2015下学期期末高二理科数学(答题卷)
学年高二下学期期末考试数学(理)试题-含答案

2015-2016学年高二下学期期末考试数学(理)试题第I卷一、选择题(本大题12个小题,每题5分,共60分,请将答案涂在答题卷上) 1、已知集合{}{}2540,1,2,3,4,M x Z x x N =∈-+<=则M N =I ( )A 、{}1,2,3B 、{}2,3,4C 、{}2,3D 、{}1,2,4 2.命题“∃x 0∈∁R Q ,x 03∈Q ”的否定是( ) A . ∃x 0∉∁R Q ,x 03∈QB . ∃x 0∈∁R Q ,x 03∉QC . ∀x 0∉∁R Q ,x 03∈QD . ∀x 0∈∁R Q ,x 03∉Q 3.如果复数z 满足(2+i )z=5i (i 是虚数单位),则z ( ) A . 1+2i B . ﹣1+2i C . 2+i 4、已知2cos 23θ=,则44sin cos θθ-的值为( ) A 、23- B 、23 C 、1811D 、29-5、下列命题错误的是 ( )A 、命题“若0m >,则方程02=-+m x x 有实数根”的逆否命题为“若方程02=-+m x x 无实数根,则0m ≤” B 、“1=x ”是“0232=+-x x ”的充分不必要条件C 、对于命题:p x R ∃∈,使得012<++x x ,则R x p ∈∀⌝:,均有012≥++x x D 、若q p ∧为假命题,则,p q 均为假命题 6.函数f (x )=sin (2x+),则f ′()的值为( )A . 1B . ﹣2C . 2D .﹣17、函数f (x )=+mx 在[1,2]上是增函数,则m 的取值范围为( ) A . [,1]B . [1,4]C . [1,+∞)D .(﹣∞,﹣1]8、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于( )A 、[4,3]-B 、[5,2]-C 、 [3,4]-D 、[2,5]- 9.在6道题中有4道理科题和2道文科题,如果不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到文科题的概率为( ) A .B .C .D .10、若当x R ∈时,函数()xf x a =始终满足0()1f x <≤,则函数1log ay x=的图象大致为( )11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A )1 (B )2 (C )4 (D )8 12、过双曲线的左焦点F (﹣c ,0)(c >0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P .若,则双曲线的离心率为 A .B .C .D .第Ⅱ卷二.填空题(本大题4个小题,每题5分,共20分,请把答案填在答题卷上) 13.(x 3+1x)8的展开式中常数项为 _________ .(用数字作答) 14.已知函数f (x )=mx+在x=处有极值,则m= _________ .15.已知随机变量ξ服从正态分布84.0)4(),4,2(=≤ξP N ,则=≤)0(ξP16、16.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.有下列函数:;③f (x )=lg (x 2+2); ④f (x )=cos πx ,其中你认为是“1的饱和函数”的所有函数的序号为 .三.解答题:(本大题共6小题,共75分。
2015年高二理科数学第二学期考试卷

2015年度高二数学理科考试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.已知复数满足:i zi +=2(i 是虚数单位),则z 的虚部为( ) A .i 2- B .i 2 C .2 D .2-2.在某校的一次英语听力测试中用以下茎叶图记录了甲、乙两组各5名学生的听力成已知甲组数据的众数为15,乙组数据的中位数为17,则x 、y 的值分别为( ) A .2,5 B .5,5 C .5,7 D .8,7 3.命题“12sin ,>∈∀x R x ”的否定是( ) A .12sin ,≤∈∀x R x B .12sin ,>∉∀x R x C .12sin ,0≤∈∃x R x D .12sin ,0>∉∃x R x4.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S = A .18 B .36 C .54 D .725.若变量,x y 满足约束条件 0,4,0,x y x y y k -≥⎧⎪+≤⎨⎪+≥⎩且 3z x y =+的最小值为8-,则k =( )A.3B.3-C.2D.2-6.已知曲线23ln 1x y x =-+的一条切线的斜率为1,则切点的横坐标为( )A .3B .2C .1D .127.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数7,那么从高三学生中抽取的人数应为 ( ) A.7 B.8 C.9 D.108.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能是( )A .ˆ0.4 2.3yx =+ B .ˆ2 2.4y x =- C .ˆ29.5y x =-+D .ˆ0.3 4.4yx =-+ 9.设随机变量ξ服从正态分布2N 1σ(,),若P 2)0.8ξ<=(,则(01)P ξ<<的值为( )A .0.2B .0.3C .0.4D .0.6 10.5)11)(2(22-+xx的展开式的常数项是( ). A .2 B .3 C .-2 D .-311.点(,0)F c 为双曲线22221(0,0)x y a b a b-=>>的右焦点,点P 为双曲线左支上一点,线段PF 与圆2224b x y +=相切于点Q ,且1=2PQ P F ,则双曲线的离心率等于( )A D .212.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+>,若()1111,22,ln ln 2222a f b f c f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系正确的是( )A.a b c <<B.b c a <<C.a c b <<D.c a b <<13.已知y x ,取值如表:从所得的散点图分析可知:y 与x 线性相关,且a x y+=95.0ˆ,A .1.30 B .1.45 C .1.65 D .1.8014.已知,x y 的取值如下表所示,若y 与x 线性相关,且ˆ0.95y x a =+,则a =( )A .2.2B .2.6C .2.8D .2.9 15.若随机变量X 服从两点分布,其中()310==X P ,则()23+X E 和()23+X D 的值分别是( )A .4和4B .4和2C .2和4D .2和2 16.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( ). A.18 B.14 C.25 D .12第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)17.从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有种.18.设212axdx=⎰,则61axx⎛⎫-⎪⎝⎭的展开式中常数项为.19.由两条曲线y=x2,y=14x2与直线y=1围成平面区域的面积是________.20.已知双曲线12222=-byax(0a b>>)的焦距为2c,右顶点为A,抛物线)(22>=ppyx的焦点为F,若双曲线截抛物线的准线所得线段长为c2,且cPA=,则双曲线的渐近线方程为___________.三、解答题(题型注释)21.(本小题满分14分)如图所示,棱柱111ABC A B C-为正三棱柱,且1AC C C=,其中点,F D分别为11,AC B B的中点.CD1C(1)求证://DF平面ABC;(2)求证:DF⊥平面1ACC;(3)求平面1DC A与平面ABC所成的锐二面角的余弦值且侧面PAD ⊥底面ABCD ,E 为侧棱PD 的中点(1)求证:PB //平面EAC ; (2)求证:AE ⊥平面PCD ;(3)若直线AC 与平面PCD 所成的角为30︒,求CDAD的值 23.(本小题满分12分)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率; (2)从全市高中学生(人数很多).............中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望()ξE .24.(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表: 0.0750.0400.060服务时间/小时O现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.25.已知椭圆2222:1(0)x yG a ba b+=>>过点,斜率为1的直线l与椭圆G交于A、B两点,以AB为底边作等腰三角形,顶点为(3,2)P-.(1)求椭圆G的方程;(2)求△PAB的面积.26.(本小题满分14分)设函数2()(2)lnf x x x=+,2()2,g x x ax a R=+∈(1)证明:()f x是(0,)+∞上的增函数;(2)设()()()F x f x g x=-,当[)1,x∈+∞时,()0F x≥恒成立,求a的取值范围.27.(本小题满分12分)如图,已知四边形ABCD为正方形,⊥EA平面ABCD,CF ∥EA,且222===CFABEA(1)求证:⊥EC平面BDF;(2)求二面角E BD F--的余弦值.28.本小题满分12分)在平行六面体1111ABCD A BC D-中,12AA AD AB===,160A AD DAB∠=∠=︒,O是AD的中点.1A(1)证明:AD⊥面1AOB;(2)若1A B AB=,求直线1AC与平面11BB D D所成角的正弦值.