试成绩,得到样本方差为11021=S ,在B 班随机抽取4位学生的线性代数课程的考试成绩,得到样本方差为17422=S .假设学生的考试成绩服从正态分布,可否认为2221σσ=(50.0=α)?八、(5分)设关于,X Y 的边缘分布律分别为且{0}1P XY ==,求(,)X Y 的联合分布律.数理统计公式表及数据一.正态总体均值、方差置信水平为1α-的双侧置信区间待估参数其他参数置信区间μ2σ已知 2()X z nασ±μ 2σ未知)1((2-±n t nS X α2σμ未知))1()1(,)1()1((2212222-----n S n n S n ααχχ二.两个正态总体均值差、方差比的置信水平为1α-的置信区间待估参数 其他参数 置信区间X1- 0 1.i p14 12 14Y0 1 .j p12 1221μμ-2221,σσ已知)(2221212n σn σZ Y X α+±-2221,σσ未知,但22221σσσ==)11)2((21212n n S n n t Y X Wα+-+±- 2221/σσ μ1,μ2未知22212121212222/((1,1))(1,1)ααS S S F n n F n n S ----, 其中2)1()1(212222112-+-+-=n n S n S n S W三:正态总体均值、方差的检验法(显著性水平为α)原假设0H备择假设1H检验统计量拒绝域0μμ≤ 0μμ≥ 0μμ= (2σ未知)0μμ> 0μμ< 0μμ≠nS X T 0μ-=)1(-≥n t T α )1(--≤n t T α)1(2-≥n t T α21μμ≤ 21μμ≥ 21μμ= (22221σσσ==未知)21μμ> 21μμ< 21μμ≠ 2111n n S Y X T w+-=2)1()1(212222112-+-+-=n n S n S n S w )2(21-+≥n n t T α )2(21-+-≤n n t T α)2(212-+≥n n t T α2212σσ=2212σσ≤ 2212σσ≥ (21,μμ未知)2212σσ≠2212σσ> 2212σσ<2221S S F =()1221,1F F n n α≥--或()12121,1F Fn n α-≤-- ()121,1F F n n α>-- ()1121,1F F n n α-<--四:数据:(1.645)0.95Φ=, (1.96)0.975Φ=, (2.575)0.995Φ=, (9)=2.82140.01t , 0.005(9) 3.2498t = ,0.05(8,3)8.85F =, 0.05(3,8)4.07F =, 0.025(8,3)14.54F =, 0.025(3,8) 5.42F =。
重庆理工大学概率论与数理统计_学习指导与练习册习题答案
1 / 24习题一一.填空题一.填空题1.ABC 2、50× 3、20× 4、60× 二.单项选择题二.单项选择题 1、B 2、C 3、C 4、A 5、B 三.计算题三.计算题 1.(1)略)略 (2)A 、321A A AB 、321A A A ÈÈC 、321321321A A A A A A A A A ÈÈD 、321321321321A A A A A A A A A A A A ÈÈÈ 2.解.解)()()()(AB P B P A P B A P -+=È=85812141=-+83)()()()(=-=-=AB P B P AB B P B A P87)(1)(=-=AB P AB P21)()()])([(=-È=ÈAB P B A P AB B A P3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C 4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=ÈÈ=855.解:(1)n Nn A P !)(=(2)nn NNn C B P !)(=、 (3)nmn m n N N C C P --=)1()(习题二一.填空题一.填空题1.0.8 2、50× 3、32 4、735、43 二.单项选择题二.单项选择题 1、D 2、B 3、D 4、B 三.计算题三.计算题1. 解:设i A :分别表示甲、乙、丙厂的产品(i =1,2,3) B :顾客买到正品:顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=´+´+´ 8334)()/()()/(222==B P A B P A P B A P2.解:设iA :表示第i 箱产品(i =1,2)i B :第i 次取到一等品(i =1,2) (1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=´+´ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P +=19423.02917301821499501021=´´+´´ 4856.04.019423.0)()()/(12112===B P B B P B B P (4)4856.04.019423.0)()()/(212121===B P B B P B B P 3. 解:设i A :表示第i 次电话接通(i =1,2,3)101)(1=A P 10191109)(21=´=A A P1018198109)(321=´´=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++如已知最后一位是奇数,则如已知最后一位是奇数,则51)(1=A P 514154)(21=´=A A P51314354)(321=´´=A A A P 所以拨号不超过三次接通电话的概率为60515151=++ 4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=ÈÈ-=ÈÈ=6.04332541=-5.解:设21,B B 分别表示发出信号“A ”及“B ” 21,A A 分别表示收到信号“A ”及“B ”)/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A P B A P B P A P B A P A B P第一章 复习题一.填空题一.填空题1.0.3,0.5 2、0.2 3、2120 4、153,1535、158,32,31 6.4)1(1p --二.单项选择题二.