晶粒度评级图
第3章 奥氏体相变
G均匀
r*
*
2 GV GS
G均匀
16 3 3(GV GS ) 2
物理意义:新相核胚的原子团半径(r)必须大于临界半径(r*),系统才 )的阻碍,新相的核胚才能继续长大,完成形核过 能克服势垒( G均匀 程。否则核胚的原子团将重新散开,形核失败。
非均匀形核
3)残留渗碳体的溶解
1.实验现象: 1) F消失时,组织中的Fe3C还未完全转变 2) 测定后发现A中含碳量低于共析成分0.77% 2.原因: Fe-Fe3C相图上ES线斜度大于GS线,S点不在 CA-F与CA-C中点,而稍偏右。所以A中平均碳浓 度,即(CA-F + CA-C)/2低于S点成分。当F全部转 变为A后,多余的碳即以Fe3C形式存在。
σs=σi+Kyd-1/2 σs -屈服强度,σi-抵抗位错在晶粒中运动的 摩擦阻力,Ky-常数, d-晶粒直径
晶粒度 级别图 1-8级
3.4.1 晶粒度概念及晶粒长大现象
一)晶粒度
设N为放大100倍时每平方英寸in2面积内 的晶粒数,则下式中G即为晶粒度。
N=2
G-1
晶粒越细,G越大。 起始晶粒:加热转变终了时所得的A晶粒 实际晶粒:长大到冷却开始时的A晶粒 本质晶粒:930º C保温3~8小时所得的晶粒 1-4级:本质粗晶粒钢,5-8本质细晶粒钢
3.影响P转变为A的因素
温度 形核率与线长大速度随温度升高 而增加 碳含量:A形成速度随C%增加而增加 原始组织 P中Fe3C片厚度和颗粒大小影 响A形成过程及形成速度. 片状大于颗粒状;片层越小,速度越大 合金元素:改变临界点位置、影响C扩散 速度;形成各种碳化物(K)
如何进行晶粒度分析
教你如何进行晶粒度分析金属晶粒的尺寸(或晶粒度)对其在室温及高温下的机械性质有决定性的影响,晶粒尺寸的细化也被作为钢的热处理中最重要的强化途径之一。
因此,在金属性能分析中,晶粒尺寸的估算显得十分重要。
那么根据一张金相照片我们能从中得到哪些信息呢?首先来看看这一段小视频视频:晶粒度分析一、晶粒度概述晶粒度表示晶粒大小的尺度。
金属的晶粒大小对金属的许多性能有很大影响。
晶粒度的影响,实质是晶界面积大小的影响。
晶粒越细小则晶界面积越大,对性能的影响也越大。
对于金属的常温力学性能来说,一般是晶粒越细小,则强度和硬度越高,同时塑性和韧性也越好。
二、测定平均晶粒度的基本方法一般情况下测定平均晶粒度有三种基本方法:比较法、面积法、截点法。
具体如下1、比较法:比较法不需计算晶粒、截矩。
与标准系列评级图进行比较,用比较法评估晶粒度时一般存在一定的偏差(±0.5级)。
评估值的重现性与再现性通常为±1级。
2、面积法:面积法是计算已知面积内晶粒个数,利用单位面积晶粒数来确定晶粒度级别数。
该方法的精确度中所计算晶粒度的函数,通过合理计数可实现±0.25级的精确度。
面积法的测定结果是无偏差的,重现性小于±0. 5级。
面积法的晶粒度关键在于晶粒界面明显划分晶粒的计数图:面积法3、截点法:截点数是计算已知长度的试验线段(或网格)与晶粒界面相交截部分的截点数,利用单位长度截点数来确定晶粒度级别数。
截点法的精确度是计算的截点数或截距的函数,通过有效的统计结果可达到±0.25级的精确度。
截点法的测量结果是无偏差的,重现性和再现性小于±0.5级。
对同一精度水平,截点法由于不需要精确标计截点或截距数,因而较面积法测量快。
同心圆测量线(截点法)三、金相图具体案例分析以上只是大致的测定方法太过笼统,如果真的拿到一个具体的微观照片,我们该怎么做呢?下面我们来看一下具体操作与计算方法。
1、确定照片的放大率先测量微观照片的尺寸,长度或宽度选择其一,然后测量出试样的实际长度或者宽度放大率=图片距离/实际距离2、找出晶粒度级别数计算出放大率之后就可以确定晶粒度级别数。
奥氏体晶粒长大及其控制
*
起始晶粒度:珠光体刚刚转变成奥氏体 的晶粒大小。 实际晶粒度:热处理后所获得的奥氏体 晶粒的大小。 本质晶粒度:度量钢本身晶粒在930℃ 以下,随温度升高,晶粒长 大的程度。
加热速度愈大,过热度就愈大,即奥氏体实际形成温度就愈高,奥氏体的形核率与长大速度之比值I/G增大(表9.1),所以快速加热时可以获得细小的奥氏体起始晶粒。而且,加热速度愈快,奥氏体起始晶粒就愈细小。
*
表9.1 奥氏体的形核率I、长大速度G 与温度的关系
转变温度 (℃)
