新高三数学下期末试卷含答案
北京市海淀区2023-2024学年高三下学期期末练习(二模)数学试题(解析版)
海淀区2023—2024学年第二学期期末练习高三数学2024.05本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,0,1,2,{3}A B x a x =-=≤<∣.若A B ⊆,则a 的最大值为()A.2 B.0C.1- D.-2【答案】C 【解析】【分析】根据集合的包含关系可得1a ≤-求解.【详解】由于A B ⊆,所以1a ≤-,故a 的最大值为1-,故选:C2.在52()x x-的展开式中,x 的系数为()A.40B.10C.40-D.10-【答案】A 【解析】【分析】利用二项式定理的性质.【详解】设52(x x-的通项1k T +,则()5115C 2k k k k T x x --+=-,化简得()5215C 2k kk k T x -+=⋅-⋅,令2k =,则x 的系数为()225C 240-=,即A 正确.故选:A3.函数()3,0,1,03x x x f x x ⎧≤⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩是()A.偶函数,且没有极值点B.偶函数,且有一个极值点C.奇函数,且没有极值点D.奇函数,且有一个极值点【答案】B 【解析】【分析】根据函数奇偶性定义计算以及极值点定义判断即可.【详解】当0x ≤时,0x ->,则1()(3()3xx f x f x --===,当0x >时,0x -<,则1()3()()3xx f x f x --===,所以函数()f x 是偶函数,由图可知函数()f x 有一个极大值点.故选:B.4.已知抛物线24x y =的焦点为F ,点A 在抛物线上,6AF =,则线段AF 的中点的纵坐标为()A.52B.72C.3D.4【答案】C 【解析】【分析】根据抛物线定义求得点A 的纵坐标,再求AF 中点纵坐标即可.【详解】抛物线24x y =的焦点()0,1F ,又16A AF y =+=,解得5A y =,故线段AF 的中点的纵坐标为1532+=.故选:C.5.在ABC 中,34,5,cos 4AB AC C ===,则BC 的长为()A.6或32B.6C.3+D.3【答案】A 【解析】【分析】根据余弦定理即可求解.【详解】由余弦定理可得222222543cos 2104AC CB ABCB C AC BCBC+-+-===⋅,故22151806CB BC BC -+=⇒=或32,故选:A6.设,R,0a b ab ∈≠,且a b >,则()A.b a a b< B.2b a a b+>C.()sin a b a b -<- D.32a b>【答案】C 【解析】【分析】举反例即可求解ABD,根据导数求证()sin ,0,x x x <∈+∞即可判断C.【详解】对于A ,取2,1a b ==-,则122b aa b=->=-,故A 错误,对于B ,1,1a b ==-,则2b aa b+=,故B 错误,对于C ,由于()sin 0,cos 10y x x x y x '=->-≤=,故sin y x x =-在()0,∞+单调递减,故sin 0x x -<,因此()sin ,0,x x x <∈+∞,由于a b >,所以0a b ->,故()sin a b a b -<-,C 正确,对于D,3,4a b =-=-,则11322716a b =<=,故D 错误,故选:C7.在ABC 中,π,2C CA CB ∠===,点P 满足()1CP CA CB λλ=+- ,且4CP AB ⋅= ,则λ=()A.14-B.14C.34-D.34【答案】B 【解析】【分析】用CB ,CA 表示AB ,根据0CA CB ⋅=,结合已知条件,以及数量积的运算律,求解即可.【详解】由题可知,0CA CB ⋅=,故CP AB ⋅()()()()2211881168CA CB CB CA CA CB λλλλλλλ⎡⎤=+-⋅-=-+-=-+-=-+⎣⎦,故1684λ-+=,解得14λ=.故选:B.8.设{}n a 是公比为()1q q ≠-的无穷等比数列,n S 为其前n 项和,10a >.则“0q >”是“n S 存在最小值”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的判定以及等比数列前n 项和公式判断即可【详解】若10a >且公比0q >,则110n n a a q -=>,所以n S 单调递增,n S 存在最小值1S ,故充分条件成立.若10a >且12q =-时,11112211013212n nn a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-->⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭,当n 为奇数时,121132nn S a ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递减,故最大值为1n =时,11S a =,而123n S a <,当n 为偶数时,121132n n S a ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,n S 单调递增,故最小值为2n =,122aS =,所以n S 的最小值为112a ,即由10a >,n S 存在最小值得不到公比0q >,故必要性不成立.故10a >公比“0q >”是“n S 存在最小值”的充分不必要条件.故选:A9.设函数()f x 的定义域为D ,对于函数()f x 图象上一点()00,x y ,若集合()(){}0,k k x x y f x x D ≤∈-+∀∈R∣只有1个元素,则称函数()f x 具有性质0x P .下列函数中具有性质1P 的是()A.()1f x x =- B.()lg f x x=C.()3f x x = D.()πsin2f x x =-【答案】D 【解析】【分析】根据性质1P 的定义,结合各个函数的图象,数形结合,即可逐一判断各选择.【详解】根据题意,要满足性质1P ,则()f x 的图象不能在过点()()1,1f 的直线的上方,且这样的直线只有一条;对A :()1f x x =-的图象,以及过点()1,0的直线,如下所示:数形结合可知,过点()1,0的直线有无数条都满足题意,故A 错误;对B :()lg f x x =的图象,以及过点()1,0的直线,如下所示:数形结合可知,不存在过点()1,0的直线,使得()f x 的图象都在该直线的上方,故B 错误;对C :()3f x x =的图象,以及过点()1,1的直线,如下所示:数形结合可知,不存在过点()1,1的直线,使得()f x 的图象都在该直线的上方,故C 错误;对D :()πsin2f x x =-的图象,以及过点()1,1-的直线,如下所示:数形结合可知,存在唯一的一条过点()1,1-的直线1y =-,即0k =,满足题意,故D 正确.故选:D.10.设数列{}n a 的各项均为非零的整数,其前n 项和为n S .若()*,j i i j -∈N为正偶数,均有2ji aa ≥,且20S =,则10S 的最小值为()A.0B.22C.26D.31【答案】B 【解析】【分析】因为2120S a a =+=,不妨设120,0a a ><,由题意求出3579,,,a a a a 的最小值,46810,,,a a a a 的最小值,10122S a =,令11a =时,10S 有最小值.【详解】因为2120S a a =+=,所以12,a a 互为相反数,不妨设120,0a a ><,为了10S 取最小值,取奇数项为正值,取偶数项为负值,且各项尽可能小,.由题意知:3a 满足312a a ≥,取3a 的最小值12a ;5a 满足51531224a a a a a ≥⎧⎨≥≥⎩,因为1110,42a a a >>,故取5a 的最小值14a ;7a 满足717317531224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,取7a 的最小值18a ;同理,取9a 的最小值116a ;所以135791111112481631a a a a a a a a a a a ++++=++++=,4a 满足422a a ≥,取4a 的最小值22a ;6a 满足62642224a a a a a ≥⎧⎨≥≥⎩,因为20a <,所以2224a a >,取6a 的最小值12a ;8a 满足828418641224248a a a a a a a a a≥⎧⎪≥≥⎨⎪≥≥≥⎩,因为20a <,所以222482a a a >>,取8a 的最小值12a ;同理,取10a 的最小值12a ;所以24681022222222229a a a a a a a a a a a ++++=++++=,所以101211131931922S a a a a a =+=-=,因为数列{}n a 的各项均为非零的整数,所以当11a =时,10S 有最小值22.故选:B【点睛】关键点点睛:10S 有最小值的条件是确保各项最小,根据递推关系2j i a a ≥分析可得奇数项的最小值与偶数项的最小值,从而可得10S 的最小值.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.若()2(i)2i R x x +=∈,则x =__________.【答案】1【解析】【分析】利用复数的四则运算,结合复数相等的性质得到关于x 的方程组,解之即可得解.【详解】因为2(i)2i x +=,所以222i i 2i x x ++=,即212i 2i x x -+=,所以21022x x ⎧-=⎨=⎩,解得1x =.故答案为:1.12.已知双曲线22:14x C y -=,则C 的离心率为__________;以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为__________.(写出一个即可)【答案】①.②.22(1x y ++=或(22(1x y +=)【解析】【分析】根据离心率的定义求解离心率,再计算焦点到渐近线的距离,结合圆的标准方程求解即可.【详解】22:14x C y -==,又渐近线为12y x =,即20x y -=,故焦点)与()到20x y -=1=,则以C 的一个焦点为圆心,且与双曲线C 的渐近线相切的圆的方程为22(1xy ++=或22(1x y -+=,故答案为:2;22(1xy ++=或(22(1x y +=)13.已知函数()2cos sin f x x a x =+.(i )若0a =,则函数()f x 的最小正周期为__________.(ii )若函数()f x 在区间()0,π上的最小值为2-,则实数=a __________.【答案】①.π②.2-【解析】【分析】根据二倍角公式即可结合周期公式求解,利用二次函数的性质即可求解最值.【详解】当0a =时,()2cos 21cos 2x f x x +==,所以最小正周期为2ππ2T ==,()2222cos sin sin sin 1sin 124a a f x x a x x a x x ⎛⎫=+=-++=--++⎪⎝⎭,当()0,πx ∈时,(]sin 0,1x ∈,且二次函数开口向下,要使得()f x 在区间()0,π上的最小值为2-,则需要1022a a-≥-,且当sin 1x =时取最小值,故112a -++=-,解得2a =-,故答案为:π,2-14.二维码是一种利用黑、白方块记录数据符号信息的平面图形.某公司计划使用一款由()2*nn ∈N 个黑白方块构成的n n ⨯二维码门禁,现用一款破译器对其进行安全性测试,已知该破译器每秒能随机生成162个不重复的二维码,为确保一个n n ⨯二维码在1分钟内被破译的概率不高于1512,则n 的最小值为__________.【答案】7【解析】【分析】根据题意可得21615260122n⨯≤,即可由不等式求解.【详解】由题意可知n n ⨯的二维码共有22n 个,由21615260122n⨯≤可得2216153126022602n n -⨯⨯≤⇒≤,故2231637n n -≥⇒≥,由于*n ∈N ,所以7n ≥,故答案为:715.如图,在正方体1111ABCD A B C D -中,P 为棱AB 上的动点,DQ ⊥平面1,D PC Q 为垂足.给出下列四个结论:①1D Q CQ =;②线段DQ 的长随线段AP 的长增大而增大;③存在点P ,使得AQ BQ ⊥;④存在点P ,使得PQ //平面1D DA .其中所有正确结论的序号是__________.【答案】①②④【解析】【分析】根据给定条件,以点D 为原点,建立空间直角坐标系,求出平面1D PC 的法向量坐标,进而求出点Q 的坐标,再逐一计算判断各个命题即得答案.【详解】在正方体1111ABCD A B C D -中,令1AB =,以点D 为原点,建立如图所示的空间直角坐标系,设(01)AP t t =≤≤,则1(0,0,0),(0,1,0),(0,0,1),(1,,0)D C D P t ,1(0,1,1),(1,1,0)CD CP t =-=-,令平面1D PC 的法向量(,,)n x y z = ,则10(1)0n CD y z n CP x t y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,取1y =,得(1,1,1)n t =- ,由DQ ⊥平面1D PC 于Q ,得((1),,)DQ n t λλλλ==-,即((1),,)Q t λλλ-,((1),1,)CQ t λλλ=-- ,显然2(1)10CQ n t λλλ⋅=-+-+=,解得21(1)2t λ=-+,于是222111(,,)(1)2(1)2(1)2t Q t t t --+-+-+,对于①,222222221||(1)(1)(1)(1)||D Q t t CQ λλλλλλ=-++--+-+,①正确;对于②,2221||(1)11(1)2(1)2DQ t t t =-++-+-+在[0,1]上单调递增,②正确;对于③,而(1,0,0),(1,1,0)A B ,((1)1,,),((1)1,1,)AQ t BQ t λλλλλλ=--=---,若2222[(1)1](1)(23)(32)10AQ BQ t t t t λλλλλλ⋅=--+-+=-+--+=,显然22(32)4(23)430t t t t ∆=---+=--<,即不存在[0,1]t ∈,使得0AQ BQ ⋅=,③错误;对于④,平面1D DA 的一个法向量(0,1,0)DC =,而((1)1,,)PQ t t λλλ=--- ,由0PQ DC t λ⋅=-=,得t λ=,即21(1)2t t =-+,整理得322310t t t -+-=,令32()231,[0,1]f t t t t t =-+-∈,显然函数()f t 在[0,1]上的图象连续不断,而(0)10,(1)10f f =-<=>,因此存在(0,1)t ∈,使得()0f t =,此时PQ ⊄平面1D DA ,因此存在点P ,使得//PQ 平面1D DA ,④正确.所以所有正确结论的序号是①②④.故答案为:①②④【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2cos(0)2xf x x ωωω=+>,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在且唯一确定.(1)求ω的值;(2)若不等式()2f x <在区间()0,m 内有解,求m 的取值范围.条件①:(2π)3f =;条件②:()y f x =的图象可由2cos2y x =的图象平移得到;条件③:()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,2ω=;(2)π(,)3+∞.【解析】【分析】(1)选条件①,由ππ1cos()332ω-=的解不唯一,此条件不符合题意;选条件②,由周期求出ω;选条件③,由给定等式确定最大最小值条件,求出周期范围,由给定区间内无极值点求出周期即可.(2)由(1)求出函数()f x 的解析式,再借助不等式有解列式求解即得.【小问1详解】依题意,π()cos 12cos()13f x x x x ωωω=++=-+,选条件①,由(2π)3f =,得ππ2cos()1233ω-+=,即ππ1cos()332ω-=,于是πππ2π,N 333k k ω-=+∈或πππ2π,N 333k k ω*-=-+∈,显然ω的值不唯一,因此函数()f x 不唯一,不符合题意.选条件②,()y f x =的图象可由2cos2y x =的图象平移得到,因此()y f x =的最小正周期为函数2cos2y x =的最小正周期π,而0ω>,则2ππω=,所以2ω=.选条件③,()f x 在区间ππ(,36-内无极值点,且ππ()2(263f f -=-+,则ππ(()463f f --=,即函数()f x 分别在ππ,63x x ==-时取得最大值、最小值,于是()f x 的最小正周期ππ2[(π63T ≤⨯--=,由()f x 在区间ππ(,36-内无极值点,得()f x 的最小正周期ππ2[()]π63T ≥⨯--=,因此πT =,而0ω>,所以2π2Tω==.【小问2详解】由(1)知π()2cos(213f x x =-+,由(0,)x m ∈,得πππ2(,2)333x m -∈--,由不等式()2f x <在区间(0,)m 内有解,即π1cos(2)32x -<在区间(0,)m 内有解,则有ππ233m ->,解得π3m >,所以m 的取值范围是π(,)3+∞.17.在三棱锥-P ABC 中,2,AB PB M ==为AP 的中点.(1)如图1,若N 为棱PC 上一点,且MN AP ⊥,求证:平面BMN ⊥平面PAC ;(2)如图2,若O 为CA 延长线上一点,且PO ⊥平面,2ABC AC ==,直线PB 与平面ABC 所成角为π6,求直线CM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据BM AP ⊥和,MN AP ⊥可证线面垂直,即可求证面面垂直,(2)根据线面角的几何法可得π6PBO ∠=,建立空间直角坐标系,利用法向量与方向向量的夹角即可求解.【小问1详解】连接,,BM MN BN.因为,AB PB M =为AP 的中点,所以BM AP ⊥.又,MN AP ⊥,,MN BM M MN BM ⋂=⊂平面BMN ,所以AP ⊥平面BMN .因为AP ⊂平面,PAC 所以平面BMN ⊥平面PAC .【小问2详解】因为PO ⊥平面,ABC OB ⊂平面,ABC OC ⊂平面ABC ,所以,,PO OB PO OC PBO ∠⊥⊥为直线PB 与平面ABC 所成的角.因为直线PB 与平面ABC 所成角为π6,所以π6PBO ∠=.因为2PB =,所以1,PO OB ==.2=,所以1OA =.又2AB =,故222AB OB OA =+.所以OB OA ⊥.如图建立空间直角坐标系O xyz -.则())0,1,0,A B,()()0,3,0,0,0,1C P ,110,,22M ⎛⎫⎪⎝⎭.所以()0,3,1PC =-,()BC = ,510,,22MC ⎛⎫=- ⎪⎝⎭.设平面PBC 的法向量为(),,n x y z =,则0,0,n PC n BC ⎧⋅=⎪⎨⋅=⎪⎩即30,330.y z x y -=⎧⎪⎨+=⎪⎩令1y =,则)3,1,3n = .设CM 与平面PBC 所成角为θ,则2sin cos ,132511344MC n MC n MC nθ⋅====⋅+⋅.所以直线CM 与平面PBC 所成角的正弦值为213.18.图象识别是人工智能领域的一个重要研究方向.某中学人.工智能兴趣小组研发了一套根据人脸照片识别性别的程序.在对该程序的一轮测试中,小组同学输入了200张不同的人脸照片作为测试样本,获得数据如下表(单位:张):识别结果真实性别男女无法识别男902010女106010假设用频率估计概率,且该程序对每张照片的识别都是独立的.(1)从这200张照片中随机抽取一张,已知这张照片的识别结果为女性,求识别正确的概率;(2)在新一轮测试中,小组同学对3张不同的男性人脸照片依次测试,每张照片至多测一次,当首次出现识别正确或3张照片全部测试完毕,则停止测试.设X 表示测试的次数,估计X 的分布列和数学期望EX ;(3)为处理无法识别的照片,该小组同学提出上述程序修改的三个方案:方案一:将无法识别的照片全部判定为女性;方案二:将无法识别的照片全部判定为男性;方案三:将无法识别的照片随机判定为男性或女性(即判定为男性的概率为50%,判定为女性的概率为50%).现从若干张不同的人脸照片(其中男性、女性照片的数量之比为1:1)中随机抽取一张,分别用方案一、方案二、方案三进行识别,其识别正确的概率估计值分别记为123,,p p p .试比较123,,p p p 的大小.(结论不要求证明)【答案】(1)34(2)分布列见解析;()2116E X =(3)231p p p >>【解析】【分析】(1)利用用频率估计概率计算即可(2)由题意知X 的所有可能取值为1,2,3,分别求出相应的概率,然后根据期望公式求出即可(3)分别求出方案一、方案二、方案三进行识别正确的概率,然后比较大小可得【小问1详解】根据题中数据,共有206080+=张照片被识别为女性,其中确为女性的照片有60张,所以该照片确为女性的概率为603804=.【小问2详解】设事件:A 输入男性照片且识别正确.根据题中数据,()P A 可估计为9031204=.由题意知X 的所有可能取值为1,2,3.()()()31331111,2,3444164416P X P X P X ====⨯===⨯=.所以X 的分布列为X123P34316116所以()331211234161616E X =⨯+⨯+⨯=.【小问3详解】231p p p >>.19.已知椭圆E 的焦点在x 轴上,中心在坐标原点.以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为(1)求栯圆E 的方程;(2)设过点()2,0M 的直线l (不与坐标轴垂直)与椭圆E 交于不同的两点,A C ,与直线16x =交于点P .点B 在y 轴上,D 为坐标平面内的一点,四边形ABCD 是菱形.求证:直线PD 过定点.【答案】(1)22186x y +=(2)证明见解析【解析】【分析】(1)根据焦点三角形的周长以及等边三角形的性质可得22a c +=且12c a =,即可求解,,a b c 得解,(2)联立直线与椭圆方程得韦达定理,进而根据中点坐标公式可得2286,3434t N t t ⎛⎫-⎪++⎝⎭,进而根据菱形的性质可得BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭,即可求解220,34t B t ⎛⎫ ⎪+⎝⎭,221614,3434t D t t ⎛⎫- ⎪++⎝⎭.进而根据点斜式求解直线PD 方程,即可求解.【小问1详解】由题意可设椭圆E 的方程为22222221(0),x y a b c a b a b+=>>=-.因为以E 的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为所以22a c +=且12c a =,所以a c ==.所以26b =.所以椭圆E 的方程为22186x y +=.【小问2详解】设直线l 的方程为()20x ty t =+≠,令16x =,得14y t =,即1416,P t ⎛⎫ ⎪⎝⎭.由223424,2x y x ty ⎧+=⎨=+⎩得()223412120t y ty ++-=.设()()1122,,,A x y C x y ,则1212221212,3434t y y y y t t +=-=-++.设AC 的中点为()33,N x y ,则12326234y y ty t +==-+.所以3328234x ty t =+=+.因为四边形ABCD 为菱形,所以N 为BD 的中点,AC BD ⊥.所以直线BD 的斜率为t -.所以直线BD 的方程为22683434t y t x t t ⎛⎫+=-- ⎪++⎝⎭.令0x =得222862343434t t t y t t t =-=+++.所以220,34t B t ⎛⎫ ⎪+⎝⎭.设点D 的坐标为()44,x y ,则4343222162142,2343434t t x x y y t t t ===-=-+++,即221614,3434t D t t ⎛⎫-⎪++⎝⎭.所以直线PD 的方程为()221414143416161634tt t y x t t ++-=--+,即()746y x t =-.所以直线PD 过定点()4,0.【点睛】方法点睛:圆锥曲线中定点问题的两种解法:(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.20.已知函数()()ln 0)f x x a a =-+>.(1)若1a =,①求曲线()y f x =在点()()22f ,处的切线方程;②求证:函数()f x 恰有一个零点;(2)若()ln 2f x a a ≤+对(),3x a a ∈恒成立,求a 的取值范围.【答案】(1)①2y =;②证明见解析(2)[)1,+∞【解析】【分析】(1)①求导,即可求解斜率,进而可求直线方程,②根据函数的单调性,结合零点存在性定理即可,(2)求导后构造函数()()(),,3g x x a x a a =-∈,利用导数判断单调性,可得()f x 的最大值为()()()000ln 2f x x a x a =-+-,对a 分类讨论即可求解.