单项选择题1、B2、B3、 D4、D5、A 三.计算题三.计算题1. 解:设i A :i 个人击中飞机(i =0,1,2,3) 则09.0)(0=A P 36.0)(1=A P 41.0)(2=A P 14.0)(3=A PB :飞机被击落:飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(00A B P A P +=458.0009.0114.06.041.02.036.0=´+´+´+´ 2.解:设i A : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况:)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0××C打五局,概率122246.06.04.0××CP (甲胜)=36.0+11221136.06.04.0××C +1122222246.06.04.0××C =0.68256 (2)93606.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321321212121=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案:知道答案 B :填对:填对)/()()(A B P A P B P =475.0417.013.0)/()(=´+´=+A B P A P197475.0417.0)()/()()()()/(=´===B P A B P A P B P B A P B A P 4.解:设iA :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到:迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=´+´+´+´2120341103)()/()()()()/(11111=´===B P A B P A P B P B A P B A P同理94)/(2=B A P 181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球:乙袋中取红球)()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=È =40211610106166104=´+´习题三 第二章 随机变量及其分布一、填空题一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <ìï£<ï=í£<ïï³î6、113~0.40.40.2X -éùêúëû二、单项选择题二、单项选择题1、B2、A3、B4、B 三、计算题三、计算题1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2,...,15)kk kP X k C k -===至少有两人的概率:(2)1(2)1(0)(1)0.833P X P X P X P X ³=-<=-=-==多于13人的概率:(13)(14)(15)P X P X P X >==+==02、解、解 设击中的概率为p ,则X 的分布率为的分布率为 X123456k p p (p p )1- (p p 2)1- (p p 3)1- (p p 4)1- (p p 5)1-+(6)1p -3、解:X 的分布律为:的分布律为:X34 5 k p0.10.30.6X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <ìï£<ï=í£<ïï³î4、解:由已知,X 的密度函数为:1,33()60,x f x ì-££ï=íïî其它此二次方程的22(4)44(2)16(2)x x x x D =-××+=--(1)当0D ³时,有实根,即2(2)021x x x x --³Þ³£-或 所以{}{21}{2}{1}P P X X P X P X =³£-=³+£-方程有实根或3123111662dx dx --=+=òò(2)当0D =时,有重根,即2(2)021x x x x --=Þ==-或所以{}{21}{2}{1}0P P X X P X P X ===-==+=-=方程有重根或 (3)当0D <时,无实根,1{}1{}2P P =-=方程有实根无实根 5、解:设X 为元件寿命,Y 为寿命不超过150小时的元件寿命。
概率理工试题一
重庆理工大学概率论试题一一、填空题(每空2分,共36分)1.射击3次,事件A i 表示第i 次命中目标(i=1,2,3),则事件“命中三次”可用A i 表示为______________________________。
2.从总体中任取一个容量为5的样本,测得样本值为8,9,10,11,12,则总体期望的无偏估计为__________________。
3.随机变量X 服从标准正态分布,则EX=_______________,DX=_______________。
4.同时抛3枚均匀的硬币,则恰好有两枚正面朝上的概率为_______________。
5.事件A ,B 互不相容,且P(A) =0.3,P(B) =0.6,则P(A ∪B)= _____________,P(A ) =_____________, P(A|B)=___________。
6、设离散型随机变量X 的分布列为其分布函数为()F x ,则A=_____________ ,E(X)=____________,(3)F =___________。
7.随机变量X 与Y 相互独立,cov(X,Y) = ___________,E(XY) = __________,D(X+Y) =___________。
8.随机变量X 服从指数分布,P(X=1)=__________________。
9.随机变量X 服从参数为λ的普阿松分布,D(2X+1)=______________。
10.10只签中有2只难签,3人参加抽签,不重复抽取,每人一次,甲先,乙次,丙最后,丙抽到难签的概率为_____________。
11.袋中有6只红球,4只白球,大小相同,一次随机摸出两只,则摸到两只同颜色球的概率为_______________。