形核率I (1/mm3·s)
*
(2)晶界推移阻力
图9.12 晶界移动时与第二相粒子的交互作用示意图
1
2
*
在第二相粒子附近的晶界发生弯曲,导致晶界面积增大,界面能升高。弥散析出的第二相粒子愈细小,粒子附近晶界的弯曲曲率就愈大,晶界面积的增大就愈多,因此界面能的增大也就愈多。这个使系统自由能增加的过程是不可能自发进行的。所以,沉淀析出的第二相粒子的存在是晶界推移的阻力。
9.1.4 奥氏体晶粒长大 及其控制
1.奥氏体晶粒度 2.奥氏体晶粒长大原理 3.影响奥氏体晶粒长大的因素
奥氏体化的目的是获得成分均匀和一定晶粒大小的奥氏体组织。多数情况下希望获得细小的奥氏体晶粒,有时也需要得到较大的奥氏体晶粒。因此,为获得所期望的奥氏体晶粒尺度,必须了解奥氏体晶粒的长大规律,掌握控制奥氏体晶粒度的方法。
*
(4)合金元素的影响
钢中加入适量形成难溶化合物的合金元素如Nb、Ti、Zr、V、Al、Ta等,将强烈地阻碍奥氏体晶粒长大,使奥氏体晶粒粗化温度显著升高。上述合金元素在钢中形成熔点高、稳定性强、不易聚集长大的NbC、NbN、Nb(C,N)、TiC等化合物,它们弥散分布于奥氏体基体中,阻碍晶粒长大,从而保持细小的奥氏体晶粒。
晶粒度评级图
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×00级0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×0.5级 1.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×1.5级 2.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×2.5级 3.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×3.5级 4.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
4.5级
5.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×5.5级 6.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
6.5级
7.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×7.5级8.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
8.5级9.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×9.5级10.0级。
ASTME112中文修订版
金属平均晶粒度测定方法引言本标准规定了金属材料平均晶粒度的基本方法。
由于纯粹以晶粒几何图形为基础,与金属和合金本身无关。
因此,这些基本方法也可以用来测量非金属材料中晶粒、晶体和晶胞的平均尺寸。
如果材料的组织形貌非常接近某一个标准系列评级图,可以使用比较法。
测定平均晶粒度常用比较法,也可以用截点法和面积法。
但是,比较法不能用来测量单个晶粒。
1范围1.1 本标准规定了金属组织的平均晶粒度表示及评定的三种方法——比较法、面积法和截点法。
这些方法也适用于晶粒组织形貌与标准系列评级图相似的非金属材料。
这些方法主要适用于单相晶粒组织,但也适用于多相或多组元试样中特定类型组织的晶粒平均尺寸的测量。
1.2 本标准使用晶粒面积、晶粒直径、截线长度的单峰分布来测定式样的平均晶粒度。
这些分布近似正态分布。
本标准的测定方法不适用于双峰分布的晶粒度。
双峰分布的晶粒度参见标准E1181。
测定分布在细小晶粒基体上个别非常粗大的晶粒的方法参见E 930。
1.3本标准的测量方法仅适用平面晶粒度的测量,也就是试样截面显示出的二维晶度;不适用于试样三维晶粒,即立体晶粒尺寸的测量。
1.4 试验可采用与一系列标准晶粒度图谱进行对比的方法或者在简单模板上进行计数的方法。
利用半自动计数仪或自动图象分析仪测定晶粒尺寸的方法参见E 1382。
1.5本标准仅作为推荐性试验方法,它不能确定受检材料是否接收或适合使用的范围。
1.6 测量数值应用SI单位表示。
