矿山压力与岩层控制
矿山压力与岩层控制
矿山压力与岩层控制一.名词解释矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力。
原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力,也称为岩体初始应力、绝对应力或地应力。
充填开采:就是用充填材料来充填已采空间,借以支撑围岩,防止或减少围岩垮落和变形的顶板管理技术,采用此方法管理顶板的采煤方法称为充填开采。
关键层:对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层。
锚固力:锚杆对围岩所产生的约束力称为锚固力。
根据约束方式分为:托锚力,黏锚力,切向锚固力;根据锚固阶段分为:初锚力,工作锚固力,残余锚固力。
沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,作为下区段工作面的回采时的回风平巷称为沿空留巷。
沿空掘巷:在上一区段工作面运输平巷废弃后,待采空区上覆岩层移动基本稳定后,沿被废弃的巷道边缘,掘进下一工作面的区段回风平巷称为沿空掘巷。
冲击矿压:是压力超过煤岩体强度极限,聚积在采掘工程周围煤岩体之中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏等。
充分开采:当采空区尺寸相当大时,地表最大下沉值不再随采空区尺寸增大而增大的开采状态称为充分采动。
二.简答题1.原岩应力概念组成部分以及场规律特点:(☆)答:天然存在于原岩内与人为因素无关的应力场称为原岩应力场。
其主要组成部分是自重应力场和构造应力场。
其规律特点:(1)实测铅直应力基本上等于上覆岩层重量。
(2)水平应力普遍大于铅直应力。
(3)平均水平应力与铅直应力的比随深度增加而减小。
(4)最大水平主应力和最小水平主应力一般相差较大。
2.构造应力场的特点:答:由于地质构造运动而引起的应力场称为构造应力场。
其特点:(1)构造应力以水平应力为主,具有明显的区域性和方向性。
矿山压力与岩层控制
一、名词解释1.矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法。
2.极限平衡状态:范围内岩块所处的应力圆与其强度包络线相切3.老顶的周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。
4.关键层:将对采场上覆岩层局部或直至地表的全部岩层活动起控制多用的岩层称为关键层5.底板比压:将支架底座对单位面积底板上所造成的压力称为底板载荷集度,即底板比压6.煤矿动压现象:煤矿在开采过程中,在高应力状态下积聚有大量弹性能的煤或岩体,在一定的条件下突然发生破坏、冒落或抛出,使能量突然释放,呈现声响、震动以及气浪等明显的动力效应。
这些现象统称为煤矿动压现象。
7.支承压力:回采空间周围煤岩体内应力增高区的切向应力。
8.测压系数:9.应力集中:受力体内,孔周围局部区域应力高于其它区域应力的现象10.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力11.冲击地压:煤岩体突然动力破坏,释放大量能量的灾害动力现象,可摧毁巷道、引发其他矿井灾害,造成人员伤亡二、简答题1.绘图表示采场水平和垂直的分区分带2.回采工作面支柱工作特性有几种,绘图加以说明3.采空区的处理方法4.冲击地压的预测预报方法答:冲击地压的预测主要包括时间、地点和规模大小。
目前主要采用的采矿方法,包括根据采矿地质条件确定冲击矿压危险的综合指数法、数值模拟分析法、钻屑法等;采用地球物理方法,包括微震法、声发射法、电磁辐射法、振动法、重力法等,可以达到准确预报冲击矿压可能发生的地点和位置,较准确地确定冲击矿压发生强度和震动释放能量的大小。
5.影响采场矿山压力的主要影响答:1.采高与控顶距2.工作面推进速度的影响3.开采深度的影响4.煤层倾角的影响5.分层开采时的矿山压力显现6.巷道围岩压力及影响因素答:围岩变形受阻而作用在支护结构物上的挤压力或塌落岩石的重力。
统称为围岩压力。
(1.松动围岩压力2.变形围岩压力3.膨胀围岩压力4.冲击和撞击围岩压力)。
矿山压力与岩层控制
矿山压力与岩层控制一、名解:1.矿山压力:是指分布于岩层内部各点应力,又包括作用于围岩上的任何部分边界上的外力。
2.支承压力:是指煤层采出后,在围岩应力重新分布的范围内,作用于煤层、岩层、和矸石上的垂直压力。
3.围岩应力:是指洞室开挖后,周围岩体失去原来的平衡,引起洞室一定范围内岩体应力发生改变,重新调整形成新的应力。
4.原岩应力:是指把未受采掘扰动影响的岩石应力称为原岩压力。
5.基本顶:是指运动时对回采工作面矿山显现有明显影响的传递岩梁的总合,在初次来压后,是一组在推进方向上能够始终传递水平应力的不等高裂隙。
6.直接顶:是指在采空区内已夸落,在回采工作面内由支架暂时支撑的悬臂梁,其结构特点是在回采工作面推进方向上不能始终保持水平力传递。
7.泊松比:是指岩石在受单向压缩载荷时,试件在轴向压缩的同时产生横向膨胀,其横向与纵向的比值称为泊松比。
8.初次夸落距:是指当工作面自开切眼推进一段距离后直接顶悬露达到一定的高度,采空区进入初次放顶,直接顶开始夸落,此时直接开始夸落的距离称为初次夸落距。
9.周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。
10.步距:由开切眼到初次来压时工作面推进的距离。
11.砌体梁:在一定的条件下能够形成表似梁实则为半拱结构。
