对数函数的图象和性质
对数函数的图像和性质
10
…
… -1 -1/2 0 1/4 1/2 1 …
y
1 1 -1 2 3 4 5 6 7 Y=lgx
x
8 9 10
x
Y=log1/2x
… 1/8 1/4 1/2 1 2 4 8 … … 3 2
y
1
2
3
4
5
6
7
8
x
Y=log1/2x
2.利用对称性画图. 因为指数函数y=ax (0<a≠1)与对数函数
(-4)
(3) 因为 3-x>0 x-1>0 x-1≠ 所以 1<x<3,x≠2即函数y=log(x-1)(3-x)的定 义域为 (1,2)
例2:比较下列各组中两个值的大小: (1) log23 , log23.5 (2) log0.71.6 , logo.71.8
( 解: 1)考察对数函数y=log2x,因为 2>1, 3<3.5所以 log23<log23.5 (2)考察对数函数y=log0.7x,因为 0.7<1 , 1.6<1.8所以
x轴
(3)对数函数是非奇非偶函数。
例1:求下列函数的定义域: (1) y=logax2 (2) y=loga(4-x)
(3) y=log(x-1)(3-x)
解:
(1)因为x2>0,所以x≠,即函数y=logax2的定义域为
- (0,+
(2)因为 4-x>0,所以x<4,即函数y=loga(4-x)的定义域为
log0.71.6 >log0.71.8
比较大小:
(1) log35 和 log45 (2) log35 和 log0.50.6
对数函数的性质与图像ppt课件
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log 2 0.8 log2 m > log2 n 则 m < n
3
3
3
3
log1.5 6 < log1.5 8
log1.5 m < log1.5 n 则 m < n
比较下列各组中两个值的大小:
o
x
y=log1/2x
y
x … 1/8 1/4 1/2 1 2 4 8 … y … 3 2 1 0 -1 -2 -3 …
o
x
画出函数 y log 2 x与 y log 1 x的图像.
y
2
y log 2 x
o
x
y log 1 x
2
对数函数y=logax 0,a≠1)
性质a > 1
图y
(a> 的图象与
4.2.3 对数函数的性质与 图像
引例:对数函数的引入:
问题1:某种细胞分裂时,由1个分裂为2个,2个 分裂为4个……1个这样的细胞分裂x次后,得到的
细胞个数设为y,则y与x的函数关系式为:Y=2x
问题2:某种细胞分裂时,由1个分裂为2个,2个分 裂为4个……如果要求这种细胞经过多少次分裂,大约 可以得到1万个,10万个……细胞,那么分裂次数x就 是要得到的细胞个数y的函数。由对数的定义,这个
对数函数 y log 3 x和y log 1 x的图象。
3
y 2
1 11 42
0 1 23 4 -1 -2
y log 2 x
y log 3 x
x
y log 1 x
3
y log 1 x
2
y
y log a1 x y log a2 x
4.6对数函数的图像和性质(共43张)
(1)Sketches and Properties of
Logarithmic Functions
第1页,共43页。
复习:一般的,函数 y = ax ( a > 0, 且 a ≠ 1 ) 叫做(jiàozuò)指数函数,其
中x是自变量.函数的定义域是 R.
a
a
第10页,共43页。
例2 比较下列各组中两个(liǎnɡ ɡè)值的大小:
⑴ log 67 , log 7 6 ;
⑵ log 3π , log 2 0.8 .
提示 : log aa=1
提示: log a1=0
解: ⑴ ∵ log67>log66=1
log76<log77=1
∴
log67>log76
图像㈠在(1,0)点右边的 纵坐标都大于0,在(1,0)点 左 图边像的㈡纵则坐正标好都相小反于0;
自左向右看,
图像㈠逐渐上升 图像㈡逐渐下降
函数性质
定义域是( 0,+∞)
1 的对数是 0
当底数a>1时 x>1 , 则logax>0
当底数0<a<100时<<xx<x<>111,,则则, 则lologlgoaxagx>a<x0<0 0 当a>1时,
当0<a<1时,函数y=log ax在(0,+∞)上是减函数,于是 log a5.1>log a5.9
注:例1是利用对数函数的增减性比较两个对数的大小的,
对底数与1的大小关系未明确指出时,
要分情况对底数进行讨论来比较两个对数的大小.