参考答案1.D 【解析】试题分析:由2=+zi i 得,22121i z i i i+==+=-+,所以虚部为2-.选D. 考点:复数的基本运算.2.C 【解析】试题分析:从茎叶图可知,甲组成绩为9、15、10+x 、21、27,由于甲组数据的众数为15,故x=5.乙组的成绩为9、13、10+y 、18、27,由于乙组数据的中位数是17,故y=7.所以选C.考点:统计. 3.C【解析】先改写量词,再对结论进行否定,故“12s i n ,>∈∀x R x ”的否定是“12sin ,0≤∈∃x R x ”【命题意图】本题考查全称命题的否定 4.D 【解析】试题分析:由等差数列的前n 项和公式得()()7242854818=+=+=a a a a S ,故答案为D.考点:等差数列的前n 项和公式. 5.C 【解析】试题分析:根据题意,画出约束条件所对应的可行域,可知,2k -<,结合目标函数的特点,可知函数在点(,)k k --处取得最小值,则有38k k --=-,解得2k =,故选C. 考点:线性规划. 6.A 【解析】 试题分析:设切点为),(00y x ,则切线的斜率132132)(00000-==⇒=-='=x x x x x f k 或,又00>x 则30=x ;考点:1.导数的几何意义; 7.D 【解析】试题分析:因为分层抽样的抽样比相等,所以所抽高一学生,高二学生,高三学生的比为210比270比300即7比9比10;从高一学生中抽取的人数7那么从高三学生中抽取的人数应为 10考点:分层抽样. 8.A 【解析】试题分析:∵变量x 与y 正相关,∴可以排除D ,C ;样本平均数3x =, 3.5y =代入A 符合,B 不符合 故选:A .考点:线性回归方程 9.B 【解析】试题分析:随机变量ξ服从正态分布()2,1σN ,因此()()5.011=<=>ξξP P ,()=<<21ξP ()()12<-<ξξP P 3.05.08.0=-=,()()3.02110=<<=<<ξξP P ,故答案为B.考点:正态分布的应用. 10.B 【解析】试题分析:二项式5211)(-x 的第1+r 项为1025525)1()1()1(---⋅=-⋅⋅r r r r r rx C xC ,5)11)(2(22-+xx 的展开式的常数项为82510252)1()1(.--⋅-⋅=-⋅r r rr r r x C x C x ,10251025)1(2)1(.2--⋅-⋅⋅=-⋅r r r r r r x C x C ,即常数项为3)1(2)1(555445=-⋅⋅+-⋅C C .考点:二项式的展开式. 11.C【解析】设左焦点1(,0)F c -,由1=2PQ PF ,所以Q 是线段PF 的中点,连接1PF ,OQ ,则OQ PF ⊥,且11//2OQ PF ,则1PF PF ⊥,在1PFF ∆中,1PF b =,2PF a b =+,12FF c =,由勾股定理得2224(2)c b a b =++,所以2224244ab c b a =++,2b a =,两边平方得2224c a a -=,解得25e =,e =【命题意图】本题考查双曲线方程、圆的方程、双曲线的简单几何性质、切线等基础知识,意在考查数形结合思想和综合分析问题解决问题的能力. 12.C 【解析】试题分析:构造函数()()h x xf x =,∴()()()h x f x x f x ''=+⋅,∵()y f x =是定义在实数集R 上的奇函数,∴()h x 是定义在实数集R 上的偶函数,当x >0时,()()()0h x f x x f x ''=+⋅>,∴此时函数()h x 单调递增. ∵111()()222a f h ==,2(2)2(2)(2)b f f h =--==,111(ln )(ln )(ln )(ln 2)(ln 2)222c f h h h ===-=,又1ln 222<<,.a c b ∴<<.故选C .考点:比较大小.13.B 【解析】 试题分析:通过图表可知25.563.94.71.66.58.13.1,46865410=+++++==+++++=y x ,将(4,5.25)代入,即,495.025.5a +⨯=解得.45.1=a 故选B. 考点:回归直线经过样本点的中心.14.B 【解析】试题分析:回归直线方程一定过样本点的中心),(y x ,由已知5.4,2==y x ,代入回归直线得6.2=a考点:统计、回归直线 15.B 【解析】试题分析:由于服从两点分布,()321==X P ,因此()32321310=⨯+⨯=X E ,()92323213132022=⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-=X D ,()()42323=+=+X E X E ,()()2923=⋅=+X D X D .考点:随机变量的期望和方差.16.B 【解析】试题分析:从5个数中任取2个不同的数的所有情况为2510C =,取到2个数之各为偶数的有4种,那么()42105P A ==,取到的2个数均为偶数有1种,那么()110P B =,由条件概率公式()()()1110|245P AB P B A P B ===.故选B.考点:条件概率.17.100 【解析】试题分析:A 活动可从5人中任选1人参加,然后再从剩下的5人选两人参加B 、C 活动即可,故共有1002515=A C考点:排列组合 18.540- 【解析】 试题分析:⎰=-===21212314|2x xdx a ,()()r r rr rr r r x a C x ax C T 266666111---+-=⎪⎭⎫ ⎝⎛-=∴,令026=-r ,得3=r ,因此展开式中常数项为()540133336-=-C .考点:1、定积分的计算;2、二项式定理的应用. 19.43【解析】试题分析:由题意,两条曲线y =x 2,y =14x 2与直线y =1围成平面区域如下图中阴影部分,则其面积为12222313201011131111542[()(1)]2[|()|]2()4443434123x x dx x dx x x x -+-=⋅+-⋅=+=⎰⎰考点:定积分的应用. 20.y x =±【解析】由已知||,||OA a AF c ==,所以,||,,2p OF p b ==把2py b =-=代入双曲线方程22221x y a b-=得,222,x a =所以,直线2p y =-被双曲线截得的线段长为,从而2,c c ==,所以,2222,a b a a b +=∴=,所求渐近线方程为y x =±.考点:双曲线的几何性质,直线与双曲线的位置关系..21.(1)见解析;(2)见解析;(3 【解析】(1)证明:作AC 的中点O ,连结BO .在1ACC ∆中,//=FO 112C C ,又据题意知,//=BD 112C C . ∴//=FO BD ,∴四边形FOBD 为平行四边形. 2分 ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC . 4分 (2)证明:棱柱111ABC A B C -为正三棱柱1C C ∴⊥平面ABC又BO ⊆平面ABC1BO C C ∴⊥ 5分ABC ∆是正三角形且AO OC = ∴BO AC ⊥ 6分综上1BO C C ⊥,BO AC ⊥且1AC CC C =,1,AC C C ⊆平面1ACC∴BO ⊥平面1ACC 7分又//FD BO∴DF ⊥平面1ACC 8分CD1C A(3)∵//FO 1C C ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF为,,z x y 轴,建系如图. 9分 则(1,0,0)A ,1(1,0,2)C -,D .∴1(2,0,2)AC =-,(=-AD . 10分 设平面ADE 的一个法向量为1(,,z)=x y n ,则11100AC AD ⎧⋅=⎪⎨⋅=⎪⎩n n ,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面1ADC 的一个法向量为1(1,0,1)=n . 12分 又平面ABC 的一个法向量为2(0,0,1)=n . 13分 ∴121212,⋅>===cos <n n n n n n .∴平面DEA 与平面ABC 14分CC【命题意图】本题考查线线,线面关系和二面角的求解,考查学生空间思维能力和综合分析能力等. 22.(1)见解答过程 (2)见解得过程 (3)CDAD=【解析】 试题分析:(1)要证明PB //平面EAC ,可在平面EAC 内找一条直线与PB 平行,连接连结BD 交AC 于O,连结EO,则EO//PB,由此可证PB //平面EAC .(2)要证明AE ⊥平面PCD ,可先证,AE CD AE PD ⊥⊥,注意线线垂直、线面垂直的相互转化.(3)直线AC 与平面PCD 所成的角为∠ACE ,再通过解三角形确定CDAD= 试题解析:(1)连结BD 交AC 于O,连结EO,因为O 、E 分别为BD 、PD 的中点, 所以EO//PB,EO EAC PB EAC ⊂⊄平面平面,所以PB//平面EAC (4分) (2)法一:AE ABCD CD AD CD PAD PAD ABCD AD CD AE PAD ABCD PAD ⇒⊥⎫⇒⊥⎫⎪⋂⇒⊥⎬⎬⊂⎭⎪⊥⎭矩形面面面=面面面CO ABCD ⊂面正三角形PAD 中,E 为PD 的中点,所以,AE PD ⊥,又PD CD D =,所以,AE⊥平面PCD (10分)法二:ABCD CD AD CD PAD PAD ABCD AD PDC PAD CD PDC ABCD PAD ⇒⊥⎫⇒⊥⎫⎪⋂⇒⊥⎬⎬⊂⎭⎪⊥⎭矩形面面面=面面面面面CO ABCD ⊂面正三角形PAD 中,E 为PD 的中点,所以,AE PD ⊥, 又PDCPAD PD =面面,AE PAD ⊂面,所以,AE⊥平面PCD (10分)(3)由(2)AE⊥平面PCD,直线AC 与平面PCD 所成的角为∠ACE30,2Rt ACE ACE AC AE ∴∠=︒=中,,又PAD AE AD ∆=正中,,AC ∴=,又矩形ABCD AC 中,,=解得CDCD AD=∴=, (14分) 考点:1空间中的线面位置关系;2直线与平面所成的角. 