等同的英寸-英镑数值,如需标出,应在括号中列出近似值.1.7 本标准没有列出所有的安全事项,只是一些使用的注意事项。
本标准的使用者在使用前应掌握较合适的安全健康的操作规范和使用时限制的规章制度。
1.8 章节的顺序如下:2、参考文献2.1ASTM标准E3 金相试样的制备E7 金相学相关术语E407 金属和合金浅腐蚀的操作E562计数法计算体积分数的方法E691 通过多个实验室比较决定测试方法的精确度的方法E883 反射光显微照相指南E930 截面上最大晶粒的评估方法(ALA晶粒尺寸)E1181双峰分布的晶粒度测试方法E1382 半自动或全自动图像分析平均晶粒度方法2.2 ASTM附件2.2.1 参见附录X23术语3.1 定义-本标准采用的专业术语定义参照E73.2 本标准中特定术语的定义:3.2.1 ASTM晶粒度——G,通常定义如公式(1)N AE=2G-1 (1)N AE为100倍下每平方英寸(645.16mm2)面积内包含的晶粒个数,相当于1倍下每平方毫米面积内包含的晶粒个数乘以15.5倍。
第二节 晶粒度检验
进行研磨和抛光,尽可能完善显示出氧化层奥氏体晶粒。
腐蚀:硝酸酒精,但为了显示清晰,可用15℅盐酸酒精 溶液进行浸蚀。
3、网状铁素体法
C%在0.25%~0.60%碳素钢和合金钢,除 非另有规定,一般在C%<0.35%钢的试样在 900℃±10℃加热, C%>0.35%钢的试样在 860℃±10℃加热,至少保温30min,然后空冷 或水冷。
4)求出晶粒的平均截距 5)按下式换算相应的晶粒度级别:
直线截点法
在晶粒图上,采用一条或数条直线组成测量网格, 选择适当的测量网格长度和放大倍数,以保证最 少能截获约50个截点,根据测量网格截获的截 点数来确定晶粒数。
截点计算;测量线段终点不是截点不予计算;终点 正好接触到晶界时,计为0.5个截点;测量线段 与晶界相切时,计为1个截点,明显地与三个晶 粒汇合点重合时计为1.5个截点。
n=2N-1
若n为放大100倍时每1mm2面积内的晶粒数则
n=2N+3
晶粒越细,n越大,N也越大
一般将N小于4的称为粗晶粒,5~8称为细晶粒,8以上称 为超细晶粒。
起始晶粒度:加热转变终了时所得的奥氏体晶粒的大小。
实际晶粒度:实际加热条件下得到的奥氏体晶粒度或从钢 材上截取试样所测得的晶粒大小) 本质晶粒度:加热(930±10)℃、保温3~8h,冷却,与 标准晶粒度等级图比较,确定的试样的晶粒度,本质晶粒 度代表钢的晶粒长大倾向
(1)对少量的第二相的颗粒测定时可忽略不计, 当单相物质结构处理;
(2)第二相的颗粒与基体相当,或第二相质点 数量少而尺寸又小,且位于初生晶粒的晶界 处,可用比较法;
(3)如果基体晶粒边界清晰可见,且第二相质 点主要存在于基体晶粒之间而不在晶粒内时, 用面积法或截点法测定。
实验一 钢的奥氏体晶粒度的测定及评级方法
实验一钢的奥氏体晶粒度的显示与测定一.实验目的1.熟悉钢的奥氏体晶粒度的显示与测定的基本方法。
学习利用物镜测微尺标定目镜测微尺和毛玻璃投影屏刻度格值。
通过它们间的关系到确定显微镜物镜和显微镜的线放大倍数。
2.熟悉钢在加热时,加热温度和保温时间对奥氏体晶粒大小的影响。
3.测定钢的实际晶粒度。
用直接计算法和弦计算法测量晶粒大小。
用比较法评定晶粒度级别。
二.实验原理金属及合金的晶粒大小与金属材料的机械性能、工艺性能及物理性能有密切的关系。
细晶粒金属的材料的机械性能、工艺性能均比较好,它的冲击韧性和强度都较高,在热处理和淬火时不易变形和开裂。
粒晶粒金属材料的机械性能和工艺性能都比较差,然而粗晶粒金属材料在某些特殊需要的情况下也被加以使用,如永磁合金铸件和燃汽轮机叶片希望得到按一定方向生长的粗大柱状晶,以改善其磁性能和耐热性能。
硅钢片也希望具有一定位向的粗晶,以便在某一方向获得高导磁率。
金属材料的晶粒大小与浇铸工艺、冷热加工变形程度和退火温度等有关。
晶粒尺寸的测定可用直测计算法。
掌握了这种方法也可对其它组织单元长度进行测定,如铸铁中石墨颗粒的直径;脱碳层深度的测定等。
某些具有晶粒度评定标准的材料,可通过与标准图片对比进行评定。
这种方法称为比较法。
1.奥氏体晶粒度的显示钢在临界温度以上直接测量奥氏体晶粒大小比较困难的,而奥氏体在冷却过程中将发生相变。