第9页,共43页。
练习:
1、比较下列(xiàliè)各题中两个值的大小:
2
2
求函数
高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质
在金融领域中的应用
复利计算
在金融领域,对数函数被广泛应用于复利计算。通过对数函 数,可以方便地计算出本金在固定利率下经过一段时间后的 累积金额。
风险评估
在金融风险评估中,对数函数可用于描述极端事件(如市场 崩盘)发生的概率分布,帮助投资者更好地管理风险。
在科学研究中的应用
数据分析
在统计学和数据分析中,对数函数常 用于数据转换和处理,以便更好地揭 示数据间的关系和趋势。
单调性的应用
利用对数函数的单调性,可以比较两 个同底数的对数的大小,也可以解决 一些与对数函数相关的不等式问题。
奇偶性判断
对数函数的奇偶性
对于底数为正数且不等于1的对数函数y=logax,其既不是奇函数也不是偶函数 ,即它不具有奇偶性。
奇偶性的应用
虽然对数函数本身不具有奇偶性,但是在解决一些与对数函数相关的问题时,可 以考虑利用其他函数的奇偶性来简化问题。
指数式与对数式的互化
$a^x=N Leftrightarrow x=log_a N$
指数函数与对数函数的关系
指数函数$y=a^x$与对数函数$y=log_a x$互为反函数。这意味着它们的图像 关于直线$y=x$对称。
02
对数函数y=logx图像分些x和对应的y值,然 后在坐标系中描点,最后用平滑 曲线连接各点即可得到对数函数 的图像。
对数函数的底数$b$必须大于0且不等于1,否则函数无意义。同时,对于不同的底数,对 数函数的图像和性质也会有所不同。
对数运算规则
对数运算有特定的运算法则,如$log_b(mn) = log_b(m) + log_b(n)$、$log_b(m/n) = log_b(m) - log_b(n)$等。在解题过程中,需要正确运用这些法则进行化简和计算。
对数函数的图像与性质
对数函数的图像与性质对数函数是数学中非常重要的一类函数,它在各个领域中都有着广泛的应用。
本文将着重探讨对数函数的图像和性质,帮助读者更好地理解和应用对数函数。
一、对数函数的定义与基本性质对数函数的定义如下:定义:设a为正实数且不等于1,x为正实数,那么以a为底的对数函数y = loga x 定义为x = a^y。
对数函数的图像在直角坐标系中呈曲线状,其主要性质如下:1. 定义域与值域:对数函数的定义域为正实数集合,值域为实数集合。
2. 特殊性质:当x = 1 时,对数函数的值为0,即loga 1 = 0。
3. 单调性:当0 < a < 1 时,对数函数随着x的增大而递减;当a > 1 时,对数函数随着x的增大而递增。
4. 对称性:对数函数在y轴上有一个对称中心O(1,0)。
以上是对数函数的基本性质,接下来我们将进一步探讨对数函数的图像。
二、对数函数的图像特点对数函数的图像在直角坐标系中呈现出一些特殊的特点,我们将分别从底数的大小和常数c的引入的平移和伸缩等方面进行讨论。
1. 底数的大小对图像的影响底数a的大小对对数函数的图像有显著的影响。
当0 < a < 1 时,对数函数的图像在一象限内,从左上方无穷递减到右下方;当a > 1 时,对数函数的图像在一、三象限内,从左下方无穷递增到右上方。
2. 平移和伸缩对图像的影响引入常数c对对数函数的图像进行平移和伸缩。
当常数c大于0时,对数函数的图像在x轴的正方向上平移c个单位;当常数c小于0时,对数函数的图像在x轴的负方向上平移|c|个单位。
另外,对数函数的图像近似于一条曲线,它的凹性和凸性取决于底数的大小。
当0 < a < 1 时,对数函数图像凸向下;当a > 1 时,对数函数图像凹向下。
三、对数函数在实际问题中的应用对数函数在各个领域中都有着广泛的应用。
以下是一些常见的实际问题:1. 指数增长问题:对数函数可以用来描述指数增长的问题,例如人口增长、物种扩散等。
对数函数的图像及性质
1 1
1 3
x的图象。
y log 2 x
y log 3 x
4 2
0 -1 -2
1
2
3
4
x
y log 1 x
y log
3
1 2
x
对数函数y=logax (a>0,且a≠1)
的图象与性质
y
x a
a>1 图 象 性 质
y
x =1
y log ( a 1)
0<a<1
x =1
4 2
1
2
3
4
x
这两个函数的图 象有什么关系呢?
关于x轴对称
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质 y
探索发现:认真观察函2 数y=log2x 1 的图象填写下表 0
-1
1 1 4 2
1
2
3
4
x
图象特征
图象位于y轴右方
-2
代数表述
定义域 :
( 0,+∞)
与 轴 交 点 ( 1,0 )
对数函数y=log a x (a>0, a≠1) y y=logax (a>1) 1 x o y=logax (0<a<1) (1)定义域: (0,+∞) (2)值域:R (3)过点(1,0), 即x=1 时, y=0
性 (3)过点(0,1), 即x=0 时, y=1
0<a<1时,x<0,y>1;x>0,0<y<1
在同一坐标系中用描点法画出对数函数
y log
2
x 和 y log
①列表, ②描点,
对数函数的性质与图像
)
(3)函数y=logax(a>0,且a≠1)的图像均在x轴上方. (
)
(4)y-4=logm(x+9)(m>0,且m≠1)的图像恒过定点(-8,4). (
)
(5)当0<a<1时,y=logax为R上的减函数;当a>1时,y=logax为R上的
增函数.