这种平衡结构形如砌体,故称为砌体梁。
12.关键层:在回采工作面上覆岩层中存在多个岩层时,对岩体活动全部或局部起控制作用的岩层称为关键层。
13.碎胀性:是指岩石破碎后处于松散状态下得体积与破碎时的体积之比。
二、填空:1.三横三纵:三纵带是指弯曲下沉带、裂隙带、冒落带;三横是指煤壁支撑影响区、离层区、重新压实区。
2.直接顶完整性的取决因素:岩石本身的性质、裂隙的发育情况直接顶内的各种原因造成的层理。
3.节理裂隙的分类:原生裂隙、构造裂隙、压裂裂隙。
4.影响顶板下沉的因素:采高、采深、倾角及推进的速度。
5.采区巷道的支护形式:基本支护、加强支护、巷旁支护、巷道围岩加固。
矿山压力与岩层控制
矿山压力与岩层控制1.名词解释1.矿山压力: 由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力;2.矿山压力显现: 由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象;4.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力;4.支撑压力:回采空间周围煤岩体内应力增高区的切向应力;5.周期来压: 老顶平衡结构周期性失稳而施加给工作面以大型压力的过程6.初次来压: 老顶平衡结构第一次失稳而施加给工作面以大型压力的过程7.砌体梁: 工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构8.关键层:对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层9.冲击地压: 聚集在矿井巷道和采场周围岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏的力学现象。
10.底板比压:底板单位面积所受支架的压力11.回采工作面:在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间2.简答题1.原岩应力分布规律答:(1)实测铅直应力基本上等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力的比值随深度增加而减小;(4)最大水平主应力和最小水平主应力一般相差较大。
2.绘图说明横三区/竖三带三区:A煤壁支撑影响区B离层区:C重新压实区:三带:I垮落带:II裂隙带III弯曲带(硬度越高,三带发育越好)(自下至上)3.绘图说明支柱特性工作支柱力学特性——受顶板压力作用,支柱变形(下缩)性质。
4.关键层具有的特征①几何特征,相对于其他同类岩层单层厚度较厚;②岩性特征,相对于其他岩层较为坚硬,即弹性模量较大,强度较高;③变形特征,关键层下沉变形时,其上覆全部或局部岩层的下沉量同步协调;④破断特征,关键层的破断将导致全部或局部岩层的破断,引起较大范围内的岩层移动⑤支承特征,关键层破坏前以“板”(或简化为“梁”)结构作为全部岩层或局部岩层的承载主体,断裂后则成为砌体梁结构,继续成为承载主体5.影响采场矿山压力显现的因素答:①采高与控顶距的影响;②工作面推进速度的影响;③开采深度的影响;④煤层倾角的影响;⑤分层开采对矿山压力显现的影响;6.采场围岩与支架之间相互作用原理答:支架围岩是相互作用的一对力,支架受力的大小及其在回采工作面分布的规律与支架性能有关,支架结构及尺寸对顶板压力有一定影响。
矿山压力与岩层控制
(4) 采动影响稳定阶段 回采引起旳应力重新分布趋向稳定后,巷道围
岩变形速度再一次明显降低,但依然高于掘进影 响稳定阶段时变形速度,围岩变形量按流变规律 不断缓慢地增长。
(5) 二次采动影响阶段 巷道受本区段回采工作面(B)旳回采影响
时,因为上区段残余支承压力,本区段工作面超
前支承压力相互叠加,巷道围岩应力急剧增高,
图7-8区段平巷围岩变形
(1)巷道掘进影响阶段
(2)
煤体内开掘巷道后,巷道围岩出现应力
集中,在形成塑性区旳过程中,围岩向巷道空
间明显位移。伴随巷道掘出时间旳延长,围岩
变形速度逐渐衰减,趋向缓解。巷道旳围岩变
形量主要取决于巷道埋藏深度和围岩性质。
(3)(2) 掘进影响稳定阶段
(4) 掘巷引起旳围岩应力重新分布趋于稳定,
关系旳不同,巷道位置能够分为下列几类: (1) 与回采空间在同一层面旳巷道称为本 煤层巷道,分析本煤层巷道位置时,仅考虑回 采空间周围煤体上支承压力旳分布规律,可作 为平面问题处理。
(2) 与回采空间不在同一层面,其下方旳 巷道称为底板巷道,分析底板巷道位置时,应 该考虑回采空间周围底板岩层中应力分布规律, 按空间问题处理当然,位于回采空间所在层面 上方旳巷道称为顶板巷道 。 (3) 厚煤层中、下分层以及相邻煤层中旳 煤层巷道,有可能同步受到本分层和上分层以 及相邻煤层采面旳采动影响。分析此类巷道位 置时,根据巷道与回采空间位置和采掘时间关 系,综合考虑回采空间周围煤体上支承压力和 顶、底板岩层中应力旳叠加影响。
图7-5 a表达上部煤层单侧采动引起底板岩层 内应力分布,图7-5 b表达上部煤层两侧采动遗留 保护煤柱引起底板岩层内应力分布。
如图所示,除了在煤柱下方底板岩层一定范 围内形成应力增高区外,位于煤柱附近旳采空区 下方底板岩层一定范围内形成应力降低区。
矿山压力与岩层控制
象。
•
粘性流动——蠕变后卸载,部分变形不能恢复的现象。
矿山压力与岩层控制
•
•
与岩石类别有关(粘土矿物岩石蠕变显著)
•
岩石蠕变
•
• 段)
与应力大小有关(高应力蠕变明显,超过极限
应力,蠕变进入不稳定阶
•
蠕变试验:时间长;
•
