【真卷】2013-2014年甘肃省嘉峪关四中八年级(上)数学期中试卷带答案
甘肃省 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去3.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3个B. 2个C. 1个D. 0个6.如图,△ABC≌△DEC,则结论 BC=EC,∠DCA=∠ACE,CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个7.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A. 2B. 3C. 4D. 58.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.角平分线上的点到______的距离相等.12.已知三角形两边长分别为4和9,则第三边的取值范围是______ .13.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为______ ,对应边分别为______ .14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是______(填上适当的一个条件即可)16.如图,AC⊥BD于O,BO=OD,图中共有全等三角形______对.17.已知△ABC≌△A′B′C′,△ABC的周长为12cm,AB=3cm,BC=4cm,则A′C′=______cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为______ .19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于______度.20.如图,E点为△ABC的边AC中点,CN∥AB,过E点作直线交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB= ______ cm.三、解答题(本大题共7小题,共60.0分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.25.如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P.求证:点P到三边AB,BC,CA所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC中,AD是△ABC中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.__________________.答案和解析1.【答案】A【解析】解:A、6,6,11满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC≌△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD≌△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP≌△BDP从而可得CP=DP,∴可得△OCP≌△ODP同理可证得△APO≌△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD【解析】解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.由全等且点A和点C对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB和△AOD中,,∴△AOB≌△AOD(SAS),∴AB=AD;②∵在△BOC和△DOC中,,∴△BOC≌△DOC(SAS),∴BC=DC;③∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB和△AOD中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB≌△AOD.同样的道理推出△BOC≌△DOC.再由AB=AD,BC=DC,AC为公共边,推出△ABC≌△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC≌△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x和5x,利用周长可求得x的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,△CHE≌△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE≌△AME,得出AM=CN,那么就可求AB的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O为圆心,以任意长为半径,画弧分别与OA、OB相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3时,腰为(13-3)÷2=5,∴以3,5,5为边能构成三角形.故另外两边长为5,5.【解析】由于长为3的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE≌△EBD.∴∠CEA=∠D.∵∠D+∠DEB=90°,∴∠CEA+∠DEB=90°.即线段CE与DE的大小与位置关系为相等且垂直.【解析】先利用HL判定△CAE≌△EBD,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE与DE的大小与位置关系为相等且垂直.此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意做题格式.25.【答案】证明:如图,过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,∵△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P,∴PF=PG,PG=PH,∴PF=PG=PH,∴点P到三边AB、BC、CA所在直线的距离相等.【解析】过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26.【答案】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【解析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD≌△ACD;△BDE≌△CDF;△ADE≌△ADF【解析】解:①△ABD≌△ACD,②△BDE≌△CDF,③△ADE≌△ADF;故答案为:△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF;∵AD是△ABC中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3对全等的三角形;(2)找出满足SAS的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。
甘肃初二初中数学期中考试带答案解析
甘肃初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数:1.414,,,0,其中是无理数的为( )A.1.414B.C.D.02.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( )A.1个B.2个C.3个D.4个3.以下列各组数为边长,能组成直角三角形的是( )A.8,15,7B.8,10,6C.5,8,10D.8,3,404.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点5.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.6.下列根式是最简二次根式是( )A.B.C.D.7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1) 8.将直角三角形的三边长同时扩大2倍,得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形9.对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)10.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A .干旱开始后,蓄水量每天减少20万立方米B .干旱开始后,蓄水量每天增加20万立方米C .干旱开始时,蓄水量为200万立方米D .干旱第50天时,蓄水量为1200万立方米二、填空题1.已知点A(a ,5)与B(2,b)关于y 轴对称,则a +b =______.2.将直线y =2x +1向下平移3个单位长度后所得直线的表达式是 ______.3.8100的算术平方根的倒数是______;4.若函数y =(a -3)x |a|-2+1是一次函数,则a =_______.5.计算=_________. 6.比较大小:-3________.(填“>””<”或“=”号)7.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 表示,当他们行走3小时后,他们之间的距离为_____千米.8.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是x =_______.9.若直角三角形的两直角边长为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为________.10.在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 . 三、解答题 1.计算:(1); (2)(+1)÷×(-1)-()0.2.求下列各式中x 的值:(1)(x +2)2-36=0; (2)64(x +1)3=27.3.实数a ,b 在数轴上的位置如图所示,化简:.4.如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.5.如图,一次函数的图象与x 轴,y 轴交于点A ,B ,如果点A 的坐标为(4,0),且OA =2OB ,求一次函数的表达式.6.如图,在平面直角坐标系中,分别写出△ABC的顶点坐标,并求出△ABC三边的长和△ABC的面积.7.如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?在图中表示出这个相遇点.甘肃初二初中数学期中考试答案及解析一、选择题1.下列各数:1.414,,,0,其中是无理数的为( )A.1.414B.C.D.0【答案】B【解析】试题解析:是无理数.故选B.点睛:无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( )A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:不属于任何象限的点有(0,0),(1,0),(0,2)共3个.故选C.点睛:不属于任何象限的点是坐标轴上的点,即横坐标为0或者纵坐标为0的点.3.以下列各组数为边长,能组成直角三角形的是( )A.8,15,7B.8,10,6C.5,8,10D.8,3,40【答案】B【解析】试题解析:A、82+72≠152,故不是直角三角形,故错误;B、62+82=102,故是直角三角形,故正确;C、52+82≠102,故不是直角三角形,故错误;D、82+32≠402,故不是直角三角形,故错误.故选B.4.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点【答案】A.【解析】是无理数,A项错误,故答案选A.【考点】无理数.5.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.6.下列根式是最简二次根式是( )A.B.C.D.【答案】C【解析】试题解析:A. =,不是最简二次根式,故该选项错误;B. =,不是最简二次根式,故该选项错误;C. ,是最简二次根式,故该选项正确;D. =11,不是最简二次根式,故该选项错误.故选C.7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)【答案】A【解析】试题解析:点(-3,4)在第二象限,选项中是第二象限中的点的只有第一个(-2,3),故选A.8.将直角三角形的三边长同时扩大2倍,得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【答案】C【解析】试题解析:∵设原直角三角形的三边的长是a、b、c,则a2+b2=c2,如图,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴将直角三角形的三条边长同时扩大2倍,得到的三角形还是直角三角形,故选C.9.对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.【考点】一次函数的性质;一次函数图象与几何变换.10.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A.干旱开始后,蓄水量每天减少20万立方米B.干旱开始后,蓄水量每天增加20万立方米C.干旱开始时,蓄水量为200万立方米D.干旱第50天时,蓄水量为1200万立方米【答案】A【解析】试题解析:刚开始时水库有水1200万米3;50天时,水库蓄水量为200万米3,减少了1200-200=1000万米3;那么每天减少的水量为:1000÷50=20万米3.故选A.二、填空题1.已知点A(a,5)与B(2,b)关于y轴对称,则a+b=______.【答案】3【解析】试题解析:∵点A(a,5)与点B(2,b)关于y轴对称,∴a=-2,b=5,∴a+b=-2+5=3.2.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.【答案】y=2x-2【解析】直线y=2x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=2x+1﹣3=2x﹣2.【考点】一次函数图象与几何变换.3.8100的算术平方根的倒数是______;【答案】【解析】试题解析:∵8100的算术平方根是90,90的倒数是,∴8100的算术平方根的倒数是.4.若函数y =(a -3)x |a|-2+1是一次函数,则a =_______.【答案】-3【解析】试题解析:∵函数y=(a-3)x |a|-2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=-3.5.计算=_________. 【答案】2-【解析】故填2-.6.比较大小:-3________.(填“>””<”或“=”号) 【答案】<【解析】因为 ,∴ ,∴ .故答案为:<.7.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 表示,当他们行走3小时后,他们之间的距离为_____千米.【答案】1.5【解析】试题解析:由题,图可知甲走的是C 路线,乙走的是D 路线,设s=kt+b ①,因为C 过(0,0),(2,4)点,所以代入①得:k=2,b=0,所以s C =2t .因为D 过(2,4),(0,3)点,代入①中得:k=,b=3,所以s D =t+3, 当t=3时,s C -s D =6-4.5=1.5.点睛:根据图分别求出甲乙两人行走时的路程与时间的关系一次函数,设s=kt+b ,甲走的是C 路线,乙走的是D 路线,C 、D 线均过(2,4)点,且分别过(0,0),(0,3),很容易求得,要求他们三小时后的距离即是求当t=3时,s C 与s D 的差.8.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是x =_______.【答案】2.【解析】由一次函数与一元一次方程的关系及已知得x =2.9.若直角三角形的两直角边长为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为________.【答案】5.【解析】试题解析:∵a 2-6a +9+|b -4|=0∴a 2-6a+9=0,b-4=0,解得a=3,b=4,∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长=.点睛:任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.10.在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 . 【答案】(9,81) 【解析】首先观察各点坐标,找出一般规律,然后根据规律确定点A 9的坐标.解:设A n (x ,y ).∵当n=1时,A 1(1,1),即x=1,y=12;当n=2时,A 2(2,4),即x=2,y=22;当n=3时,A 3(3,9),即x=3,y=32;当n=4时,A 1(4,16),即x=4,y=42;… ∴当n=9时,x=9,y=92,即A 9(9,81).故答案填(9,81).点评:解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题1.计算:(1); (2)(+1)÷×(-1)-()0.【答案】(1) ;(2). 【解析】(1)运用乘法对加法的分配律进行计算即可求得结果;(2)先计算零次幂,再计算乘除法,最后算加减即可.试题解析:(1)原式=;(2)原式===.2.求下列各式中x 的值:(1)(x +2)2-36=0; (2)64(x +1)3=27.【答案】(1)x =4或x =-8 ;(2)x =-.【解析】(1)先移项,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.试题解析:(1)(x+2)2-36=0,(x+2)2=36,x+2=±6,x=4或x=-8;(2)64(x+1)3=27,(x+1)3=,x+1=, x=-.3.实数a ,b 在数轴上的位置如图所示,化简:.【答案】-2b.【解析】利用数轴得出各项符号,进而利用二次根式的性质化简求出即可.试题解析:由数轴可知a<0<b<1,∴原式=-a -b -(b -a)=-2b4.如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.【答案】60.【解析】过A 作BC 的垂线,由勾股定理易求得此垂线的长,即可求出△ABC 的面积.试题解析:作AD ⊥BC 于D.∵AB =AC , ∴BD =CD =5, ∴AD =12,∴S △ABC =BC·AD =605.如图,一次函数的图象与x 轴,y 轴交于点A ,B ,如果点A 的坐标为(4,0),且OA =2OB ,求一次函数的表达式.【答案】y =-x +2.【解析】先确定B 点坐标,然后利用待定系数法求直线AB 的解析式.试题解析:设一次函数的表达式为y =kx +b(k≠0,k ,b 都是常数),由点A 的坐标为(4,0),且OA =2OB ,可知B(0,2).又点A ,B 的坐标满足一次函数表达式,∴b =2,4k +b =0,解得k =-. 则一次函数的表达式为y =-x +26.如图,在平面直角坐标系中,分别写出△ABC 的顶点坐标,并求出△ABC 三边的长和△ABC 的面积.【答案】10.【解析】由图知,△ABC 的顶点坐标分别是A (2,3),B (-2,-1),C (1,-3),如图,S △ABC =S 矩形ADEF -S △ADB -S △BEC -S △ACF ,代入解答出即可.试题解析:由图知,△ABC 的顶点坐标分别是A (2,3),B (-2,-1),C (1,-3),∴S △ABC =S 矩形ADEF -S △ADB -S △BEC -S △ACF ,=4×6-×4×4-×2×3-×1×6,=24-8-3-3,=10.答:三角形ABC 的面积是10.7.如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?在图中表示出这个相遇点.【答案】(1)10km ;(2)1h ;(3)3h ;(4)h. 【解析】(1)观察图象,即可求得B 出发时与A 相距10千米;(2)观察图象可得自行车发生故障,是在0.5~1.5小时时间内修理的,即可求得进行修理,所用的时间;(3)从图象可得两函数的交点坐标的横坐标为3,即可得B 出发后3小时与A 相遇;(4)首先求得两函数的解析式,然后有其相等时的交点即是C 点,解方程即可求得答案.试题解析:(1)B 出发时与A 相距10千米.(2)修理自行车的时间为:1.5-05=1小时.(3)3小时时相遇.(4)设B 修车前的关系式为:y=kx ,过(0.5,7.5)点.7.5=0.5kk=15.y=15x .相遇时:S=yx+10=15x x=.。
嘉峪关市初二年级数学上册期中考试题(含答案解析)
嘉峪关市初二年级数学上册期中考试题(含答案解析)∠AEF=110°,则∠1= ( )A.30°B.35°C.40°D.50°6.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120° B.70° C.60° D.50°7.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()[来源:ZXK] A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能8.平面内点A(-1,2)和点B(-1,-2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=-19.如图,点P为∠AOB内一点,分别作出点P关于OA、OB 的对称点P1、P2,连接P1,P2交 OA于M,交OB于N,若P1P2=6,则△PMN的周长为()A.4B.5C.6D.710.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A. 2cm2 B. 1cm2 C. cm2 D. cm2二、填空题(本题共8小题,每小题4分,共32分)11.内角和等于外角和的多边形是_____ ___边形.12.如图,如果△ ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm.则AC= cm.13.三角形三个内角度数之比是1:2:3,最大边长是8,则它的最小边的长14.如图,已知∠1=∠2,请你添加一个条件:________ ___,使△ABD≌△ACD.15.三角形一个外角小于与它相邻的内角,这个三角形是________ 三角形(锐角、直角、钝角)16.如图,在△ABC中,∠C=90°,AD平分∠BAC,若BC=5,BD=3,则点D到AB的距离为.17.一个汽车牌在水中的倒影为,该车牌照号码____________。
2013-2014年甘肃省张掖四中八年级上学期期中数学试卷和答案
2013-2014学年甘肃省张掖四中八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.52.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在△ABC中,AC=3,BC=4,则AB的长是()A.5 B.10 C.4 D.大于1且小于74.(3分)在二次根式①、②、③、④中与是同类二次根式的是()A.①和③B.②和③C.①和④D.③和④5.(3分)点P(﹣1,3)关于原点中心对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3) D.(3,﹣1)6.(3分)的平方根是()A.4 B.±4 C.2 D.±27.(3分)若a2=25,|b|=3,则a+b的值是()A.﹣8 B.±8 C.±2 D.±8或±28.(3分)已知点P(﹣3,﹣3),Q(﹣3,4),则直线PQ()A.平行于X轴B.平行于Y轴C.垂直于Y轴D.以上都不正确9.(3分)实数a、b在数轴上对应点的位置如图,则的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b10.(3分)若一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是()A.直角三角形B.等腰直角三角形C.等腰三角形D.以上结论都不对二、填空题(每小题3分,共30分)11.(3分)﹣8的立方根是.12.(3分)若点B(m+4,m﹣1)在x轴上,则m=.13.(3分)若一正数的平方根是2a﹣1与﹣a+2,则a=.14.(3分)点P(3,a)与点Q(b,2)关于y轴对称,则a=.15.(3分)如图,一根旗杆在离地面9米处折裂,旗杆顶部落在离旗杆底部12米处,旗杆原来的高是.16.(3分)当k=时,函数y=(k+3)x﹣5是关于x的一次函数.17.(3分)当x时,在实数范围内有意义.18.(3分)在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=.19.(3分)如图,有一圆柱体,它的高为8cm,底面半径为2cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm(π取3).20.(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.三、计算或化简(每小题16分,共16分)21.(16分)(1)3﹣2;(2)2+3﹣;(3)(﹣)(+)+2;(4)4(+)0+×﹣(1﹣)2.四、作图题:(4分)22.(4分)如图,点B的坐标为(4,2)作出△ABO关于原点对称的图形△A1B1O,并写出点A1,B1,O的坐标.五、解答题:(23----26每小题6分,27----28每小题6分,共40分)23.(6分)已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,求a,b的值.24.(6分)已知a、b、c满足|a﹣1|++(c﹣)2=0.求a+b+c的值.25.(6分)如图,长方形ABCD的长为6,宽为4,建立适当坐标系,并写出各顶点的坐标.26.(6分)如图,一架云梯AB长25m,如图所示斜靠在一面墙上,梯子底端A 离墙7m.如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多远?27.(8分)如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.28.(8分)如图,在平行四边形OABC中,OA=8,AB=6,∠AOC=120°,求点A,O,C,B各点的坐标.六、附加题:(每小题0分,共10分)29.已知+++…+=﹣1,求a的值.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…根据这个规律,第100个点的坐标为.2013-2014学年甘肃省张掖四中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.5【解答】解:实数0.3,0,,,0.123456…中,无理数有:,,0.123456…,共3个.故选:B.2.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.3.(3分)在△ABC中,AC=3,BC=4,则AB的长是()A.5 B.10 C.4 D.大于1且小于7【解答】解:由三角形的性质得:BC﹣AC<AB<AC+BC(三角形的两边之和大于第三边,两边之差小于第三边),即:4﹣3<AB<4+3,1<AB<7.故选:D.4.(3分)在二次根式①、②、③、④中与是同类二次根式的是()A.①和③B.②和③C.①和④D.③和④【解答】解:∵①=2,②=2,③=,④=3;∴与是同类二次根式的是①、④.故选:C.5.(3分)点P(﹣1,3)关于原点中心对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3) D.(3,﹣1)【解答】解:根据中心对称的性质,得点P(﹣1,3)关于中心对称的点的坐标为(1,﹣3).故选:B.6.(3分)的平方根是()A.4 B.±4 C.2 D.±2【解答】解:=4,4的平方根是±2.故选:D.7.(3分)若a2=25,|b|=3,则a+b的值是()A.﹣8 B.±8 C.±2 D.±8或±2【解答】解:∵a2=25,|b|=3∴a=±5,b=±3,则a+b的值是±8或±2.故选:D.8.(3分)已知点P(﹣3,﹣3),Q(﹣3,4),则直线PQ()A.平行于X轴B.平行于Y轴C.垂直于Y轴D.以上都不正确【解答】解:∵P(﹣3,﹣3),Q(﹣3,4),∴P、Q横坐标相等,∴由坐标特征知直线PQ平行于y轴,故选:B.9.(3分)实数a、b在数轴上对应点的位置如图,则的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|+=|a﹣b|+|a|=(b﹣a)+(﹣a)=b﹣a﹣a=b﹣2a.故选:B.10.(3分)若一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是()A.直角三角形B.等腰直角三角形C.等腰三角形D.以上结论都不对【解答】解:∵(a+b)2﹣c2=2ab,∴a2+b2+2ab﹣c2=2ab,∴a2+b2=c2,∴这个三角形为直角三角形.故选:A.二、填空题(每小题3分,共30分)11.(3分)﹣8的立方根是﹣2.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.12.(3分)若点B(m+4,m﹣1)在x轴上,则m=1.【解答】解:∵点B(m+4,m﹣1)在x轴上,∴m﹣1=0,∴m=1.故答案为:1.13.(3分)若一正数的平方根是2a﹣1与﹣a+2,则a=1或﹣1.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.14.(3分)点P(3,a)与点Q(b,2)关于y轴对称,则a=2.【解答】解:∵点P(3,a)与点Q(b,2)关于y轴对称,∴a=2,故答案为2.15.(3分)如图,一根旗杆在离地面9米处折裂,旗杆顶部落在离旗杆底部12米处,旗杆原来的高是24m.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面9m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=15米,所以旗杆折断之前大致有15m+9m=24m,故答案为:24m.16.(3分)当k=3时,函数y=(k+3)x﹣5是关于x的一次函数.【解答】解:∵函数y=(k+3)x﹣5是关于x的一次函数,∴k2﹣8=1,且k+3≠0.解得k=3.故答案是:3.17.(3分)当x≥时,在实数范围内有意义.【解答】解:当3x﹣1≥0,即x≥时,在实数范围内有意义.故答案为:x≥.18.(3分)在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=8.【解答】解:∵AB2=BC2+AC2,AB=2,∴AB2+BC2+AC2=8.故答案为:8.19.(3分)如图,有一圆柱体,它的高为8cm,底面半径为2cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是10cm(π取3).【解答】解:如图,把圆柱的侧面展开,得到如图所示的图形,其中AC=πR=2π=6cm,BC=8cm,在Rt△ABC中,AB==10cm.故答案为:10.20.(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n≥1).【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).三、计算或化简(每小题16分,共16分)21.(16分)(1)3﹣2;(2)2+3﹣;(3)(﹣)(+)+2;(4)4(+)0+×﹣(1﹣)2.【解答】解:(1)原式=;(2)原式=2+12﹣2=12;(3)原式=()2﹣()2+2=5﹣7+2=0;(4)原式=4×1+﹣(1﹣2+2)=4+2﹣1+2﹣2=3+2.四、作图题:(4分)22.(4分)如图,点B的坐标为(4,2)作出△ABO关于原点对称的图形△A1B1O,并写出点A1,B1,O的坐标.【解答】解:所作图形△A 1B1O如下图所示:根据轴对称图形的性质,并结合关于原点对称的定义即可求出A1,B1,O的坐标,A1(﹣4,0),B1(﹣4,﹣2),O(0,0).五、解答题:(23----26每小题6分,27----28每小题6分,共40分)23.(6分)已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,求a,b的值.【解答】解:∵P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4.24.(6分)已知a、b、c满足|a﹣1|++(c﹣)2=0.求a+b+c的值.【解答】解:∵|a﹣1|++(c﹣)2=0,∴a﹣1=0,2a﹣b=0,c﹣=0,∴a=1,b=2,c=,∴a+b+c=1+2+=3+.25.(6分)如图,长方形ABCD的长为6,宽为4,建立适当坐标系,并写出各顶点的坐标.【解答】解:建立平面直角坐标系如图所示,A(0,4),B(0,0),C(6,0),D(6,4).26.(6分)如图,一架云梯AB长25m,如图所示斜靠在一面墙上,梯子底端A 离墙7m.如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多远?【解答】解:由题意知AB=A′B′=25米,AO=7米,BB′=4米,∵在直角△ABO中,∴BO==24米,已知BB′=4米,则B′O=24﹣4=20(米),∵在直角△B′A′O中,∴A′O==15(米),AA′=15米﹣7米=8米.∴向外滑了8米.27.(8分)如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=xcm,则DE=EF=CD﹣CE=8﹣x,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即CE=3cm.28.(8分)如图,在平行四边形OABC中,OA=8,AB=6,∠AOC=120°,求点A,O,C,B各点的坐标.【解答】解:∠AOC=120°,设BC与y轴交于M,则∠COM=30°,∵在平行四边形OABC中,OA=8,AB=6,∴CO=6,BC=8,∴A(8,0),O(0,0),在直角△COM中,OM=cos30°•OC=×6=3,MC=sin30°•OC=×6=3,则MB=BC﹣CM=8﹣3=5,因而C(﹣3,3),B(5,3).六、附加题:(每小题0分,共10分)29.已知+++…+=﹣1,求a的值.【解答】解:由题意得:(﹣1)+(﹣)+(﹣)+…(﹣)+(﹣)+=﹣1,整理化简得:﹣1+10+=﹣1,解得:a=﹣10=.30.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…根据这个规律,第100个点的坐标为(14,8).【解答】解:由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14. ∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8; ∴第100个点的坐标为(14,8). 故答案为:(14,8).赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
甘肃省嘉峪关市四中2013-2014学年八年级政治上学期期中试题
甘肃省嘉峪关市四中2013-2014学年八年级上学期期中考试政治试题(无答案)新人教版一、选择题(每题2分,共32分)同学A.赡养义务 B.教育义务 C.养育义务 D.保护义务2.小亮和离异后的母亲生活在一起,他考上中学后,母亲因病失去了工作。
为了小亮的学习和生活,母亲多次和他父亲交涉,都没有达成协议。
无奈小亮和母亲将其父亲告上法庭,下列说法正确的是()A.小亮没有权利起诉父亲 B.小亮的行为是不孝敬父亲的表现C.小亮的行为是对父亲的报复 D.小亮的行为是依法维护自己的合法权益3.2011年9月18日,全国道德模范颁奖晚会《道德力量》在北京举行,李长春出席,指出孝亲敬长是中华民族的优良传统。
下列句子能反映子女对父母感激之情的是()A.谁知盘中餐,粒粒皆辛苦B.水是家乡美,月是故乡明C.欲穷千里目,更上一层楼D.谁言寸草心,报得三春晖4.对“代沟”的认识,正确的是()①年龄的差距是产生代沟的根本原因②其实质是反映在年龄背后的多重代际差异,如生活态度、价值观念、兴趣爱好、行为方式等③代沟是最深最宽的沟,无法跨越的④欣赏对方、理解对方、换位思考,双方才能有效地沟通A.①② B.③④ C.①③ D.②④5.有效沟通要掌握要领。
其中,___________是前提,__________是关键。
理解父母的有效方法是___________,沟通的结果是____________。
()①换位思考②彼此了解③求同存异④尊重理解A.②④①③ B.②④③① C.③②①④ D.②①④③6.小红为班级出黑板报而放学迟归了,妈妈不由分说数落她一顿。
对此,小红应该()A.跟妈妈争吵,哪里有压迫哪里就有反抗B.显得若无其事,对妈妈不理睬,当她透明C.说实情,领心意,表示会让妈妈放心 D.跟妈妈明说,我的事情你管不着7.俗话说“患难时刻见真情”,这句话说的是()A.同学之间根本就没有友谊 B.平时不需要友谊C.好朋友被人打了要拔刀相助 D.真正的友谊能经受得住考验8.师生交往是学校生活的重要内容,师生关系会直接影响我们的()①学习质量②生活质量③身心健康④沟通能力的提高A.①②B.①③ C.②④ D.③④9.一提到孔子我们会立刻想到中国;一提到“圣雄”甘地我们就会想到印度;一提到金字塔我们就会想到埃及;一提到比萨斜塔我们就会想到意大利。
嘉峪关市四中2013-2014学年七年级上期中考试数学试题
第1页共6页
21.(8分) 如图,在平面直角坐标系 中,A(-1,5), B(-1,0),C(- 4,3). (1)△ABC 的面积是____________; (2)作出△ABC 关于 y 轴的对称图形
△A B1 C1 ;1 (3) 写出点 A 1,B 1 , C 1的坐标.
四中 13--14 学年度第一学期期中考试
E
落在
BC
边
上,其它条件不变,如图(2)所示.试猜想: BE 与 CF 有怎样的数量关系?
E
D
N
请证明你的结论.
B
C
E'
A'
图1
图2
D'
第3页共6页
四中 13--14 学年度第一学期期中考试 第4页共6页
四中 13--14 学年度第一学期期中考试 第5页共6页
12.已知点 P(-3,4),关于 x 轴对称的点的坐标为
_______.
13.将一长方形纸条按如图所示折叠, ∠2=54°,则∠1=___________________.
C
D
一、选择题:本大题共 10小题,每小题 3 分,共 30分.每小题给出的四个选项中,只
有一个选项是符合题目要求的,将此选项的代号填入题后的括号内.
16.已知 a=2
,b=5
是△ABC的两边,则第三边 c 的取值范围是
______________________.
17.△ABC≌△DEF,且△ABC的周长为 12,若 AB=3,EF=4,则 AC=
.
18.已知一个等腰三角形的一边等于 5,另一边等于 6,则这个三角形的周长是
___________________.
于点 E. (1)求证:△ABD是等腰三角形; (2)若∠A=40°,求∠DBC的度数; (3)若 AE=6,△CBD的周长为 20,求△ABC的周长.
八年级(上)期中数学试卷(附答案)
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±14.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=27.下列运算错误的是()A.B.C.D.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.510.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.12.约分:=.13.用科学记数法表示﹣0.000614为.14.分解因式:4x2y﹣4xy+y=.15.若分式有意义,则实数x的取值范围是.16.化简﹣的结果是.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是(填一种即可),根据.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)22.化简:﹣÷.23.解分式方程:.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.25.先化简,再求值:(1﹣)÷,其中a=﹣1.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是.参考答案与试题解析一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】因式分解.【分析】直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.【解答】解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.【点评】此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠A=∠D=50°,∠F=∠C=72°是解此题的关键,注意:全等三角形的对应边相等,对应角相等.5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【考点】全等三角形的性质.【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=35°.故选B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选:C.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.下列运算错误的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;【点评】此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)【考点】全等三角形的判定与性质;作图—基本作图.【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.【点评】考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10【考点】分式的混合运算;完全平方公式.【专题】阅读型.【分析】根据题意求出所求式子的最小值即可.【解答】解:∵x>0,∴在原式中分母分子同除以x,即=x+,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=,(x>0),解得x=3,这时矩形的周长2(x+)=12最小,因此x+(x>0)的最小值是6.故选:C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键.二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.【考点】负整数指数幂.【分析】根据负指数次幂的意义,首先计算乘方,即可.【解答】解:(﹣3)﹣2==.故答案是:.【点评】本题主要考查了负指数次幂的意义,正确理解意义是解题的关键.12.约分:=.【考点】约分.【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质求出即可.【解答】解:原式==,故答案为:.【点评】本题考查了分式的约分的应用,关键是找出分式的分子和分母的公因式.13.用科学记数法表示﹣0.000614为﹣6.14×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.000614=﹣6.14×10﹣4,故答案为:﹣6.14×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:4x2y﹣4xy+y=y(2x﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4x+1)=y(2x﹣1)2.故答案为:y(2x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若分式有意义,则实数x的取值范围是x≠5.【考点】分式有意义的条件.【专题】计算题.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.16.化简﹣的结果是﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣=﹣=﹣.故答案为:﹣.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是AB=AE(填一种即可),根据SAS.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据等式的性质可得∠CAB=∠DAE,再添加条件AB=AE可利用SAS定理判定△ABC≌△AED.【解答】解:添加的条件AB=AE,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,在△ABC和△AED中,∴△ABC≌△AED(SAS),故答案为:AB=AE,SAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为﹣=2.【考点】由实际问题抽象出分式方程.【分析】设原计划每天修建道路x米,则实际每天修建道路(x+20)米,根据题意,提前2天完成任务,列方程.【解答】解:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,由题意得,﹣=2.故答案为:﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是②③④.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得DE=DF=DG,再根据到角的两边距离相等的点在角的平分线上解答.【解答】解:如图,过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,∵点D是△ABC的两外角平分线的交点,∴DE=DG,DF=DG,∴DE=DF=DG,∴点D在∠B的平分线上,故②③④正确,只有点G是AC的中点时,AD=CD,故①错误,综上所述,说法正确的是②③④.故答案为:②③④.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.【解答】解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.【点评】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(m﹣2)﹣9y2(m﹣2)=(m﹣2)(x2﹣9y2)=(m﹣2)(x+3y)(x﹣3y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.化简:﹣÷.【考点】分式的混合运算.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣•=﹣=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.解分式方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2(x﹣1)=3,去括号得:2x+2x﹣2=3,移项合并得:4x=5,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定定理SAS推知△ADF≌△CBE;然后由全等三角形的对应边相等知,AF=CE,所以AF﹣EF=CE﹣EF,即AE=CF.【解答】证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.【点评】本题主要考查了全等三角形的判定与性质.普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.做题时要根据已知条件的具体位置来选择方法.25.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【专题】探究型.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.【考点】作图—基本作图;角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等可得点P在∠A的角平分线上,因此画∠A 的角平分线与l的交点就是P点.【解答】解:如图所示:.【点评】此题主要考查了基本作图,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?【考点】分式方程的应用.【分析】首先设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:甲需要时间小时,乙需要小时,再根据乙所用时间+半小时=甲所用时间即可列出方程.【解答】解:设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:=+,解得:x=20,经检验:x=20是原分式方程的解,1.5×20=30(千米/时).答:甲的速度为20千米/时,则乙的速度为30千米/时.【点评】此题主要考查了分式方程的应用,难度中等,做此类题主要是要抓住关键条件列出方程解答即可.28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中真分式与假分式的定义判断即可;(2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是AD=BE.【考点】全等三角形的判定与性质.【分析】(1)根据已知条件画出图形即可;(2)在AE上截取AF=AC,连结BF,根据全等三角形的判定定理求出△BAF≌△BAC,求出△BFE≌△DCA,即可得出答案.【解答】解:(1)如图:;(2)AD=BE,理由是:在AE上截取AF=AC,连结BF,∵∠BAC=90°,∴∠BAF=180°﹣90°=90°,∴∠BAC=∠BAF,在△ABF与△ABC中∴△ABF≌△ABC(SAS),∴BF=BC,AF=AC,∠BCA=∠BFA,∵∠BFE+∠BFA=180°,∠BCA+∠DCA=180°,∴∠BFE=∠DCA,∵BC=DC,BC=BF,∴BF=DC,∵AC=AF,AE=2AC=AF+EF,∴EF=AC=AF,在△BFE和△DCA中∴△BFE≌△DCA,∴AD=BE,故答案为:AD=BE.【点评】本题考查了全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,有一定的难度.。
甘肃省八年级(上)期中数学试卷(含答案)(可编辑修改word版)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10 小题,共30.0 分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B. 带②去C. 带③去D. 带①和②去3.下列图形中有稳定性的是()A.正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3 个B. 2 个C. 1 个D. 0 个6.如图,△ABC➴△DEC,则结论①BC=EC,②∠DCA=∠ACE,③CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A.1 个B. 2 个C. 3 个D. 4 个7.如图,在∠AOB 的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A.2B.3C.4D.58.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2 倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810. 如图,△ABN➴△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A. 120 ∘B. 70 ∘C. 60 ∘D. 50 ∘二、填空题(本大题共10 小题,共30.0 分)11.角平分线上的点到的距离相等.12.已知三角形两边长分别为4 和9,则第三边的取值范围是.13.如图所示,AC,BD 相交于点O,△AOB➴△COD,∠A=∠C,则其它对应角分别为,对应边分别为.14.如图示,△ABC 中,∠C=90°,AD 平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.图示,点B 在AE 上,∠CBE=∠DBE,要使△ABC➴△ABD,还需添加一个条件是(填上适当的一个条件即可)16.如图,AC⊥BD 于O,BO=OD,图中共有全等三角形对.17.已知△ABC➴△A′B′C′,△ABC 的周长为12cm,AB=3cm,BC=4cm,则A′C′= cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为.19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.20.如图,E 点为△ABC 的边AC 中点,CN∥AB,过E 点作直线交AB 与M 点,交CN于N 点,若MB=6cm,CN=4cm,则AB= cm.三、解答题(本大题共7 小题,共60.0 分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F 在BC 上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.25.如图,△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于P.求证:点P 到三边AB,BC,CA 所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC 中,AD 是△ABC 中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.①②③.答案和解析1.【答案】A【解析】解:A、6,6,11 满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16 不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10 不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14 不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A 选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B 选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C 选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D 选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC➴△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3 个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD➴△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP➴△BDP从而可得CP=DP,∴可得△OCP➴△ODP同理可证得△APO➴△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC 不全等;图乙符合SAS 定理,即图乙和△ABC 全等;图丙符合AAS 定理,即图丙和△ABC 全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900 度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360 度,多边形的内角和比它的外角和的2 倍还大180°,则多边形的内角和是2×360+180=900 度;n 边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN➴△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN 的度数,再利用全等三角形的性质得出∠MAC 的度数.此题主要考查了全等三角形的性质,得出∠BAN 的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD【解析】解:∵△AOB➴△COD,∠A=∠C,∴A 和C、B 和D、O 和O,分别为对应点,∴对应角为∠B 和∠D,∠AOB 和∠COD,对应边分别为:OA 和OC,OB 和OD,AB 和CD,故答案为:∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD.由全等且点A 和点C 对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB 于E,∵AD 平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD 的面积= ×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC 和△ABD 中∴△ABC➴△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS 推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB 和△AOD 中,,∴△AOB➴△AOD(SAS),∴AB=AD;②∵在△BOC 和△DOC 中,,∴△BOC➴△DOC(SAS),∴BC=DC;③∵在△ABC 和△ADC 中,,∴△ABC➴△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB 和△AOD 中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB➴△AOD.同样的道理推出△BOC➴△DOC.再由AB=AD,BC=DC,AC 为公共边,推出△ABC➴△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC 的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC➴△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x 和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x 和5x,利用周长可求得x 的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E 是AC 中点,∴AE=CE,而∠AEM=∠CEN,△CHE➴△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE➴△AME,得出AM=CN,✲么就可求AB 的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O 为圆心,以任意长为半径,画弧分别与OA、OB 相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF 的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3 时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3 时,腰为(13-3)÷2=5,∴以3,5,5 为边能构成三角形.故另外两边长为5,5.【解析】由于长为3 的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF➴△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF➴△DCE,来得出∠A=∠D 的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE ➴△EBD .∴∠CEA =∠D .∵∠D +∠DEB =90°,∴∠CEA +∠DEB =90°.即线段 CE 与 DE 的大小与位置关系为相等且垂直.【解析】先利用 HL 判定△CAE ➴△EBD ,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE 与DE 的大小与位置关系为相等且垂直. 此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意做 题格式.25. 【答案】证明:如图,过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,∵△ABC 的∠ABC 的外角的平分线 BD 与∠ACB 的外角的平分线 CE 相交于 P , ∴PF =PG ,PG =PH ,∴PF =PG =PH ,∴点 P 到三边 AB 、BC 、CA 所在直线的距离相等.【解析】过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,然后根据角平分线上的点到角的两边的距离相等可得 PF=PG=PH .本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26. 【答案】证明:∵∠DCA =∠ECB ,∴∠DCA +∠ACE =∠BCE +∠ACE ,∴∠DCE =∠ACB ,∵在△DCE 和△ACB 中DC = AC ∠DCE = ∠ACB , C E = CB∴△DCE ➴△ACB , ∴DE =AB . 【解析】求出∠DCE=∠ACB ,根据 SAS 证△DCE ➴△ACB ,根据全等三角形的性质即可推出答案.{本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD➴△ACD;△BDE➴△CDF;△ADE➴△ADF【解析】解:①△ABD➴△ACD,②△BDE➴△CDF,③△ADE➴△ADF;故答案为:△ABD➴△ACD,△BDE➴△CDF,△ADE➴△ADF;∵AD 是△ABC 中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED 与Rt△AFD 中,,∴Rt△AED➴Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3 对全等的三角形;(2)找出满足SAS 的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。
八年级第一学期数学期中考试试卷含答案(人教版)
八年级上学期期中考试数学试题(时间:120分钟满分:120分)温馨提示:亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光,请认真审题,看清要求,仔细答题,相信你一定会有出色的表现!题号一二三总分总分人19 20 21 22 23 24 25 26一、选择题:(本大题12个小题,每小题3分,共36分)1.下列学习用具中,假如不考虑刻度、文字,不是轴对称图形的为( )A.B.C.D.2.△ABC中,∠A=40°,∠B=60°,则∠C的度数是( )A.40°B.60°C.80°D.100°3.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm4.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的中线,则图中与CD的长度不相等的线段(AB除外)的是( )A .AD B. BD C.BC D. AC5.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点B.E、G两点C.B、F两点D.G、H两点第4题第5题第6题6.如图,AC=AD,BC=BD,则有( )A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CDD.CD平分∠ACB7.下图为八个全等的正六边形紧密排列在同一平面上的情形。
根据图中标示的各点位置连结各点,判断△ACD与下列哪一个三角形全等?A.△ACFB.△ADEC.△ABCD.△BCF8.如图所示,已知△ABC(AC<AB<BC,用尺规在线段BC上确定一点P,使得PA+PC=BC,则符合要求的作图痕迹是( )9.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线∠EDA=20°,∠F=60°,则∠DAC的度数是( )A.50°B.60°C.100°D.120°10.下列说法中错误的是( )A.一个三角形三个内角中至少有一个内角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的一边上的中线把三角形分成面积相等的两部分11.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )A. 4.5cmB. 4.6cmC. 4.8cmD.5.5 cm12.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论①∠AFE=∠AEF;②AD垂直平分EF④EF一定平行BC其中正确的是(A.①②③④B.①②③C.①③④D.②③④第9题第11题第12题二,填空题:(本大题6个小题,每小题3分,共18分)13.如图,△ABC与△AB'C'关于直线对称,则∠B的度数为度。
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。
()2. 两个负数相乘,结果是正数。
()3. 任何数乘以1都等于它本身。
()4. 两个数的和与它们的顺序无关。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。
2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。
3. 平行四边形的对边______且______。
4. 等差数列{an}的前n项和为______。
5. 两个无理数相乘,结果可能为______。
四、简答题5道(每题2分,共10分)1. 简述实数的分类。
2. 解释等差数列的通项公式。
3. 什么是函数,给出一个函数的例子。
4. 举例说明平行四边形与矩形的区别。
5. 简述勾股定理的内容。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。
2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。
3. 一个等差数列的前3项分别为2,5,8,求第10项的值。
4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。
5. 已知一个正方形的面积为36cm^2,求其边长。
六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
八年级(上)期中数学试卷答案解析版
八年级(上)期中数学试卷一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段A E、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°【解答】解:∵∠A与∠B互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠A BE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年甘肃省嘉峪关四中八年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm2.(3分)下列图案是轴对称图形的有()A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)3.(3分)图中三角形的个数是()A.8个 B.9个 C.10个D.11个4.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(3分)正多边形的一个内角等于135°,则该多边形是正()边形.A.8 B.9 C.10 D.116.(3分)已知直角三角形中30°角所对的直角边为4cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm7.(3分)下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两条直角边对应相等C.一对锐角和斜边对应相等D.三个角对应相等8.(3分)在△ABC中,已知∠A=∠B=∠C,则三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定9.(3分)三角形中,到三边距离相等的点是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点10.(3分)六边形的对角线的条数是()A.7 B.8 C.9 D.10二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上.11.(4分)一个多边形每个外角都是30°,这个多边形的边数是.12.(4分)已知点P(﹣3,4),关于x轴对称的点的坐标为.13.(4分)将一长方形纸条按如图所示折叠,∠2=54°,则∠1=.14.(4分)如图,已知∠ACB=∠BDA,只要再添加一个条件:,就能使△ACB≌△BDA.(填一个即可)15.(4分)三角形的重心是三角形的三条的交点.16.(4分)已知a=2cm,b=5cm是△ABC的两边,则第三边c的取值范围是.17.(4分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.18.(4分)已知一个等腰三角形的一边等于5,另一边等于6,则这个三角形的周长是.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.(7分)如图,AB∥CD,∠D=65°,∠B=36°,求∠E的度数.21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.(8分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.23.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC的度数.25.(10分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.26.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,求证:AD⊥BC.27.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.28.(12分)如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.2013-2014学年甘肃省嘉峪关四中八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.2.(3分)下列图案是轴对称图形的有()A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)【解答】解:(1)(4)都是轴对称图形,(2)(3)都不是轴对称图形.故选:C.3.(3分)图中三角形的个数是()A.8个 B.9个 C.10个D.11个【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选:B.4.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.5.(3分)正多边形的一个内角等于135°,则该多边形是正()边形.A.8 B.9 C.10 D.11【解答】解:外角是180﹣135=45度,360÷45=8,则这个多边形是八边形.故选:A.6.(3分)已知直角三角形中30°角所对的直角边为4cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵30°角所对的直角边为4cm,∴斜边的长=2×4=8cm.故选:D.7.(3分)下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两条直角边对应相等C.一对锐角和斜边对应相等D.三个角对应相等【解答】解:A、根据斜边直角边定理判定两三角形全等,故本选项不合题意;B、可以利用边角边判定两三角形全等,故本选项不合题意;C、可以利用角角边判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.8.(3分)在△ABC中,已知∠A=∠B=∠C,则三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,又∵A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得:∠A=30°,∴∠C=90°.即该三角形是直角三角形.故选:B.9.(3分)三角形中,到三边距离相等的点是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:三角形中,到三边距离相等的点是三条角平分线的交点.故选:C.10.(3分)六边形的对角线的条数是()A.7 B.8 C.9 D.10【解答】解:六边形的对角线的条数==9.故选:C.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上.11.(4分)一个多边形每个外角都是30°,这个多边形的边数是12.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.12.(4分)已知点P(﹣3,4),关于x轴对称的点的坐标为(﹣3,﹣4).【解答】解:由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是(﹣3,﹣4).13.(4分)将一长方形纸条按如图所示折叠,∠2=54°,则∠1=72°.【解答】解:由图形折叠的性质可知,∠2=∠3∵∠2=54°,∴∠2=∠3=54°,∴∠4=180°﹣(∠2+∠3)=180°﹣108°=72°.∵长方形纸的对应边平行,∴∠1=∠4=72°.故答案为:72°.14.(4分)如图,已知∠ACB=∠BDA,只要再添加一个条件:∠CAB=∠DBA 或∠CBA=∠DAB,就能使△ACB≌△BDA.(填一个即可)【解答】解:所添加条件为:∠CAB=∠DBA或∠CBA=∠DAB;①∵∠CAB=∠DBA,∠ACB=∠BDA,AB为公共边,∴△ACB≌△BDA(AAS);②∵∠CBA=∠DAB,∠CBA=∠DAB,AB为公共边,∴△ACB≌△BDA(AAS);故答案填:∠CAB=∠DBA或∠CBA=∠DAB(填一个即可).15.(4分)三角形的重心是三角形的三条中线的交点.【解答】解:三角形的重心是三角形的三条中线的交点.故答案为:中线.16.(4分)已知a=2cm,b=5cm是△ABC的两边,则第三边c的取值范围是3cm <c<7cm.【解答】解:已知△ABC的两边a=2cm,b=5cm;那么第三边的取值范围是:5﹣2<c<5+2,即3cm<c<7cm.17.(4分)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= 5.【解答】解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.18.(4分)已知一个等腰三角形的一边等于5,另一边等于6,则这个三角形的周长是16或17.【解答】解:(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是17.故它的周长是:16或17.故答案为:16或17.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.20.(7分)如图,AB∥CD,∠D=65°,∠B=36°,求∠E的度数.【解答】解:∵AB∥CD,∠D=65°,∴∠AFE=∠D=65°,∵∠AFE是△BEF的外角,∠B=36°,∴∠E=∠AFE﹣∠B=65°﹣36°=29°.答:∠E为29°.21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【解答】解:(1)S=×5×3=(或7.5)(平方单位).△ABC(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).22.(8分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).23.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC的度数.【解答】解:∵△ABC是等边三角形,AD为中线,∴AD⊥BC,∠CAD=30°,∵AD=AE,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.25.(10分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.【解答】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,=AB•DE+AC•DF=28,∴S△ABC即×20×DE+×8×DF=28,解得DE=2cm.26.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,求证:AD⊥BC.【解答】证明;∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,又∵D为BC的中点,∴AD⊥BC(三线合一).27.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.【解答】解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)÷2=70°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.28.(12分)如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CFA=∠AED,又∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.。