一般采用间接的方法显示其原奥氏体晶界,以测定奥氏体晶粒大小。
根据GB6394-86规(4)网状渗碳体法适用于含碳量大于1.0%的过共析钢的奥氏体晶粒度。
方法是:将试样在930±10℃(或特定的温度)下加热保温40min以上(或特定的时间)后以缓慢的速度冷却冷却到600℃,在过共析钢的奥氏体晶界上析出网状渗碳体,以此来显示奥氏体晶粒形貌与大小。
经上述热处理的试样抛光后,应使用硝酸或苦味酸酒精溶液腐蚀。
图1 过共析钢的状渗碳体(×100)在经上述方法之一制备的金相试样上,即可进行奥氏体晶粒度的测定。
晶粒度评级
表1 常用材料使用的标准系列图片
系列图片号
Ⅰ
适
用
范
围
1)铁素体钢的A晶粒(用氧化法、直接淬硬法、F网法、 铁素体钢的A晶粒(用氧化法、直接淬硬法、 网法、 Fe3C网法及其他方法显示 晶粒) 网法及其他方法显示A Fe3C网法及其他方法显示A晶粒) 2)铁素体钢的铁素体晶粒 镁和镁合金、锌和锌合金、 3)铝、镁和镁合金、锌和锌合金、超强合金 1)奥氏体钢的A晶粒(有孪晶的) 奥氏体钢的A晶粒(有孪晶的) 铁素体钢的铁素体晶粒有孪晶的) 2)铁素体钢的铁素体晶粒有孪晶的) 镁和镁合金、镍和镍合金、锌和锌合金、 3)镁和镁合金、镍和镍合金、锌和锌合金、超强合金 铜和铜合金 1)渗碳钢的A晶粒 渗碳钢的A 奥氏体钢的A晶粒(无孪晶的) 2)奥氏体钢的A晶粒(无孪晶的)
F钢与A钢的奥氏体晶粒度 钢与A 形成及显示
对于铁素体钢
奥氏体晶粒的显示方法: 奥氏体晶粒的显示方法:
国家标准GB/T6394-2002《 国家标准GB/T6394-2002《金属平均晶粒 GB/T6394 度测定法》规定可使用渗碳法、氧化法、 度测定法》规定可使用渗碳法、氧化法、 铁素体网法、渗碳体网法、直接淬硬法、 铁素体网法、渗碳体网法、直接淬硬法、 网状珠光体法、相关法、模拟渗碳法等。 网状珠光体法、相关法、模拟渗碳法等。
晶粒数N的计算: 晶粒数N的计算: • 用5000mm2的圆形网置于晶粒图形上; 的圆形网置于晶粒图形上; • 选放大倍数M使网内晶粒数为50个; 选放大倍数M使网内晶粒数为50 50个 • 计算落入数N内和切割数N交,该面积内的晶粒数N 计算落入数N 和切割数N 该面积内的晶粒数N /2) 为: N= N内+( N交/2)-1 计算试样检测面上每mm 内晶粒数n 计算试样检测面上每mm2内晶粒数n: n = M2×N/A 式中: 式中:M—所用的放大倍数 所用的放大倍数 放大M 面积为A N—放大M时,面积为A的网格内晶粒计数 放大 晶粒度级别数: 928lgn晶粒度级别数:G=3.321 928lgn-2.954
金相判定标准
1概念和意义
金相指金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态;
金相试验(检验)的意义:合金的成分、加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。
2我司常用的金相检验及其它的检验标准
1.原材料检验合格标准如下:
1)显微组织标准评级图进行比较,评级图谱来自GB/T13299-91,合格判定标准:小于等于3级为合格。
常见显微组织如下:
2)晶粒度标准评级图进行比较,评级图谱来自GB 6394-2002,合格判定标准:大于等于5级为合格。
评级图谱如下:
2.焊接金相检验
焊接工艺评定的金相检验合格标准如下:
1)形状缺陷:咬边(焊接接头不良)、焊瘤、熔穿。
2)孔穴(气孔和缩孔);裂纹。
3)没有淬硬的马氏体组织及高合金钢网状析出物和网状组织
参考图片如下:
淬硬的马氏体组织网状析出物和网状组织编制审核批准/日期。
晶粒度图片