测量要求精度高(用千分表);
•
载荷恒定。
•
•
研究蠕变的意义:了解岩石的长时强度。
矿物:存在地壳中的具有一定化学成分和物理性质的自然元素和化合物。 结构:组成岩石的物质成分、颗粒大小和形状以及其相互结合的情况。
(结晶、胶结)
构造: 组成成分的空间分布及其相互间排列关系。
(节理、裂隙、空隙、边界、缺陷)
矿物、结构、构造是影响岩石力学性质和物理性质的三个重要因素 。
矿山压力与岩层控制
要确保试验岩样的天然状态。 岩样应具有一定的代表性。 钻孔采样时应尽量垂直于层面打孔,偏斜角不大于0.5°。 采取的岩(煤)块规格大体为长×宽×高=20×20×15cm。 上下端面的不平整度不大于0.1mm,上下端面的直径差不大于0.2mm。 试件端面垂直于试件轴的偏差不大于0.001rad。 圆柱形试件:φ4.8-5.2cm ,高H=(2-2.5)φ 长方体试件:边长L= 4.8-5.2cm , 高H=(2-2.5)L
•理想塑性
•具有应变硬化的塑性
矿山压力与岩层控制
••3、一般岩石的变形: • • 瞬时弹性变形 • • 后效弹性变形 • • 塑性变形
• • 岩石与其它金属及晶体矿物不同,因其有节理、裂隙存在,在应 力不高阶段,内部结构即有破坏,在产生弹性变形的同时,产生塑性 变形。
矿山压力与岩层控制
一:名词。
1.矿山压力:由于在地下煤岩中进行采掘活动而在井巷、硐室及回采工作面周围.煤、岩体中和其中的支护物上所引起的力,就叫做矿山压力。
2.原岩应力:天然存在于原岩而与任何认为原因无关的应力。
3.支承压力:在岩体内开掘巷道后,巷道两侧增加的切向应力。
4.初次来压:由于老顶第一次失稳而产生的工作而顶板来压。
5.砌体梁:工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构。
6.周期来压:由于裂隙带岩层周期性失稳而引起的顶板来压现象。
7.残余碎胀系数:8.关键层:将对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层。
9.冲击矿压:其是聚集在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故的现象。
10.超前支撑压力:11.极限跨距:老顶达到初次断裂的跨距称为极限跨距。
12.初次来压步距:由开切眼到初次来压时工作面推进的距离。
13.端面破碎度:支架前梁端部到煤壁间顶板破碎程度。
14.顶板冒落敏感度:端面距为1m时的端面破碎度。
二:解答:1.初次来压、周期来压的表现形式?答:初次来压:顶板下沉量和下沉速度急剧增加,顶板的下沉量变大;支柱载荷增加;顶板破碎,出现平行于煤壁的裂缝,甚至出现台阶下沉;工作面前方煤壁内压力过度集中,致使煤壁破坏范围扩大,煤壁严重片帮、支柱折损或插入底板。
周期来压:顶板下沉速度急剧增加,顶板的下沉量变大;支柱载荷普遍增加;有时还可能引起煤壁片帮、顶板台阶下沉、支柱折损,甚至工作面冒顶事故。
2.简述有关回采工作面上覆岩层结构的假说。
答:1.压力拱假说,认为在这两个前后拱脚之间,无论在顶板或底板中都形成了一个减压区,回采工作面的支架只承受压力拱内的岩石重量。
2.悬臂梁假说,认为顶板岩层是一种连续介质,在靠近煤帮处顶板下沉量最小,表现的顶板压力也小。
3、预成裂隙假说,认为由于开采的影响,回采工作面上覆岩层的连续性被破坏,从而成为非连续体。
在回采工作面周围存在着应力降低区、应力增高区和采动影响区。
矿山压力与岩层控制
• 矿山压力有关概念(要点内容) • 矿山压力教学内容 • 学习矿压的意义(要点内容) • 采矿工程矿压特点
1
绪论
一、 矿山பைடு நூலகம்力有关概念
• 矿山压力:由于矿山开采活动的影响,在周围岩体中形成的,及作用于支护
物上的力,简称“矿压”。在相关学科把其称为地层压力(简称“地压”)、 岩石压力(简称“岩压”)、二次应力、工程扰动力等。包括原岩对围岩作 用力,围岩体内之间作用力(如支承压力)和围岩对支护物作用力(狭义矿 压,如巷道围岩压力、采场顶板压力) 。
1、巷道地压:包括第二章矿山岩体的原岩应力及其重新分布、第 七章巷道矿压显现规律和第八章巷道维护原理和支护技术。
2、采场矿压:包括第三章采场顶板活动规律、第四章采场矿山压 力显现规律、第五章采场顶板支护方法、第六章采场岩层移动及其控制、 第九章厚煤层综放开采岩层控制、第十章浅埋煤层开采岩层控制和第十 二章非煤矿山岩层控制与边坡稳定等。
• 矿山压力与岩层控制是研究矿山岩体力学现象的机理、控制理论,以及控制 所采用的人工构筑物的学科,属于岩石力学的分支,是矿山采掘工程的基础 学科。
2
二、 矿山压力教学内容
矿山压力及其岩层控制,主要讨论矿山压力的形成及其分布特征, 矿山压力的显现规律,及其对矿山压力的控制措施。按研究的地点和显 现特征,包括采场矿压、巷道地压、冲击地压和矿压研究方法等内容。
3、冲击地压:第七章煤矿动压现象及其控制。 4、矿压研究方法:第十三章矿山岩层控制研究方法(包括矿山现 场研究、实验室研究和数学力学分析)。
3
井 按机理分类 巷 地 按地点分类 压
变形地压、松动地压、膨胀地压 竖井地压、平巷地压
露天采场矿压(边坡稳定)
矿
矿山压力与岩层控制
矿山压力与岩层控制一、概念题1、矿山压力采动后作用于岩层边界或存在于岩层之中使围岩向已采空间运动的力,即采动后促使围岩向已采空间运动的力,称为矿山压力。
2、岩层控制把矿山压力显现控制在不影响或尽量少影响正常的安全采掘工作而进行的开拓部署和支护控制措施。
3、矿山压力显现采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,其基本表现形式为围岩运动与支架受力。