二、计算题及应用题(共64分)1.P(A)=0.4,P(B)=0.3,P(A+B)=0.4,求P(A —B) (7分)2.X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,求EX 2 (7分)3.3个人独立地去破译一个密码,他们能译出的概率分别为1/5,1/3,1/4,问能将此密码译出的概率是多少? (7分)4.d c d P c P N ,,0668.0)(,95.0)|10(|),2,10(`~2求已知=<=<-ξξξ)9332.0)5.1(,975.0)96.1((00=Φ=Φ (7分)5.一学生接连参加同一课程的两次考试,第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ,若第一次不及格则第二次及格的概率为p/2。
重庆理工大学概率论与数理统计期末试卷答案10年12月(A)
重庆理工大学考试试卷2010~ 2011 学年第 1学期班级 学号 姓名 考试科目 概率与数理统计(理工) A 卷 闭卷 共 3 页 ···································· 密························封························线································学生答题不得超过此线一、 单项选择题(每小题2分,共22分)1、()0.5,()0.6,()0.8,P A P B P B A ===则 ()P A B 的值是( ) A 、0.6B 、0.7C 、0.8D 、0.92、设12),)F x F x ((分别为两随机变量的分布函数,若12)))F x aF x bF x =-(((为某一随机变量的分布函数,则( )A 、32,55a b ==-B 、22,33a b ==C 、13,22a b =-=D 、13,22a b ==-3、设随机变量X 的分布函数为()⎪⎩⎪⎨⎧>≤≤<=111003x x x x x F ,则()E X =( ) A 、⎰+∞04dx x B 、+⎰14dx x ⎰+∞1xdx C 、⎰133dx x D 、⎰+∞33dx x4、线路由A ,B 两元件并联组成(如图),A ,B 元件独立工作,A 正常工作的概率为pB 正常工作的概率为q ,则此线路正常工作的概率为( )A 、pqB 、p q +C 、p q pq +-D 、1pq -5、每张彩票中奖的概率为0.1,某人购买了20张号码杂乱的彩票,设中奖的张数为X ,则X 服从( )分布。
完整版概率论与数理统计习题集及答案文档良心出品
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
重庆理工大学概率论与数理统计期末试卷
重庆理工大学考试试卷学年第 学期班级 学号 姓名 考试科目 概率与数理统计 A 卷 闭卷 共 3 页 ···································· 密························封························线································)0.7AB =, B 、0.4 服从参数为(λλ,,n X 是来自正态总体2(,)N μσ2)μ- 2)X - C2、已知随机变量X的分布律为101~0.40.30.3X-⎡⎤⎢⎥⎣⎦,则X的分布函数()F x=。
概率A 重庆理工大学
1.已知 ,A与B相互独立。求:
2.第一个盒子有3个蓝弹子和2个红弹子,第二个盒子中有2个蓝的和5个红的,随机地从一个盒子中抽出一个弹子,发现它是蓝的,求该弹子来自第一个盒子的概率。
重庆工学院考试试卷
2007~2008学年第学期
班级学号姓名考试科目A卷闭卷共4页
····································密························封························线································
重庆工学院考试试卷
2007~2008学年第二学期
班级学号姓名考试科目A卷闭卷共4页
····································密························封························线································
学生答题不得超过此线
四.应用题(1,2小题9分,3小题7分,共25分)
得分
评卷人
1.设总体 的密度函数为 ,其中 是未知参数, 是取自总体 的一个容量为 的简单随机样本,用最大似然估计法求 的估计量。
2.某厂生产的电子管的使用寿命服从正态分布 ,今从一批产品中抽出16只检查,测得使用寿命的均值为14.5(万小时),问这批电子管的使用寿命的均值是否正常?( )(参考数据: , , , )
5、设 是来自总体 的样本, 均为未知参数,则置信水平为 的关于 的双侧置信区间为。
二、选择题(每题2分,共20分)
得分
评卷人
1、设 是 次独立重复试验中事件 发生的次数,且 ,则当 很大时,下列选项不正确的是( )
重庆理工大学概率与数理统计试卷和复习题
一.填空:(每空3分,共30分)1.投篮3次,事件i A 表示第i 次投中(i =1,2,3),则事件“至少一次没有投中”可用i A 表示为 。
2.设一次掷两颗骰子,则点数之和等于3的概率为 。
3.随机事件B A ⊂,P(A)=0.3,P(B)=0.5,则P(A|B)= ,P(B|A)= 。
4.已知随机变量X ),(~2σμN ,则)5.0(=X P = 。
5.设随机变量X 服从参数为λ的泊松分布,则)()(X D X E = 。
6.二维连续型随机变量),(Y X ,其联合密度函数为⎩⎨⎧<<<<=其它010,10),(y x a y x f ,则a = 。
7.已知随机变量X 的数学期望)(X E =2,方差)(X D =1,则)(2X E = 。
8.随机变量X 与Y 相互独立,则相关系数XY ρ= 。
9.有一组样本观测值10.1,9.9,10.1,10.2,9.8;则样本标准差s =________。
二、在10件产品中含有3件次品,现从中任意取两件,求其中至少有一件是次品的概率。
(8分)三、已知随机事件A 、B 相互独立,且P(A)=0.2,P(B)=0.4,试求)(B A P (8分)四、一批玻璃杯共有2箱,其中第一箱100只,有2只次品;第二箱50只,有3只次品。
现在从中任取一箱,再在这一箱中任取一只。
求取到次品的概率。
(10分)五、X 是一维连续型随机变量,其密度函数⎪⎩⎪⎨⎧<<=其它202)(x xx f ,试求(1)P(X<1);(2)E (X ),)(2XE 。