23.(1)52=P ;(2)()56=ξE 【解析】试题分析:(1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、组距频率,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(3)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(4)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算. 试题解析:解:(1)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为 2000.060560⨯⨯=(人),参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为6020802.2002005P +===(2)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=;11232354(1)()()55125P C ξ==⋅=; 22132336(2)()()55125P C ξ==⋅=;3303238(3)()()55125P C ξ==⋅=.随机变量ξ的分布列为因为ξ~2(3,)5B ,所以26355E np ξ==⨯=. 考点:1、频率分布直方图的应用;2、离散型随机变量的分布列和数学期望.24.(1)72人;(2)ξ的分布列为:期望2535251=⨯+⨯+⨯=ξE . 【解析】试题分析:(1)先由抽到持“应该保留”态度的人的概率为05.0,由已知条件求出x ,再求出持“无所谓”态度的人数,由此利用分层抽样的概念就能求出应在“无所谓”态度抽取的人数;(2)由条件知第一组在校学生人数1=ξ,2,3,分别求出)1(=ξP ,)2(=ξP ,)3(=ξP ,由此能求出ξ的分布列和数学期望.试题解析:(1)∵抽到持“应该保留”态度的人的概率为05.0,∴05.03600120=+x,解得60=x ,∴持“无所谓”态度的人数共有7206060012021003600=----,∴应在“无所谓”态度抽取723600360720=⨯人; (2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生为46180120=⨯人,社会人士为2618060=⨯人,于是第一组在校学生人数1=ξ,2,3,51)1(362214===C C C P ξ, 51)1(362214===C C C P ξ,53)2(361224===C C C P ξ,51)3(360234===C C C P ξ,即ξ的分布列为:∴2535251=⨯+⨯+⨯=ξE .考点:1.分层抽样;2.离散型随机变量的期望与方差.25.(1)221124x y +=;(2)92.【解析】试题分析:(1)要求椭圆标准方程,就是要求得,a b ,因此我们要寻找关于,,a b c 的两个等式,本题中有离心率c e a ==,是一个等式,另一个是椭圆过点),即22331a b+=,再结合222a b c =+可解得2a b ==,得到标准方程;(2)要求△PAB 的面积,应该先确定,A B 位置,也即确定直线l ,我们可以设l 的方程为y x m =+,条件PAB ∆是以AB 为底边的等腰三角形怎么应用?这个条件用得较多的是其性质,三线合一,即取AB 的中点E ,则有PE AB ⊥,我们就用这个来求出参数m 的值,方法是设1122(,),(,)A x y B x y ,AB 的中点为00(,)E x y ,把直线方程代入椭圆方程,可得12x x +,从而求出1202x x x +=用m 表示,再由PE AB ⊥可很快求得m ,以后就可得到点A B 、的坐标,求出面积.试题解析:(1)由已知得22331,3c a b a +== . 1分解得a =又2224b a c =-=,所以椭圆G 的方程为221124x y +=. 4分 (2)设直线l 的方程为y x m =+.由221124y x m x y =+⎧⎪⎨+=⎪⎩得22463120x mx m ++-=. ① 6分设A 、B 的坐标分别为112212(,),(,),()x y x y x x <AB 中点为E 00(,)x y ,则120003,244x x m mx y x m +==-=+= . 8分 因为AB 是等腰△PAB 的底边,所以PE ⊥AB .所以PE 的斜率24134m k -==--+,解得m =2. 10分 此时方程①为24120x x +=,解得123,0x x =-= , 所以121,2y y =-= ,所以|AB|=此时,点P (-3,2)到直线AB :20x y -+=的距离2d ==, 所以△PAB 的面积S =19||22AB d =. 12分 考点:椭圆的标准方程,直线与椭圆相交综合问题(相交弦长,点到直线距离,三角形面积等).26.(1)见解析;(2)2a ≤- 【解析】试题分析:第一步证明函数()f x 是(0,)+∞上的增函数,只需证明)()0f x '≥成立,若x x x x x f ++='2ln 2)(0≥,我们只需0)12ln 2(2≥++xx x ,由于0>x ,令12ln 2)(2++=x x x g ,因为3234242)(xx x x x g -=-=',所以:)(x h 在)2,0(上递减,),2(+∞上递增,)(x h 最小值022ln )2(>+=h 故:0)(,2ln 2)(>=++='x h x x xx x x f 则,所以:)(x f 是),0(+∞上的增函数. (2)第二步求a 的取值范围,可分离常数a ,,由02ln )2()()()(22≥--+=-=ax x x x x g x f x F 得:x x x x a 222ln )2(-+≤在[)+∞∈,1x 上恒成立,只需求出xx x x x h 222ln )2()(-+=的最小值即可.试题解析:(1)若证明)(x f 是),0(+∞上的增函数,只需证明0)(≥'x f 在),0(+∞恒成立, 即:02ln 2)(≥++='x x x x x f 0)12ln 2(2≥++⇔x x x 012ln 22≥++⇔xx设),0(,12ln 2)(2+∞∈++=x x x x h ,3234242)(xx x x x h -=-=' 所以:)(x h 在)2,0(上递减,),2(+∞上递增,)(x h 最小值022ln )2(>+=h 故:0)(2ln 2)(>=++='x xh x xx x x f ,所以:)(x f 是),0(+∞上的增函数. (2)由02ln )2()()()(22≥--+=-=ax x x x x g x f x F 得:x x x x a 222ln )2(-+≤在[)+∞∈,1x 上恒成立,设x x x x x G 222ln )2()(-+=,则22)1)(ln 2()(x x x x G --=',所以)(x g 在)2,1(递增,),2(e 递减,),(+∞e 递增,所以)(x G 的最小值为)(),1(e G G 中较小的,022)1()(>+-=-e eG e G , 所以:)1()(G e G >,即:)(x G 在[)+∞∈,1x 的最小值为2)1(-=G ,只需2-≤a考点:1.导数与函数的单调性;2.研究一个函数的单调性与极值,3.极端原理的使用;27.(1)详见解析;(2)二面角E BD F -- 【解析】 试题分析:(1) 因为EA ∥CF ,所以ACFE 是一个平面图形,在这个平面图形中,AC =AE =2,所以ΔACE 是等腰直角三角形.连接AC 交BD 于点O ,连接FO.易得OC =FC ,所以ΔOCF 也是等腰直角三角形.由此可证得EC ⊥OF.又由三垂线定理可证得BD EC ⊥,从而可得⊥EC 平面BDF .法二,以点A 为坐标原点,AD 所在的直线为x 轴,AB 所在直线为y 轴,AE 所在直线为z 轴建立直角坐标系,利用向量也可证得EC ⊥面BDF .(2)由(1)知向量EC 为平面BDF 的法向量,再用向量方法求出平面EBD 的法向量即可求出二面角E BD F --的余弦值. 试题解析:(1)(法一)连接AC 交BD 于点O ,连接FO.过点O 作OH ∥AE 交EC 于点H ,连接HF ,因为O 是AC 的中点,所以H 是EC 的中点,所以112OH EA ==,因为EA ∥CF ,且EA=2CF ,所以OH ∥CF 且OH=CF ,又因为112OC AC == 所以四边形OCFH 为菱形,而EA 垂直于平面ABCD , 所以EA AC ⊥从而OH OC ⊥,从而四边形OCFH 为正方形进而OF CH OF CE ⊥⇒⊥又因为四边形ABCD 为正方形,所以BD AC ⊥; 又 EA BD ⊥且EA AC A =从而BD ⊥面EAC , 则BD EC ⊥又,BD BDF OF BDF ⊂⊂且BD OF O =所以⊥EC 平面BDF . (6)分(法二)以点A 为坐标原点,AD 所在的直线为x 轴,AB 所在直线为y 轴,AE 所在直线为z 轴建立直角坐标系,则(0,0,0);((();E(0,0,2)A B D C F ,所以(2,2,0);(2,0,1);(2,2)BD BF EC =--=-=-- 从而有EC ·BD =0,EC ·BF =0 所以,EC BD EC BF ⊥⊥ 又因为,BDBF B =从而EC ⊥面BDF(2)由(1)知向量EC 为平面BDF 的法向量 设平面EBD 的法向量为(,,)n x y z =则00n BD n ED⎧⋅=⎪⎨⋅=⎪⎩即020z⎧=⎪⎨-=⎪⎩;令1z =得x y ==故 cos ,210n EC n EC n EC⋅<>===⋅ 所以二面角E BD F --考点:1、空间线面间的位置关系;2、二面角. 28.(1)证明见解析;(2)5. 【解析】 试题分析:(1)本题证明线面垂直,根据纯平面垂直的判定定理,只要证明直线AD 与平面1AOB 内的两条相交直线垂直即可,而从已知条件可看出只要在1AAO ∆和ABO ∆中利用正弦定理及勾股定理就能证得1AO AO ⊥,AO BO ⊥;(2)本小题是求直线与平面所成的角,由(1)已经知道1AO AO ⊥,AO BO ⊥,再在1AOB ∆中应用勾股定理又可证明1AO BO ⊥,于是我们可以分别以1,,OA OB OA 为,,x y z 轴建立窨直角坐标系,用向量法求解线面角.试题解析:(1)证明:由AD 的中点O , 由11160AA ADAO AD A AD =⎫⇒⊥⎬∠=︒⎭同理BO AD ⊥ AO ⇒⊥平面1A BO .(2)1122AO A A AB ==,2BO AB =11A B ∴= 1A BO ∴∆为直角三角形,1AO BO ⊥ 以O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立坐标系,不妨设12A B A A A D ===,则(1,0,0)A,B,1A ,(1,0,0)D -由11(DD AA D =⇒-(BC AD C =⇒-,1(AC ∴=- 设(,,)n x y z =为平面11BB D D 的法向量可求得(3,1,1)n =- 11sin cos 5AC n AC n θα⋅===⋅x1考点:1.线面垂直;2.直线与平面所成的角.。