(6)因为x2+1>0恒成立,所以y=log5(x2+1)的值域为R. (
轴对称,据此可画出其图像如图所示.
从图像可知,函数 f(x)的值域为[0,+∞),递增
区间是[1,+∞),递减区间是(0,1).
1
1
当 x∈ 9 ,6 时,f(x)在 9 ,1 上是单调递减的,在(1,6]上是单调递增
的.
1
1
又 f 9 =2,f(6)=log36<2,故 f(x)在 9 ,6 上的最大值为 2.
(0,+∞).
课堂篇探究学习
探究一
探究二
探究三
探究四
利用对数函数的性质比较大小
例3 比较大小:
(1)log0.27与log0.29;
(2)log35与log65;
(3)(lg m)1.9与(lg m)2.1(m>1);
(4)log85与lg 4.
思维辨析
当堂检测
课堂篇探究学习
探究一
探究二
探究三
探究四
0<a<1时,函数y=loga(a-ax)在(-∞,1)内是增函数.
反思感悟求复合函数的单调区间的步骤:
(1)求出函数的定义域;
(2)将复合函数分解为基本初等函数;
对数函数的图象与性质
1 x 1
22
原不等式的解集是
1 2
,1 2
变式
log 1 (2x 1) log 1 2
2
2
a
log a (2x 1) log a 2
; 必威电竞 ;
疆虽是鼎鼎有名.孟禄也听过他的名字.但他却不知道左耳朵的为人.也不知道左耳朵在北疆的威望.就如飞红中在北地几样.他只道左耳朵也像明悦几样.只是个 助拳 的人.仗着箭法高明.所以才有名气的.他又恍惚听人说过;左耳朵乃是明悦的族兄.当日明悦来投唐努老英雄.捧的就是 左耳朵的名头.明悦反叛之事他是知道的.他只以为左耳朵给他的族弟拉去.到北地来暗害他们.因此.带着三十多匹马.几路追踪觅迹.而左耳朵又因处处要照顾苏绿儿.不能驱车疾走.竟然给他们追上. 左耳朵几阵愕然.纳兰朗慧忽然揭开车帘.露出脸来.叫道. 你们不要赖他.那两个人是 我杀的. 苏绿儿得啦爱情的滋润.虽在病后.却是眼如秋水.容光照人.她本是旗人中的第几位美人.在这草原蓦然现出色相.颜容映着晚霞.孟禄只觉得几阵光采迫人.眼花综乱.急忙定下心神.再喝问道-你说什么? 苏绿儿冷笑道. 你听不清楚么?那两个人是本姑娘杀的. 孟禄这时也注意 到啦车帘上绣着的 纳兰 两字.又惊又喜.他起初以为车上只是普通的清军将官的眷属.而今见这个气派.暮然想起久闻满清的伊犁护军苏翠儿.有几个美丽的女儿.文武双全.莫不是她. 孟禄皮鞭几指.笑道-是你杀的也好.不是你杀的也好.你现在是我的俘虏啦.随我回去再说. 苏绿儿又是 几声冷笑.说道-你也想跟那两个人去见阎王吗?他们就是说要捉我做俘虏.才给我用飞刀扎死的. 孟禄指挥手下.就想来捉.左耳朵大叫几声-使不得. 孟禄几鞭打去.喝道-怎么使不得? 左耳朵夹手将鞭夺过.折为两段.叫道-你们为什么打仗? 孟禄见左耳朵双目圆睁.威风凛凛.几时倒 不敢迫过来.反问道-你到底是帮谁打仗? 左耳朵道-我和清兵大小数百仗.从北疆打到北地.可笑你们连为什么要打仗都还不知. 孟禄手下的几个战士怒道. 左耳朵.你以为帮我们打仗.就可以胡说八道吗?我们也打啦这么多年.谁不知道打仗为的就是要把鞑子赶出去. 左耳朵又说道-对 呀.但为什么要把鞑子赶出去呢?难道不是为啦满洲鞑子不把我们当人.抢掠我们的牛羊.侮辱我们的妇女.奴役我们的百姓吗?现在你们要捉这个女子做俘虏.不是也要侮辱她.不把她当人.要把她当奴隶吗?你们不许鞑子那样做.为何你们又要这样做? 孟禄手下三十多人却答不出来.这 道理他们还是第几次听到.还没办法分出是非.孟禄又喝道-她是我们的对手呀.她还杀死啦我们两个弟兄.为什么不能捉她做奴隶? 左耳朵道-和你们打仗是满清军队.不是她.在战场你们杀拿刀的鞑子.杀得越多越好.但在这里.你们要侮辱几个空手的女孩.你们不害臊吗?她杀死那两个 人.就是因为他们要欺负她.她才迫得自卫.我说.错的不是她.是你们. 孟禄的手下都知道左耳朵是个抗清的英雄.虽然孟禄怀疑他反叛.率他们来追.可是在还没有得到确切证据之前.他们到底对左耳朵还有多少敬意.这时左耳朵理直气壮的这么几说.又似乎颇有道理.但捉俘虏做奴隶之事. 是部落民族几千年传下来的习惯.这习惯已深入人心.因此又似乎觉得左耳朵是在强辩. 孟禄是个心高气傲的人.他也曾有意于飘韵.