(12分)六、二维离散型随机变量),(Y X ,其联合分布律如下表。
(1)试确定a 的值;(2)求X 、Y 的边缘分布律,并判断X 、Y 是否独立;(3)求E(Y)。
(12分)七、设总体X 具有概率密度⎩⎨⎧<<=-其它010)(1x x x f θθ(θ>0),试求θ的极大似然估计。
重庆理工大学概率论与数理统计A【理工】(2011--2012下学期)
重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页,,X是来自正态总体6重庆理工大学考试试题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页X为来自总体,,n2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································学生答题不得超过此线重庆理工大学考试答题卷2011~2012学年第二学期班级学号姓名考试科目概率论与数理统计【理工】A卷闭卷共 2 页····································密························封························线································。
概率论与数理统计课后习题集及答案详解
概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
重庆理工大学概率论试卷与答案5
概率与数理统计复习资料一、单选1.设随机事件 A 与 B 互不相容,且 P( A)0 , P( B) 0 , 则( )A. P( A) 1 P(B) )B. P(AB) P( A) P(B)C.P( A B) 1D. P(AB) 12.设 A , B 为随机事件, P( A)0 , P( A | B) 1,则必有( )A. P( A B)P( A)B. A BC.P( A) P(B)D. P( AB) P( A)3.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为 ( )A. 22B.C 21 C.2!D. 2 !4 222C 4A 44 !4.某人连续向一目标射击,每次命中目标的概率为3,他连续射击直到命中为4止,则射击次数为 3 的概率是()A. ( 3)3B.( 3)21 C. (1)23 D. C 42( 1 )23444444 45.已知随机变量 X 的概率密度为 f X (x) ,令 Y 2 X ,则 Y 的概率密度 f Y ( y) 为()A. 2 f x ( 2 y)B. 2 f x ( y)C.1f x ( y)D. 1f x ( y)2 2 22 26.如果函数 f ( x)x, a x b; 0, x 或 是某连续随机变量 X 的概率密度,则区间a x b[ a,b] 可以是()A. (0,1)B. (0, 2)C. (0, 2)D. (1,2) 7.下列各函数中是随机变量分布函数的为()1x 0A. F 1 (x)xB. F 2 ( x)x,x 01x 21xC. F 3 (x) e x ,xD. F 4 (x)3 1 arctgx, x4 28.设二维随机向量( X,Y )的联合分布列为()Y012X0 1 2122 121212 110 1212212 121212则 P(X0)A.1B. 2C.4D.5121212129.已知随机变量X 和 Y 相互独立,且它们分别在区间[ 1,3] 和 [2, 4] 上服从均匀分布,则 E( XY )()A. 3B.6C. 10D.121,事件发生;10.设( x) 为标准正态分布函数,X i事件不发生, i 1,2, ,100 ,且0,A100Y P( A)0.8, X1, X2, , X100相互独立。
[理学]概率论与数理统计课后习题答案-精品文档
概率论与数理统计习题 一1.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C的运算关系式表示(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC =AB C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C(8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC 3..4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ).【解】 P ()=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.(1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m 次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C CC m n mM N M n N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 ()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ 11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == 16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2)()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的). 【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率;(2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球} 由全概率公式,有3()()()i i i P B P B A P A ==∑3312369968333315151515C C C C C C C C C =∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%. 