2015年高二下学期期末数学试题

2015年高二下学期期末数学试题y1. i 是虚数单位,若z (i+1)=i ,则|z|等于( )CA .1B .23 C .22 D .212.曲线y=xe x +1在点(0,1)处的切线方程是( )AA .x-y+1=0B .2x-y+1=0C .x-y-1=0D .x-2y+2=03. 若函数y=ae x +4x (x ∈R )有大于零的极值点,则实数a 的取值范围是( )AA .-4<a <0B .a <-4C .a <-41 D .-41<a <0 4. 利用数学归纳法证明“(n+1)(n+2)…(n+n )=2n ×1×3×…×(2n-1),n ∈N *”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是( )C A .2k+1 B .112++k k C . 1)22)(12(+++k k k D .132++k k 5. 一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为( C )A .2201 B .5527 C .22027 D .5521 3121923/C C C 6. (x −x2) 6的展开式中常数项是( A )A .-160 B .-20 C .20 D .160 7. 极坐标方程ρ=cos(4π−θ)所表示的曲线是( D ) A .双曲线 B .椭圆 抛物线 D .圆8. 若一个几何体的三视图如图所示(单位长度:cm ),则此几何体的表面积是( A )A .(20+42)cm 2 B .21cm 2 C .(24+42)cm 2 D .24cm 25.9. 圆x 2+y 2-8x-4y+11=0与圆x 2+y 2+2y-3=0的位置关系为( B ) A .相交 B .外切 C .内切 D .外离10. 阅读如图所示的程序框图,输出的结果S 的值为( A )A .0B .23 C .3 D .−23 11. 12.二、填空题13. 极点到直线ρ(cosθ+sinθ)=3的距离是_________2614. 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P (B|A )等于 _________1/415. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y =3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y =b x +a 必过(x ,y );④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得x 2=13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是__4 .①③⑤16. 由直线x=-3π,x=3π,y=0与曲线y=cosx 所围成的封闭图形的面积为___ 3 三、解答题:17.在平面直角坐标系xOy 中,直线l 过点(3,5)且倾斜角为4π,在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,x 轴的正半轴为极轴)中,圆C 的方程为p=25sinθ.(1)求直线l 的参数方程及圆C 的直角坐标方程;(2)设圆C 与直线l 交于A ,B 两点,若点P 的坐标为(3,5),求|PA|•|PB|.解:【解答】解:(1)直线l 过点(3,5)且倾斜角为4π,参数方程为x =3+22t,y=5+22t(t 为参数);圆C 的方程为p=25sinθ,直角坐标方程为x 2+(y-5)2=5;(2)x =3+22t,y=5+22t (t 为参数),代入x 2+(y-5)2=5,可得t 2+32t+4=0,∵点P 的坐标为(3,5),∴|PA|•|PB|=4.18.已知函数f (x )=xe x(e 为自然对数的底)(1)试确定函数f (x )的单调区间;(2)求函数f (x )在[ 0.5,1.5 ]上的最大值和最小值.【解答】解:(1)∵f′(x )=2)1(x e x x-,令f′(x )>0,解得:x >1,令f′(x )<0,解得:x <1,∴f (x )在(1,+∞)递增,在(-∞,1)递减,(2)由(1)得:f (x )在(0.5,1)上递减,在(1,1.5)上递增; ∴f (x )min =f (1)=e , 又f (0.5)=2e ,f (1.5)=32e e ,∴f (0.5)>f (1.5),∴f (x )max =f (0.5)=2e .19.下表是某次自主招生考试中,某学习小组的4名同学的数学、物理成绩:学 生 A B C D 数学(x ) 130 125 120 145 物理(y )125120105130(1)根据表中数据,用最小二乘法求物理分数y 关于数学分数x 的回归直线方程y =b x+a ; (2)若某同学在此次考试中数学得分为116.利用(1)中所求出的直线方程预测他本次考试的物理成绩.附:回归方程y =b x+a 其中b =∑=ni 1,a =y -b x .解:(1)x=130,y =120,))((41y y x x i i i --∑==300∑=41(i x i −x )2=350,b =76, a =760,回归直线方程为:y =76x +760. (2)由(1)可知x=116可得y =108,预测他本次考试的物理成绩108.20.在直角梯形ABCD 中,AD ∥BC ,BC=2AD=2AB=22,∠ABC=90°,如图1.把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD ,如图2. (Ⅰ)求证:CD ⊥AB ;(Ⅱ)若点M 为线段BC 中点,求点M 到平面ACD 的距离;(Ⅲ)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN/BC 的值;若不存在,说明理由. 解:【解答】(Ⅰ)证明:由已知条件可得BD=2,CD=2,CD ⊥BD .…(2分)∵平面ABD ⊥平面BCD ,平面ABD∩平面BCD=BD . ∴CD ⊥平面ABD .…(3分)又∵AB ⊂平面ABD ,∴CD ⊥AB .…(4分)(Ⅱ)解:以点D 为原点,BD 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,如图.由已知可得A (1,0,1),B (2,0,0),C (0,2,0),D (0,0,0),M (1,1,0). ∴CD =(0,−2,0),AD =(−1,0,−1).…(6分)设平面ACD 的法向量为n =(x ,y ,z ),则CD ⊥n ,AD ⊥n ,∴y =0, x +z =0令x=1,得平面ACD 的一个法向量为n =(1,0,−1),∴点M 到平面ACD 的距离d =|n ∙MC |/|MC |=22.…(8分)(Ⅲ)解:假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60°.…(9分) 设BN =λBC , 0<λ<1,则N (2-2λ,2λ,0),∴AN =(1−2λ,2λ,−1),又∵平面ACD 的法向量n =(1,0,−1)且直线AN 与平面ACD 所成角为60°,∴sin60°=|AN n |/|AN ||n |=23,…(11分) 可得8λ2+2λ-1=0,∴λ=1/4或λ=−1/2(舍去).综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60°,此时BN/BC =1/4.…(13分)21.设动点P (x ,y )(y≥0)到定点F (0,1)的距离比它到x 轴的距离大1,记点P 的轨迹为曲线C .(Ⅰ)求点P 的轨迹方程;(Ⅱ)设圆M 过A (0,2),且圆心M 在曲线C 上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长|EG|是否为定值?为什么? 解:【解答】解:(Ⅰ)依题意知,动点P 到定点F (0,1)的距离等于P 到直线y=-1的距离,曲线C 是以原点为顶点,F (0,1)为焦点的抛物线 ∵p/2=1∴p=2∴曲线C 方程是x 2=4y(Ⅱ)设圆的圆心为M (a ,b ),∵圆M 过A (0,2), ∴圆的方程为 (x-a )2+(y-b )2=a 2+(b-2)2令y=0得:x 2-2ax+4b-4=0设圆与x 轴的两交点分别为(x 1,0),(x 2,0)不妨设x 1>x 2,由求根公式得x 1=21616422+-+b a a ,x 2=21616422+--b a a∴x 1−x 2=161642+-b a 又∵点M (a ,b )在抛物线x 2=4y 上,∴a 2=4b , ∴x 1−x 2=16=4,即|EG|=4∴当M 运动时,弦长|EG|为定值422.