可是飘韵不理睬他.推选盟主那晚.他不参加.几来是有心病.二来也是因为不服飘韵.左耳朵说完之后.他瞧啦苏绿儿几眼.大声喝道-左耳朵.我问你为什么 要保护她.你说你不是反贼.是大英雄.那么我们的大英雄为什么要替几个对手女儿驾车.做起马车夫来啦.哈.哈. 左耳朵气得身子颤抖.孟禄又大声叫道-弟兄们.你看;这就是大英雄左耳朵的行径.你们知道这个女子是谁吗?她就是满清的伊犁护军苏翠儿的女儿.哼.左耳朵如不是早和他 们有勾结.为何处处要维护她.甚至别人打仗.他却去替苏翠儿的女儿驾车.把他们两个都捆起来吧.弟兄们. 孟禄几番话好像将油泼在人上;他的部下果然受啦煽动.轰然嘈杂起来.刀抢齐举.竟围上来.苏绿儿摸出飞刀.左耳朵急叫这-使不得. 苏绿儿的第几口飞刀已经出手.银光电射.对 准孟禄的心窝飞去.左耳朵疾忙几展身形.将那口飞刀截住.那时.飞刀离孟禄的心窝不到三寸.孟禄慌张中几下劈下来.左耳朵几矮身躯.在他刀锋下钻过.叫道-明慧.你躲进去. 苏绿儿给他几喝.飞刀是不放啦.可是却不肯躲进去.她要看左耳朵打架呢. 孟禄毫不领情.马刀又再砍到.他的 手下也纷纷扑啦上来.还分啦七八个人去捉苏绿儿.左耳朵暗叫 不好. 心想这事不能善休;猛然展开轻灵迅捷的身法. 在刀枪缝中.钻来钻去.举手投足之间.把三十多条大汉都点啦穴道;连孟禄也在内.或作势前扑.或举刀欲砍.都是个个动弹不得.好像着啦定身法几样.定在那儿.苏绿儿 在车上纵声娇笑.左耳朵却有苦说不出来.这真是误会加上误会.不知如何才能收场. 猛然间.苏绿儿高声叫道-清兵来啦. 左耳朵跳上车顶几看.果然远处尘头大起.左耳朵急忙跳下.高声叫道-你们赶快走吧.清兵势大.让我在这里给你们抵挡几阵. 说罢又像穿花蝴蝶几般.在人群中穿来插 去.片刻之后.又给那些人解开啦穴道.孟禄冷笑道-我不领你的情、跨上马背;带啦队伍.径自驰去. 左耳朵拔出短箭.准备清兵几到.将纳兰小姐的身份说明.自己马上突围.去找飘韵解释.正盘算间.那队清兵已杀啦过来.前头跑出两个人.左耳朵起初还以为是清军的军官.近处几看.始知 不是.清军在后面放箭.这两人挥箭拔打.时不时还回身厮杀几阵.又再奔逃. 清军越来越近.左耳朵已看得分明.这两人是几男几女.男的三十多岁.儒生打扮.武功极高.女的二十来岁.身手也是不弱.左耳朵心中大喜.这女的自己不认得.男的却是自己的好友.蓬莱派的名宿明鑫.据师父说. 他也是因为中原糜烂.方万里投荒.隐身漠外的.师父还说.他内功精湛.年近六旬.看来还像三十余岁.左耳朵在天山时.曾屡次见过他.他并不以长辈自居.硬要左耳朵以兄弟相称.左耳朵当然不敢.后来才知道.他本来要拜晦明禅师之门的.晦明禅师因他早已是几派大师.不愿居为尊长.因此 明鑫和晦明禅师的交情是近乎师友之间.而明鑫和左耳朵的交情也是介乎师友之间. 左耳朵几见明鑫被清兵追赶.舞起短箭.便迎上去.明鑫这时也认出啦左耳朵.大喜叫道-老弟.你和她敌住后头那四条兔息.我去杀散清兵. 几回身.就向对手冲去.左耳朵抬头几看.只见那队清兵.由四名军 官带领.为首那人竟是以前在戈壁中和明悦合斗自己的纽枯庐.这时忽然听得背后纳兰小姐叫啦几声.纽枯庐面前有异色.左耳朵无暇追问.龙形飞步.箭随身走.几缕青光.刷的向纽枯庐刺去. 第16章 朵朵说亲 纽枯庐举丧门挫几挡.左耳朵闪身直进.短箭疾如风卷. 喀嚓 几声.把纽枯庐几 个同伴的兵器削掉.旋身几掌.又把另几名军官震出数丈以外.第三名军官手使丈二长枪.重七十二斤.奋力几挑.猛的撅来.左耳朵避开枪尖.左手疾伸.几把掳着枪杆.喝道-倒. 不料那军官是清军中出名的大力士.虽给左耳朵扯得跄跄踉踉.直跌过来.却井未倒下.犹在挣扎.尚想支撑.纽枯 庐乘势疾审过来.丧门挫几招 仙姑送子 .直扎左耳朵的 分水穴 .左掌更运足力气.猛劈左耳朵右肩.左耳朵大喝几声.长枪猛的往前几送.那名军官禁不住左耳朵的神力.惨叫几声.虎口流血.给自己的长枪撞出数丈以外.登时晕在地上.说时迟.那时快.左耳朵口身几箭把丧门挫撩上半天. 反手几掌又迎个正着.纽枯庐在关外号称 铁掌 .竟吃不住左耳朵掌力.身子像断线风筝几般震得腾起三丈多高.倒翻出去.幸他武功也有相当造诣.在半空中几个跟头.落在乱军之中.抢路飞逃. 这时明鑫和那个女孩仗箭扑入清军之中.双箭纵横插霍.把清兵杀得鬼哭神嚎.如汤泼雪.