26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.若发现这球为白球,试求箱子中原有一白球的概率(箱【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P(A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()P AD P A P D A P A D P D P A P D A P B P D B P C P==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击. 1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.15,13,14,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C (0.25)(0.75)0.2241kk k k p -===∑ 36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38.将线段[0,a ]任意折成三折,试求这三折线段能构成三【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3. 在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A).【证】 ()[()]()P A P A B C P ABAC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43.2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =- 44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5 (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ). 【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥ 故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n kn nn n n nn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m n P B P B m n m n==++1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212r rrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
重庆理工大学概率论与数理统计习题册答案
7、解: ,由 ,有:
,即
又由 的右连续性,有 ,即 ,可以解得:
8、解:解:
,
即
(2)
9、解:
Y
5
P
10、解:由已知: ,所以
即
上式两端对y求导,得:
所以: ,进而可以得到:
第二章复习题
一、填空题
1、 2、
3、
二、单项选择题
1、A 2、B 3、C 4、B 5、B
三、计算题
1、
0
1
2
2、解:(1)
Y X
0
1
2
-2
-1
0
0
0
的分布律
-2
-1
0
1
2
2、 , ,
3、
二、单项选择题
1、A 2、B 3、B 4、B
三、计算题
1、 , ,则 ,于是
, 。
而
故( )的联合分布律为
Y X
0
1
0
1
2、(1)解:由联合密度,可求边缘密度:
, ;
因为 ,所以X与Y相互独立
(2)解:由联合密度,可求边缘密度:
, ;
因为 ,所以X与Y不独立
1、B 2、B
三、计算题
1、解:由已知,X的密度函数为:
此二次方程的
(1)当 时,有实根,即
所以
(2)当 时,有重根,即
所以
(3)当 时,无实根,
2、解:设X为元件寿命,Y为寿命不超过150小时的元件寿命。由已知:
30.3721 0.7143
4
5、由 ,有 ,
6、解:由 ,有: ,即
又由 ,有 ,即
,
重庆理工大学概率论试卷及问题详解5
概率与数理统计复习资料一、单选1.设随机事件A 与B 互不相容,且()0,()0,P A P B >>则( ) A.()1()P A P B =-) B.()()()P AB P A P B =⋅ C.()1P A B =D.()1P AB =2.设A ,B 为随机事件,()0P A >,(|)1P A B =,则必有( ) A.()()P A B P A = B.A B ⊂ C.()()P A P B =D.()()P AB P A =3.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2224B.1224C C C.242!AD.24!!4.某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( )A.33()4B.231()44⨯C. 213()44⨯D.22413()44C5.已知随机变量X 的概率密度为()X f x ,令2Y X =-,则Y 的概率密度()Y f y 为( ) A.2(2)x f y -B. 2()2x y f - C. 1()22x y f -- D.1()22x y f - 6.如果函数,;()0,x a x b f x x a x b ≤≤⎧=⎨<>⎩或是某连续随机变量X 的概率密度,则区间[,]a b 可以是( )A.(0,1)B.(0,2)C. D.(1,2)7.下列各函数中是随机变量分布函数的为( ) A.F x x x 1211(),=+-∞<<+∞B.200()01x F x x x x≤⎧⎪=⎨>⎪+⎩C.3(),x F x e x -=-∞<<+∞D.F x arctgx x 43412(),=+-∞<<+∞π8.)则(0)P X == A.112B.212 C. 412D.5129.已知随机变量X 和Y 相互独立,且它们分别在区间[1,3]-和[2,4]上服从均匀分布,则()E XY =( ) A. 3B. 6C. 10D. 1210.设()x Φ为标准正态分布函数,1,0,i A X A ⎧=⎨⎩事件发生;事件不发生,1,2,,100i =,且()0.8P A =,12100,,,X X X 相互独立。
概率论与数理统计练习册理工类答案
∫ 解:总体X= 的期望E( X ) = 0+∞ x θx32 e−θx dx θ.