4、直接顶在采空区内已跨落、在采煤工作面内由支架暂时支撑的悬臂梁,其结构特点是在采煤工作面推进方向上不能始终保持水平力的传递。
5、基本顶指运动时对采煤工作面矿压显现有明显影响的传递岩梁的总和,在初次来压后,是一组在推进方向上能够始终保持传递水平力的不等高裂隙梁。
6、传递岩梁每一组同时运动或近乎同时运动的基本顶岩层可以看成一个运动的整体,称为“传递力的岩梁”,简称“传递岩梁”。
7、支承压力煤炭采出后,在围岩应力重新分布的范围内,作用在煤层、岩层和矸石上的垂直压力,属于矿山压力的范畴。
8、内外应力场基本顶岩梁断裂结束时,以断裂线为界将支承压力明显地分为两个部分:断裂线与工作面煤壁之间的应力场为“内应力场”;断裂线外(至不受采动影响的原岩应力之间)的应力场为“外应力场”。
9、初次来压采煤工作面从切眼开采至基本顶首次断裂,使工作面发生明显的顶板下沉和支架承受较大的静载荷或冲击载荷,这种矿山压力显现叫做基本顶初次来压。
10、周期来压基本顶周期性裂断及回转下沉引起的明显矿山压力显现。
11、直接顶初次垮落步距直接顶初次垮落时自开切眼到支架后排放顶线的距离。
12、底板比压在单位面积底板上所造成的压力称为底板载荷集度,即底板比压。
13、给定变形在岩梁由端部断裂到沉降至最终位态的整个运动过程中,支架只能在一定范围内降低岩梁的运动速度,但不能对岩梁运动的最终位态起到限制作用,岩梁运动稳定时的位置状态由岩梁的强度及两端支承情况决定。
14、限定变形是指采场支架对岩梁运动进行必要的限制,即在支架阻力的作用下,岩梁不能沉降至最低位态。
矿山压力与岩层控制
1.岩石是由一种或几种造岩矿物在地质作用下按一定方式结合而形成的矿物自然结合体,是构成地壳的主要物质。
2.岩石的碎胀性是指岩石破碎后的体积比破碎前的体积增大的性质。
3.泊松比指岩石在单轴压缩条件下横向应变和轴向应变的比值,也称横向变形系数。
4.OA段,该段曲线微向上弯曲,是岩石微裂隙被压实的结果。
此段变形模量较小且不是一个常数。
AB段,该段曲线接近直线,属于弹性变形。
对应于B点的应力值称为弹性极限。
BC段,弹塑性过度阶段,岩石应力—应变曲线从B点开始偏离直线,当应力达到0.6 时,岩石开始有微破裂不断产生,岩石的体积由压缩转向膨胀。
对应于曲线上C点的应力值称为屈服极限。
CD段,塑性阶段,当应力超过屈服应力后接近0.95 时,岩石破裂速度加快,岩石的应力—应变曲线继续向右上方延伸,岩石的体积膨胀加速,变形也随应力增长而迅速增长,直到D点的应力值称之为岩石的强度极限或峰值强度。
DE阶段,卸载阶段,D点以后为破坏阶段,又称后破坏阶段。
这段峰后曲线说明,岩石达到强度极限后,破坏的发展要经历一个过程,最终达到完全破坏。
后破坏阶段的岩石仍有一定的承载能力,只是保持一较小值,相应于曲线E点所对应的应力值称残于强度。
D点后的峰后区表现出应变软化特性。
5.岩石的流变(时间对岩石变形特性的影响称为岩石的变形时间效应,与时间因素有关的应力应变现象)性质分为:蠕变、松弛、弹性后效、粘性流动。
6.岩石的破坏形式表现为脆性和塑性两种。
7.岩体的基本特征有:岩体的非均质性、岩体的各向异性和岩体的非连续性。
8.岩体结构的类型:整体结构、块状结构、层状结构、破裂结构、散体结构。
9.构造应力以水平力为主,具有明显的区域性和方向性。
特点:①一般情况下地壳运动以水平运动为主,构造应力主要是水平应力②构造应力分布不均匀,在地质构造变化比较剧烈的地区,最大主应力的大小和方向往往有很大的变化③岩体中的构造应力具有明显的方向性,最大水平主应力和最小水平主应力之值一般相差较大④构造应力在坚硬岩层中出现一般比较普遍,在软岩中储存构造应力很少。
矿山压力及岩层控制
第一讲:绪论
矿山压力的基本概念
矿山压力: 采动 采场、巷、硐支护物 力
矿压显现: 力学现象
矿山压力限制: 减轻、调整、利用、变更的方法
矿山压力对煤矿开采的意义
• 生态环境爱护 • 保证平安和正常生产 • 削减资源损失 • 改善开采技术 • 提高经济效益
矿压的探讨方法
• 现场实测 • 理论分析 • 物理模拟 • 数值模拟 • 工程类比
总结
原岩应力分布规律
• 三个规律 顶板活动规律
矿压显现规律 回采工作面支架与围岩的作用原理
• 两个原理
巷道支护与围岩的作用原理
• 一个方法 岩层限制方法
矿山压力及岩层限制
其次讲:原岩应力分布规律
本章介绍
• 原岩应力 • “孔”四周的应力分布 • 围岩极限平衡 • 支撑压力及其分布
原岩应力
原岩体:地壳中没有受到人类工程活动影响的岩体。 原岩应力:存在于地层中未受工程扰动的自然应力。
几层围岩性质相近的岩层。 老 顶----位于煤层或干脆顶之上厚
而坚硬的岩层(基本顶)。 2.顶板
干脆底----位于煤层之下的岩层(古土 壤)。
回采工作空间类型(依据采空区处理方法不同划分)
(a)完整空间---刀柱法或留煤柱开采; (b)自由弯曲空间---顶板缓慢下沉法(顶板塑性大); (c)充填空间---充填法; (d)垮落空间---完全垮落法;
2.板式结构——将顶板视为一个板或经断层裂隙切割后多块板相互咬合组 成的板,按板式结构承载变形及强度理论分析顶板破坏现象。
3.顶板结构端部支撑条件: 固定支座——顶板被岩层夹持,为断裂,无自由端。 简支梁支座——顶板端部断裂或埋深较浅。(可转动)
矿山压力与岩层控制
采动在煤或岩层中开掘巷道和进行回采工作称为对煤(或岩)层的“采动”。
采动空间采动后,在煤(或岩)层中形成的空间称为“采动空间”。
围岩采动空间周围岩体,包括图2.1中所示的顶板(T),底板(D)及两帮(B)岩层,统称为“围岩”。