设函数f (x )=x|2x-a|,g (x )=12--x ax ,a >0(1)当a=8时,求f (x )在区间[3,5]上的值域;(2)若∀t ∈[3,5],∃x i ∈[3,5](i=1,2)且x 1≠x 2,使f (x i )=g (t ),求实数a 的取值范围.【解答】解:(1)当a=8时,f (x )=x|2x-a|=−2x 2+8x ,x <4;或 2x 2−8x ,x ≥4, ∴函数f (x )在[3,4]上递减,在[4,5]上递增,∵f (3)=6,f (4)=0,f (5)=10,∴f (x )在区间[3,5]上的值域为[0,10];(2)f (x )=x|2x-a|= -2(x-4a )2+82a ,x <2a ;2(x-4a )2−82a ,x ≥2a∵a >0,∴f (x )在(-∞,4a ]上递增,在[4a ,2a ]上递减,在[2a,+∞)上递增, ∴3<2a <5或3<4a<5,∴6<a <10或12<a <20. ①6<a <10时,函数在[3,2a ]上递减,在[2a ,5]上递增,g (x )=12--x a x 在[3,5]上递增,由题意得∀t ∈[3,5],关于x 的方程f (x )=g (t )在[3,5]上至少有两个不同的解等价于 g (3),g (5)]⊆(f (2a),min{f (3),f (5)}, 即g (3)>f(2a), g (5)≤f (3),(9-a)/2>0,(25-a)/4≤3(a −6),(25-a)/4≤5(10−a),,解得97/13≤a <9; ②12<a <20时,g (3)=(9-a)/2<0,而x ∈[3,5],f (x )≥0,方程f (x )=g (3)无解. 综上,实数a 的取值范围为97/13≤a <9.。
2015~2016学年高二第二学期期末调研测试数学(理)试题(含附加题)带答案

2015~2016学年高二期末调研测试数 学(理科) 2016.06参考公式:圆锥侧面积公式:S rl p =,其中r 是圆锥底面半径,l 是圆锥母线长.数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡相应位置.....上..1.命题“∀x ≥1,x 2≥1”的否定是 ▲ .2.已知复数2(34i)5iz +=(i 为虚数单位),则|z|= ▲ .3.四位男生一位女生站成一排,女生站中间的排法共有 ▲ 种.(用数字作答)4.双曲线2221(0)3x y a a -=>的离心率为2,则a = ▲ .5.“a =1”是“直线l 1:ax +y +1=0,l 2:(a +2)x -3y -2=0垂直”的 ▲ 条件. (填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)6.已知函数()e 2xf x x =+(e 是自然对数的底)在点(0,1)处的切线方程为 ▲ .7.设某批产品合格率为23,不合格率为13,现对该批产品进行测试,设第X 次首次测到正品,则P (X=3)= ▲ .8.若圆C 过两点(0,4),(4,6)A B ,且圆心C 在直线x -2y -2=0上,则圆C 的标准方程 为 ▲ . 9.若65()(1)(1)f x x x =+--的展开式为260126()f x a a x a x a x =++++,则125a a a +++的值为 ▲ .(用数字作答) 10.从0,1,2,3组成没有重复数字的三位数中任取一个数,恰好是偶数的概率为 ▲ . 11.已知点A (-3,-2)在抛物线C :x 2=2py 的准线上,过点A 的直线与抛物线C 在第二象限相切于点B ,记抛物线C 的焦点为F ,则直线BF 的斜率为 ▲ .12.假定某篮球运动员每次投篮命中率均为p (0<p <1).现有4次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是58,则p 的值为 ▲ . 13.若函数2()2e 3x f x a x =-+(a 为常数,e 是自然对数的底)恰有两个极值点,则实数a 的取值范围为 ▲ . 14.若实数a ,b满足a =a 的最大值是 ▲ .二、解答题:本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.(1)从中取1个小球,求取到白球的概率;(2)从中取2个小球,记取到白球的个数为X ,求X 的概率分布和数学期望. 16.(本小题满分14分)正方体ABCD -A 1B 1C 1D 1中,点F 为A 1D 的中点.(1)求证:A 1B ∥平面AFC ;(2)求证:平面A 1B 1CD ⊥平面AFC .17.(本小题满分14分)如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已第16题图知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y 百元.(1)按下列要求写出函数关系式:①设OO 1h =(米),将y 表示成h 的函数关系式; ②设∠SDO 1q =(rad),将y 表示成θ的函数关系式;(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.18.(本小题满分16分)在直三棱柱111ABC A B C -中,90BAC ∠=︒,12AB AC AA ===,,E F 分别是11,BC A C 的中点.(1)求直线EF 与平面ABC 所成角的正弦值;(2)设D 是边11B C 上的动点,当直线BD 与EF 所成角最小时,求线段BD 的长.19.(本小题满分16分)如图,已知椭圆M :22221(0)x y a b a b+=>>的离心率为2,且过点(2,1)P .第18题图 第17题图(1)求椭圆M 的标准方程;(2)设点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,直线OA ,OB 的斜率分别为12,k k ,且1214k k =-. ①求2212x x +的值;②设点B 关于x 轴的对称点为C ,试求直线 AC 的斜率.20.(本小题满分16分)已知函数()e x f x cx c =--(c 为常数,e 是自然对数的底),()f x '是函数()y f x =的导函数.(1)求()f x 的单调区间; (2)当1c >时,试证明:①对任意的0x >,(ln )(ln )f c x f c x +>-恒成立; ②函数()y f x =有两个相异的零点.第19题图2015~2016学年苏州市高二期末调研测试数 学(理科) 2016.06数学Ⅱ试题注意事项:1.答题前务必要将选做题的前面标记框涂黑,以表示选做该题,不涂作无效答题. 2.请在答题卷上答题,在本试卷上答题无效.请从以下4组题中选做2组题,如果多做,则按所做的前两组题记分.每小题10分,共40分. A 组(选修4-1:几何证明选讲)A 1.如图,在△ABC 中,AB AC =,△ABC 的外接圆为⊙O ,D 是劣弧AC 上的一点,弦AD ,BC 的延长线交于点E ,连结BD 并延长到点F ,连结CD . (1)求证:DE 平分CDF Ð; (2)求证:2AB AD AE =?.A 2.设AD ,CF 是△ABC 的两条高,AD ,CF 交于点H , AD 的延长线交△ABC 的外接圆⊙O 于点G ,AE 是 ⊙O 的直径,求证:(1)AB AC AD AE ??; (2)DG DH =.B 组(选修4-2:矩阵与变换)B 1.已知矩阵A =2143⎡⎤⎢⎥⎣⎦,B =1101⎡⎤⎢⎥-⎣⎦.(1)求A 的逆矩阵A -1;(2)求矩阵C ,使得AC =B .B 2.已知矩阵A =111a -⎡⎤⎢⎥⎣⎦,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.C 组(选修4-4:坐标系与参数方程)C 1.在直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线1C 的极坐标方程为3)4pr q =-,曲线2C 的参数方程为8cos ,3sin x y q q ì=ïïíï=ïî(θ为参数).(1)将曲线1C 的极坐标方程化为直角坐标方程,将曲线2C 的参数方程化为普通方程;(2)若P 为曲线2C 上的动点,求点P 到直线:l 32,(2x t t y t ì=+ïïíï=-+ïî为参数)的距离的最大值.C 2.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数);在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线l :y kx =(0)x ≥与曲线1C ,2C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求OA OB ⋅的取值范围.D 组(选修4-5:不等式选讲)D 1.已知关于x 的不等式111ax a x ≥-+-(0a >). (1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.D 2.已知a ,b ,c 均为正数,求证:(1)114a b a b ++≥;(2)111111222a b c a b b c c a +++++++≥.2015~2016学年高二期末调研测试理科数学参考答案一、填空题1.∃x ≥1,x 2<1 2.5 3.24 4.1 5.充分不必要 6.310x y -+= 7.2278.22(4)(1)25x y -+-= 9.61 10.59 11.34- 12.1213.1(0,)e14.20 二、解答题15.解:(1)记从中取一个小球,取到白球为事件A ,………………………………2分1216C 1()3C P A ==.………………………………………………………………4分所以中取一个小球,取到白球的概率13.