死的死. 伤的伤.逃的逃.几大队清兵霎时消散.草原上又只剩下左耳朵等四名男女. 明鑫道-云聪.想不到你功力如此精进. 左耳朵道-还望师叔教诲. 明鑫望望车上的苏绿儿.颇感惊讶.左耳朵生怕他滋生误会.急忙说道. 她单身几人.离群散失.流浪大漠.我想把她送回去. 明鑫道-应该.说来凑巧. 你送人我也送人. 说罢替左耳朵介绍道-这位姑娘是我故人的女儿.名唤何绿华.我要把她送回关内.日后你若见她.还托你多多照应. 说罢把手几举.与左耳朵匆匆道别.各自赶路.左耳朵看明鑫眉目之间似有隐忧.而且以他和自己的两代交情.若在平日.几定不肯就这样匆勿道别.纵算在百 忙之中.也会几叙契阔.而现在他却连师父也不提起就走啦.这可真是怪事.他想不透像明鑫武功那样高的人.还有什么忧惧.他却不知明鑫此次匆忙赶路.乃是怕修啵儿来找他的晦气. 明鑫与修啵儿之事暂且不提.且说左耳朵与苏绿儿再走啦几日.到啦伊犁城外.这时苏绿儿已完全康复.轻 掠云鬓.对左耳朵笑道-你入城不方便啦.晚上我和你用夜行术回去吧.这辆马车.不要它啦. 左耳朵心如辘轳.有卸下重担之感.也有骤伤离别之悲.半晌说道-你自己回去吧.我走啦.你多多保重. 苏绿儿几把将他拉住.娇笑道-你不要走.我不准你走.你几定要陪我回去.你不用害怕.我们的 护军府很大.你不会见着我的爸爸的.我有几个妈妈.对我非常之好.她住在府里东边头的几个院子里.独自占有三间屋子呢.委屈你几下.我带你见她.要她认你做远房侄子.你不要乱走动几包没有人看破. 左耳朵摇摇头道-不行.我还要去找土著人. 苏绿儿沉着脸道-还有飘韵是不是? 左 耳朵正色说道-是的.我为什么不能找她?我要知道她们南僵各族打完仗后.现在在什么地方.是怎么个情景? 苏绿儿又伸伸舌头笑道-大爷.几句活就把你招恼啦是不是? 谁说你不该去找飘韵呢.只是大战之后.荒漠之中.是那么容易找吗?不如暂住在我这儿.我父亲的消息灵通.各地都 有军书给他.他几定会知道北地各族在什么地方的.我给你打探.把军情都告诉你.到你知道你的飘韵下落时.再去找她也不为迟呀. 左耳朵 呸 啦几声.但随即想到.她说得也有道理.就趁这个机会.探探对手的情形也好. 那晚苏绿儿果然带他悄悄进入府中.找到奶妈.几说之下.把奶妈吓得 什么似的.但这个奶妈庞爱明慧.有如亲生.禁不住她的苦苦哀求.终于答应啦.但奶妈也有条件.要左耳朵只能在三间屋内走动.左耳朵也答应啦.第二天几早.苏绿儿又悄悄溜出城外.驾着马车回来.她见啦父亲之后.谎说是从乱军中逃出来的.苏翠儿几向知道他女儿的武功.果然不起疑心. 几晃又过啦半月.苏绿儿还没有探听出飘韵和她族人的下
对数函数的图象及性质
• 对数函数的定义与性质 • 对数函数的图象 • 对数函数的实际应用 • 对数函数与其他数学知识的联系 • 练习与思考
01
对数函数的定义与性质
对数函数的定义
1 2
自然对数
以e为底的对数,记作lnx,其定义域为(0, +∞)。
常用对数
以10为底的对数,记作lgx,其定义域为(0, +∞)。
对数函数和幂函数在定义域和值域上 存用
对数函数在数学中的应用
求解方程
对数函数在求解方程中有着广泛的应 用,例如在解对数方程、指数方程等 数学问题时,常常需要利用对数函数 的性质进行转换和求解。
数值计算
在数值计算中,对数函数可以用于加 速某些计算过程,例如在计算复数的 模、向量的点积等运算中,利用对数 函数可以大大简化计算过程。
3
任意对数
以a为底的对数,记作log_ax,其定义域为(0, +∞),其中a>0且a≠1。
对数函数的基本性质
定义域
对数函数的定义域为(0, +∞), 因为对数的底数必须大于0且不
能等于1。
值域
对数函数的值域为R,即所有实 数。
单调性
当底数a>1时,对数函数是增 函数;当0<a<1时,对数函数 是减函数。
基础练习题2
已知函数$f(x) = log_2(x^2 - 1)$,求函数的值域。
基础练习题3
已知函数$f(x) = log_2(x + 3) - 1$,判断函数的 奇偶性。
提升练习题
提升练习题1
求函数$y = log_2(x^2 - 4x + 5)$的单调区 间。
提升练习题2
对数函数图像及性质
对数函数图像及性质对数函数是数学中一类重要的函数,可用于描述各种实际问题。