∑ ∑ 所以θ =X = 1 n
= n i 1
= X i , 故θˆ= 1n in1
Xi.
似然函数L(x1,...xn , λ)
=
θ 2n (x1 xn )3
n
−θ (∑ e i=1
1 xi
)
,
∑ 取对数 ln
L
= 2n lnθ
= 解:X 4= 1130, S 1547.63
(1)取统计量 X − µ ~ t(n −1),则可得µ的0.95的单侧置信下限为:
S/ n
µ>X
− t0.05 (9) *
S= n
41130 −1.83*1547.63 ≈ 40234.4 10
(2)取统计量
(n
−1) σ2
S
2
~
χ 2 (n −1),则可得σ 2的0.95置信上限为:
σ2
~
χ 2 (n −1),则可得σ 2的1-α置信水平下的置信区间为:
χ(nα= 22 −(n1)−S12) , χ(12n−α2−(1n)S−21)
= 9χ×02.7055(.97)3 , 9χ×02.7955(.97)3
= 91×67.951.793 , 9×3.7352.573
(40.28, 204.98).
X
~
N(µ,σ 2),
X1
,
,
X
9
是容量为
9 的样本,样本均值 x
= 35 ,样本方差 s2
=9,
则总体均值 µ 的置信水平为 0.95 的置信区间为
[32.69, 37.31]
(完整版)概率论与数理统计课后习题答案
·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
重庆理工大学2019年《概率论与数理统计》考试试题卷及答案
一、单项选择题(每小题2分,共20分) 1、若()0.5,()0.6,(|)0.8P A P B P B A ===,则()P A B 的值是( B )A 、0.6B 、0.7C 、0.8D 、0.9 2、设连续型随机变量X 的概率密度和分布函数为()f x 和()F x ,则下列正确的是( C )。
A 、()()P X x f x ==B 、()()P X x F x ==C 、()()P X x F x =≤D 、()0P X x =≠3、设X 与Y 相互独立且服从区间[0,8]上的均匀分布,则{min(,)6}P X Y ≤=( A ) A 、2114⎛⎫- ⎪⎝⎭ B 、214⎛⎫ ⎪⎝⎭ C 、234⎛⎫ ⎪⎝⎭ D 、2314⎛⎫- ⎪⎝⎭4、设127,,,X X X 取自总体2~(0,0.5)X N ,则7214i i P X =⎧⎫>≈⎨⎬⎩⎭∑( B ) (22220.050.0250.010.05(7)14.067,(7)16.012,(7)18.474,(6)12.592χχχχ====) A 、0.5 B 、0.025 C 、0.05 D 、0.015、设随机变量X 22(220,3),(225,4)N Y N ,X Y 与相互独立,则{}P X Y <=( B )A. 0.5B. (1)ΦC. 1(1)-ΦD. (2)Φ 6、设总体X ~N(μ,1),X 1,X 2,X 3为总体X 的一个样本,若321CX X 31X 21ˆ++=μ为未知参数μ的无偏估计量,则常数C=( D ) A 、21 B 、31 C 、41 D 、61 7、总体~(,1)X N μ,12,,,n X X X 是X 的样本,则21()n i i X μ=-∑服从分布( A ) A 、2()n χ B 、2(1)n χ- C 、()t n D 、(1)t n -8、设随机变量(,)X Y 的概率密度函数为1, 01,01(,)0, 其它x y f x y <<<<⎧=⎨⎩,则{}P X Y >=( A )。
概率论与数理统计练习册 参考答案
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题1.ABC 2、50⋅ 3、20⋅ 4、60⋅ 二.单项选择题1、B2、C3、C4、A5、B 三.计算题 1.(1)略 (2)A 、321A A A B 、321A A A ⋃⋃C 、321321321A A A A A A A A A ⋃⋃D 、321321321321A A A A A A A A A A A A ⋃⋃⋃ 2.解 )()()()(AB P B P A P B A P -+=⋃=85812141=-+ 83)()()()(=-=-=AB P B P AB B P B A P 87)(1)(=-=AB P AB P 21)()()])([(=-⋃=⋃AB P B A P AB B A P 3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C 4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃=855.解:(1)n Nn A P !)(=(2)nn N N n C B P !)(=、 (3)nmn m n NN C C P --=)1()(一.填空题 1.32 2、50⋅ 3、32 4、73 5、43 二.单项选择题1、D2、B3、D4、B 三.计算题1. 解:设i A :分别表示甲、乙、丙厂的产品(i =1,2,3) B :顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=⨯+⨯+⨯ 8334)()/()()/(222==B P A B P A P B A P2.