……………………………………5分(2)X 的取值为0,1,2 .…………………………………………………6分2426C 2(0)5C P X ===,112426C C 8(1)15C P X ===,2226C 1(2)15C P X === 所以………………………………………………………………12分数学期望2812()012515153E X =⨯+⨯+⨯=.……………………………………14分16.证明:(1)连接BD 交AC 于点O ,连接FO ,则点O 是BD 的中点.∵点F 为A 1D 的中点,∴A 1B ∥FO . ………………………3分 又1A B ⊄平面AFC ,FO ⊂平面AFC ,A 1B ∥平面AFC . …………………………7分(2)在正方体ABCD -A 1B 1C 1D 1中,∵CD ⊥平面A 1ADD 1,AF ⊂平面A 1ADD 1,∴CD ⊥AF . …………………………10分 又∵AF ⊥A 1D ,∴AF ⊥平面A 1B 1CD . ………………………12分 又AF ⊂面AFC ,∴平面A 1B 1CD ⊥平面AFC . ………………………14分17.解:(1)① S 圆柱侧=2πrh =8πh ,S 圆锥侧=πrl=4 ……………………2分y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+16πh+16 = 32π+16(h p ,(48h ≤<);………………………4分 (注:定义域不写扣1分) ② 4=cos SD θ,=84tan h θ-. y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+24(84tan )2θ⨯⨯-⨯p +444cos p θ⨯⨯⨯=32π+64(2tan )p θ-+64cos p θ=160π+64π1sin cos θθ-(04p≤θ<). ………………………6分(注:定义域不写扣1分) (2)选方案①由(1)知y =32π+16(h p ,(48h ≤<).BCOADB 1C 1D 1A 1F设8h t -=,则y = 32π+16(8t p -=32π+16(8p , …………9分y =32π+16(8p 在(04],上单调递减,………………………11分所以,当4t =时,y 取到最小值(96p +.………………………13分选方案②由(1)知y=160π+64π1sin cos θθ-(04p≤θ<), 设1sin ()cos θϕθθ-=,2sin 1'()cos θϕθθ-=,………………………8分因为,04p≤θ<,所以,'()0ϕθ<, 所以,()ϕθ在(0,]4p上单调递减,………………………11分所以,当4pθ=时,y 取到最小值(96p +. ………………………13分答:制作该存储设备总费用的最小值为(96p +百元. ……………………14分18.解:如图所示,以{1,,AB AC AA }为正交基底建立空间直角坐标系A xyz -.则1(2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,2)B C A E F ,(1)所以(1,0,2)EF =-,………………………2分平面ABC 的一个法向量为1(0,0,2)AA =,………………………4分设直线EF 与平面ABC 所成角为α,则1sin cos ,|α=|EF AA <>=11||2||||EF AA EF AA ⋅=⋅. ………………………7分(2)法一 因为D 在11B C 上,设(,2,2)D x x -,(2,2,2)BD x x =-- 所以|||1B DBBD⋅<>==, 设6t x =-因为[0,2],x ∈所以[4,6]t ∈, |c o s ,8)B D E F <>==.当129t =即9[4,6]2t =∈时取等号. …………………………12分此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小. 此时32x =.…………………………14分所以11(,,2)22BD =-,所以232()22BD ==. ………………………16分 法二 设111(2,2,0)B D λB C λλ==-,11(2,2,2)BD BB B D λλ=+=-,其中01λ≤≤,(第18题图)|||c o s ,|||||1B D E F B D E F B D E F ⋅<>==…………………………………9分设2[2,3]λt +=∈ |co s ,BD EF<>==. …………………………12分当9[2,3]4t =∈时取等号,此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小.所以124λ=t -=,所以11(2,2,2)(,,2)22BD λλ=-=-,BD ==.……………………………………………16分19.解(1)由题意c a =,所以2222222314c a b b a a a -==-=,即224a b =, 所以椭圆M 的方程为22244x y b +=,………………………2分又因为椭圆M 过点(2,1)P ,所以2444b +=,即222,8b a ==.所以所求椭圆M 的标准方程为22182x y +=.………………………4分(2)①设直线OA 的方程为1y k x =,2211,82,x y y k x ⎧+=⎪⎨⎪=⎩ 化简得221(14)8k x +=,解得2121814x k =+,………………………6分 因为1214k k =-,故2114k k =-,同理可得222112222211218163288114164141416k k x k k k k ⨯====++++⨯,………………………8分所以22221112222111328(14)88141414k k x x k k k ++=+==+++.………………………10分②由题意,点B 关于x 轴的对称点为C 的坐标为22(,)x y -, 又点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,所以2222112248,48y x y x =-=-,故222212124()16()1688y y x x +=-+=-=,即22122y y +=.………………………12分设直线AC 的斜率为k ,则1212y y k x x +=-, 因为1214k k =-,即121214y y x x =-,故12124x x y y =-,所以222121212122212121212222221282884y y y y y y y y k x x x x x x y y ++++====+--+, ………………………15分 所以直线AC 的斜率为k 为常数,即12k =或12k =-. ………………………16分20.解:(1)()e x f x c '=-,若0c ≤,则()e 0x f x c '=->恒成立,此时函数()f x 的增区间为(,)-??; …………………………2分若0c >,令()0f x '=,得ln x c =,…………………………3分…………………………5分 (2)①令()(ln )(ln )(e e )2x x g x f c x f c x c cx -=+--=--. ………………………6分则()(e e )2220x x g x c c c c ≥-'=+--=,且()0g x '=仅在0x =时成立,所以()g x 在R上单调递增.……………8分所以当0x >时,()(0)0g x g >=,即(l n f c x f c x +>-. …………………9分②因为1c >,所以(ln )f c =ln 0c c -<. ………………………………………11分而1(1)e 0f --=>,所以(ln )(1)0f c f ⋅-<,所以()f x 在(1,ln )c -内存在一个零点,……………………………13分取2(2ln 1)e 2ln 2(e 2ln 2)f c c c c c c c c +=--=--(1c >), 设()e 2ln 2c c c ϕ=--(1c >),2()e 0c cϕ'=->, 所以()c ϕ在(1,)+∞上单调递增,所以()(1)e 20c ϕϕ>=->. 从而(2ln 1)()0f c c c ϕ+=⋅>,所以(l n )(2l n f c f c ⋅+<,所以()f x 在(ln ,2ln 1)c c +内存在一个零点. ……………16分(注:也可以取(2)f c 等.)19题第2问另解:(2)111y k x =, 222y k x =,由1214k k =-得12124x x y y =-①, 1122(,),(,)A x y B x y 在椭圆22182x y +=上,所以有22112(1)8x y =-、22222(1)8x y =-, 222222212121212()4(1)(1)4(1)88864x x x x x x y y +⋅∴=--=-+②,①代入②得22128x x +=.2015~2016学年苏州市高二期末调研测试理科数学(附加题)参考答案A 组(选修4-1:几何证明选讲)A1 证明:(1)因为四边形ABCD 内接于圆O , 所以∠CDE =∠ABC .…………………………2分由AB =AC 得∠ACB =∠ABC . 所以∠CDE =∠ACB .又∠ACB与∠ADB是同弧所以的圆周角;所以∠ACB=∠ADB.所以∠CDE=∠ADB. (4)分又∠ADB=∠FDE,所以∠CDE=∠FDE,即DE平分CDFÐ.…………………………5分(2)由(1)∠ADB=∠ACB=∠ABC,在△ABD和△AEB中,因为∠ADB=∠ABC,∠BAD=∠EAB,所以△ABD∽△AEB,…………………………8分所以AB AEAD AB=,即2AB AD AE=?.…………………………10分A2 证明:(1)连结BE,因为∠E,∠ACB是同弧所对的圆周角,所以∠E=∠ACB,…………………………2分又AE是圆O的直径,所以∠ABE=π2,…………………………3分在Rt△ABE和Rt△ADC中,∠E=∠ACB,∠ABE=∠AD C=π2,所以Rt△ABE∽Rt△ADC,…………………………4分所以AB AEAD AC=,即AB AC AD AE??.