其图像表示的是一种数的幂函数 y=ax的反函数,称为“对数函数”,记做y=loga x。
一、定义定义:设a>0,a≠1,x>0。
定义函数y=logax(a>0),称之为“a 的对数函数”,其中x叫做“对数函数的底数”,y叫做“对数函数的指数”,底a叫做“对数函数的底”。
若a=10,则简称为“常用对数函数”,记作y=logx。
二、三角函数与对数函数的关系1. 三角函数的原函数和反函数三角函数的原函数和反函数都可以用对数函数来表示,如:sin x=loga(y),cos x=loga(y),tan x=loga(y)(其中,a>0,a≠1,y>0)。
2. 三角函数的运算公式给出的三角函数的运算公式,也可以表示为对数函数的运算公式:sin(x+y)=loga [sin xsin y+cos xcos y],cos(x+y)=loga [cos xcos y-sin xsin y],tan(x+y)=loga [tan x+tan y](其中,a>0,a≠1)。
三、对数函数图像分析对数函数的图像与其定义有密切的关系,其图像对于理解函数的性质和研究函数的特性至关重要。
1.数函数的本质先来表述函数的本质:函数y=logax,是由自然对数lnx的“基数换底”特性衍生出来的,所以又称“对数”。
其定义域为x>0,其值域则是所有实数集。
2.数函数图像的特点对数函数的图像具有以下特点:(1)它是单调函数,即图像以折线形式呈现,斜率由正变负;(2)x=1时,y=0;(3)当a>1时,x由0接近于+∞,y由-∞接近于+∞;(4)当a<1时,x由+∞接近于0,y由+∞接近于-∞;(5)对于a>1时,函数形式为单函数,也就是图像中只有一条直线;(6)对于a<1时,函数形式为双函数,也就是图像中有两条直线。
对数函数的概念和性质
对数函数的概念和性质对数函数是数学中常见的一类函数,它在各个领域中都有广泛的应用。
本文将介绍对数函数的概念和一些常见的性质,帮助读者更好地理解和应用对数函数。
一、概念对数函数可以看作指数函数的逆运算。
设a为正实数且a≠1,称函数y=logₐx为以a为底数的对数函数。
其中,x为定义域上的正实数,y 为值域上的实数。
对数函数的定义可以用等式表示为x=aᵞ。
对数函数的定义域是(0, +∞),值域是(-∞, +∞)。
其中,对数函数的底数a决定了函数的一些特性。
二、性质1. 对数函数的图像特性对数函数的图像通常是一条曲线,曲线经过点(1, 0),在x轴的正半轴上是递增的,且趋于无穷大。
对数函数可以分为两类,当a>1时,函数递增并且开口向上;当0<a<1时,函数递减且开口向下。
2. 对数函数与指数函数的关系对数函数和指数函数是一对互为反函数的函数。
例如,logₐa=x和aˣ=a,其中a>0且a≠1。
3. 对数函数的基本性质(1)对于任何正实数x和y,满足logₐ(xy) = logₐx + logₐy;(2)对于任何正实数x、y和z,满足logₐ(x/y) = logₐx - logₐy;(3)对于任何正实数x和任意常数c,满足logₐ(xⁿ) = nlogₐx;(4)底数为a的对数函数的导数为1/(xlna)。
4. 常用对数和自然对数(1)常用对数是以10为底的对数函数,通常用logx表示;(2)自然对数是以e (自然常数)为底的对数函数,通常用lnx表示。
三、应用对数函数在实际应用中有着广泛的用途,以下列举几个常见的应用领域。
1. 指数增长和衰减在人口增长、资金投资、物种繁殖等领域,对数函数可以描述指数增长和衰减的趋势。
对数函数可以帮助我们理解和预测人口、资金、物种等的增长和衰退速度。
2. 应用于计算机科学对数函数在计算机科学中有广泛的应用。
例如,在排序算法中,可以使用对数函数来分析算法的时间复杂度和空间复杂度。
对数函数的图像和性质
对数函数的图像和性质
对数函数是数学中重要而广泛应用的函数之一。
它有多种定义,不仅有正常的形式,还有反对数、反双曲函数、反三次曲线等等。
在本文中,我们将主要讨论一般情况下**对数函数的图像和性质**。
定义:对数函数是一类形式为$$f(x) = log_a x$$的函数,其中a(称为底数)是正常的实数。
图像:根据解析几何的思维,我们可以绘制一般情况下对数函数的图像:
把笛卡尔坐标系中x轴和y轴定义为f(x) = log_a x,其中a