1直接顶直接顶是指在老塘(采空区)内已跨落,在采场内由支架暂时支撑的悬臂梁,其结构特点是在采场推进方向上不能始终保持水平力的传递。
2基本顶是指运动时对采场矿压显现有明显影响的传递岩梁的总合。
在初次来压后,是一组在推进方向上能始终传递水平力的不等高裂隙梁。
3传递岩梁把每一组同时运动(或近似同时运动)的岩层看成一个运动的整体初次来压采场各岩层初次运动在采场的压力显现称为初次来压。
周期来压岩层周期性运动在采场的矿压显现称为采场周期来压。
矿山压力采动后作用于岩层边界上或存在于岩层之中,促使围岩向已采空间的运动的力。
(即采动后促使围岩运动的力)矿山压力显现采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,称为“矿山压力显现”。
矿山压力显现的基本形式包括围岩的明显运动与支架受力等两个方面。
初次来压采场各岩层初次运动在采场的压力显现支承压力煤层采出后,在围岩应力重新分布的范围内,作用在煤层、岩层和矸石上的垂直4压力。
支承压力显现在支承压力作用下发生煤层压缩和破坏,相应部位的顶底板相对移动以及支架受力变形等现象统称为支承压力的显现。
直接顶初次垮落当直接顶跨落高度达到1m以上、跨落长度达工作面长度一半以上时,就叫做直接顶初次垮落。
扩容如果应力接近这一极限,则巷道周边附近岩体的体积随应力增加而增加,产生“扩容”现象。
此后,如果“扩容”情况得不到控制,围岩周边将遭到破坏。
围岩中的应力将再次重新分布,应力范围扩大和应力高峰向深部转移等(二次重新分布),围岩的一部分进入塑性状态应力分布。
钻屑法钻屑法是通过在煤层中钻小直径钻孔(直径42-50mm),根据钻孔时在不同深度排除的煤量及其变化规律以及有关动力现象判断冲击危险的一种方法。
矿山压力与岩层控制
矿山压力:地下岩体在受到开挖以前,原岩应力处于平衡状态。
开掘巷道或进行回采工作时,破坏了原始的应力平衡状态,引起岩体内部的应力重新分布,直至形成新的平衡状态。
这种由于矿山开采活动的影响,在巷道周围岩体中形成的和作用在巷道支护物上的力定义为矿山压力,在相关学科中也称为二次应力或工程扰动力。
矿山压力显现:在矿山压力作用下,会引起各种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。
这些由于矿山压力作用使巷道周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。
矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法叫矿山压力控制。
(1)岩石:岩石是组成地壳的基本物质,有各种造岩矿物或岩屑在地质作用下按一定规律组合而成。
为于自然状态下的岩体有所区别,多数岩石力学文献中,岩石是从岩体中取出的、尺寸不大的块状物质,有时又称为岩块。
原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力,也称为岩体初始应力、绝对应力或地应力。
支承压力:在岩体内开掘巷道后,巷道围岩必然出现应力重新分布,一般将巷道两侧改变后的切向应力增高部分称为支承压力。
回采工作面(采场):在煤层或矿床的开采过程中,一般把直接进行采煤或采有用矿物的工作空间称为回采工作面或简称采场。
顶板(上覆岩层):赋存在岩层之上的岩层称为顶板或称为上覆岩层。
底板:位于煤层下方的岩层称为底板。
老顶:通常把位于直接顶之上(有时直接位于煤层之上)对采场矿山压力直接造成影响的厚而坚硬的岩层称为老顶。
一般是由砂岩、石灰岩及砂砾岩等岩层组成。
(65)直接顶:一般把直接位于煤层上方的一层或几层性质相近的岩层称为直接顶。
直接顶初次垮落:煤层开采后,将首先引起直接顶的垮落,回采工作面从开切眼开始向前推进,直接顶悬露面积增大,当达到其极限垮距时开始垮落。
直接顶的第一次大面积垮落称为直接顶初次垮落。
(70)顶板下沉量:一般指煤壁到采空区边缘裸露的顶底板相对移近量。
采矿业中的矿山压力与岩层控制技术
采矿业中的矿山压力与岩层控制技术在采矿业中,矿山压力和岩层控制技术是关键的考虑因素之一。
矿山施工期间,岩层的稳定性对于矿山的安全和效率具有重大影响。
本文将探讨采矿业中的矿山压力以及相关的岩层控制技术。
1. 矿山压力的形成矿山压力是指在矿山开采过程中,由于岩石受到巨大压力而发生的应力和应变。
压力的形成主要与以下几个因素相关:1.1 岩层的自重岩石由于自身重力会产生一定的压力,这种压力称为自重压力。
自重压力是矿山岩层产生压力的主要原因之一。
1.2 残余压力在地质演化过程中,岩层经历了多次构造运动和岩浆活动,产生了多种残余应力,这些应力会在矿山开采过程中释放,使得矿山产生较大的应力。
1.3 地应力地应力是地壳的应力状态,是由于地球重力、地震活动和构造运动等原因引起的。
地应力是矿山岩层产生压力的另一个重要原因。
2. 矿山压力对岩层的影响矿山压力对岩层的影响主要表现在以下几个方面:2.1 岩层变形和破裂矿山开采过程中产生的压力会导致岩层的变形和破裂,进而影响矿山的稳定性。
岩层的变形和破裂会导致岩石的松动和崩塌,给矿山带来严重的地质灾害风险。
2.2 矿山的坍塌和塌陷矿山压力的增大会导致岩层的坍塌和塌陷,进而引发矿山的严重事故。
矿山的坍塌和塌陷不仅会造成人员伤亡和财产损失,还会影响矿山的正常开采和生产。
2.3 岩层的流变性变化矿山压力会引起岩石的流变性变化,使岩石的粘弹性增大,从而影响岩石的变形行为。
岩层的流变性变化对于矿山巷道和支护结构的设计以及矿山的开采方案具有重要影响。