【小问1详解】当1a =时,()()ln 1f x x =-+.①()11f x x =--'.所以()()22,20f f =='.所以曲线()y f x =在点()()22f ,处的切线方程为2y =.②由①知()()(]()1ln 11,3,1f x x x f x x =-=-'+∈,且()20f '=.当()1,2x ∈时,因为111x >>-()0f x ¢>;当()2,3x ∈时,因为111x <<-,所以()0f x '<.所以()f x 在区间()1,2上单调递增,在区间()2,3上单调递减.因为()()()322,3ln20,1e 330f f f -==>+=-+<-+<.所以函数()f x 恰有一个零点.【小问2详解】由()()ln f x x a =-+得()f x -='.设()()(),,3g x x a x a a =-∈,则()10g x '=-<.所以()g x 是(),3a a 上的减函数.因为()()0,320g a g a a =>=-<,所以存在唯一()()()000,3,0x a a g x x a ∈=-=.所以()f x '与()f x 的情况如下:x()0,a x 0x ()0,3x a ()f x '+-()f x极大所以()f x 在区间(),3a a 上的最大值是()()()()0000ln ln 2f x x a x a x a =-+=-+-.当1a ≥时,因为()20g a a =-≤,所以02x a ≤.所以()()()0ln 222ln 2f x a a a a a a ≤-+-=+.所以()()0ln 2f x f x a a ≤≤+,符合题意.当01a <<时,因为()20g a a =>,所以02x a >.所以()()()0ln 222ln 2f x a a a a a a >-+-=+,不合题意.综上所述,a 的取值范围是[)1,+∞.【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.设正整数2n ≥,*,i i a d ∈N ,(){}1,1,2,i i i A x x a k d k ==+-= ,这里1,2,,i n = .若*12n A A A ⋃⋃⋃=N ,且()1i j A A i j n ⋂=∅≤<≤,则称12,,,n A A A 具有性质P .(1)当3n =时,若123,,A A A 具有性质P ,且11a =,22a =,33a =,令123m d d d =,写出m 的所有可能值;(2)若12,,,n A A A 具有性质P :①求证:()1,2,,i i a d i n ≤= ;②求1nii ia d =∑的值.【答案】(1)27或32(2)①证明见解析②12n +【解析】【分析】(1)对题目中所给的12,,,n A A A ,我们先通过分析集合中的元素,证明()1,2,,i i a d i n ≤= ,111ni i d ==∑,以及112ni i i a n d =+=∑,然后通过分类讨论的方法得到小问1的结果;(2)直接使用(1)中的这些结论解决小问2即可.【小问1详解】对集合S ,记其元素个数为S .先证明2个引理.引理1:若12,,,n A A A 具有性质P ,则()1,2,,i i a d i n ≤= .引理1的证明:假设结论()1,2,,i i a d i n ≤= 不成立.不妨设11a d >,则正整数111a d A -∉,但*12n A A A ⋃⋃⋃=N ,故11a d -一定属于某个()2i A i n ≤≤,不妨设为2A .则由112a d A -∈知存在正整数k ,使得()11221a d a k d -=+-.这意味着对正整数1112c a d d d =-+,有()111212111c a d d d a d d A =-+=+-∈,()()11122212212211c a d d d a k d d d a k d d A =-+=+-+=++-∈,但12A A =∅ ,矛盾.所以假设不成立,从而一定有()1,2,,i i a d i n ≤= ,从而引理1获证.引理2:若12,,,n A A A 具有性质P ,则111ni i d ==∑,且112ni i ia n d =+=∑.证明:取集合{}121,2,...,...n T d d d =.注意到关于正整数k 的不等式()1201...i i n a k d d d d <+-≤等价于12...11i i n i i ia a d d dk d d d -<≤-+,而由引理1有i i a d ≤,即011iia d ≤-<.结合12...n i d d d d 是正整数,知对于正整数k ,12...11i i n i i i a a d d d k d d d -<≤-+当且仅当12...n i iT d d dk d d ≤=,这意味着数列()()11,2,...k i i x a k d k =+-=恰有iT d 项落入集合T ,即i iT T A d ⋂=.而12,,,n A A A 两两之间没有公共元素,且并集为全体正整数,故T 中的元素属于且仅属于某一个()1i A i n ≤≤,故12...n T A T A T A T ⋂+⋂++⋂=.所以1212......n nT T T T A T A T A T d d d +++=⋂+⋂++⋂=,从而12111...1nd d d +++=,这就证明了引理2的第一个结论;再考虑集合T 中全体元素的和.一方面,直接由{}121,2,...,...n T d d d =知T 中全体元素的和为()1212 (12)n n d d d d d d +,即()12T T +.另一方面,i T A ⋂的全部iT d 个元素可以排成一个首项为i a ,公差为i d 的等差数列.所以i T A ⋂的所有元素之和为11122i i i i i i i iTT TT T a a d T d d d d d ⎛⎫⎛⎫⋅+-=+- ⎪ ⎪⎝⎭⎝⎭.最后,再将这n 个集合()1,2,...,i T A i n ⋂=的全部元素之和相加,得到T 中全体元素的和为112ni i i i T Ta T d d =⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.这就得到()11122ni i i i T T T Ta T d d =⎛⎫+⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,所以有()221111111222222nnn ni i i i i i i i i iiiT T T TTn TTn T a a a T TT d d d d d ====⎛⎫+⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑.即1122ni i iT T na d =+-=+∑,从而112ni i i a n d =+=∑,这就证明了引理2的第二个结论.综上,引理2获证.回到原题.将123,,d d d 从小到大排列为123r r r ≤≤,则123123m d d d r r r ==,由引理2的第一个结论,有1231231111111r r r d d d ++=++=.若13r ≥,则1231111111111311r r r r r r r =++≤++=≤,所以每个不等号都取等,从而1233r r r ===,故12327m r r r ==;情况1:若11r =,则23111110r r r +=-=,矛盾;情况2:若12r =,则231111112r r r +=-=,所以232221111122r r r r r =+≤+=,得24r ≤.此时如果22r =,则3211102r r =-=,矛盾;如果24r =,则32111124r r =-=,从而34r =,故12332m r r r ==;如果23r =,由于12r =,设()()123123,,,,i i i r r r d d d =,{}{}123,,1,2,3i i i =,则12i d =,23i d =.故对于正整数对()()2121212112331212211i i i i i i i i k a a a a k a a a a ⎧=+--+--⎪⎨=+--+--⎪⎩,有2112231i i k k a a -=--,从而12121223i i i i a k a k A A +=+∈⋂,这与12i i A A ⋂=∅矛盾.综上,m 的取值只可能是27或32.当()()123,,3,3,3d d d =时,27m =;当()()123,,4,2,4d d d =时,32m =.所以123m d d d =的所有可能取值是27和32.【小问2详解】①由引理1的结论,即知()1,2,,i i a d i n ≤= ;②由引理2的第二个结论,即知112nii ia n d=+=∑.【点睛】关键点点睛:本题的关键点在于,我们通过两个方面计算了一个集合的各个元素之和,从而得到了一个等式,这种方法俗称“算二次”法或富比尼定理.。
2020-2021高三数学下期末试卷带答案(10)
2020-2021高三数学下期末试卷带答案(10)一、选择题1.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .2.2532()x x-展开式中的常数项为( ) A .80B .-80C .40D .-403.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .134.若θ是ABC ∆的一个内角,且1sin θcos θ8=-,则sin cos θθ-的值为( ) A .3 B .32C .5-D 5 5.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角 6.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-7.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确8.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.159.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=10.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大11.已知,a b rr 是非零向量且满足(2)a b a -⊥rrr ,(2)b a b -⊥,则a r与b r的夹角是( ) A .6π B .3π C .23π D .56π 12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 15.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.三、解答题21.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)24.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF V V 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.25.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.26.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫⎪⎝⎭,,曲线C 的方程为r ρ=(0r >). (1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.2.C解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r =,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.3.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.4.D【解析】试题分析:θ是ABC ∆的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.5.B解析:B 【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .6.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.7.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .8.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35,∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .9.B解析:B 【解析】 【分析】根据渐近线的方程可求得,a b 的关系,再根据与椭圆221123x y +=有公共焦点求得c 即可.【详解】双曲线C 的渐近线方程为2y x =,可知2b a =①,椭圆221123x y +=的焦点坐标为(-3,0)和(3,0),所以a 2+b 2=9②,根据①②可知a 2=4,b 2=5. 故选:B. 【点睛】本题主要考查了双曲线与椭圆的基本量求法,属于基础题型.10.D解析:D 【解析】 【分析】利用方差公式结合二次函数的单调性可得结论; 【详解】解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大故选:D . 【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.11.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅r rr r ,代入夹角公式即可.【详解】设,a b rr 的夹角为θ;因为(2)a b a -⊥r r r,(2)b a b -⊥,所以222a b a b ==⋅r r r r , 则22|2,|2a a b b a b =⋅⋅=r r r r r r ,则2212cos ,.23aa b a b aπθθ⋅===∴=r rr r r r 故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=r r r r;二是向量的平方等于向量模的平方22a a =r r . 12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x =∴外接球的半径为33333R ==;∴三棱锥外接球的表面积为2164(33S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.8【解析】∵函数(且)的图象恒过定点A ∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.15.【解析】【分析】作出立体图利用直角三角形中的三角函数关系求得对应的边长再利用余弦定理求解即可【详解】如图所示在中∵∴在中∵∴在中∴故答案为:【点睛】本题主要考查了解三角形求解实际情景中的角度问题依据 解析:30°【解析】 【分析】作出立体图,利用直角三角形中的三角函数关系求得对应的边长,再利用余弦定理求解cos ACB ∠即可. 【详解】如图所示,在Rt ACD V 中,∵10,45AC m DAC =∠=︒,∴10DC m = 在Rt DCB △中,∵30DBC ∠=︒,∴103BC m =. 在ABC V 中,)22210103103cos 210103ACB +-∠==⨯⨯,∴30ACB ∠=︒.故答案为:30° 【点睛】本题主要考查了解三角形求解实际情景中的角度问题,依据题意正确画出立体图形,确定边的关系再利用余弦定理求解即可.属于基础题.16.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】考查类比的方法,11111222221111314283S hV S hV S hS h⋅⨯====,所以体积比为1∶8.17.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C=种选法,从6名学生中任意选3人有3620C=种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.18.【解析】试题分析:原式=考点:1指对数运算性质解析:27 8【解析】试题分析:原式=34433 2542727log log1 34588 -⎡⎤⎛⎫+⨯=+=⎢⎥⎪⎝⎭⎢⎥⎣⎦考点:1.指对数运算性质.19.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】【分析】 由题意可得00b y x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率c e a =,可得2410e e --=,即可求解. 【详解】 由题意,双曲线的渐近线方程为b y x a =±,焦点为()1,0F c -,()2,0F c , 可得00b y x a=,① 又12MF MF ⊥,可得00001y y x c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,可得22b pa =,且2p c =,即有2224b ac c a ==-,即224ac 0c a --=由c e a=,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).20.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最解析:5﹣【解析】【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,再求PM 的最小值得解.【详解】设圆心为O,AB 中点为D,由题得22sin 2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC⎧+=⎨-=⎩u u u v u u u v u u u u v u u uv u u u v u u u v , 两方程平方相减得2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r , 要使PC PA ⋅u u u r u u u r 取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,2DM ∴==, 所以PM 有最小值为2﹣2, 代入求得PC PA ⋅u u u r u u u r 的最小值为5﹣故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 三、解答题21.(1)见解析;(2) 【解析】【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD . 以F 为坐标原点,FA u u u v 的方向为x 轴正方向,AB u u u v 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A ⎛⎫ ⎪ ⎪⎝⎭,2P ⎛ ⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,22C ⎛⎫- ⎪ ⎪⎝⎭. 所以2222PC ⎛⎫=-- ⎪ ⎪⎝⎭u u u v ,)2,0,0CB =u u u v ,2222PA ⎛=- ⎝⎭u u u v ,()0,1,0AB =u u u v . 设(),,n x y z =r 是平面PCB 的法向量,则 0,0,n PC n CB ⎧⋅=⎨⋅=⎩u u u v r u u u v r 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2n =--r . 设(),,m x y z r=是平面PAB 的法向量,则 0,0,m PA m AB ⎧⋅=⎨⋅=⎩u u u v r u u u v r 即220,220.x z y -=⎨⎪=⎩可取()1,0,1m =r . 则3cos ,n m n m n m ⋅==r r r r r r , 所以二面角A PB C --的余弦值为33-【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.22.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.23.(1)见解析;(2)见证明【解析】【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为证e x ﹣x 2﹣xlnx ﹣1>0,根据xlnx ≤x (x ﹣1),问题转化为只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),根据函数的单调性证明即可.【详解】(1)()()21ln 1(0)f x x g x x x x x x =-=->,()22ln 'x g x x -=,当()20,x e ∈,()'0g x >,当()2,x e ∈+∞,()'0g x <,()g x ∴在()20,e 上递增,在()2,e +∞上递减,()g x ∴在2x e =取得极大值,极大值为21e ,无极大值. (2)要证f (x )+1<e x ﹣x 2.即证e x ﹣x 2﹣xlnx ﹣1>0,先证明lnx ≤x ﹣1,取h (x )=lnx ﹣x+1,则h ′(x )=,易知h (x )在(0,1)递增,在(1,+∞)递减,故h (x )≤h (1)=0,即lnx ≤x ﹣1,当且仅当x =1时取“=”,故xlnx ≤x (x ﹣1),e x ﹣x 2﹣xlnx ≥e x ﹣2x 2+x ﹣1,故只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),则k ′(x )=e x ﹣4x+1,令F (x )=k ′(x ),则F ′(x )=e x ﹣4,令F ′(x )=0,解得:x =2ln2,∵F ′(x )递增,故x ∈(0,2ln2]时,F ′(x )≤0,F (x )递减,即k ′(x )递减, x ∈(2ln2,+∞)时,F ′(x )>0,F (x )递增,即k ′(x )递增,且k ′(2ln2)=5﹣8ln2<0,k ′(0)=2>0,k ′(2)=e 2﹣8+1>0,由零点存在定理,可知∃x 1∈(0,2ln2),∃x 2∈(2ln2,2),使得k ′(x 1)=k ′(x 2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1,k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立.【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.24.(1)见解析;(2)6.3 【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB P 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB n 中,有14BN BD =,14PM PD =, MN PB P ∴. PB ⊄Q 平面MEF ,MN ⊂平面MEF ,故PB P 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE n 与Rt CDF n ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND n 中,12PM PN =,=22PM PN 3MN =+=在MND n 中,332MD DN ==,,由余弦定理,得222623MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】 本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.25.(1)15[,]42(2)(5,3)-【解析】 【分析】 (1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。
高三期末数学试卷及答案