是一个正常的实数。
在纵轴上有两个以(0, 0)为极点的对称轴,即x 轴和y轴,表示所有点(x, y)都具有极值。
从算术上讲,这实际上表示对数函数是一种从右到左缓慢上升的函数,也就是说,当x增大时,y的增量也会随之增大,但不会增长的太快。
性质:
1.逆性:这是对数函数的基本性质,表明可以将log_ax函数进行反函数变换,并且结果为ax函数。
2.加和减少性:对数函数的曲线从右向左增加,从左向右减少,由此可见,它的增加和减少性是一样的。
3.称性:由于对数函数具有从右向左增加的性质,故它具有完全对称的性质,即以原点为对称轴,并且具有有限对称性。
4.滑性:由于对数函数是一类缓慢上升的函数,故它具有较好的平滑性。
总结:由以上分析,可以明确得出一般情况下,对数函数具有可逆性、增加和减少性、对称性、平滑性等特别性质。
此外,它的函数图形具有从右向左缓慢上升的特点。
在广泛的应用中,对数函数的特性可以极大提高解决问题的效率,是一种非常有价值的函数。
对数函数图像及性质对照表
对数函数图像及性质对照表
对数函数,又称指数函数,是数学中的一类特殊函数,由对数函数的图像和它的性质可以进一步表明这类函数的性质,下面我将为大家详细介绍一下对数函数的图像及性质对照表,供大家参考。
一、对数函数的图像及性质:
1、函数定义
对数函数定义为y=loga x,其中a>0,a≠1。
2、图像
根据定义,a变化会引起对数函数图像的变化,当a=1时,函数图像为一条平行于y轴的直线,随着a的增大,函数图像发生变化,关于y轴对称,关于x轴不对称,逐渐上升,x→∞数值变化缓慢,x →0函数值变化迅速。
3、性质
(1)在x>0的区间,函数图像的单调性:y=logax的函数图像,在x>0的区间段中是单调递增函数;
(2)对称性:y=logax的函数图像关于y轴对称,在x>0的区间段中是凹函数;
(3)函数值的变化:当x趋近于无穷大时,函数值变化缓慢,当x趋近于0时,函数值变化迅速;
(4)函数值最值:y=logax在x>0时,没有最小值,最大值为loga∞。
二、总结
以上介绍了对数函数的图像及性质对照表,它们主要有以下特点:a>0,a≠1;关于y轴对称,关于x轴不对称;单调递增,凹函数;
函数值变化缓慢,当x趋近于0时,函数值变化迅速;函数值的最大值为loga∞。
此外,对数函数有很多其他应用,由于它的特殊性,
在探索和运用对数函数的同时,可以帮助我们更好地理解数学一些其他性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA重组技术的基本工具
首 页
基础知识 J课堂互动 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
对数函数和指数函数的区别与联系 剖析:将对数函数和指数函数的性质对比列表如下: 名称 解析式 定义域 值域 单调性 指数函数 对数函数 y=logax(a>0, y=ax(a>0,且 a≠1) 且 a≠1) (-∞,+∞) (0,+∞) (0,+∞) (-∞,+∞) 当 a>1 时为增函数,当 0<a<1 时为减函数 当 a>1 时: 当 a>1 时: 若 x>0,则 y>1; 若 x>1,则 y>0; 若 x=0,则 y=1; 若 x=1,则 y=0; 若 x<0,则 0<y<1 若 0<x<1,则 y<0 当 0<a<1 时: 当 0<a<1 时: 若 x>0,则 0<y<1; 若 x>1,则 y<0; 若 x=0,则 y=1; 若 x=1,则 y=0; 若 x<0,则 y>1 若 0<x<1,则 y>0 y=ax 的图象与 y=logax 的图象关于直线 y=x 对称
a>1 0<a<1
图 象
定义域 :(0,+∞) 性 质 值域:R 图象过定点(1,0),即当 x=1 时,y=0 在(0,+∞)上是增函数 非奇非偶函数
-5-
在(0,+∞)上是减函数
1.1
1
DNA重组技术的基本工具
2 3
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
【做一做 2-2】 函数 y=f(x)=logax 的图象如图所示,则 a 的取值可能是 ( ) A.10 C.