解:设i A :表示第i 箱产品(i =1,2) i B :第i 次取到一等品(i =1,2) (1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=⨯+⨯ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P + =19423.02917301821499501021=⨯⨯+⨯⨯ 4856.04.019423.0)()()/(12112===B P B B P B B P(4)4856.04.019423.0)()()/(212121===B P B B P B B P3. 解:设i A :表示第i 次电话接通(i =1,2,3) 101)(1=A P 10191109)(21=⨯=A A P 1018198109)(321=⨯⨯=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++ 如已知最后一位是奇数,则51)(1=A P 514154)(21=⨯=A A P 51314354)(321=⨯⨯=A A A P所以拨号不超过三次接通电话的概率为4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=⋃⋃-=⋃⋃ =6.04332541=-5.解:设21,B B 分别表示发出信号“A ”及“B ”21,A A 分别表示收到信号“A ”及“B ”)/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A PB A P B P A P B A P A B P第一章 复习题一.填空题1.0.3,0.5 2、0.2 3、2120 4、51,51 5、158,32,31 6.4)1(1p --二.单项选择题1、B2、B3、 D4、C,D5、D 6 A 三.计算题1. 解:设i A : i 个人击中飞机(i =0,1,2,3)则09.0)(0=A P 36.0)(1=A P 41.0)(2=A P 14.0)(3=A P B :飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(00A B P A P +=458.0009.0114.06.041.02.036.0=⨯+⨯+⨯+⨯ 2.解:设i A : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0⋅⋅C 打五局,概率122246.06.04.0⋅⋅CP (甲胜)=36.0+12136.06.04.0⋅⋅C +122246.06.04.0⋅⋅C =0.68256 (2)936.06.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321*********=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案 B :填对)/()()(A B P A P B P =475.0417.013.0)/()(=⨯+⨯=+A B P A P 197475.0417.0)()/()()()()/(=⨯===B P A B P A P B P B A P B A P 4.解:设i A :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=⨯+⨯+⨯+⨯ 2120341103)()/()()()()/(11111=⨯===B P A B P A P B P B A P B A P同理94)/(2=B A P 181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球)()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=⋃ =40211610106166104=⨯+⨯习题三 第二章 随机变量及其分布一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ 6、113~0.40.40.2X -⎡⎤⎢⎥⎣⎦ 二、单项选择题1、B2、A 三、计算题1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2,...,15)kk k P X k C k -===至少有两人无任何保险的概:(2)1(2)1(0)(1)0.833P X P X P X P X ≥=-<=-=-== 多于13人的概率:(13)(14)(15)P X P X P X >==+==0 2、解 设击中的概率为p ,则X 的分布率为3、解:X 的分布律为:X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩4、不做 略习题四 第二章 一维随机变量及其分布一、填空题 1、(连续型随机变量等于任意值的概率都为0)2、3、二、单项选择题1、故选(B)2、是偶函数故选(B)三、计算题1、解:由已知X的密度函数为:此二次方程的(1)当时,有实根,即所以(2)当时,有重根,即所以(3)2、解:设X为电子元件寿命,则由已知的概率密度函数为设Y为5个同类型的元件中寿命不超过150小时的元件个数,则3、解:4、解:5、解:6、解:由又由,有,即联立求解,得:7、解:(1)是右连续的,(2)8、解:(1)即(2)10、解:第二章复习题一、填空题1、故2、3、二、单项选择题1、A 