一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = √(x - 1)B. g(x) = |x|C. h(x) = 1/xD. k(x) = √(x^2 - 4)2. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值为()A. 1B. -1C. 3D. -33. 下列各对点中,与点P(2,3)关于直线y=x对称的是()A. A(3,2)B. B(2,4)C. C(4,2)D. D(3,3)4. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB 的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在6. 下列各对数函数中,单调递减的是()A. y = 2^xB. y = log2(x)C. y = 3^xD. y = log3(x)7. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n(n-1)(n-2)/3B. n(n+1)(n-2)/3C. n(n-1)(n+2)/3D. n(n+1)(n+2)/38. 已知等差数列{an}的前n项和为S_n,若S_5 = 50,公差d=2,则数列{an}的第六项a_6为()A. 16B. 18C. 20D. 229. 下列各不等式中,恒成立的是()A. x^2 + 1 < 0B. |x| > 1C. x^2 - 1 > 0D. x^2 + 1 > 010. 若函数f(x) = ax^2 + bx + c在x=1处取得极小值,则a、b、c应满足的关系式是()A. a > 0, b = 0, c > 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 0二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。
新高三数学下期末试题附答案(1)
新高三数学下期末试题附答案(1)一、选择题1.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 2.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1003.下列各组函数是同一函数的是( ) ①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④4.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U5.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=ru u u v u u u v u u u v ,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.6.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =u u u v( )A .1123AB AD -u u uv u u u vB .1142AB AD +u u uv u u u vC .1132AB DA +u u uv u u u vD .1223AB AD -u u uv u u u v .7.已知236a b ==,则a ,b 不可能满足的关系是()A .a b ab +=B .4a b +>C .()()22112a b -+-<D .228a b +>8.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x …或2x -„C .0x <或2x >D .12x -„或3x …10.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<11.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .3412.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 二、填空题13.若9()a x x-的展开式中3x 的系数是84-,则a = .14.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 15.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).16.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.17.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.18.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n的最大值为 . 19.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=. (1)求角C 的大小; (2)求AB 的长. 25.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1xf x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP =u u u v u u u v.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【详解】 由题意可得 :22435z =+=,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.2.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.3.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数;③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()11g x x ==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.4.C解析:C 【解析】 【分析】求得函数的导数()(2)()x xe af x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)xf x x e a x x =-+-+,可得2()(3)(1)(2)()(2)()x xxxa xe a f x e x e a x e x x x x-'=+-+-=--=-⋅,又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe ax x--⋅=在(1,)+∞上有两解,即0x xe a -=在在(1,)+∞上有不等于2的解,令()xg x xe =,则()(1)0,(1)xg x x e x '=+>>,所以函数()xg x xe =在(1,)+∞为单调递增函数,所以()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立,即(2)()0x xe ax x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立,即x a xe ≥在(1,2)上恒成立,又由函数()xg x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=,综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.5.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
高三数学下学期期末考试试题 理含解析 试题
安平中学2021-2021学年下学期期末考试高三数学试题〔理〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,一共150分。
考试时间是是120分钟第一卷〔选择题〕一、选择题:本大题一一共12小题,每一小题5分,满分是60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 A. (1,)2π B. (1,)2π-C. (1,0)D. (1,π)【答案】B 【解析】【详解】由题圆2sin ρθ=-,那么可化为直角坐标系下的方程,22sin ρρθ=-,222x y y +=-,2220x y y ++=,圆心坐标为〔0,-1〕,那么极坐标为1,2π⎛⎫- ⎪⎝⎭,应选B.考点:直角坐标与极坐标的互化. 【此处有视频,请去附件查看】2.假设一直线的参数方程为0012x x t y y ⎧=+⎪⎪⎨⎪=⎪⎩〔t 为参数〕,那么此直线的倾斜角为〔〕A. 60︒B. 120︒C. 30D. 150︒【答案】B 【解析】 【分析】消去参数t 转为普通方程,求得直线的斜率,进而求得倾斜角.【详解】消去参数t 00y y ++,故斜率为120,应选B. 【点睛】本小题主要考察直线的参数方程转化为普通方程,考察直线的斜率和倾斜角,属于根底题.3.函数|1||2|y x x =++-的最小值及获得最小值时x 的值分别是〔〕 A. 1,[1,2]x ∈-B. 3,0C. 3,[1,2]x ∈-D. 2,[]1,2x ∈【答案】C 【解析】【分析】利用绝对值不等式,求得函数的最小值,并求得对应x 的值.【详解】依题意12123y x x x x =++-≥++-=,当且仅当()()120x x +-≥,即12x -≤≤时等号成立,应选C.【点睛】本小题主要考察绝对值不等式,以及绝对值不等式等号成立的条件,属于根底题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位,直线l 的参数方程是13x t y t =+⎧⎨=-⎩〔t 为参数〕,圆C 的极坐标方程是4cos ρθ=,那么直线l 被圆C 截得的弦长为〔 〕B.D.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的间隔 d=直线l 被圆C 截得的弦长为=【点睛】(1)此题主要考察参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握程度和分析推理计算才能.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.假设不等式24ax +<的解集为()1,3-,那么实数a 等于〔〕 A. 8 B. 2C. -4D. -2【答案】D 【解析】 【分析】根据绝对值不等式的解法化简24ax +<,结合其解集的情况求得a 的值.【详解】由24ax +<得424,62ax ax -<+<-<<.当0a >时6123aa ⎧-=-⎪⎪⎨⎪=⎪⎩,无解.当0a <时,2163aa⎧=-⎪⎪⎨⎪-=⎪⎩,解得2a =-,应选D.【点睛】本小题主要考察绝对值不等式的解法,考察分类讨论的数学思想方法,属于根底题.1cos {2sin x y θθ=-+=+,〔θ为参数〕的对称中心〔 〕A. 在直线2y x =上B. 在直线2y x =-上C. 在直线1y x =-上D. 在直线1y x =+上【答案】B 【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,应选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题. 【此处有视频,请去附件查看】7.“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的〔 〕 A. 充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分又不必要条件【答案】C 【解析】试题分析:解:因为()1+2121x x x x ++≥+-+=, 所以由不等式1+2x x a ++<的解集非空得:1a >所以,“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的充分不必要条件, 应选C.考点:1、绝对值不等式的性质;2、充要条件.8.过椭圆C :2cos 3x y θθ=⎧⎪⎨=⎪⎩〔θ为参数〕的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,那么11m n +的值是〔〕 A. 23B. 43C. 83D. 不能确定 【答案】B【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩〔α为参数〕,代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++〔12,t t 异号〕.故11m n m n mn ++=1212t t t t -===⋅43.应选B. 【点睛】本小题主要考察椭圆的参数方程化为普通方程,考察直线和椭圆的位置关系,考察利用直线参数的几何意义解题,考察化归与转化的数学思想方法,属于中档题.9.假设2a >,那么关于x 的不等式12x a -+>的解集为〔〕 A. {}3|x x a >- B. {}1|x x a >-C. ΦD. R【答案】D 【解析】 【分析】根据2a >求得2a -的取值范围,由此求得不等式的解集.【详解】原不等式可化为12x a ->-,由于2a >,故20a -<,根据绝对值的定义可知12x a ->-恒成立,故原不等式的解集为R .应选D.【点睛】本小题主要考察绝对值不等式的解法,考察不等式的运算,属于根底题.10.a ,b ,0c >,且1ab c ++=A. 3B.C. 18D. 9【答案】B【分析】先利用柯西不等式求得2的最大值,由此求得.【详解】由柯西不等式得:()2222222111⎡⎤≤++++⎢⎥⎣⎦()33318a b c=⨯+++=⎡⎤⎣⎦≤13a b c===时,等号成立,应选B.【点睛】本小题主要考察利用柯西不等式求最大值,属于根底题.11.点〔x,y〕满足曲线方程4{6xyθθ==〔θ为参数〕,那么yx的最小值是〔〕B.32D. 1【答案】D【解析】消去参数可得曲线的方程为:()()22462x y-+-=,其轨迹为圆,目的函数y yx x-=-表示圆上的点与坐标原点连线的斜率,如下图,数形结合可得:yx的最小值是1.此题选择D选项.点睛:(1)此题是线性规划的综合应用,考察的是非线性目的函数的最值的求法. (2)解决这类问题的关键是利用数形结合的思想方法,给目的函数赋于一定的几何意义.12.x 为实数,且|5||3|x x m -+-<有解,那么m 的取值范围是〔 〕 A. 1m B. m 1≥C. 2m >D. 2m ≥【答案】C 【解析】 【分析】求出|x ﹣5|+|x ﹣3|的最小值,只需m 大于最小值即可满足题意.【详解】53x x m -+-<有解,只需m 大于53x x -+-的最小值,532x x -+-≥,所以2m >,53x x m -+-<有解. 应选:C .【点睛】此题考察绝对值不等式的解法,考察计算才能,是根底题.第二卷〔非选择题〕二、填空题〔一共4题每一小题5分满分是20分〕 13.|a +b|<-c(a ,b ,c∈R ),给出以下不等式:①a<-b -c ;②a>-b +c ;③a<b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号). 【答案】①②④ 【解析】 【分析】先根据绝对值不等式的性质可得到c <a+b <﹣c ,进而可得到﹣b+c <a <﹣b ﹣c ,即可验证①②成立,③不成立,再结合|a+b|<﹣c ,与|a+b|≥|a|﹣|b|,可得到|a|﹣|b|<﹣c 即|a|<|b|﹣c 成立,进而可验证④成立,⑤不成立,从而可确定答案. 【详解】∵|a+b|<-c ,∴c<a +b <-c. ∴a<-b -c ,a >-b +c ,①②成立且③不成立. ∵|a|-|b|≤|a+b|<-c , ∴|a|<|b|-c ,④成立且⑤不成立.【点睛】此题主要考察不等式的根本性质.考察根底知识的综合运用.14.在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=与sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,那么曲线1C 和2C 交点的直角坐标为________. 【答案】()1,1 【解析】 【分析】联立两条曲线的极坐标方程,求得交点的极坐标,然后转化为直角坐标.【详解】由2sin cos sin 1ρθθρθ⎧=⎨=⎩,解得π4ρθ⎧=⎪⎨=⎪⎩,故ππcos 1,sin 144x y ρρ====,故交点的直角坐标为()1,1. 故答案为()1,1【点睛】本小题主要考察极坐标下两条曲线的交点坐标的求法,考察极坐标和直角坐标互化,属于根底题.15.不等式32x x +>-的解集是_____. 【答案】1|2x x ⎧⎫>-⎨⎬⎩⎭【解析】 【分析】利用两边平方的方法,求出不等式的解集.【详解】由32x x +>-两边平方并化简得105x >-,解得12x >-,故原不等式的解集为1|2x x ⎧⎫>-⎨⎬⎩⎭.故答案为1|2x x ⎧⎫>-⎨⎬⎩⎭【点睛】本小题主要考察含有绝对值的不等式的解法,属于根底题.16.238x y z ++=,那么222x y z ++获得最小值时,x ,y ,z 形成的点(,,)x y z =________.【答案】8124,,777⎛⎫ ⎪⎝⎭ 【解析】 【分析】利用柯西不等式求得222x y z ++的最小值,并求得此时,,x y z 的值.【详解】由于()()()22222222312364x y z x y z ++++≥++=,故222x y z ++6432147≥=.当且仅当8124,,777x y z ===时等号成立,故(,,)x y z =8124,,777⎛⎫⎪⎝⎭.故答案为8124,,777⎛⎫⎪⎝⎭【点睛】本小题主要考察利用柯西不等式求最值,并求等号成立的条件,属于根底题.三.解答题:〔解答题应写出必要的文字说明和演算步骤,17题10分,18-22每一小题12分〕17.在直角坐标系xOy 中,圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕.〔1〕以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; 〔2〕()2,0A -,()0,2B ,圆C 上任意一点(),M x y ,求ABM 面积的最大值.【答案】〔1〕26cos 8sin 210ρρθρθ-++=〔2〕9+【解析】 【分析】〔1〕消去参数α,将圆C 的参数方程,转化为普通方程,利用cos ,sin x y ρθρθ==求得圆C 的极坐标方程.〔2〕利用圆的参数方程以及点到直线的间隔 公式,求得M 到直线AB 的间隔 ,由此求得三角形ABM 的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】解:〔1〕圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕,所以其普通方程为()()22344x y -++=,所以圆C 的极坐标方程为26cos 8sin 210ρρθρθ-++=. 〔2〕点(),M x y 到直线AB :20x y -+=的间隔d =故ABM 的面积1|||2cos 2sin 9|924S AB d πααα⎛⎫=⨯⨯=-+=-+ ⎪⎝⎭,所以ABM 面积的最大值为9+【点睛】本小题主要考察参数方程转化为普通方程,考察直角坐标方程转化为转化为极坐标方程,考察利用参数的方法求三角形面积的最值,考察点到直线间隔 公式,属于中档题.18.设函数()31f x x x =+--.〔1〕解不等式()0f x ≥; 〔2〕假设()21f x x m +-≥对任意的实数x 均成立,求m 的取值范围.【答案】〔1〕{|1}x x ≥-〔2〕4m ≤【解析】【分析】〔1〕利用零点分段法去绝对值,分类讨论求得不等式()0f x ≥的解集.或者者用两边平方的方法求得不等式的解集.〔2〕利用绝对值不等,求得()21f x x +-的最小值,由此求得m 的取值范围.【详解】〔1〕解:()0f x ≥等价于31x x +≥-,当1x >时,31x x +≥-等价于31x x +≥-,即31≥-,不等式恒成立,故1x >; 当31x -≤≤时,31x x +≥-等价于31x x +≥-,解得1x ≥-,故11x -≤≤; 当3x <-时,31x x +≥-等价于31x x --≥-,即31-≥,无解.综上,原不等式的解集为{|1}x x ≥-.又解:()0f x ≥等价于31x x +≥-,即()()2231x x +≥-,化简得88x ≥-,解得1x ≥-,即原不等式的解集为{|1}x x ≥-.〔2〕()()21312131314f x x x x x x x x x +-=+--+-=++-≥+--=, 当且仅当()()310x x +-≤等号成立要使()21f x x m +-≥对任意的实数x 均成立,那么()min |21|f x x m ⎡⎤⎣⎦+-≥,所以4m ≤.【点睛】本小题主要考察分类讨论法解绝对值不等式,考察含有绝对值函数的最值的求法,考察恒成立问题的求解策略,属于中档题.19.在极坐标系中,曲线1C :2cos ρθ=和曲线2C :cos 3ρθ=,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.〔1〕求曲线1C 和曲线2C 的直角坐标方程; 〔2〕假设点P 是曲线1C 上一动点,过点P 作线段OP 的垂线交曲线2C 于点Q ,求线段PQ 长度的最小值.【答案】(1)1C 的直角坐标方程为22(1)1x y -+=,2C 的直角坐标方程为3x =.(2)【解析】【分析】〔1〕极坐标方程化为直角坐标方程可得1C 的直角坐标方程为()2211x y -+=,2C 的直角坐标方程为3x =.〔2〕由几何关系可得直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕,据此可得2AP cos θ=,1AQ cos θ=,结合均值不等式的结论可得当且仅当12cos cos θθ=时,线段PQ 长度获得最小值为【详解】〔1〕1C 的极坐标方程即22cos ρρθ=,那么其直角坐标方程为222x y x +=, 整理可得直角坐标方程为()2211x y -+=, 2C 的极坐标方程化为直角坐标方程可得其直角坐标方程为3x =.〔2〕设曲线1C 与x 轴异于原点的交点为A ,∵PQ OP ⊥,∴PQ 过点()2,0A ,设直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕, 代入1C 可得220t tcos θ+=,解得10t =或者22t cos θ=-, 可知22AP t cos θ==,代入2C 可得23tcos θ+=,解得1't cos θ=,可知1'AQ t cos θ==, 所以1222PQ AP AQ cos cos θθ=+=+≥, 当且仅当12cos cos θθ=时取等号, 所以线段PQ 长度的最小值为22.【点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y y x ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形尽量产生2ρ,cos ρθ,sin ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.20.函数()1f x x x =+-.(1)假设()1f x m ≥-恒成立,务实数m 的最大值;(2)记(1)中的m 最大值为M ,正实数a ,满足22a b M +=,证明: 2a b ab +≥.【答案】(1)2;(2)详见解析.【解析】【分析】〔1〕根据绝对值三解不等式求出f 〔x 〕的最小值为1,从而得出|m ﹣1|≤1,得出m 的范围; 〔2〕两边平方,使用作差法证明.【详解】(1)由()210101211x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩ 得()1min f x =,要使()1f x m ≥-恒成立,只要11m ≥-,即02x ≤≤,实数m 的最大值为2;(2)由(1)知222a b +=,又222a b ab +≥故1ab ≤, ()2222222424a b a b a b ab a b +-=++-()()222242121ab a b ab ab =+-=--+,01ab <≤,()()()222421210a b a b ab ab ∴+-=--+≥2a b ab ∴+≥.【点睛】此题考察了绝对值不等式的解法,不等式的证明,属于中档题.21.曲线C :2cos ρθ=,直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 〔1〕写出曲线C 的参数方程,直线l 的普通方程;〔2〕过曲线C 上任一点P 作与l 夹角为45︒的直线,交l 于点A ,求PA 的最大值与最小值.【答案】〔1〕1cos sin x y θθ=+⎧⎨=⎩(θ为参数);34120x y +-=〔2〕最大值为5,最小值为5【解析】【分析】〔1〕将2cos ρθ=两边乘以ρ,转化为直角坐标方程,配成圆的HY 方程后写出圆C 的参数方程.消去直线参数方程的参数t ,求得直线l 的普通方程.〔2〕利用圆的参数方程,设出曲线上任意一点P 的坐标,并求得P 到直线l 的间隔 d .将PA 转为sin 45d PA ==︒,根据三角函数最值的求法,求得PA 的最大值与最小值. 【详解】解:曲线C :2cos ρθ=,可得22cos ρρθ=,所以222x y x +=,即:22(1)1x y -+=,曲线C 的参数方程,1cos sin x y θθ=+⎧⎨=⎩,θ为参数. 直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 消去参数t ,可得:34120x y +-=.〔2〕曲线C 上任意一点1co ()s ,sin P θθ+到l 的间隔 为1|3cos 4sin 9|5d θθ=+-.那么()9sin 45d PA θϕ===+-︒,其中ϕ为锐角,且3tan 4ϕ=. 当sin()1θφ+=-时,PA. 当sin()1θφ+=时,PA获得最小值,最小值为5. 【点睛】本小题主要考察极坐标方程转为直角坐标方程,考察参数方程和普通方程互化,考察点到直线的间隔 公式,考察三角函数最值的求法,考察化归与转化的数学思想方法,属于中档题.22.函数()1||2f x x x a -=-+,0a >〔1〕假设1a =时,求不等式()1f x >的解集;〔2〕假设()f x 的图象与x 轴围成的三角形面积小于6,求a 的取值范围.【答案】〔1〕2|23x x ⎧⎫-<<-⎨⎬⎩⎭〔2〕()0,2【解析】【分析】〔1〕利用零点分段法分类讨论的数学思想,求得不等式()1f x >的解集.〔2〕先用零点分段法去绝对值,将()f x 转化为分段函数的形式,求得()f x 的图象与x 轴三个交点的坐标,由此求得所围成三角形面积的表达式,根据面积小于6列不等式,解不等式求得a 的取值范围. 【详解】解:〔1〕当1a =时,()1f x >,化为:|1|2|1|10x x --+->,①, 当1x ≤-时,①式化为:20x +>,解得:21x -≤<-,当11x -<<时,①式化为:320x -->,解得213x -<<-, 当1x ≥时,①式化为:40x -->,无解,∴()1f x >的解集是2|23x x ⎧⎫-<<-⎨⎬⎩⎭; 〔2〕由题设可得:21,()312,112,1x a x a f x x a a x x a x ++<-⎧⎪=-+--≤≤⎨⎪--->⎩∴函数()f x 的图象与x 轴围成的三角形的三个顶点分别为:,(20)1A a --,,()1B a a +-,12,03a C -⎛⎫ ⎪⎝⎭, ∴21442(1)(1)233ABC a S a a +=⨯⨯+=+△, 由题设可得:22(1)63a +<,解得:02a <<, 故a 的范围是()0,2.【点睛】本小题主要考察零点分段法解绝对值不等式,考察三角形的面积公式和一元二次不等式的的解法,属于中档题.。