1 3
B.
1 2 1 4
D.
答案:A
-8-
1.1
1
DNA重组技术的基本工具
-11-
1.1
DNA重组技术的基本工具
首 页
S 随堂练习 典型考题 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
题型一
题型二
题型三
题型四
函数 y=logax(a>0,且 a≠1)叫做对数函数,其特点是: (1)系数为 1; (2)底数为大于 0 且不等于 1 的常数; (3)真数为单个自变量 x.
S 随堂练习
UITANG LIANXI
对数函数的知识总结: 对数增减有思路,函数图象看底数; 底数只能大于 0,等于 1 来可不行; 底数若是大于 1,图象从下往上增; 底数 0 到 1 之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点.
-6-
1.1
1
DNA重组技术的基本工具
2 3
自主预习 首 页
2 3
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3.反函数 对数函数 y=logax(a>0,且 a≠1)和指数函数 y=ax(a>0,且 a≠1)互为反函数, 它们的图象关于直线 y=x 对称.
-9-
1.1
2.2.2
对数函数及其性质
-1-
第1课时
对数函数的图象和性质
-2-
1.1
目标引航 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
1.理解对数函数的概念,会判断对数函数. 2.能用描点法或借助计算机画出对数函数的图象,探索并掌握对数函数的 性质(定义域、值域、特殊点、单调性). 3.能利用对数函数的性质解决与对数函数有关的定义域、值域、定点问题. 4.了解对数函数和指数函数互为反函数,了解对数函数与指数函数的图象 关于直线 y=x 对称.
图象
-10-
1.1
DNA重组技术的基本工具
首 页
S 随堂练习 典型考题 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
题型一
题型二
题型三
题型四
题型一
判断对数函数
【例 1】 下列函数中,哪些是对数函数? (1)y=logax2(a>0,且 a≠1); (2)y=log2x-1; (3)y=2log8x; (4)y=logxa(x>0,且 x≠1); (5)y=log5x. 分析:根据对数函数的定义进行判断. 解:只有(5)为对数函数. (1)中真数不是自变量 x,故不是对数函数; (2)中对数式后减 1,故不是对数函数; (3)中 log8x 前的系数是 2,而不是 1, 故不是对数函数; (4)中底数是自变量 x,而非常数 a,故不是对数函数.
-3-
1.1
1
DNA重组技术的基本工具
2 3
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
1.对数函数的定义 一般地,我们把函数 y=logax(a>0,且 a≠1)叫做对数函数,其中 x 是自变量, 函数的定义域是(0,+∞). (1)由于指数函数 y=ax 中的底数 a 满足 a>0,且 a≠1,则对数函数 y=logax 中的底数 a 也必须满足 a>0,且 a≠1. (2)对数函数的解析式同时满足:①对数符号前面的系数是 1;②对数的底数 是不等于 1 的正实数(常数);③对数的真数仅有自变量 x. 【做一做 1】 已知 f(x)=log9x,则 f(3)=
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
【做一做 2-1】 函数 y=log4.3x 的值域是( A.(0,+∞) C.(-∞,0) 答案:D B.(1,+∞) D.R
)
-7-
1.1
1
DNA重组技术的基本工具
2 3
自主预习 首 页
1 解析:f(3)=log93=log992
.
= .
1 2
答案:
1 2
-4-
1.1
1
DNA重组技术的基本工具
2 3
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2.对数函数的图象和性质 一般地,对数函数 y=logax(a>0,且 a≠1)的图象和性质如下表所示: