第十八章平行四边形讲学稿
【人教版】数学八下:第18章《平行四边形》全章名师说课稿

【人教版】数学八下:第18章《平行四边形》全章名师说课稿一. 教材分析《人教版》数学八下第18章《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。
本章内容主要包括平行四边形的定义、性质、判定以及平行四边形的应用。
通过本章的学习,使学生能理解和掌握平行四边形的性质和判定方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了三角形、四边形的基本知识,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对平行四边形的性质和判定方法容易混淆,需要通过实例和练习来加深理解和掌握。
三. 说教学目标1.理解平行四边形的定义,掌握平行四边形的性质和判定方法。
2.能够运用平行四边形的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 说教学重难点1.平行四边形的性质和判定方法的掌握。
2.平行四边形在实际问题中的应用。
五. 说教学方法与手段1.采用讲授法,讲解平行四边形的定义、性质、判定方法。
2.利用多媒体演示,直观展示平行四边形的性质和判定过程。
3.运用例题和练习,让学生在实际问题中应用平行四边形的性质和判定方法。
4.小组讨论,培养学生合作学习的能力。
六. 说教学过程1.引入新课:通过复习三角形、四边形的基本知识,引导学生学习平行四边形。
2.讲解平行四边形的定义、性质、判定方法:通过多媒体演示和板书,详细讲解平行四边形的定义、性质、判定方法。
3.例题讲解:选取典型例题,讲解平行四边形的性质和判定方法在实际问题中的应用。
4.练习巩固:学生自主完成练习题,巩固对平行四边形的性质和判定方法的理解。
5.小组讨论:学生进行小组讨论,分享解题心得和方法。
6.课堂小结:总结本节课所学内容,强调平行四边形的性质和判定方法。
7.作业布置:布置相关练习题,让学生课后巩固所学知识。
七. 说板书设计板书设计如下:1.对边平行且相等2.对角相等3.对边相等4.对角线互相平分5.两组对边分别平行的四边形是平行四边形6.两组对角分别相等的四边形是平行四边形7.对边平行且相等的四边形是平行四边形八. 说教学评价通过课堂讲解、练习完成情况、小组讨论参与度等方面,评价学生对平行四边形的性质和判定方法的掌握程度。
八年级下册《平行四边形》全章说课稿

八年级下册《平行四边形》全章说课稿第十八章《平行四边形》说课稿平行四边形是特殊的四边形。
本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。
本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形 6课时18.2 特殊的平行四边形 6课时数学活动 2课时小结 2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。
学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。
这些内容是学习本章的重要基础。
本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。
“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。
“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。
18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。
平行四边形全章说课稿

新人教版《义务教育教科书八年级数学(下)》第十八章《平行四边形》全章说课稿尊敬的各位老师:大家好!今天我说课的内容是人教版《义务教育教科书八年级数学(下)》第十八章《平行四边形》。
我将从这三个方面进行阐述。
首先说课程标准,将从这两个方面阐述。
依据课标,结合教材,将本章目标确定如下:1. 知识技能(1)理解概念和关系。
(2)探索证明性质和判定定理,并能运用。
(3)了解平形线之间的距离的意义,能度量。
(4)探索并证明中位线定理。
2. 数学思考(1)通过经历平行四边形与各概念之间的联系与区别,使学生进一步认识一般与特殊的关系。
(2)通过经历性质和判定的探索证明及相关计算的过程,以及相关问题的证明和计算的过程,进一步培养和发展学生的合情推理演绎推理能力。
3. 问题解决通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想。
4.情感态度通过动手实践,积极参与数学活动,对数学有好奇心和求知欲。
依据目标,将本章的重难点确定为:重点:平行四边形的概念、性质和判定。
难点:分清平行四边形与矩形、菱形、正方形之间的联系和区别。
内容标准则是在课程目标的引领下制定的,共分为:1.理解概念与关系;了解四边形的不稳定性。
2.探索证明平行四边形、矩形等的性质和判定定理。
3.了解平形线之间的距离,并能度量。
4.探索证明三角形的中位线定理。
在认真研读课标和教材的基础上,我将从这四个方面说教材说教材先说编写特点1、注重让学生经历知识的探索与发现过程。
本章中注意突出图形的性质和判定定理的探索与发现。
例如,这种观察、度量、猜想、证明的探究问题多处出现。
2、注重体现转化、数形结合等重要的数学思想与方法,突出逻辑思维。
像这里的花坛问题的解决就体现了转化思想,化新知为旧知,而且书写也注重体现逻辑思维。
3、注重加强知识间联系与衔接三角形中位线的证明是利用平行四边形的性质定理得到,这都体现了知识之间的紧密联系。
平行四边形又往往依靠三角形来解决问题。
人教版义务教育教科书八年级下册第十八章第一节《平行四边形的性质》说课稿

《18.1.1平行四边形的性质》(第1课时)说课稿尊敬的各位评委、老师们:大家好!我说课的课题是人教版义务教育教科书八年级下册第十八章第一节《平行四边形的性质》第1课时。
平行四边形是一种基本的几何图形,也是“图形与几何”领域中研究的主要对象之一。
它不仅具有丰富的几何性质,而且在现实生活中具有广泛的应用。
下面,我将从内容分析、目标分析、学情分析、过程分析、评价分析、设计说明这六个方面对本节课加以具体阐述。
一、内容分析本节课既是平行线的性质、三角形全等等知识的延续和深化,也是后续学习矩形、菱形、正方形等特殊平行四边形性质的基础,在教材中起着承上启下的作用。
本节课的主要内容分三部分:一、平行四边形的定义在小学里学生已经学过平行四边形的定义,但他们对定义的本质属性——“对边平行”的理解并不深刻。
通过本节课的学习让学生认识定义的双重作用:既可以作为性质,又可以作为判定平行四边形的依据。
二、平行四边形的性质让学生经历观察、度量、猜想、证明等数学探究活动,通过合情推理和演绎推理得到平行四边形的性质。
在平行四边形性质的应用中,让学生逐步认识到性质还是证明线段相等、角相等的一种新的方法,拓宽了学生的证明思路。
三、两条平行线之间的距离新教材改版后在这里提出这一概念,是因为利用平行四边形的定义和性质,能帮助学生更好地理解它。
基于以上分析,可以确定本节课的教学重点是:平行四边形性质的探究和应用。
二、目标分析依据内容分析及新课标对本节课的要求,我制定了本节课的教学目标如下:这里需要说明的是:定义的理解是让学生学会在实际生活中从数学的角度去寻找和发现数学知识;平行四边形性质的探究和应用,是让学生经历不同的数学学习活动,在发展合情推理和演绎推理能力的同时,掌握研究特殊四边形的基本方法;作为平行四边形定义和性质的延伸点,了解两条平行线之间的距离会引导学生感受数学的整体性,从不同层次去理解这些知识。
三、学情分析学生通过实验操作很容易猜想出平行四边形的对边相等和对角相等。
人教版数学八年级下册说课稿:第18章平行四边形的性质(二)

人教版数学八年级下册说课稿:第18章平行四边形的性质(二)一. 教材分析《人教版数学八年级下册》第18章主要介绍平行四边形的性质。
这部分内容是初中数学的重要知识,是学生进一步学习几何图形的基础。
通过本章的学习,使学生掌握平行四边形的性质,会用平行四边形的性质解决实际问题。
二. 学情分析学生在学习本章内容前,已经学习了三角形、四边形的性质,对图形的性质有一定的了解。
但平行四边形的性质较为复杂,需要学生通过观察、操作、思考、交流等方式,进一步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解平行四边形的性质,并能运用性质解决实际问题。
2.过程与方法目标:学生通过观察、操作、思考、交流等过程,培养学生的几何思维能力。
3.情感态度与价值观目标:学生体验数学学习的乐趣,增强学习数学的信心。
四. 说教学重难点1.教学重点:平行四边形的性质。
2.教学难点:平行四边形性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。
2.教学手段:多媒体课件、几何模型、黑板等。
六. 说教学过程1.导入新课:通过复习三角形、四边形的性质,引出平行四边形的性质。
2.自主学习:学生自主探究平行四边形的性质,教师引导学生发现问题的关键。
3.合作交流:学生分组讨论,分享各自的发现,教师点评并总结。
4.巩固练习:学生进行课堂练习,教师及时解答疑问。
5.课堂小结:学生总结本节课所学内容,教师进行补充。
6.课后作业:布置相关作业,巩固所学知识。
七. 说板书设计板书设计如下:平行四边形的性质1.对边平行且相等2.对角相等3.对边和对角线互相平分4.相邻角互补5.平行四边形的不稳定性八. 说教学评价1.学生课堂参与度:观察学生在课堂上的发言、提问、练习等情况,评价学生的参与度。
2.学生作业完成情况:评价学生作业的准确性、及时性。
3.学生课堂表现:评价学生在课堂上的表现,如合作意识、思考能力等。
九. 说教学反思在教学过程中,教师要关注学生的学习情况,及时调整教学方法和节奏,引导学生主动探究,培养学生的几何思维能力。
(完整版)平行四边形专题讲义

平行四边形专题讲义一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。
三、本章知识结构图1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。
2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。
3.特殊的梯形包括 梯形和 梯形。
4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。
四、复习过程 (一)知识要点1:平行四边形的性质与判定1.平行四边形的性质:(1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。
2、平行四边形的判定:(1)判定1:两组对边分别 的四边形是平行四边形。
(定义)(2)判定2:两组对边分别 的四边形是平行四边形。
(3)判定3:一组对边 且 的四边形是平行四边形。
(4)判定4:两组对角分别 的四边形是平行四边形。
(5)判定5:对角线互相 的四边形是平行四边形。
【基础练习】1.已知□ABCD 中,∠B =70°,则∠A =____,∠C =____,∠D =____.2.已知O 是ABCD 的对角线的交点,AC =38 mm ,BD =24 mm,AD =14 mm ,那么△BOC 的周长等于__ __.3.如图1,ABCD 中,对角线AC 和BD 交于点O ,若AC =8,BD =6,则边AB 长的取值范围是( ). A.1<AB <7 B.2<AB <14 C.6<AB <8 D.3<AB <44.不能判定四边形ABCD 为平行四边形的题设是( ) A.AB=CD,AD=BC B.ABCD C.AB=CD,AD ∥BC D.AB ∥CD,AD ∥BC5.在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积是 ( ) A 、36 B 、48 C 、 40 D 、24【典型例题】例1、若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长. F DA OA B CDOA DDC AB E F M NBE F C AD例2、 如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
18章平行四边形复习教案

教学重点
掌握平行四边形、矩形、菱形、正方形的性质和判定
教学难点
平行四边形、矩形、菱形、正方形的性质和判定的综合应用
教法学法
本节课主要以“教师主导—学生主体”的教学思想为指导,“361高效课堂”的教学要求为主线,以题代纲,梳理知识;学习方式采用自主学习、小组合作交流相结合的方式,进行“探究式学习”,提升学生学习能力。
教学准备
1、多媒体课件
2、三角板
教学过程
师生活动
设计意图
教学设计
科目
数学
课题பைடு நூலகம்
18章平行四边形复习课
授课教师
单位
教材版本
新人教版
课型
复习课
教材分析
本章是学生在掌握平行线,三角形,全等三角形等有关知识,且具备初步的观察,操作等活动经验的基础上出现的。通过本节的学习使学生清楚地理解各种平行四边形的关系并掌握它们的性质与判定,进一步培养学生的合情推理能力,发展学生的逻辑思维能力与推理论证能力。
学情分析
平行四边形这一章知识点多,各种平行四边形的定义、性质、判定及一些相关定理、性质,学生对一般的平行四边形的知识掌握较好,而特殊的平行四边形的性质、判定容易混淆,特别是学生在应用它们的性质与判定的时候常出现用错、多用、少用条件的错误。
教学目标
1、进一步理解平行四边形和各种特殊的平行四边形的关系
2.掌握平行四边形、矩形、菱形、正方形的性质和判定并综合应用
初二下学期数学讲义第十八章平行四边形

平行四边形【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.4. 理解三角形的中位线的概念,掌握三角形的中位线定理.【要点梳理】要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.【典型例题】类型一、平行四边形的性质1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.【答案与解析】证明:∵在ABCD中,CD∥AB,∠DFA=∠FAB.又∵ AF是∠DAB的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴ AD=DF.同理可得EC=BC.∵在ABCD中,AD=BC,∴ DF=EC.【总结升华】利用平行四边形的性质可以得到对角相等,对边平行且相等,为证明线段相等提供了条件.类型二、平行四边形的判定2、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF 都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH ,FG ∥HE 可用来证明四边形EGFH 为平行四边形.【答案与解析】证明:∵ 四边形AECF 为平行四边形,∴ AF ∥CE .∵ 四边形DEBF 为平行四边形,∴ BE ∥DF .∴ 四边形EGFH 为平行四边形.【总结升华】平行四边形的定义既包含平行四边形的性质,又可以用来判定一个四边形是平行四边形,即平行四边形的两组对边分别平行,两组对边分别平行的四边形是平行四边形. 类型三、平行四边形与面积有关的计算3、如图所示,在ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,BE =2cm ,DF =3cm ,求AB ,BC 的长及ABCD 的面积.【思路点拨】在四边形AECF 中,由已知条件∠EAF =60°,可求出∠C =120°,进而求出∠B =60°.由于BE =2cm ,在Rt △ABE 中,可求出AB .同理,在Rt △AFD 中求出AD .要求ABCD 的面积,需求出AE 或AF 的长.【答案与解析】解:在四边形AECF 中,∵ ∠EAF =60°,AE ⊥BC ,AF ⊥CD ,∴ ∠C =360°-∠EAF -∠AEC -∠AFC =360°-60°-90°-90°=120°. 在ABCD 中,∵ AB ∥CD ,∴ ∠B +∠C =180°.∠C +∠D =180°,∴ ∠B =∠D =60°.在Rt △ABE 中,∠B =60°,BE =2cm ,∴ AB =4cm ,CD =AB =4cm .(平行四边形的对边相等)同理,在Rt △ADF 中,AD =6cm ,∴ BC =AD =6cm ,∴ 22226333AF AD DF =-=-=(cm ). ∴ ABCD S =CD ·AF =433⨯=123(2cm ).【总结升华】本题除了应用平行四边形的性质及勾股定理外,还应用了“直角三角形中,30°的锐角所对的直角边等于斜边的一半”这个直角三角形的性质.类型四、三角形的中位线4、如图,已知P 、R 分别是长方形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C;【解析】连AR,由E、F分别为PA,PR的中点知EF为△PAR的中位线, 则12EF AR,而AR长不变,故EF大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.矩形【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,在矩形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证△ABE≌△CDF.【思路点拨】:由矩形的性质可得AB =CD ,∠B =∠D =90°,然后用它们作条件证明△ABE ≌△CDF .【答案与解析】证明:∵ 四边形ABCD 是矩形.∴ AB =CD ,∠B =∠D =90°在△ABE 和△CDF 中90AB CD B D BE DF =⎧⎪∠=∠=⎨⎪=⎩°∴ △ABE ≌△CDF(SAS)【总结升华】矩形的性质常用于求线段的长度与角的度数,在解题过程中应根据题目选择不同的性质来加以应用.类型二、矩形的判定2、已知:平行四边形ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,若CA =CB ,判断四边形AECF 是什么特殊四边形?并证明你的结论.【答案与解析】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,∠B=∠D,BC =AD.∵E、F 分别是AB 、CD 的中点,∴BE=12AB ,DF =12CD. ∴BE=DF. ∴△BEC≌△DFA.(2)四边形AECF 是矩形.∵四边形ABCD 是平行四边形,∴AB∥CD,且AB =CD.∵E、F 分别是AB 、CD 的中点,∴BE=12AB ,DF =12CD. ∴AE∥CF 且AE =CF.∴四边形AECF 是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.【总结升华】要证明△BEC和△DFA全等,主要运用判定定理(边角边);四边形AECF是矩形,先证明四边形AECF是平行四边形,再证这个平行四边形对角线相等或者有一个角是直角.3、如图所示,ABCD四个内角的角平分线分别交于点E、F、G、H.求证:四边形EFGH是矩形.【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.【答案与解析】证明:在ABCD中,AD∥BC,∴∠BAD+∠ABC=180°,∵ AE、BE分别平分∠BAD、∠ABC,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°.∴∠HEF=∠AEB=90°.同理:∠H=∠F=90°.∴四边形EFGH是矩形.【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.类型三、直角三角形斜边上的中线的性质4、(2012•佳木斯)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【答案】C;【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,在菱形ABCD中,AC=8,BD=10.求:(1)AB的长.(2)菱形ABCD的面积.【答案与解析】解:(1)∵四边形ABCD是菱形.∴ AC⊥BD,AO=12AC,OB=12BD.又∵ AC =8,BD =10.∴ AO =12×8=4,OB =12×10=5. 在Rt △ABO 中,222AB OA OB =+∴ 2224541AB =+=,∴ 41AB =. (2)由菱形的性质可知:118104022S AC BD ==⨯⨯=菱形ABCD . 【总结升华】(1)由菱形的性质及勾股定理求出AB 的长.(2)根据“菱形的面积等于两条对角线乘积的一半”来计算.类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF 是菱形,理由如下:∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形.