2、B 3、C 4、B 5、B三、计算题1、2、解:(1)(2)3、解:(1)(2)4、解:(1)故,(2)(3)5、解:6、解:习题五第三章多维随机变量及其分布一、填空题1、2、3、4、5、 6、,二、单项选择题1、又故的联合概率分布率为下表:2、3、三、计算题1、解:(1)(2)同理,(3)(4)2、解:(1)(3) 故与不独立3、(2)5、方程有实根6、第三章复习题一、填空题1、,,的联合分布律为:,,,的分布律为:,,2、,,3、二、单项选择题1、的联合概率密度函数故服从矩形区域上的均匀分布。
而的概率密度函数的概率密度函数的概率密度函数故选A2、,,故选B3、,故选4、,故选B三、计算题1、2、(1)解:由联合概率密度函数,可求边缘密度函数:因为,所以X与Y相互独立(2)解:由联合概率密度函数,可求边缘密度函数:因为,所以X与Y不独立3、解:(1)由联合分布函数得边缘分布函数:,可见,所以X、Y独立(2)4、解:(1),,解得k= 12(2)5、解:的概率密度函数习题六随机变量的数字特征一.1、2、3、4、,二.单项选择题1、C 2、B三.计算题1、解:=2、解:(1)(2)3.解:4.解:5.解:6.解:7.证明:当且仅当时等号成立.习题七随机变量的数字特征一.填空题1、2、二.单项选择题1、故选A2、故选A3、故选B 三.计算题1、解:(1)(2),所以,2.解:同理,3.解:设表示第个骰子掷出的点数,则6个骰子点数之和又的分布律为:,,2,3,4,5,6故4.解:第四章 复习题一·填空题1 2,0 或-2 2 1/36 1/2 2 -0.2 2.8 13.4 24.843 9745 5 18.46 25.67 0.0228 二 选择题A B D D A 三 114E X =300Xe200()--2 E X =2(2)X 1E e =3-2()322122212D X =4)8D X =4)8cov(X X )4()4()b abed cde ac bd e ad bc ()(a ()(c ++++=+++45 8/96 0习题八 样本及抽样分布一、1、2、3、4、二、1、由于统计量不能含未知参数,故选C2、,故选BX Y 2E X =3E Y =0E XY =0cov(X Y)E XY E X E Y 0()()()()-()()=0ρ==3、P—143页定理二可知,与相互独立,故选D4、P—143页定理二可知,,且,故选D5、,故选A三、1、2、(1)(2)=0.25 3、习题九参数估计一、1、2、3、二、1、最小故选D2、故选C3、是的无偏估计,所以A,B不对,又,故选C4、当已知时,的置信区间为,长度缩小时,增大,缩小,故选A5、当未知时,的置信度为的置信区间为,长度故选D三、1、(1)似然函数即的最大似然估计值(2)由于总体服从参数为的指数分布,,,故是的无偏估计2、(1)令故的矩估计量,(2)似然函数即的最大似然估计量3、似然函数即的最大似然估计值4、(1)当总体方差未知时,的置信度为的置信区间为,由已知,,,,,故的置信度为的置信区间为(8.29%,8.39%)(2)的置信度为的置信区间为由已知,,,,,的置信度为的置信区间为5、当总体方差未知时,的置信度为的置信区间为由已知,,,故的置信度为的置信区间为(1523.131,1566.869)习 题 十一、1~(1)t n - 21t nα-≤3、T=,t -分布,1n -二、B B A 三 计算题1、假设00:500H μμ==,10:H μμ≠,~N(0,1);作拒绝域{}P K==0.05α≥;取K=0.025Z =1.96得拒绝域{}1.96≥代入X =510 1.96>落在拒绝域里 拒绝0H2、(1)假设0:70H μ=,1:70H μ≠, ~(1)t n-作拒绝域{}P K==0.05α≥;取K=350.025t =2.0301得拒绝域{}2.0301≥代入X =66.5 2.0301> 接受0H(2)假设220:16H σ=,221:16H σ≠, 选检验量2221S ~(1)n n ()χσ--作拒绝域{}{}2212221S 1S P K +P K ==0.05n n ()()ασσ--≥≤;取23510.025K ==53.203χ 23520.975K ==20.569χ 得拒绝域{}{}222235S 35S 20.56953.2031616≤≥代入22S =15得2235S =30.761716接受0H 3、选检验量2221S ~(1)n n ()χσ--作拒绝域{}{}2212221S 1S P K +P K ==0.05n n ()()ασσ--≥≤;取210.025K =9=19.022χ2920.975K ==2.7χ得拒绝域{}{}22229S 9S 2.719.02288≤≥代入2S =68.16得229S =9.5858接受0H4、略统计部分复习题一、1、2222122,(1)(1)n n αασσχχ-⎡⎤⎢⎥⎢⎥--⎢⎥⎣⎦2、~(1)T t n =-,接受 二、BADA三、1、 n 98.202≤2、1,2(1),2(1)n n n ---3、(1)拒绝;(2)接受4、(1)拒绝;(2)接受。