45H-200X-11 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点L: 测量面上晶粒截距的平均值(查表平均截距一栏)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) –3.28845H-200X-21 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L: 测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.28845H-200X1 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.28845H-200X-41 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.28845H-200X-51 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.28845H-200X-61 截点法公式:L= L/M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.28845H -200X-71 截点法公式:L= L /M.PL:所使用的测量线段长度(mm), M: 观测用的放大倍数P: 测量直线上的截点数L测量面上晶粒截距的平均值(查表平均截距)截点的计算: 计算截点时注意:1测量线段终点不是截点不予计算;2 终点正好接触到晶界时,计为0.5个截点;3 测量线段与晶界相切时, 计为1个截点;4 明显的与三个晶粒汇合点重合时,计为1.5个截点;5 在不规则晶粒形状下,测量线在同一晶粒边界不同部位产生的两个截点;后又伸入形成新的截点, 计算截点时应包括新的截点.2 平均晶粒度级别数G的计算:G=6.643856lg(M.P/L) – 3.288。
晶粒度的测定及评级方法
晶粒度的测定及评级方法一、实验目的1、学习金相组织中晶粒大小的测定方法;2、了解晶粒度的评级方法。
二、实验原理材料的晶粒的大小叫晶粒度。
它与材料的有关性能有密切关系,因此测量材料的晶粒度有十分重要的实际意义。
材料的晶粒度一般是以单位测试面积上的晶粒的个数来表示的。
目前,世界上统一使用的是美国的ASTM推出的计算晶粒度的公式:N A=2G-1G=lg N A /lg2+1式中:G——为晶粒度级别,N A———为显微放大100倍下6.45cm2(1平方吋)的面积上晶粒的个数。
晶粒大小的测量方法有以下几种:1、比较法实际工作中常采用在100倍的显微镜下与标准评级图对比来评定晶粒度。
2、面积法通过计算给定面积内晶粒数来测定晶粒度。
3、截线法(也称线分析法)截线法是在给定长度测试线上测出与晶界相交的点数来测定晶粒度大小的,是应用最广泛的方法,它速度快,精度高,一般经过五次测量即可得到满意的结果。
三、图像分析仪自动图像分析仪是利用计算机处理图像信息,包括几何信息(尺寸、数量、形貌、位置)和色彩信息的装置,并能自动完成数据的统计处理。
图像分析仪测量速度快,能快速进行多次测量,同时还避免了人为误差(如漏数或重数),提高了测量精度。
图像分析仪信息处理的流程如下:光学成像→光电转换→信号预处理→检测→图像变换→分析→分析识别→数据处理图像分析经常进行的测定工作有:1、第二相的体积分数的测量,如珠光体、碳化物、磷共晶等。
2、各类夹杂物的数量、形状、平均尺寸及分布。
3、碳化物的平均尺寸及平均间距。
4、晶粒度及晶界总长度、总面积。
5、高合金工具钢中碳化物的带状偏析。
图像分析仪对试样的制备要求很高,因为它是依靠灰度或边界辨认组织的,故残留磨痕、抛光粉等异物的嵌入、浸蚀程度过浅或过深、某些组织的剥落都会引起测量误差,尽管软件中已考虑到这些影响因素,但误差仍不可避免,有时还相当严重。
因此为了提高图像分析仪的测量精度,除了配备分辨率高的显微镜外,必须保证良好的制样质量,各种组织的衬度要分明,轮廓线要尽可能细而清晰、均匀。
晶粒度评级标准
晶粒度评级标准晶粒度是材料科学中一个非常重要的参数,它对材料的性能和微观结构有着重要的影响。
因此,对晶粒度进行准确的评级是非常必要的。
本文将介绍晶粒度评级的标准,希望能够帮助大家更好地理解和应用晶粒度参数。
首先,晶粒度的评级标准通常是根据晶粒尺寸的大小来进行划分的。
一般来说,晶粒尺寸在1微米以下的材料被称为纳米晶体,1-100微米之间的被称为微晶体,而大于100微米的则为晶粒。
因此,我们可以将晶粒度的评级标准分为纳米晶体、微晶体和晶粒三个级别。
其次,对于纳米晶体材料,其晶粒尺寸在纳米级别,通常在1-100纳米之间。
这种材料具有很高的强度和硬度,同时具有优异的塑性和韧性。
由于其晶粒尺寸小,因此晶界和位错在其中的运动受到了限制,从而导致了这些优异的性能。