…………………………5分(2)连结CG,则∠CGD=∠ABC,…………………………6分在四边形BDHF中,因为∠BDH=∠BFH=π2,∠AHF是四边形BDHF的一个外角,所以∠ABC=∠AHF,又∠AHF=∠CHD,所以∠CHD=∠CGD.…………………………7分所以Rt△CDH≌Rt△CDG,…………………………9分又CD =CD , 所以DH =DG .…………………………10分B 组(选修4-2:矩阵与变换)B1解(1)因为|A |=2×3-1×4=2,…………………………2分所以A -1=31224222⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦=312221⎡⎤-⎢⎥⎢⎥-⎣⎦. (5)分(2)由AC =B 得(A -1A )C =A -1B ,…………………………7分故C =A -1B =312221⎡⎤-⎢⎥⎢⎥-⎣⎦1101⎡⎤⎢⎥-⎣⎦=32223⎡⎤⎢⎥⎢⎥--⎣⎦.…………………………10分B2解:(1)由题意得111a -⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=03⎡⎤⎢⎥-⎣⎦,…………………………2分所以a +1=-3,所以a =-4.…………………………5分(2)由(1)知A =1141-⎡⎤⎢⎥-⎣⎦,令f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=(λ-1)2-4=0. (3)分解得A 的特征值为λ=-1或3.…………………………6分当λ=-1时,由20,420x y x y -+=⎧⎨-=⎩得矩阵A 的属于特征值-1的一个特征向量为12⎡⎤⎢⎥⎣⎦,…………………………8分当λ=3时,由20,420x y x y +=⎧⎨+=⎩得矩阵A 的属于特征值3的一个特征向量为12⎡⎤⎢⎥-⎣⎦.…………………………10分C 组(选修4-4:坐标系与参数方程)C1解:(1)由3()4pr q =-,得8c o s 8s i n r q q =-+,………………2分所以28cos 8sin r r q r q =-+,…………………………3分故曲线1C 的直角坐标方程为2288x y x y +=-+,即22(4)(4)32x y ++-=, 由8cos ,3sin x y q qì=ïïíï=ïî消去参数q得2C 的普通方程为221649x y +=. …………………………5分 (2)设(8c o s ,3s i n )P q q ,直线l 的普通方程为270x y --=, ………………………6分故点P 到直线l 的距离为)7d q j =+-(其中43cos ,sin 55j j ==), …………………………8分因此m a x 155d =,故点P 到直线l 的距离的最大值为5.………………………10分C2 (1)由1cos ,sin ,x y αα=+⎧⎨=⎩得22(1)1x y -+=,即2220x y x +-=, …………………1分所以1C 的极坐标方程为2cos ρθ=. …………………………3分由2cos sin ρθθ=得22cos sin ρθρθ=,所以曲线2C 的直角坐标方程为2x y =.…………………………5分(2)设射线l :y kx =(0)x ≥的倾斜角为α,则射线的极坐标方程为θα=,且tan k α=∈,联立2cos ,ρθθα=⎧⎨=⎩得12cos OA ρα==,…………………………7分联立2cos sin ,ρθθθα⎧=⎨=⎩得22sin cos OB αρα==,…………………………9分所以122sin 2cos 2tan 2cos OA OB k αρρααα⋅=⋅=⋅==∈, ………………10分D 组(选修4-5:不等式选讲)D1 解:(1)当1a=时,原不等式为211x ≥-,……………………………2分所以112x -≥或112x --≤, 故不等式解集为13{|}22x x x ≤或≥.……………………………5分(2)因为0a >,所以原不等式可转化为111x x a a≥-+-, 因为1111x x a a-+--≥,……………………………8分所以只需111a a≥-, 解得2a ≥.……………………………10分D2 证明:(1)因为11()224b a a b a b a b 骣琪+?=+++琪桫≥,………………………3分所以114a b a b++≥.……………………………4分当且仅当b aa b=时,取“=”,即a b=时取“=”.……………………………5分(2)由(1)11144a b a b++≥,11144b c b c++≥,11144c a c a++≥,……………………8分三式相加得:111111 222a b c a b b c c a+++++++≥,……………………………9分当且仅当a b c==时取“=”.……………………………10分。
2015-2016学年北京市西城区高二(下)期末数学试卷及答案(理科)

2015-2016学年北京市西城区高二(下)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.(5分)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)在(x+2)4的展开式中,x2的系数为()A.24B.12C.6D.43.(5分)已知函数f(x)=ln2x,则f′(x)=()A.B.C.D.4.(5分)将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为()A.B.C.D.5.(5分)函数f(x)=﹣x2+lnx的极值点是()A.x=﹣1B.x=﹣C.x=1D.x=6.(5分)5名大学生被分配到4个地区支教,每个地区至少分配1人,其中甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为()A.120B.144C.216D.2407.(5分)设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为()A.252或253B.253或254C.254或255D.267或268 8.(5分)已知函数f(x)=e x+ax﹣2,其中a∈R,若对于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)﹣x1•f(x2)<a(x1﹣x2)成立,则a的取值范围是()A.[1,+∞)B.[2,+∞)C.(﹣∞,1]D.(﹣∞,2]二、填空题:本大题共6个小题,每小题5分.、共30分.9.(5分)函数f(x)=cos x,则f′()=.10.(5分)定积分dx的值为.11.(5分)设(2x+1)3=a3x3+a2x2+a1x+a0,则a0+a1+a2+a3=.12.(5分)由数字1,2组成的三位数的个数是(用数字作答).13.(5分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则.”14.(5分)研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为;②函数g(x)=(x>0)的最大值为.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15.(13分)在数列{a n}中,a1=1,a n=n•a n﹣1,n=2,3,4,….(Ⅰ)计算a2,a3,a4,a5的值;(Ⅱ)根据计算结果,猜想{a n}的通项公式,并用数学归纳法加以证明.16.(13分)已知函数f(x)=x3+3x2﹣9x;(1)求f(x)的单调区间;(2)若函数f(x)在区间[﹣4,c]上的最小值为﹣5,求c的取值范围.17.(13分)甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.18.(13分)口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.19.(14分)已知函数f(x)=x2e x﹣b,其中b∈R.(Ⅰ)证明:对于任意x1,x2∈(﹣∞,0],都有f(x1)﹣f(x2)≤;(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).20.(14分)设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.2015-2016学年北京市西城区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.【考点】A5:复数的运算.【解答】解:z==,则在复平面内,复数z对应的点的坐标为:(,),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.【考点】DA:二项式定理.【解答】解:(x+2)4的展开式的通项公式为T r+1=C4r•24﹣r•x r,令r=2,故展开式中x2的系数为C42•22=24,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.3.【考点】63:导数的运算.【解答】解:∵f(x)=ln2x,∴f′(x)===,故选:D.【点评】本题主要考查函数的导数的计算,根据复合函数的导数公式是解决本题的关键.4.【考点】CC:列举法计算基本事件数及事件发生的概率.【解答】解:将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为:p==.故选:B.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.5.【考点】6D:利用导数研究函数的极值.