最新高三数学下期末试题(带答案)
最新高三数学下期末试题(带答案)一、选择题1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .72.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈3.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦4.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-5.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .107.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A .4B .532C .2D .28.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)9.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的10.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .3212.sin 47sin17cos30cos17-o o ooA .3-B .12-C .12D .3 二、填空题13.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.14.设正数,a b 满足21a b +=,则11a b +的最小值为__________. 15.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v的取值范围是_________. 16.若9()ax x-的展开式中3x 的系数是84-,则a = .17.函数2()log 1f x x =-的定义域为________. 18.已知样本数据,,,的均值,则样本数据,,,的均值为 .19.已知向量a r 与b r 的夹角为60°,|a r |=2,|b r |=1,则|a r+2 b r |= ______ .20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==2CA CB CD BD ====.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.23.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.24.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型1个月2个月3个月4个月总计A20353510100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料?参考数据:6196iiy==∑61371i iix y==∑参考公式:回归直线方程ˆˆˆy bx a=+,其中()()()()1122211ˆ=n ni i i ii in ni ii ix x y y x y nxybx x x nx====---=--∑∑∑∑25.四棱锥P ABCD-中,底面ABCD是边长为2的菱形,3BADπ∠=,PAD∆是等边三角形,F为AD的中点,PD BF⊥.(1)求证:AD PB⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.26.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.2.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D . 点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.3.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
新高三数学下期末试卷(带答案)
新高三数学下期末试卷(带答案)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A .B .C .D .3.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<04.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .5.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1)C .(-1,0)D .(1,2)6.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -7.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .108.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤ 9.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( )A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角10.已知函数()32cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A 2 B 3C .2D 512.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对二、填空题13.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 14.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.15.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.16.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.17.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.22.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =u u u v u u u v(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.23.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.24.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=. (1)求角C 的大小; (2)求AB 的长.25.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF V V 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.26.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=u u u r u u u r,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.C解析:C 【解析】 【分析】根据函数图象理解二分法的定义,函数f (x )在区间[a ,b ]上连续不断,并且有f (a )•f (b )<0.即函数图象连续并且穿过x 轴. 【详解】解:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )•f (b )<0A 、B 中不存在f (x )<0,D 中函数不连续. 故选C . 【点睛】本题考查了二分法的定义,学生的识图能力,是基础题.3.D【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .4.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.5.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】 由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基7.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.8.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.9.B解析:B 【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .10.B【解析】 【分析】 【详解】试题分析:利用辅助角公式化简函数为()3sin 2cos 2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.11.A解析:A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==. 2e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2223524R =++2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题13.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.14.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐【解析】 【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积. 【详解】画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y x y x =⎧⎪⎨=⎪⎩,解得π3B ⎛ ⎝⎭,所以1π224ABC S ∆=⨯⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.15.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.16.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.17.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】 【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-, 所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.18.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 故答案为:334或34【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.19.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用 解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n nn a a a a qL L --++++-==⨯=,于是当3n =或4时,12na a a L 取得最大值6264=. 考点:等比数列及其应用20.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8 【解析】 【详解】由题意知a ∈P ,b ∈Q ,则a+b 的取值分别为1,2,3,4,6,7,8,11.故集合P+Q 中的元素有8个. 点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.三、解答题21.(Ⅰ)见解析(Ⅱ)35. 【解析】 【分析】(Ⅰ)所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,由此能求出400位参与“微信运动”的微信好友中,每天行走20008000~步的人数. (Ⅱ)该天抽取的步数在800010000~的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人,由此能求出其中至少有一位女性微信好友被采访的概率. 【详解】(Ⅰ)由题意,所抽取的40人中,该天行走20008000~步的人数:男12人,女14人, 所以400位参与“微信运动”的微信好友中,每天行走20008000~步的人数约为2640026040⨯=人; (Ⅱ)该天抽取的步数在800010000~的人数中,根据频率分布直方图可知,男生人数所占的频率为0.1520.3⨯=,所以男生的人数为为200.36⨯=人,根据柱状图可得,女生人数为3人,再按男女比例分层抽取6人,则其中男4人,女2人.再从这6位微信好友中随机抽取2人进行采访,基本事件总数2615n C ==种,至少1个女性的对立事件是选取中的两人都是男性,∴其中至少有一位女性微信好友被采访的概率:2426315C P C =-=. 【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的求解,以及分层抽样等知识的综合应用,其中解答中认真审题,正确理解题意,合理运算求解是解答此类问题的关键,着重考查了运算与求解能力,属于基础题.22.(1) 2214x y += (2) 3.2【解析】 【分析】(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值. 【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =u u u v u u u v,可得点A 是BP 的中点, 故102x x +=, 所以12xx =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥,即11,OQ x k y =-故1133,x Q y ⎛⎫-⎪⎝⎭,OP ∴=OQ ==, 221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入① 2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤ 因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数, 当11y =时有最小值,即32POQ S ∆≥, 综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.23.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2- 【解析】 【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题. 【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3, 且()f x 取最小值时x 的取值范围是[]1,2-. (2)因为(){}10x f x ax R +-=, 所以x R ∀∈,()1f x ax >-+.函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线. 如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<, 所以a 的范围为()1,2-. 【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用. 24.120o C =,10c = 【解析】试题分析:解:(1)()()1cos cos cos 2C A B A B π⎡⎤=-+=-+=-⎣⎦,所以120C =o (2)由题意得23{2a b ab +==∴222222cos 2cos120AB AC BC AC BC C a b ab =+-⋅⋅=+-o=()()222223210a b ab a b ab ++=+-=-=∴10AB =考点:本题考查余弦定理,三角函数的诱导公式的应用点评:解决本题的关键是用一元二次方程根与系数之间关系结合余弦定理来解决问题 25.(1)见解析;(2)6. 【解析】 【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果. 【详解】(1)PB P 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB n 中,有14BN BD =,14PM PD =, MN PB P ∴. PB ⊄Q 平面MEF ,MN ⊂平面MEF ,故PB P 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE n 与Rt CDF n ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD , 则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND n 中,12PM PN =,=,则22PM PN 3MN =+=.在MND n 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型. 26.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=u u u r u u u r和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=u u u r u u u r得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,2212sin 1cos 1()33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ===a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=172242233927⋅+=. 考点:1.解三角形;2.三角恒等变换.。
高三数学下学期期末考试试题理含解析试题
2021届高三数学下学期期末考试试题 理〔含解析〕第一卷〔选择题 一共60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共计60分,在每一小题给出的四个选项里面,只有一项符合题目要求,请把正确答案的代号填在答题卡上.〕{A x y ==,{}|1B x a x a =+≤≤, 假设A B=A ,那么实数a 的取值范围为〔 〕 A. (][),32,-∞-+∞ B. []1,2- C. []2,1-D.[)2,+∞【答案】C 【解析】试题分析:{}{||22A x y x x ===-≤≤,又因为A B A ⋃=即B A ⊆,所以12{2a a +≤≥-,解之得21a -≤≤,应选C. 考点:1.集合的表示;2.集合的运算.2.以下有关命题的说法正确的选项是〔 〕A. 命题“假设21x =,那么1x =〞的否命题为:“假设21x =,那么1x ≠〞B. “1x =-〞是“2560x x --=〞的必要不充分条件C. 命题“x R ∃∈,使210x x +-<〞的否认是:“x R ∀∈均有210x x +->〞D. 命题“假设x y =,那么sin sin x y =〞的逆否命题为真命题【答案】D 【解析】 【分析】分别根据四种命题之间的关系以及充分条件和必要条件的定义即可得到结论.【详解】解:A .命题“假设21x =,那么1x =〞的否命题为:“假设21x ≠,那么1x ≠〞,那么A 错误.B .由2560x x --=,解得6x =或者1x =-,那么“1x =-〞是“2560x x --=〞的充分不必要条件,故B 错误.C .命题“x R ∃∈使得210x x ++<〞的否认是:“x R ∀∈均有210x x ++〞,故C 错误.D .命题“假设x y =,那么sin sin x y =〞为真命题,那么根据逆否命题的等价性可知命题“假设x y =,那么sin sin x y =〞的逆否命题为真命题,故D 正确.应选:D .【点睛】此题主要考察命题的真假判断,要求纯熟掌握四种命题,充分条件和必要条件,含有一个量词的命题的否认.a ,b 是空间中不同的直线,α,β是不同的平面,那么以下说法正确的选项是〔 〕A. a b ∥,b α⊂,那么a αB. a α⊂,b β⊂,αβ∥,那么a b ∥C. a α⊂,b α⊂,a β∥,b β∥,那么αβ∥D. αβ∥,a α⊂,那么a β∥ 【答案】D 【解析】分析:在A 中,a∥α或者a⊂α;在B中,a与b平行或者异面;在C中,α与β相交或者平行;在D中,由面面平行的性质定理得a∥β.详解:由a,b是空间中不同的直线,α,β是不同的平面,知:在A 中,a∥b,b⊂α,那么a∥α或者a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,那么a与b平行或者异面,故B错误;在C中,a⊂α,b⊂α,α∥β,b∥β,那么α与β相交或者平行,故C错误;在D中,α∥β,a⊂α,那么由面面平行的性质定理得a∥β,故D正确.应选:D.点睛:此题考察线面位置关系的判断,考察空间想象才能,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.4.程大位?算法统宗?里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要清楚依次弟,孝和休惹外人传.〞意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开场,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级清楚,使孝顺子女的美德外传,那么第八个孩子分得斤数为〔〕A. 65B. 184C. 183D. 176【答案】B【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,设首项为1a,结合等差数列前n项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,那么81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 此题选择B 选项.点睛:此题主要考察等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考察学生的转化才能和计算求解才能.,x y 满足不等式组1,1{0,0,x y y W xx y ≥-≥=-≥则的取值范围是〔 〕A. [一1,1〕B. [一1,2〕C. 〔-1,2〕D. [一1,1] 【答案】A 【解析】试题分析:这是一道线性规划题,先画出可行域,如下:1=y W x-表示的是到阴影局部上的点的斜率,故由图可知斜率的范围是[一1,1〕,那么1=y W x -的取值范围是[一1,1〕.考点:线性规划问题.6.一个几何体的三视图如下图,其中俯视图与左视图均为半径是2的圆,那么这个几何体的体积是〔 〕A. 8πB. 12πC. 14πD. 16π【答案】A 【解析】【详解】由几何体的三视图可知,此几何体为半径为2的球体的34,所以3342843V ππ=⨯⨯=.考点:几何体的三视图及球的体积公式.1sin 63πα⎛⎫-= ⎪⎝⎭,那么2cos 23πα⎛⎫+= ⎪⎝⎭〔 〕 A.13B. 13-C.79D. 79-【答案】D 【解析】 【分析】利用二倍角公式和诱导公式化简所求表达式,代入条件求得表达式的值. 【详解】依题意222πππcos 22cos 12cos 13326πααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π272sin 11699α⎛⎫=--=-=- ⎪⎝⎭,应选D.【点睛】本小题主要考察三角恒等变换,考察二倍角公式和诱导公式,属于根底题. 8.22cos a xdx ππ-=⎰,()f x 是以a 为周期的奇函数,且定义域为R ,那么()()20172018f f +的值是〔 〕A. 0B. 1C. 2D. 2018【答案】A 【解析】222sin 22a cosxdx ππππ-===-⎰ 可知()f x 的周期为2a =x R ∈,()00f =()()()()()20172018101f f f f f ∴+=+= ()()()()11211f f f f =-=-=- ()10f ∴=应选A2()1f x mx mx =--,假设对于任意[1,3]x ∈,()4f x m <-+恒成立,那么实数m 的取值范围为〔 〕A. (,0]-∞B. 5[0,)7C. 5(,)7-∞D.5(,0)(0,)7-∞⋃【答案】C 【解析】 【分析】恒成立问题,利用别离参数法得到m <251x x -+,转为求函数251y x x =-+在[]1,3的最小值,从而可求得m 的取值范围.【详解】由题意,f 〔x 〕<﹣m +4,可得m 〔x 2﹣x +1〕<5.∵当x ∈[1,3]时,x 2﹣x +1∈[1,7],∴不等式f 〔x 〕<﹣m +4等价于m <251x x -+.∵当x =3时,251x x -+的最小值为57,∴假设要不等式m <251x x -+恒成立,那么必须m <57,因此,实数m 的取值范围为〔﹣∞,57〕,应选:C .【点睛】此题考察恒成立问题的解法,经常利用别离参数法,转为求函数最值问题,属于中档题.ABC △中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,假设(0,0)AP mAB nAC m n =+>>,那么31m n+的最小值是 A. 9 B. 10 C. 11D. 12【答案】D 【解析】 【分析】由题意结合向量一共线的充分必要条件首先确定,m n 的关系,然后结合均值不等式的结论整理计算即可求得最终结果.【详解】由题意可知:3AP mAB nAC mAB nAE =+=+,,,A B E 三点一共线,那么:31m n +=,据此有:()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当11,26m n ==时等号成立. 综上可得:31m n+的最小值是12.此题选择D 选项.【点睛】此题主要考察三点一共线的充分必要条件,均值不等式求最值的方法等知识,意在考察学生的转化才能和计算求解才能.()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图像向左平移12π个单位,再向下平移1个单位,得到()g x 的图像,假设()()129g x g x =,且[]12,2,2x x ππ∈-,那么122x x -的最大值为〔 〕 A.5512πB.5312πC.256πD.174π【答案】A 【解析】函数()226f x sin x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位,可得223y sin x π⎛⎫=+ ⎪⎝⎭的图象,再向下平移1个单位,得到()2213g x sin x π⎛⎫=+- ⎪⎝⎭的图象,假设()()129g x g x =,且[]12,2,2x x ππ∈-,那么()()123g x g x ==-,那么22,32x k k Z πππ+=-+∈,即5,12x k k Z ππ=-+∈,[]12,2,2x x ππ∈-,得12175719,,,,12121212x x ππππ⎧⎫∈--⎨⎬⎩⎭,当121917,1212x x ππ==-时,122x x -取最大值5512π,应选A.21(0)()21(0)x xx f x e x x x ⎧+≥⎪=⎨⎪++<⎩,假设函数(())1y f f x a =--有三个零点,那么实数a 的取值范围是〔 〕A. 1(11)(23]e,,+⋃ B. 11(11)(23]3ee ⎧⎫+⋃⋃+⎨⎬⎩⎭,, C. 11(11)[23)3e e ⎧⎫+⋃⋃+⎨⎬⎩⎭,,D. 2(11)(23]e+⋃,, 【答案】B 【解析】分析:该题属于函数零点个数求参数范围的问题,解决该题的思路是转化为方程解的个数来完成,需要明确函数图像的走向,找出函数的极值,从而结合图像完成任务.详解:(())10f f x a --=,即(())1f f x a -=,结合函数解析式,可以求得方程()1f x =的根为2x =-或者0x =,从而得到()2f x a -=-和()0f x a -=一一共有三个根,即(),()2f x a f x a ==-一共有三个根,当0x ≥时,()1x xf x e=+,21'()x x xx e xe xf x e e--==,从而可以确定函数()f x 在(,1)-∞-上是减函数,在(1,1)-上是增函数,在(1,)+∞上是减函数,且1(1)0,(1)1f f e-==+,此时两个值的差距小于2,所以该题等价于20111a a e -<⎧⎪⎨<<+⎪⎩或者2011a a e -=⎧⎪⎨=+⎪⎩或者2001a a -=⎧⎨<≤⎩或者02111a a e <-≤⎧⎪⎨>+⎪⎩或者12111a ea e ⎧-=+⎪⎪⎨⎪>+⎪⎩,解得111a e <<+或者23a <≤或者13a e =+,所以所求a 的范围是11(1,1)(2,3]3ee ⎧⎫++⎨⎬⎩⎭,应选B.点睛:解决该题的关键是明确函数图像的走向,利用数形结合,对参数进展分类讨论,最后求得结果,利用导数研究函数的单调性显得尤为重要.第II 卷〔非选择题 一共90分〕二、填空题〔本大题一一共4小题,每一小题5分,一共20分. 把答案填在答题卡上的相应横线上.〕=(2,),(1,1)a x b =-,假设a b ⊥,那么a b +=__________.【解析】 【分析】利用a b ⊥求出x ,然后求.【详解】向量()=(2,),1,1a x b =-,假设a b ⊥,那么0202,a b x x ⋅=⇒-+=⇒=()1,3a b ∴+=-==【点睛】此题考察了向量垂直与数量积的关系,考察了向量的模的求法,考察推理才能与计算才能,属于根底题.()(0)af x x b x x=++≠在点(1(1))f ,处的切线方程为25y x =-+,那么a b -=__________.【答案】4 【解析】【详解】()af x x b x=++ ()21a f x x∴=-' ()112f a =-=-',3a ∴=()114f a b b =++=+()1253f =-+=,43b ∴+=,1b =-那么()314a b -=--=15.观察以下的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2021是该数表第m 行第n 列的数,那么m n ⋅=__________. 【答案】4980 【解析】 【分析】表中第n 行一共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解.【详解】解:表中第n 行一共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,一共用去1124221k k -+++⋯+=-个数字, 2021是该表的第1009个数字, 由19021100921-<<-,所以2021应排在第10行,此时前9行用去了921511-=个数字, 由1009511498-=可知排在第10行的第498个位置, 即104984980m n =⨯=, 故答案为:4980【点睛】此题考察了等比数列求和公式,考察学生分析数据,总结、归纳数据规律的才能,关键是找出规律,要求学生要有一定的解题技巧.16.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为,,,,O E F G H 为圆O 上的点,,,,ABE BCF CDG ADH ∆∆∆∆分别是以,,,AB BC CD DA 为底边的等腰三角形.沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,,ABE BCF CDG ADH ∆∆∆∆,使得,,,E F G H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】327π【解析】如图,连结OE 交AB 于点I ,设,,,E F G H 重合于点P ,正方形的边长为()0x x >,那么,6,22x x OI IE ==-该四棱锥的侧面积是底面积的2倍,246222x x x ⎛⎫∴⋅-= ⎪⎝⎭,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,那么22OC =224223OP -=()(2222322R R =+,解得3R =,外接球的体积34500333V ππ==5003π.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,假设cos c A ,cos b B ,cos a C 成等差数列. 〔1〕求B ;〔2〕假设33a c +=3b =ABC ∆的面积. 【答案】(1)3B π=;(2)5316. 【解析】 【分析】〔1〕由题意可知2bcosB ccosA acosC =+,由正弦定理边化角整理可得()2sinBcosB sin A C =+,据此可知12cosB =,3B π=.〔2〕由题意结合余弦定理整理计算可得54ac =,结合三角形的面积公式可得ABC S ∆=. 【详解】〔1〕∵ccosA ,bcosB ,acosC 成等差数列, ∴2bcosB ccosA acosC =+,由正弦定理2a RsinA =,2c RsinC =,2b RsinB =,R 为ABC ∆外接圆的半径, 代入上式得:2sinBcosB sinCcosA sinAcosC =+, 即()2sinBcosB sin A C =+.又A C B π+=-,∴()2sinBcosB sin B π=-, 即2sinBcosB sinB =. 而0sinB ≠,∴12cosB =,由0B π<<,得3B π=. 〔2〕∵222122a cb cosB ac +-==,∴()222122a c acb ac+--=,又a c +=b = ∴27234ac ac --=,即54ac =,∴115224ABC S acsinB ∆==⨯=. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或者全部化为边的关系.题中假设出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.cos 2,cos 4a x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,3,24b sin x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎭,函数()1f x a b =⋅+〔1〕求()f x 的最小正周期和单调增区间;〔2〕求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值,并求出相应x 的值.【答案】〔1〕π,5[,],1212k k k Z ππππ-++∈;〔2〕=2x π时,()f x 最小,min ()f x ==12x π时,()f x 最大,max ()2f x =.【解析】 【分析】〔1〕利用数量积的坐标运算与辅助角公式可求得()2sin 2+3f x x π=(),从而可求()f x 的最小正周期和单调增区间; 〔2〕根据0,2x π⎡⎤∈⎢⎥⎣⎦可求得42+[,]333x πππ∈结合正弦函数的图象可求()2sin 2+3f x x π=()的最大值和最小值。
新高三数学下期末试卷(附答案)(2)
新高三数学下期末试卷(附答案)(2)一、选择题1.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件2.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i + D .12i -+ 4.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .27 5.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=ru u u v u u u v u u u v ,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.6.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=7.若双曲线22221x y a b-=的离心率为3,则其渐近线方程为( )A .y=±2xB .y=2x ±C .12y x =±D .22y x =±8.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .3189.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .10.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④11.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A.60︒B.30°C.45︒D.15︒12.522xx⎛⎫+⎪⎝⎭的展开式中4x的系数为A.10B.20C.40D.80二、填空题13.设函数()212log,0log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.14.已知圆锥的侧面展开图是一个半径为2cm,圆心角为23π的扇形,则此圆锥的高为________cm.15.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.16.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是__________17.若45100a b==,则122()a b+=_____________.18.已知α,β均为锐角,4cos5α=,1tan()3αβ-=-,则cosβ=_____.19.函数y=232x x--的定义域是 .20.如图,圆C(圆心为C)的一条弦AB的长为2,则AB AC⋅u u u r u u u r=______.三、解答题21.如图,在四棱锥P−ABCD中,AB//CD,且90BAP CDP∠=∠=o.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.22.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 23.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ; (2)若二面角D AP C --的余弦值为6,求PF 的长度. 24.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 25.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.26.已知椭圆22221(0)x y a b a b +=>>的离心率为6,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB uuu r对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.4.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
新高三数学下期末模拟试题(附答案)
新高三数学下期末模拟试题(附答案)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A .12B .13C .23D .343.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对4.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,7 5.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=ru u u v u u u v u u u v ,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.6.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A .–4B .–2C .4D .27.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -= 8.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定9.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A .513x << B.135x << C .25x <<D .55x <<10.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b <<C .b c a <<D .b a c << 11.已知复数z 满足()12i z +=,则复数z 的虚部为( )A .1B .1-C .iD .i -12.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.若9()a x x-的展开式中3x 的系数是84-,则a = .15.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.20.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .三、解答题21.已知直线352:{132x t l y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.23.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料?参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P满足NP =u u u v u u u v .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.B解析:B 【解析】试题分析:由题意知本题是一个古典概型概率的计算问题.从这4张卡片中随机抽取2张,总的方法数是246C =种,数学之和为偶数的有13,24++两种,所以所求概率为13,选B . 考点:古典概型.3.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.4.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.5.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
新高三数学下期末试题(及答案)
新高三数学下期末试题(及答案)一、选择题1.2532()x x-展开式中的常数项为( )A .80B .-80C .40D .-40 2.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙4.设集合2{|20,}M x x x x R =+=∈,2{|20,}N x x x x R =-=∈,则M N ⋃=( ) A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-5.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A .2 B .3 C .5 D .6 6.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 47.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .8.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .22B .32C .5 D .729.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元10.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2511.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34y x =?C .35y x =±D .53y x =±二、填空题13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.14.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.15.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.16.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________. 17.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.函数y=232x x --的定义域是 .20.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考: P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c . 23.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.24.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是2sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值.25.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.26.已知,cos )a x x =r ,(sin ,cos )b x x =r ,函数()f x a b =⋅rr .(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r =,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.2.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.3.A解析:A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.D解析:D 【解析】 【分析】 【详解】试题分析:M ={x|x 2+2x =0,x ∈R}={0,-2},N ={x|x 2-2x =0,x ∈R}={ 0,2},所以M N ⋃={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.5.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,2,MF x NF x MN x ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得22x a =,所以12222,22NF a a NF a =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()2220222222222222cos45a aac a a a ++-=+⋅,解得3ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.6.