3. 岩层控制技术为了保证矿山的安全和效益,采取适当的岩层控制技术是必不可少的。
以下是几种常用的岩层控制技术:3.1 预应力锚杆支护技术预应力锚杆支护技术是一种有效的岩层控制技术,在矿山开采过程中广泛应用。
通过预应力锚杆的应用,可以有效控制矿山岩层的变形,提高矿山的稳定性。
3.2 钢筋混凝土支护技术钢筋混凝土支护技术是一种常用的岩层控制技术,通过在矿山巷道和井筒中使用钢筋混凝土支护结构,可以增强岩石的抗压和抗剪强度,提高矿山的稳定性。
矿山压力及其控制采场岩层移动与控制
锚杆加固
利用锚杆对采场岩层进行 锚固,增强岩层的抗剪切 和抗拉能力,防止岩层发 生位移或崩落。
充填加固
利用充填材料对采场岩层 进行填充,增加岩层的支 撑力和承载能力,提高岩 层的稳定性。
采场岩层移动预测技术
1 2 3
数值模拟
利用数值计算方法对采场岩层移动进行模拟,预 测岩层移动的范围、速度和方向,为采场设计和 安全防护提供依据。
采用控制开采深度、调整采空区处理方式、加强采空区监测等措施 ,有效控制岩层移动。
实施效果
经过调整,采空区岩层塌陷得到有效控制,周边环境得到保护,安全 生产得到保障。
矿山压力与采场岩层移动联合控制案例
案例概述
某大型矿山的采场在开采过程中,面临矿山压力和采场岩 层移动的双重挑战,给安全生产带来极大威胁。
01
02
03
04
弯曲下沉
岩层在采空区上方发生弯曲, 向下移动。
破裂与断裂
岩层在采空区边缘发生破裂或 断裂。
离层
岩层之间出现分离,形成空隙 。
隆起
岩层在采空区下方局部隆起。
采场岩层移动过程
初采阶段
01
岩层开始移动,但移动范围较小。
中期阶段
02
岩层移动范围扩大,达到最大值。
末期阶段
03
岩层移动逐渐减小,趋于稳定。
支架选型与支护
根据采场条件选择合适的支架类型和 参数,确保支架具有足够的承载能力 和稳定性。
充填采空区
利用充填材料充填采空区,支撑上覆 岩层,减小顶板压力。
矿山压力控制效果评估
顶板下沉量与下沉速度
通过监测顶板的下沉量和下沉速度,评估矿 山压力控制效果。
岩层移动范围
通过分析岩层移动的监测数据,评估采场岩 层的稳定性。
矿山压力与岩层控制
矿山压力与岩层控制矿山压力与岩层控制1.名词解释1.矿山压力: 由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力;2.矿山压力显现: 由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象;4.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力;4.支撑压力:回采空间周围煤岩体内应力增高区的切向应力;5.周期来压: 老顶平衡结构周期性失稳而施加给工作面以大型压力的过程6.初次来压: 老顶平衡结构第一次失稳而施加给工作面以大型压力的过程7.砌体梁: 工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构8.关键层:对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层9.冲击地压: 聚集在矿井巷道和采场周围岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏的力学现象。
10.底板比压:底板单位面积所受支架的压力11.回采工作面:在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间2.简答题1.原岩应力分布规律答:(1)实测铅直应力基本上等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力的比值随深度增加而减小;(4)最大水平主应力和最小水平主应力一般相差较大。
2.绘图说明横三区/竖三带三区:A煤壁支撑影响区B离层区:C重新压实区:三带:I垮落带:II裂隙带III弯曲带(硬度越高,三带发育越好)(自下至上)3.绘图说明支柱特性工作支柱力学特性——受顶板压力作用,支柱变形(下缩)性质。
4.关键层具有的特征①几何特征,相对于其他同类岩层单层厚度较厚;②岩性特征,相对于其他岩层较为坚硬,即弹性模量较大,强度较高;③变形特征,关键层下沉变形时,其上覆全部或局部岩层的下沉量同步协调;④破断特征,关键层的破断将导致全部或局部岩层的破断,引起较大范围内的岩层移动⑤支承特征,关键层破坏前以“板”(或简化为“梁”)结构作为全部岩层或局部岩层的承载主体,断裂后则成为砌体梁结构,继续成为承载主体5.影响采场矿山压力显现的因素答:①采高与控顶距的影响;②工作面推进速度的影响;③开采深度的影响;④煤层倾角的影响;⑤分层开采对矿山压力显现的影响;6.采场围岩与支架之间相互作用原理答:支架围岩是相互作用的一对力,支架受力的大小及其在回采工作面分布的规律与支架性能有关,支架结构及尺寸对顶板压力有一定影响。
矿山压力及岩层控制
饱和密度就是饱水状态下岩石试件的密度。
w
Ww V
w wg
(g/cm3) (kN /m3)
式中:WW——饱水状态下岩石试件的质量 (g); V——岩石试件的体积(cm3);
g——重力加速度。
(二)比重(相对密度)(Δ)
岩石的比重就是指岩石固体的质量与同体积水的 质量之比值。岩石固体体积,就是指不包括孔隙体积在 内的体积。岩石的比重可在实验室进行测定,其计算公 式为:
Ws V
Vnb Ws
Ws Vnb1 d 1
V W1
w
式中:W s为干燥岩石的重量;γd,γw分别为干燥岩石和水的重度。
(2)岩石的饱水率(ω2)
岩石的饱水率指在高压(150个大气压)或真空