∵ CD 平分∠ACB ,∴ ∠1=∠2∵ DF ∥BC ,∴ ∠2=∠3,∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.3、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,CE 平分∠ACD ,交AD 于点G ,交AB 于点E ,EF ⊥BC 于点F . 求证:四边形AEFG 是菱形.【思路点拨】由角平分线性质易知AE =EF ,欲证四边形AEFG 是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).正方形【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△B EC≌△DEC;(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.【思路点拨】先由正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS证出△BEC≌△DEC,再由全等三角形的对应角相等得出∠DEC=∠BEC=70°,然后根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,最后根据三角形的内角和定理即可求出∠AFE的度数.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA,∵CE=CE,∴△BEC≌△DEC.(2)解:∵∠DEB=140°,∵△BEC≌△DEC,∴∠DEC=∠BEC=70°,∴∠AEF=∠BEC=70°,∵∠DAB=90°,∴∠DAC=∠BAC=45°,∴∠AFE=180°-70°-45°=65°.答:∠AFE的度数是65°.【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,对顶角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.2、如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F=3∵△ABE≌△DAF,∴AE=DF=1,∴EF=31-【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO=45°时,∠PAO=90°,在Rt△AOB中,OA=22AB=22a,在Rt△APB中,PA=22AB=22a.∴点P的坐标为22,22a a⎛⎫⎪ ⎪⎝⎭.(2)如图过点P分别作x轴、y轴的垂线垂足分别为M、N,则有∠PMA=∠PNB=∠NPM=∠BPA=90°,∵∠BPN+∠BPM=∠APM+∠BPM=90°∴∠APM=∠BPN,又PA=PB,∴△PAM≌△PBN,∴ PM=PN,又∵ PN⊥ON,PM⊥OM于是,点P在∠AOB的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华奥学校数学学科师生共用讲学稿
科目:数学
多边形中不相邻顶点的连线
自学课本P41~P43,
有两组对边__________________
行四边形ABCD记作__________
ABCD
6题图
7题图
______.
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
科目:数学
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯
华奥学校数学学科师生共用讲学稿
如图,在ABCD
ABCD 成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
AE=2,则△ABC的成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯
坦
华奥学校数学学科师生共用讲学稿
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
A D
P
【随堂练习】Р55 1、2
五、课堂测试
已知:如图(1),ABCD 的四个内角的平分线分别相交于点求证:EG=FH .
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
A
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯
坦
华奥学校数学学科师生共用讲学稿
ABCD
,求证:ABCD
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
华奥学校数学学科师生共用讲学稿
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
科目:数学
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
科目:数学
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
科目:数学
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦
科目:数学
成功=艰苦的劳动+正确的方法+少说空话。
——爱因斯坦。