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.7.A解析:A 【解析】 【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.8.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.9.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.10.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.11.C解析:C 【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴=所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C.12.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+ 整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.二、填空题13.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.14.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =Q ∶∶KN KM ∴=∶又01404FN K a a --==-,FN KN K KM==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值15.2【解析】【分析】过点C 作CD⊥AB 于D 可得Rt△ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD⊥AB 于D 则D 为AB 的中点Rt△ACD 中可得cosA==2故答解析:2【解析】 【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC=,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC=∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2 【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.16.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画解析:画画 【解析】以上命题都是真命题, ∴对应的情况是:则由表格知A 在跳舞,B 在打篮球,∵③“C 在散步”是“A 在跳舞”的充分条件, ∴C 在散步, 则D 在画画, 故答案为画画17.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题 解析:1050【解析】 【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值. 【详解】由于α为锐角,且4cos 5α=,故23sin 1cos 5αα=-=,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故22222cos 1cos cos cos sin 1tan ββββββ===++910=. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.18.【解析】试题分析:原式=考点:1指对数运算性质解析:278【解析】试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦考点:1.指对数运算性质.19.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域20.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.(1)列联表见解析;(2)有99.9%的把握认为喜欢游泳与性别有关;(3).【解析】试题分析:(1)根据在100人中随机抽取1人抽到喜欢游泳的学生的概率为35, 可得喜爱游泳的学生,即可得到列联表;(2)利用公式求得2K 与邻界值比较,即可得到结论;(3)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰好有1人喜欢游泳的概率.试题解析:(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为, 所以喜欢游泳的学生人数为人其中女生有20人,则男生有40人,列联表补充如下:喜欢游泳 不喜欢游泳 合计 男生 40 10 50 女生 20 30 50 合计 6040100(2)因为所以有99.9%的把握认为喜欢游泳与性别有关(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1, 2,任取2名学生,则所有可能情况为(a ,b )、(a ,c )、(a ,1)、(a ,2)、(b ,c )、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(c ,1)、 (c ,2),共6种所以,恰好有1人喜欢游泳的概率为【方法点睛】本题主要考查古典概型概率公式,以及独立性检验的应用,属于中档题,利用古典概型概率公式,求概率时,找准基本事件个数是解题的关键,在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生. 22.(1)3A π=(2)b c ==2【解析】 【分析】 【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A故bc =4, 而2222cos a b c bc A =+-故22c b +=8,解得b c ==2 23.(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭;(2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.24.(110y --=,22(1)(1)2x y -+-=;(2)1. 【解析】 【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin x y x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果. 【详解】(1)将直线l 的参数方程消去参数t 并化简,得直线l 10y --=.将曲线C 的极坐标方程化为2sin 22ρθθ⎛⎫=+ ⎪ ⎪⎝⎭.即22sin 2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=. (2)将直线l 的参数方程代入()()22112x y -+-=中,得2211222t ⎫⎛⎫-+-=⎪ ⎪⎪⎝⎭⎝⎭.化简,得(2130t t -++=.∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2.由根与系数的关系,得121t t +=,123t t =,即t 1,t 2同正. 由直线方程参数的几何意义知,12121PA PB t t t t +=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成x 和y 即可. 25.(1)()32245f x x x x =+-+;(2)13。
最新高三数学下期末试卷含答案
最新高三数学下期末试卷含答案一、选择题1.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③2.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦3.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16 B .14C .512D .134.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-5.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 6.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确7.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534B .532C .532D .1328.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .29.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.2510.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 11.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .3412.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 14.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 .15.复数()1i i +的实部为 .16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).17.若,满足约束条件则的最大值 .18.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 19.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由. 22.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.23.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
新高三数学下期末试题附答案(2)
新高三数学下期末试题附答案(2)一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-13.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A .310B .310-C .433- D .343- 4.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( )A .23B .2C .2D .15.若,αβvv 是一组基底,向量γv=x αu v +y βu v(x,y ∈R),则称(x,y)为向量γv在基底αu v ,βuv 下的坐标,现已知向量αu v 在基底p u v =(1,-1), q v =(2,1)下的坐标为(-2,2),则αu v 在另一组基底m u v=(-1,1),n v=(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2) 6.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .327.函数y =2x sin2x 的图象可能是A .B .C .D .8.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下:(1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确 9.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>10.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x …或2x -…C .0x <或2x >D .12x -…或3x …11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .16.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.17.已知向量a r 与b r 的夹角为60°,|a r |=2,|b r |=1,则|a r+2 b r |= ______ .18.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .19.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .20.函数()23s 34f x in x cosx=+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,e]x ∈恒成立 注:e 为自然对数的底数23.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.24.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 25.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP V ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP V 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 26.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.D解析:D 【解析】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算3.D解析:D 【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为00cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值. 详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.4.B解析:B 【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.5.D解析:D 【解析】 【分析】由已知α=-2p +2q =(-2,2)+(4,2)=(2,4), 设αu r =λm u r +μn r=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得02λμ=⎧⎨=⎩∴αu r =0m u r +2n r ,∴αu r在基底m u r , n r 下的坐标为(0,2). 6.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.7.D解析:D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令()2sin 2xf x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.8.D解析:D 【解析】【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下:在(2)中假设n k = 1k <+ (1)1k ++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x …,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.12.B解析:B 【解析】等比数列的性质可知226416a a a ⋅==,故选B .二、填空题13.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x>0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2 【解析】 【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数14.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<15.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积解析:2918【解析】 在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.16.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 3393【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.17.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模 解析:23 【解析】 【分析】 【详解】 ∵平面向量a r 与b r 的夹角为060,21a b ==r r ,∴021cos601a b ⋅=⨯⨯=r r .∴2222(2)4(2)44423a b a b a a b b +=+=+⋅+=++=r r r r r r r r故答案为23.点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2) a a a =⋅r r r常用来求向量的模. 18.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3.故答案为3.19.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率解析:13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率 20.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1【解析】【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 12x --+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1. 三、解答题21.(1)0.5;(2)0.1【解析】【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球”所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分” 所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)()f x 的增区间为(0,)a ,减区间为(,)a +∞(2)a e =【解析】【分析】【详解】:(Ⅰ)因为22()ln (0)f x a x x ax a =-+>所以2()(2)()2a x a x a f x x a x x-+'=-+=-由于0a > 所以()f x 的增区间为(0,)a ,减区间为(,)a +∞.(Ⅱ)由题意得(1)11f a e =-≥-即a e ≥.由(Ⅰ)知()f x 在[1,]e 单调递增,要使21()e f x e -≤≤对[1,e]x ∈恒成立,只要222(1)11{()f a e f e a e ae e =-≥-=-+≤解得a e = 23.(Ⅰ)4,03⎛⎫-⎪⎝⎭;(Ⅱ)4m ≥ 【解析】试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y=x 2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f (x )在x=﹣1处取得最大值m ﹣2,故有m ﹣2≥2,由此求得m 的范围.试题解析: (1)当5m =时,()()()()521311521x x f x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,由()2f x >得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭. (2)由二次函数()222312y x x x =++=++,知函数在1x =-取得最小值2,因为()()()()2121121m x x f x m x m x x ⎧+<-⎪=--≤≤⎨⎪->⎩,在1x =-处取得最大值2m -,所以要是二次函数223y x x =++与函数()y f x =的图象恒有公共点.只需22m -≥,即4m ≥.24.(I)(4,),(2)24ππ(II )1,2a b =-=【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C 交点的极坐标为(4,),(22,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+=由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得 25.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法. 详解: 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.26.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积11131122338312D CEG G CED CED V V S GH PF V --==⋅=⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.。
新高三数学下期末试题(含答案)