条件下,岩石吸入水的重量Wω2与岩石干重量Ws之比,
即:
2
W2 Ws
100%
根据饱水率求得岩石的总开空隙率n0:
典型变形性质:
弹脆
直线型
弹塑
下凹型
塑弹
上凹型
弹粘
平缓 型
塑弹塑
S型
二、岩石单向压缩变形性质:
1、轴向变形:
1
E
2、横向变形:
2
1
E
普通试验机下岩石应力、应变曲线
刚性试验机下岩石应力、应变曲线
刚性试验机
3、全应力应变曲线:
(1)0A段:微裂隙闭合阶段,微裂隙压密极限σA。 (2)AB段:近似直线,弹性阶段,σB 为弹性极限。 (3)BC段:屈服阶段,σC为屈服极限。 (4)CD段:破坏阶段,σD为强度极限,即单轴抗压强度。 (5)DE段:即破坏后阶段,σE为残余强度。
式中:
Id2
mr md
W2 W0 100% W1 W0
矿山压力及岩层控制
支架受力支 支架 架压 变折 形(活柱下缩)
二、矿山压力显现的条件
——围岩稳定与破坏的条件
1、围岩破坏的条件
1 2c cos
两帮岩体不发生剪切破坏的条件:
1 sin
其中 1 k H
则两帮岩体处于稳定状态时的采深(不支护)
H 2C cos (1 sin) K
例: 两帮岩体力学参数为:ψ=25° , C=3MPa,k=2.5 ,
三、矿压显现的相对性 由于围岩的运动受压力的大小、方向、边界以及
自身的强度极限等限制,加之支架对围岩运动的抵抗, 矿压显现不可能在任何压力存在的条件下显现出来, 即是相对的。
(一)巷道围岩运动的相对性
由于围岩承受的压力大小、自身强度、受力状况等不同,运动的 发展程度也不相同。 1、开采深度越浅,与采深有关的支承压力越大。
150~200m以后,出现明显的塑性变形与破坏。 100~150m以上岩体处于弹性状态,变形比较小,运动相对不明显。
2、围岩的变形能力还与围岩强度有关。
高强度~低强度
3、架设支架使两帮变为三向应力状态,阻止破坏发展,维持围 岩稳定。
(二)支架受力的相对性
支架上压力显现主要取决于以下三个方面因素: 1、支架对围岩的抵抗程度。(巷道、工作面) 2、支架的力学特性(刚性、增阻、恒阻) 3、不同时间、地点(岩层运山压力与矿山压力显现的关系
1、矿山压力的存在是绝对的,而显现是相对的。 2、压力显现强烈的部位不一定是压力高峰的位置, 但对某一点是相关的(例:煤壁前方值承压力与下沉两 关系)。
五、关于支护的作用问题
支架的作用在于帮助围岩稳定,把矿山压力显现 控制在要求的范围内。
锚固增加围岩内聚力,提高承载能力, 维护围岩稳定的支护类型可锚缩喷性控支制架围允侧岩许向变围力形岩,程有改度一变,定受保变力持形状围,态岩依,稳靠提定支高。架承提载供能给力围。岩
矿山压力与岩层控制理论
绪论1 矿山压力与岩层控制学科的概念矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力,在相关学科中也称为二次应力、或工程扰动力。
矿山压力显现:在矿山压力作用下,会引起各种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。
这些由于矿山压力作用,使巷硐周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。
矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法,均叫做矿山压力控制。
2 采矿工业要求发展矿山压力及岩层控制学科2.1 生态环境保护岩层控制理论为实现保水采煤,完善条带开采和充填技术,进行井下矸石处理和有效抽放瓦斯奠定理论基础。
2.2 保证安全和正常生产岩层控制理论和技术为大幅度降低顶板事故做出了突出贡献。
边坡稳定性研究使边坡设计既能达到经济上可采纳的陡度,又足以维持安全的缓度。
巷道围岩控制理论和技术为合理支护各种巷道成为可能。
2.3 减少资源损失矿柱是造成地下资源损失的主要根源。
通过对开采引起的围岩应力重新分布规律的研究,推广无煤拄护巷和跨越巷道开采等技术措施,不仅显著减少资源损失,还有利于消除因矿柱存在引起的灾害和对采矿工作的不利影响。
2.4 改善开采技术自移式液压支架的应用实现了采煤综合机械化。
巷道可缩性金属支架和锚喷支护的应用改变了刚性、被动支护巷道的局面。
同时,采场、巷道围岩稳定性分类为合理选择支护型式、支护参数提供科学依据。
2.5 提高经济效益围岩结构稳定性分类、稳定性识别、矿压显现预测、支护设计、支护质量与顶板动态监测、信息反馈直至确定最佳设计的一整套理论、方法与技术有助于创造采矿工业的良好的社会效益和经济效益。
3 矿山压力与岩层控制学科属性与特色3.1 采矿工程岩体结构的本质与地面工程结构不同,地下工程围岩既是一种载荷,也是一种结构,施载体系和承载体系之间没有明显界限。
采场上覆岩层形成结构,结构的形态及稳定性不仅直接影响到采场,也将影响到开采后上覆岩层运动的形态及地表塌陷形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《矿山压力与岩层控制》
实验指导书
主编:采矿工程教研室
六盘水师范学院矿业工程系
年月日
目录
实验一二维相似材料模拟实验 1
实验一二维相似材料模拟实验
一、实验类型
综合性实验。
二、实验目的
相似材料模拟实验是在实验室利用相似材料,依据现场岩层柱状和煤(岩)体力学性质,按照相似材料理论和相似准则制作与现场相似的模型,然后进行模拟开采,在模型开采过程中对由于开采引起的覆岩运动情况以及支承压力分布情况进行不间断观测。
总结模型中的实测结果,利用相似准则,求算或反推该条件下现场开采时的围岩运动规律和支承压力分布情况以便为现场实践提供理论依据。