对于纳米晶体材料的评级,通常是根据其晶粒尺寸的分布和平均尺寸来进行的,同时还需要考虑其结晶度和晶粒形貌等因素。
其次,微晶体材料的晶粒尺寸在1-100微米之间,这种材料通常具有较高的强度和硬度,同时也具有一定的塑性和韧性。
对于微晶体材料的评级,同样需要考虑其晶粒尺寸的分布和平均尺寸,以及晶界的特征和晶粒形貌等因素。
最后,晶粒材料的晶粒尺寸大于100微米,这种材料通常具有较低的强度和硬度,但具有较高的塑性和韧性。
对于晶粒材料的评级,同样需要考虑其晶粒尺寸的分布和平均尺寸,以及晶界的特征和晶粒形貌等因素。
总之,晶粒度评级标准是根据晶粒尺寸的大小和分布来进行的,同时还需要考虑晶界特征和晶粒形貌等因素。
通过对晶粒度的准确评级,可以更好地指导材料的制备和应用,为材料科学的发展提供有力的支持。
希望本文的介绍能够对大家有所帮助,谢谢!。
实验一钢的奥氏体晶粒度的测定及评级方法
实验一钢的奥氏体晶粒度的显示与测定一.实验目的1.熟悉钢的奥氏体晶粒度的显示与测定的基本方法。
学习利用物镜测微尺标定目镜测微尺和毛玻璃投影屏刻度格值。
通过它们间的关系到确定显微镜物镜和显微镜的线放大倍数。
2.熟悉钢在加热时,加热温度和保温时间对奥氏体晶粒大小的影响。
3.测定钢的实际晶粒度。
用直接计算法和弦计算法测量晶粒大小。
用比较法评定晶粒度级别。
二.实验原理金属及合金的晶粒大小与金属材料的机械性能、工艺性能及物理性能有密切的关系。
细晶粒金属的材料的机械性能、工艺性能均比较好,它的冲击韧性和强度都较高,在热处理和淬火时不易变形和开裂。
粒晶粒金属材料的机械性能和工艺性能都比较差,然而粗晶粒金属材料在某些特殊需要的情况下也被加以使用,如永磁合金铸件和燃汽轮机叶片希望得到按一定方向生长的粗大柱状晶,以改善其磁性能和耐热性能。
硅钢片也希望具有一定位向的粗晶,以便在某一方向获得高导磁率。
金属材料的晶粒大小与浇铸工艺、冷热加工变形程度和退火温度等有关。
晶粒尺寸的测定可用直测计算法。
掌握了这种方法也可对其它组织单元长度进行测定,如铸铁中石墨颗粒的直径;脱碳层深度的测定等。
某些具有晶粒度评定标准的材料,可通过与标准图片对比进行评定。
这种方法称为比较法。
1.奥氏体晶粒度的显示钢在临界温度以上直接测量奥氏体晶粒大小比较困难的,而奥氏体在冷却过程中将发生相变。
一般采用间接的方法显示其原奥氏体晶界,以测定奥氏体晶粒大小。
根据GB6394-86规定显示奥氏体晶粒大小的方法有以下几种:(4)网状渗碳体法适用于含碳量大于%的过共析钢的奥氏体晶粒度。
方法是:将试样在930±10℃(或特定的温度)下加热保温40min以上(或特定的时间)后以缓慢的速度冷却冷却到600℃,在过共析钢的奥氏体晶界上析出网状渗碳体,以此来显示奥氏体晶粒形貌与大小。
经上述热处理的试样抛光后,应使用硝酸或苦味酸酒精图1 过共析钢的状渗碳体(×100)溶液腐蚀。
晶粒度评级图
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
00级0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
0.5级 1.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
1.5级
2.0级
金属平均晶粒度评级图—系列图片I 无孪晶晶粒 100×
2.5级
3.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
3.5级
4.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
4.5级
5.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
5.5级
6.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
6.5级
7.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
7.5级8.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
8.5级9.0级
金属平均晶粒度评级图—系列图片I无孪晶晶粒100×
9.5级10.0级。