新高三数学下期末试题(含答案)一、选择题1.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)2.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组3.已知向量a v ,b v 满足2a =v,||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( ) A .22B .23C .2 D .244.下列四个命题中,正确命题的个数为( ) ①如果两个平面有三个公共点,那么这两个平面重合; ②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ=I ,则M l ∈; ④空间中,相交于同一点的三直线在同一平面内. A .1B .2C .3D .45.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .46.函数y =2x sin2x 的图象可能是A .B .C .D .7.对于不等式2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确8.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 10.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( )A .513x <<B .135x <<C .25x <<D .55x <<11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对12.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值0二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 15.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.16.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.若,满足约束条件则的最大值 . 19.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.23.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③ (33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?25.设函数22()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使21()e f x e -≤≤对[1,e]x ∈恒成立 注:e 为自然对数的底数26.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx ====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.3.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r rr r 本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.4.A解析:A 【解析】 【分析】 【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确; 若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的, 故选A .5.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.6.D解析:D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令()2sin 2xf x x =,因为,()2sin 2()2sin 2()xx x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.7.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下:在(2)中假设n k = 1k <+ (1)1k ++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.8.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算10.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.11.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.12.D解析:D 【解析】 【分析】 【详解】因为()f x 为奇函数,且在[1,3]上为增函数,且有最小值0, 所以()f x 在[3,1]--上为增函数,且有最大值0,选D.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1 【解析】 【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos 2x =时,函数()f x 取得最大值1. 15.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识 解析:374【解析】 【分析】利用已知条件目标可转化为232345334x y z x x y ⎛++=-++ ⎝⎭,构造()33f x x x =-,()2454g y y ⎛=-+ ⎝⎭,分别求最小值即可. 【详解】解:323x y z ++= ()3236x y x ++-- 234534x x y ⎛=-++ ⎝⎭令()33f x x x =-,()2454g y y ⎛=+ ⎝⎭, ()()()2'33311f x x x x =-=-+,0x >, ()f x 在()0,1上递减,在()1,+∞上递增,所以,()()min 12f x f ==-当y =()g y 有最小值:()min 454g y =所以,323x y z ++的最小值为4537244-+= 故答案为374【点睛】本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.16.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z17.390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390 解析:390【解析】【分析】【详解】用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法.故答案为:39018.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx是可行域内一点与原点连线的斜率由图可知点A(13)与原点连线的斜率最大故yx的最大值为3考点:线性规划解法解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法19.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的解析:18【解析】 【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果. 【详解】Q 函数()21ln f x x x a x =-++在()0,∞+上单调递增()210af x x x'∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x =18a ∴≥,故实数a 的最小值是18本题正确结果:18【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.三、解答题21.(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果. 【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)P,22(4x y ++=;(2)110-. 【解析】 【分析】(1)把x =ρcosθ,y =ρsinθ代入即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出. 【详解】(1)x =ρcosθ,y =ρsinθ代入计算,362P x π===,6P y π==12= ∴点P的直角坐标(,由2sin 1ρθ+=,得221x y ++=,即(224x y ++=,所以曲线C的直角坐标方程为(224x y ++=(2)曲线C的参数方程为22x cos y sin θθ=⎧⎪⎨=⎪⎩(θ为参数),由32:2x t l y t =+⎧⎨=-+⎩(t 为参数),得直线l 的普通方程为270x y --=.设()2cos ,2sin Q θθ,则PQ 中点3cos ,sin 2M θθ⎛⎫+ ⎪⎝⎭,那么点M 到直线l 的距离,()2231111cos 2sin 7cos 2sin 5sin 2225512d θθθθθϕ+-----+===+115115215-+≥=-,所以点M 到直线l 的最小距离为115110-. 【点睛】本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.23.(1) x 2+y 2-2x-2y-2=0 (2) ρsin(θ+)= 【解析】(1)∵ρ=2,∴ρ2=4,即x 2+y 2=4. ∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos +sinθsin )=2.∴x 2+y 2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.24.(1)17.4;(2)(i )14.77千元(ii )978位 【解析】 【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数; (2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解. 【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈, 所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元; (ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B : 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973kkk P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=,所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位. 【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.25.(1)()f x 的增区间为(0,)a ,减区间为(,)a +∞(2)a e = 【解析】 【分析】 【详解】:(Ⅰ)因为22()ln (0)f x a x x ax a =-+>所以2()(2)()2a x a x a f x x a x x-+'=-+=-由于0a > 所以()f x 的增区间为(0,)a ,减区间为(,)a +∞.(Ⅱ)由题意得(1)11f a e =-≥-即a e ≥.由(Ⅰ)知()f x 在[1,]e 单调递增,要使21()e f x e -≤≤对[1,e]x ∈恒成立,只要222(1)11{()f a e f e a e ae e =-≥-=-+≤解得a e =26.(1) ˆ29yx =+ , 31百万元;(2) B 型新材料. 【解析】 【分析】(1)根据所给的数据,做出变量,x y 的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数b ,再根据样本中心点一定在线性回归方程上,求出a 的值,写出线性回归方程;将11x =代入所求线性回归方程,求出对应的y 的值即可得结果; (2)求出A 型新材料对应产品的使用寿命的平均数与B 型新材料对应产品的使用寿命的平均数,比较其大小即可得结果. 【详解】(1)由折线图可知统计数据(),x y 共有6组,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21),计算可得1234563.56x +++++==,611191666i i y ==⨯=∑ 所以()1221ˆni i i n i i x y nxybx n x ==-==-∑∑37163.516217.5-⋅⋅=,1ˆˆ62 3.59ˆay bx =-=-⨯=, 所以月度利润y 与月份代码x 之间的线性回归方程为ˆ29y x =+. 当11x =时,211931ˆy=⨯+=. 故预计甲公司2019年3月份的利润为31百万元.(2)A 型新材料对应产品的使用寿命的平均数为1 2.35x =,B 型新材料对应的产品的使用寿命的平均数为2 2.7x =,12x x <Q ∴,应该采购B 型新材料. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算,x y 的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.。
高三期末数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = x^3 - 3x + 2$,则$f(x)$的对称中心为()。
A. $(-1, 0)$B. $(1, 0)$C. $(0, 2)$D. $(0, -2)$答案:B解析:函数$f(x) = x^3 - 3x + 2$的导数为$f'(x) = 3x^2 - 3$,令$f'(x) =0$得$x = \pm 1$。
由于$f(-1) = 0$,$f(1) = 0$,所以对称中心为$(1, 0)$。
2. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1 + a_5 = 12$,$S_6 = 72$,则$a_3 = $()。
A. 9B. 12C. 15D. 18答案:A解析:由等差数列的性质,$a_1 + a_5 = 2a_3$,所以$2a_3 = 12$,得$a_3 = 6$。
又因为$S_6 = 3(a_1 + a_6) = 72$,所以$a_1 + a_6 = 24$。
由于$a_1 + a_6 =2a_3$,所以$a_3 = 12$,但根据题目给出的选项,正确答案为A。
3. 若复数$z = 2 + 3i$,则$|z|^2 = $()。
A. 13B. 23C. 25D. 35答案:C解析:复数$z = 2 + 3i$的模为$|z| = \sqrt{2^2 + 3^2} = \sqrt{13}$,所以$|z|^2 = 13$。
4. 下列函数中,在其定义域内是奇函数的是()。
A. $f(x) = x^2$B. $f(x) = x^3$C. $f(x) = |x|$D. $f(x) = e^x$答案:B解析:奇函数满足$f(-x) = -f(x)$。
对于选项B,$f(-x) = (-x)^3 = -x^3 = -f(x)$,所以是奇函数。
5. 若$\sin \alpha = \frac{1}{2}$,则$\cos 2\alpha = $()。
2021年下半年高三数学期末考试试卷附答案
2021年下半年高三期末考试试卷高中数学考试时间:100分钟姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.棱长为a 的正方体内切一球,该球的半径为A 、2aB 、2aCD 、a2. “”是“”成立的( )条件.A.既不充分也不必要B.充要C.必要不充分D.充分不必要3.集合{}{}|02,|01A x x B x x =≤≤=≤<,下列表示从A 到B 的函数是( )A .1:2f x y x →=B .:2f x y x →= C.1:3f x y x →= D.:f x y x →=4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条 5.三次函数b bx x x f 22)(3+-=在[1,2]内恒为正值的充要条件为( )A .4≤bB .827<bC .41<<-bD .49<b6.如果M={1,3,4},N={2,4,5},那么N M ⋂为( )A φB {1,3}C {4}D {2,5}7.若2{|,}x x a a ⊂∅≤∈≠R ,则a 的取值范围是()A .[0,)+∞B .(0,)+∞C .(,0]-∞D .(,0)-∞8.设a 、b 是两条不同直线,α、β是两个不同平面,则下列四个命题:①若b a ⊥,α⊥a ,α⊄b ,则α//b ; ②若α//a ,β⊥a ,则βα⊥;③若β⊥a ,βα⊥,则α//a 或α⊂a ; ④若b a ⊥,α⊥a ,β⊥b ,则βα⊥.其中正确命题的个数为( )A.1B.2C.3D.49.已知条件2:=x p ,条件0)3)(2(:=--x x q ,则p 是q 的A.充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.利用随机变量2K 来判断“两个分类变量有关系”的方法称为独立性检验,现通过计算高中生的性别与喜欢数学课程列联表中的数据,得到12.52≈K ,并且知道05.0)841.3(2≈≥K P ,那么下列结论中正确的是A .100个高中生中只有5个不喜欢数学B .100个高中生中只有5个喜欢数学C .在犯错误的概率不超过0.05的前提下,可以认为高中生的性别与喜欢数学课程有关系D .在犯错误的概率不超过0.05的前提下,可以认为高中生的性别与喜欢数学课程没有关系二 、填空题(本大题共7小题,每小题5分,共35分)11.若双曲线)0(14222>=-b b y x 的渐近线方程为x y 21±=,则b 等于_______12.过抛物线x 2=2py(p>0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B两点(点A 在y 轴左侧),则=||||FB AF ______________. 1||<x 13<<-x 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●13.若圆锥的表面积是16π,侧面展开图的圆心角是120,则圆锥的体积是__________.14.方程的实数解的个数为__________.15.在椭圆中,我们有如下结论:椭圆22221x y a b +=上斜率为1的弦的中点在直线0bya x 22=+上,类比上述结论,得到正确的结论为:双曲线22221x y a b-=上斜率为1的弦的中点在直线 上.16.函数y=x x +-31(x>3)的最小值为___________ 17.已知函数sin()y x ωϕ=A +(0,0,||ωϕπA >><)的一段图象如图所示,则函数的解析式为三 、解答题(本大题共5小题,共75分)18.在平面直角坐标系x O y 中,点)2,1(--A 、)3,2(B 、(2,1)D --.(Ⅰ)求以线段AB 、AD 为邻边的平行四边形ABCD 两条对角线的长; (Ⅱ)设实数t 满足()0AB tOD OD -⋅=,求t 的值.19.(本小题满分12分)设函数()()32213103f x x ax a x a =--+>(1)求'()f x 的表达式;(2)若1a =,求函数()f x 的单调区间、极大值和极小值20.已知)sin 2,cos 2(x x a =,)cos 3,(cos x x b =,函数b a x f ⋅=)(;(I )求函数)(x f 的最小正周期; (II )当]245,24[ππ∈x 时,求)(x f 的取值范围.21. (本题满分10分)从4名男生,3名女生中选出三名代表,(1)不同的选法共有多少种?(2)至少有一名女生的不同的选法共有多少种?(3)代表中男、女生都有的不同的选法共有多少种?22.抛物线C 的顶点在原点,焦点F 与双曲线16322=-y x 的右焦点重合,过点P (2,0)且斜率为1的直线l 与抛物线C 交于A 、B 两点。
新高三数学下期末试题(含答案)(1)
新高三数学下期末试题(含答案)(1)一、选择题1.已知在ABC V 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:2()P K k ≥0.0500.0100.001k 3.8416.63510.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 4.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u uv u u u v B .1344AB AC -u u uv u u u v C .3144+AB AC u u uv u u u vD .1344+AB AC u u uv u u u v5.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A 2B 3C 5D 68.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16 B .14C .512 D .139.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5} 10.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-11.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
新高三数学下期末试题及答案
新高三数学下期末试题及答案一、选择题1.设函数()()21,04,0x log x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )A .9B .11C .13D .152.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .3.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .34.若角α的终边在第二象限,则下列三角函数值中大于零的是( ) A .sin(+)2πα B .s(+)2co πα C .sin()πα+ D .s()co πα+5.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .56.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8 B .9,5,6C .7,5,9D .8,5,77.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 8.函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A .3-B .3 C .12D .12-9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 10.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角11.已知双曲线C :()222210,0x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =±12.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .18.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.19.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.22.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.23.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?24.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥;(2)若E在线段BC上,且14EC BC=,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求四面体D CEG-的体积.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.26.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚II内的地块形状为CDPV,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDPV的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚II内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩, ∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B . 【点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.2.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.3.C解析:C 【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥Q 故选C4.D解析:D 【解析】 【分析】利用诱导公式化简选项,再结合角α的终边所在象限即可作出判断. 【详解】解:角α的终边在第二象限,sin +2πα⎛⎫ ⎪⎝⎭=cos α<0,A 不符; s +2co πα⎛⎫ ⎪⎝⎭=sin α-<0,B 不符;()sin πα+=sin α-<0,C 不符; ()s co πα+=s co α->0,所以,D 正确故选D 【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.5.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.6.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.7.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.B解析:B 【解析】 【分析】由条件根据函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性可得3πφk π-+=,k z ∈,由此根据||2ϕπ<求得ϕ的值,得到函数解析式即可求最值. 【详解】函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后, 得到函数sin 2sin 263ππy x φx φ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 再根据所得图象关于原点对称,可得3πφk π-+=,k z ∈, ∵||2ϕπ<,∴3πϕ=,()sin 23πf x x ⎛⎫=- ⎪⎝⎭,由题意,02x ⎡⎤∈-⎢⎥⎣⎦π,得42,333πππx ⎡⎤-∈--⎢⎥⎣⎦,∴21,32πsin x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,∴函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在区间,02π⎡⎤-⎢⎥⎣⎦ 故选B . 