相似材料模拟实验是在《矿山压力与岩层控制》课程理论学习的基础上,通过实验的手段,直观的研究煤层开采引起的覆岩运动和破坏情况、矿山压力的变化规律等。
在进行相似材料模拟实验时,尤其是大比例模型实验,当基岩厚度较大时,模型往往只铺设到需要考察和研究的范围为止,其上部岩层不再铺设,而以均布载荷的方式加载模型上边界,所加载荷大小为上部未铺设岩层的重力。
三、实验仪器、设备
相似材料二维加载模拟试验台
四、实验内容
1、根据煤矿地质赋存条件,按地质柱状图制作相似材料配比方案
2、了解影响相似材料强度的主要因素
选择相似材料应当达到的要求是:
(1)模型与原型相应部分材料的主要物理、力学性能相似,这样才能将模型上测得的数据换算成原型上求解的数值;
(2)力学指标稳定,不因大气温度、湿度变化的影响而改变力学性能;
(3)改变配合比后,能使其力学指标有大幅度变化,以便于选择使用;
(4)制作方便、凝固时间短、成本低、来源丰富,最好能重复使用;
(5)便于设置量测传感器,在制作过程中没有损伤工人健康的粉尘及毒性等。
煤系岩石的力学性质可以划分为脆性的、弹性的和塑性的,这种力学性质随加载条件的变化而变化,对其进行模拟时,就需要通过正确选择相似材料来达到。
相似材料是用胶质物
和填料组合而成,而胶结料的力学性质在很大程度上决定了相似材料的力学性质。
相似材料的力学性质划分类别详见表1。
表1 相似材料力学性质划分类别
类别名称力学特点
无机胶质料水泥、石灰、碳酸钙、水玻璃脆性破坏碳氢类石油产品石蜡、凡士林、地腊、油类弹塑性、塑性变形合成树脂环氧树脂、尿素树脂变化范围宽、由塑性直至脆性天然胶质产品松香、沥青脆性
根据模拟的对象及模型的比例的不同,可采用不同种类及不同配比的相似材料。
实验所用相似材料主要包括两方面的原料:填料(或称骨料)和胶结物。
填料多用河沙、云母粉、滑石等,胶结物有石膏、石蜡、碳酸钙、水泥等。
对于《矿山压力与岩层控制》课程实验,主要研究内容为模拟上覆岩层的运动,实验中选取的胶结物为石膏,同时加入碳酸钙用以提高其强度,填料为河沙,各分层之间撒一层云母粉起分层作用。
模拟对象及模拟比例的不同,
φ完全取决于可以通过不同配比的相似材料来实现。
经试验证明,认为相似材料的内摩擦角
砂粒结构,石膏胶质料对其不起作用,可通过单独改变石膏胶质料的密度和砂粒结构,独立
ψ值。
控制凝聚力和
3、按照一定比例配制相似材料,制作较为简单的二维相似材料模型
实验在**m×**m×**m平面实验台上进行,模拟煤层开采覆岩运动规律。
按照相似模拟
准则,选取模型的几何相似比。
4、掌握试验的研究方法和研究内容
五、实验步骤
1、计算模型配比用料及铺设层次。
实验以某具体煤矿综采工作面开采为原型进行覆岩运动规律研究。
进行相似材料模拟实
验时,模型和被模拟体的几何形状、质点运动轨迹及质点所受的力相似。
根据煤矿地质综合
柱状图,分析简化煤层赋存条件,计算模型配比用料及铺设层次,完成表2。
根据确定的材料比例,按下式计算模型各分层材料的总量:
⋅
⋅
=(1)
Q⋅
⋅
k
m
b
l
r
式中,r为材料的容重;Q为模型各分层材料重量;l为模型长度;b为模型宽度;m
为模型分层厚度;k为材料损失系数。
表2 模型配比用料及铺设层次
层号岩性实际厚
度(m)
模拟厚
度(cm)
重复
次数
分层厚
度(cm)
配比号
容重
(g/cm3)
材料用量(kg)
沙子碳酸钙石膏水
Rn***岩
…………
R3***岩
R2***岩
R1煤层
底板***岩
2、按照一定比例配制相似材料
根据每组配比号所需的各种材料重量计算表,严格在台秤上秤取砂子、碳酸钙、石膏的重量,并放在一起搅拌均匀。
同时将秤好重量的硼砂,放入称好重量的水中,待融化后加入搅拌料中,进一步搅拌,将干料搅拌成均匀的湿料。
3、制作二维相似材料模型
将湿料分3~4次均匀地加入模型中,并逐次逐个捣实分层。
模型建造的基本原则是使既定的相似模拟准则在模型中实现。
为了使模型的力学性能及力学条件满足于设计要求,必须使模型中的各种“岩层”材料都遵守既定的容重相似比。
为此,模型实行分层建造,模型正面初始形态照片如图1。
图1 相似材料实验模型框架图
4、模拟煤层开采
模型铺设完成,在自然环境条件下风干若干天后,可开始进行模拟开挖煤层,按照几何
相似和时间相似原则,每隔一定时间推进一定距离,以模拟实际煤层推进情况。
模型两端分别保留了
少量的边界煤柱,用以消除边界效应。
5、观察、记录上覆岩层运动情况
(1)采动后上覆岩层运动的机理和发生发展的条件、组合结构形成和发展的过程。
顶板运动和破坏的机理。
断裂的机理和相应的力学条件,破坏发展过程和相关的物理力学条件以及失稳垮落的条件等。
(2)研究不同赋存条件下煤层开采上覆岩层的三带高度、破裂拱的形成、变化和发展过程,确定拱高与开采长度之间的相应关系,以及对上覆岩层影响范围的迹线描述。
(3)随采煤工作面推进和覆岩运动的发展和发展变化的规律及其对组合结构运动和破坏的影响。
六、实验报告要求
1.实验报告内容要包括实验目的、实验仪器设备、实验步骤、文字说明和心得体会部分等。
2.文字说明部分说明相似性原理;矿山压力相似材料模型的制作情况;试验研究方法、研究内容等。
3.心得体会部分,需要结合《矿山压力与岩层控制》课程的理论学习内容,对比制作相似材料模型,进行对比说明。
七、实验注意事项
1.参观模型时注意安全,按照实验老师的要求进行;
2.不要随意触动模型上的仪表和设备,不要随意破坏模型;
3.作好观察记录。
八、思考题
相似材料模拟实验的优缺点,还有哪些需要改进的地方?
(注:可编辑下载,若有不当之处,请指正,谢谢!)。