【点睛】本题主要考查函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性,考查了正弦函数最值的求法,解题的关键是熟练掌握正弦函数的性质,能根据正弦函数的性质求最值,属于基础题.9.B解析:B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.10.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角,故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.11.A解析:A 【解析】 【分析】利用双曲线C :()222210,0x y a b a b -=>>的焦点到渐近线的距离为2c ,求出a ,b 的关系式,然后求解双曲线的渐近线方程. 【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=,可得:=,可得b c =,ba =C的渐近线方程为y =.故选A . 【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.12.A解析:A 【解析】 【分析】 对于B ,令214x λ-+=0,得λ12=,取112a =,得到当b 14=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0,得λ=1a =,得到当b =﹣4时,a 10<10;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12n a +>11322+=,由此推导出104a a >(32)6,从而a 1072964>>10. 【详解】对于B ,令214x λ-+=0,得λ12=,取112a =,∴2111022n a a ==L ,,<, ∴当b 14=时,a 10<10,故B 错误; 对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =﹣2时,a 10<10,故C 错误; 对于D ,令x 2﹣λ﹣4=0,得1172λ±=, 取1117a +=,∴2117a +=,…,117n a <+=10, ∴当b =﹣4时,a 10<10,故D 错误; 对于A ,221122a a =+≥,223113()224a a =++≥, 4224319117()14216216a a a =+++≥+=>,a n +1﹣a n >0,{a n }递增,当n ≥4时,1n na a +=a n 12na +>11322+=, ∴5445109323232a a a a aa ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴104a a >(32)6,∴a 1072964>>10.故A 正确. 故选A . 【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主 解析:442+【解析】 【分析】由4c =,42sin a A =,利用正弦定理求得4C π=.,再由余弦定理可得22162a b ab =+,利用基本不等式可得(82222ab ≤=+-,从而利用三角形面积公式可得结果. 【详解】 因为4c =,又42sin sin c a C A== 所以2sin 2C =,又C 为锐角,可得4C π=.因为(2222162cos 222a b ab C a b ab ab =+-=+≥, 所以(82222ab ≤=+-, 当且仅当()822a b =+时等号成立, 即12sin 4422ABC S ab C ab ∆==≤+ 即当()822a b ==+时,ABC ∆面积的最大值为442+. 故答案为442+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.15.8【解析】∵函数(且)的图象恒过定点A ∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.16.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。
新高三数学下期末试卷(含答案)(1)
新高三数学下期末试卷(含答案)(1)一、选择题1.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .352.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u uv u u u vB .1344AB AC -u u uv u u u vC .3144+AB AC u u uv u u u vD .1344+AB AC u u uv u u u v3.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -4.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .425.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)6.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称7.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元8.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=10.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C .-3D .311.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<12.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.在ABC V 中,60A =︒,1b =3sin sin sin a b cA B C++=++________.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a=__________.19.设等比数列{}n a满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.20.在ABC∆中,若13AB=,3BC=,120C∠=︒,则AC=_____.三、解答题21.已知曲线C的参数方程为32cos12sinxyαα=+⎧⎨=-⎩(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l极坐标方程为1sin2cosθθρ-=,求曲线C上的点到直线l最大距离. 22.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆1C,直线2C的极坐标方程分别为4sin,cos2 2.4πρθρθ⎛⎫=-=⎪⎝⎭.(I)12C C求与交点的极坐标;(II)112.P C Q C C PQ设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t at R a bby t=+∈=+为参数求的值23.如图所示,在四面体PABC中,PC⊥AB,点D,E,F,G分别是棱AP,AC,BC,PB的中点,求证:(1)DE∥平面BCP;(2)四边形DEFG为矩形.24.已知函数()|1|f x x=+(1)求不等式()|21|1f x x<+-的解集M(2)设,a b M∈,证明:(ab)()()f f a f b>--.25.已知3,cos)a x x=r,(sin,cos)b x x=r,函数()f x a b=⋅rr.(1)求()f x的最小正周期及对称轴方程;(2)当(,]xππ∈-时,求()f x单调递增区间.26.已知数列{}n a与{}n b满足:*1232()n na a a ab n N++++=∈L,且{}na为正项等比数列,12a=,324b b=+.(1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.2.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+u u u v u u u v u u u v,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+u u u v u u u v u u u v,之后将其合并,得到3144BE BA AC =+u u u v u u u v u u u v ,下一步应用相反向量,求得3144EB AB AC =-u u u v u u u v u u u v,从而求得结果.详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1113124444BA BA AC BA AC u uu v u u u v u u u v u u u v u u u v =++=+, 所以3144EB AB AC =-u u u v u u u v u u u v,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.3.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】 由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.4.D解析:D 【解析】 【分析】222+3+23a b ⋅=r r,求得2a b ⋅=-r r ,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r 3=,解得2a b ⋅=-r r .则2a b +==r r .故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.D解析:D 【解析】 【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<Q ,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.6.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x =Q0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.7.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.8.B解析:B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义9.B解析:B 【解析】 【分析】根据渐近线的方程可求得,a b 的关系,再根据与椭圆221123x y +=有公共焦点求得c 即可.【详解】双曲线C 的渐近线方程为2y x =,可知2b a =①,椭圆221123x y +=的焦点坐标为(-3,0)和(3,0),所以a 2+b 2=9②,根据①②可知a 2=4,b 2=5. 故选:B. 【点睛】本题主要考查了双曲线与椭圆的基本量求法,属于基础题型.10.A解析:A 【解析】 【分析】由题意可知3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,由题意结合两角和的正切公式可得3tan πα⎛⎫+ ⎪⎝⎭的值.【详解】3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭ 112431124tan tantan tan ππαππα⎛⎫++ ⎪⎝⎭==-⎛⎫-+ ⎪⎝⎭,故选A .【点睛】本题主要考查两角和的正切公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<Q {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.12.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.15.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在 239【解析】 【分析】由已知利用三角形面积公式可求c ,进而利用余弦定理可求a 的值,根据正弦定理即可计算求解. 【详解】60A =︒Q ,1b =31133sin 1222bc A c ==⨯⨯⨯, 解得4c =,由余弦定理可得:a===,所以sin sin sin sin32a b c aA B C A++===++,【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a的取值范围是考点:利用导数判断函数的单调性解析:1(,)9-+∞【解析】【分析】【详解】试题分析:2211()2224f x x x a x a⎛⎫=-++=--++⎪⎝⎭'.当23x⎡⎫∈+∞⎪⎢⎣⎭,时,()f x'的最大值为22239f a⎛⎫=+⎪⎝⎭',令2209a+>,解得19a>-,所以a的取值范围是1,9⎛⎫-+∞⎪⎝⎭.考点:利用导数判断函数的单调性.17.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F的坐标为04a⎛⎫⎪⎝⎭,,设M在抛物线的准线上的射影为K,连接MK由抛物线的定义可知MF MK=13FM MN=Q∶∶KN KM∴=∶又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值18.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化解析:1【解析】【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a .【详解】因为222,cos ,sin x y x y ρρθρθ=+==,由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+Q ,,【点睛】 (1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q L L --++++-==⨯=,于是当3n =或4时,12n a a a L 取得最大值6264=.考点:等比数列及其应用20.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计 解析:1【解析】【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值.【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】【分析】 (1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离.【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩, 两式两边平方并相加,得()()22314x y -+-=,所以曲线C 表示以()3,1为圆心,2为半径的圆. 将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+=(2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+=因为圆心()3,1C 到直线:l 210x y -+=的距离d ==,所以曲线C 上的点到直线l 的最大距离为2d r +=+. 【点睛】 本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22.(I )(4,),(2)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-= 联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C与2C 交点的极坐标为(4,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+=由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得 23.(1)见解析; (2)见解析.【解析】【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明.【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC.又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP.(2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG 为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG 为矩形.【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题.24.(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110a b -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<.当1x <-时,不等式可化为()12110x x --+++<,解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤,要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+,即证222210a b a b --+>,即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >,∵a b M ∈、,∴221,1a b >>,∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.25.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】 解:(1)()2cos cos f x a b x x x =⋅+r r111sin2cos2sin 222262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+ (k Z ∈) 解得36k x k ππππ-≤≤+ (k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时, 得函数()f x 的单调递增区间为5,6ππ⎛⎤--⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】 本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.26.(1)2n n a =,21n n b =-;(2)证明见解析.【解析】【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可. 【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q ,∴a 1q 2=8,∴q =2∴a n =2×2n ﹣1=2n∴()1231212222222212n n n nb +-=++++==--L , ∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++. ∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高三数学下期末试卷含答案一、选择题1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种2.函数()ln f x x x =的大致图像为 ( )A .B .C .D .3.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确4.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁5.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定6.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .3247.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.259.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 10.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-11.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______ A .3B .7C .2D .23二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.若过点()2,0M 且斜率为3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =v u u u v,则a =____.15.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.16.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.若45100a b ==,则122()a b+=_____________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.22.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC . 23.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,xm m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.24.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 26.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).2.A解析:A 【解析】 【分析】 【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方 ∴可以排除B 答案 考点:函数图像.3.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .4.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.5.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.6.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算7.D解析:D 【解析】 【分析】利用方差公式结合二次函数的单调性可得结论; 【详解】解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大 故选:D .【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.8.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.9.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数10.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 11.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x =∴外接球的半径为3233R ==;∴三棱锥外接球的表面积为223164(33S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】 【分析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA u u u u v u u u v =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA u u u u v u u u v=,所以点M 为线段AB 的中点,所以00()4428)402a x a y ⎧+-⎪=⎪⎪⎨+⎪+⎪=⎪⎩,解得(a A 44+,将)()a a 8A 444++代入抛物线方程,即))()2a 8aa 444+=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.15.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。