【解答】解:由f(x)=﹣x2+lnx,得f′(x)=(x>0),当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.∴函数f(x)=﹣x2+lnx的极值点为x=1.故选:C.【点评】本题考查了利用导数研究函数的单调性、极值,关键是正确求出原函数的导函数,是基础题.6.【考点】D9:排列、组合及简单计数问题.【解答】解:5个人分成满足题意的4组只有1,1,1,2,即只有一个单位有2人,其余都是1人,故有C52A44=240种,其中甲乙两名同学分配在同一地区的方法为C41A33=24种,故甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为240﹣24=216种,故选:C.【点评】本题考查组合、排列的综合运用,解题时,注意加法原理与乘法原理的使用.7.【考点】BC:极差、方差与标准差.【解答】解:设=,则数据a,b,c的方差s2==≥[(a﹣b)2+(b﹣c)2+(a﹣c)2],设a=b+m,c=b+n,则s2≥[m2+n2+(m+n)2],取b=85,当m+n=0,﹣1,1时,s2有可能取得最小值,m=﹣16,n=15时,s2取得最小值=.取b=84,当m+n=0,﹣1,1时,s2有可能取得最小值,m=﹣15,n=16时,s2取得最小值=.∴a+b+c=79+85+90=254,或a+b+c=79+84+90=253.故选:B.【点评】本题考查了平均数、方差的有关计算,考查了推理能力与计算能力,属于中档题.8.【考点】6B:利用导数研究函数的单调性.【解答】解:∵对于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)﹣x1•f(x2)<a(x1﹣x2)成立,∴不等式等价为<成立,令h(x)=,则不等式等价为当x1<x2时,h(x1)<h(x2)恒成立,即函数h(x)在(1,+∞)上为增函数;h(x)=,则h′(x)=≥0在(1,+∞)上恒成立;∴xe x﹣e x+2﹣a≥0;即a﹣2≤xe x﹣e x恒成立,令g(x)=xe x﹣e x,∴g′(x)=xe x>0;∴g(x)在(1,+∞)上为增函数;∴g(x)>g(1)=0;∴2﹣a≥0;∴a≤2.∴a的取值范围是(﹣∞,2].故选:D.【点评】本题主要考查不等式恒成立问题,根据条件将不等式进行转化,多次构造函数,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.二、填空题:本大题共6个小题,每小题5分.、共30分.9.【考点】63:导数的运算.【解答】解:∵f(x)=cos x,∴f′(x)=﹣sin x,f′()=﹣sin =﹣,故答案为:﹣【点评】本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.10.【考点】67:定积分、微积分基本定理.【解答】解:dx=2x2dx=2×x3=.故答案为:.【点评】本题主要考查了定积分,运用微积分基本定理计算定积分的关键是找到被积函数的原函数,属于基础题.11.【考点】DA:二项式定理.【解答】解:令x=1,a0+a1+a2+a3=33=27,故答案为:27【点评】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.12.【考点】D9:排列、组合及简单计数问题.【解答】解:每一位置都有2种排法,故有23=8种,其中111,222,不合题意,故有8﹣2=6种故答案为:6【点评】本题考查了简单的排列问题,属于基础题.13.【考点】F3:类比推理.【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC2+S△ACD2+S△ADB2=S△BCD2.【点评】本题主要考查学生的知识量和知识的迁移类比等基本能力.14.【考点】6B:利用导数研究函数的单调性.【解答】解:①∵函数f(x)=,∴f′(x)=,f′(x)==0,x=e,f′(x)=,>0,x∈(0,e)f′(x)=<0,x∈(e,+∞)∴在(0,e)递增,(e,+∞)递减∴f(3)>f(5),∵f(2)﹣f(5)===>0∴f(2)>f(5)∵f(2)﹣f(3)==<0∴f(3)>f(2)故答案:f(5)<f(2)<f(3);②∵函数g(x)=(x>0),∴ln(g(x))=lnx(x>0)令h(x)=lnx(x>0),h′(x)=(1﹣lnx)=0,x=eh′(x)=(1﹣lnx)<0,x>eh′(x)=(1﹣lnx)>0,0<x<e∴h(x)=lnx(x>0),在(0,e)递增,在(e,+∞)递减,h(x)的极大值为h(e)=lne=,∴函数g(x)=(x>0)的最大值为,故答案为:【点评】本题综合考察了学生运用导数解决问题的能力,构造思想,不等式的运用,对数的运用,属于比较新颖的题目.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15.【考点】F1:归纳推理;RG:数学归纳法.【解答】解:(Ⅰ)a1=1,a n=n•a n﹣1,可得n=2时,a2=2;n=3时,a3=6;a4=24,a5=120(Ⅱ)猜想a n=n!.证明:①当n=1时,由已知,a1=1!=1,猜想成立.②假设当n=k(k∈N*)时猜想成立,即a k=k!.则n=k+1时,a k+1=(k+1)a k=(k+1)k!=(k+1)!.所以当n=k+1时,猜想也成立.根据①和②,可知猜想对于任何n∈N*都成立【点评】本题考查数列递推关系式以及通项公式的应用,数学归纳法的证明方法的应用,考查计算能力与逻辑推理能力.16.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【解答】解:(1)函数f(x)的定义域是R,f′(x)=3x2+6x﹣9,令f′(x)>0,解得:x>1或x<﹣3,令f′(x)<0,解得:﹣3<x<1,∴f(x)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增;(2)由f(﹣4)=20结合(1)得:c≥1时,函数f(x)在[﹣4,c]上的最小值是f(1)=﹣5,﹣4<c<1时,函数f(x)在区间[﹣4,c]上的最小值大于﹣5,故c的范围是[1,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.17.【考点】CC:列举法计算基本事件数及事件发生的概率;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【解答】解:(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,则P()=(1﹣)(1﹣)(1﹣)=,∴甲至少有一个科目考试成绩合格的概率:P(M)=1﹣P()=1﹣.(Ⅱ)由题意得X的可能取值为0,1,2,3,P(X=0)=(1﹣)(1﹣)(1﹣)=,P(X=1)=++(1﹣)×,P(X=3)=,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)=,∴X的分布列为:EX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.18.【考点】CB:古典概型及其概率计算公式.【解答】解:(Ⅰ)设“1次摸球中奖”为事件A,则P(A)==.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,∴3次摸球中,恰有1次中奖的概率为P3(1)==3×=.(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为:f(p)==3p3﹣6p2+3p,(0<p<1),∵f′(p)=9p2﹣12p+3=3(p﹣1)(3p﹣1),∴当p∈(0,)时,f(p)取得最大值,令=,解得n=2或n=1(舍),∴当f(p)取得最大值时,n的值为2.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.19.【考点】6B:利用导数研究函数的单调性.【解答】解:(Ⅰ)f(x)的定义域R,且f′(x)=x(x+2)e x,令f′(x)=0则x1=0,或x2=﹣2,f′(x)=x(x+2)e x,∴f(x)在区间(﹣∞,0]上的最大值为;f(﹣2)=﹣b,∵x∈(﹣∞,0],∴f(x)=x2e x﹣b≥﹣b,∴f(x)的最小值为:﹣b,∴对于任意x1,x2∈(﹣∞,0],都有f(x1)﹣f(x2)≤f(x)最大值﹣f(x)≤;(Ⅱ)f′(x)=x(x+2)e x,函数f(x)=x2e x﹣b,当b<0时,函数f(x)=x2e x﹣b>0恒成立,函数f(x)的零点个数为:0当b=0时,函数f(x)=x2e x,函数f(x)的零点个数为:1当b=时,函数f(x)的零点个数为;2,当0<b<时,函数f(x)的零点个数为:3,当b>时,函数f(x)的零点个数为:1,【点评】本题考查了综合解决函数零点问题,利用导数解决单调性,最值,分类讨论的思想.20.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【解答】解:(Ⅰ)设f(x)=e x,则f′(x)=e x,∴f′(0)=1,L的方程是y=x+1,令g(x)=f(x)﹣(x+1),则除切点之外,曲线C在直线L的上方等价于g(x)>0,(∀x∈R,x≠0),g(x)满足g(0)=0,且g′(x)=f′(x)﹣1=e x﹣1,当x<0时,g′(x)<0,故g(x)递减,当x>0时,g′(x)>0,故g(x)递增,∴g(x)>g(0)=0,∴除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)h(x)的定义域是{x|x>﹣1},且h′(x)=e x+﹣a,①a≤2时,由(Ⅰ)得:e x≥x+1,∴h′(x)=e x+﹣a≥x+1+﹣a≥2﹣a≥0,∴h(x)在[0,+∞)递增,∴h(x)≥h(0)=1恒成立,符合题意;②a>2时,由x∈[0,+∞),且h′(x)的导数h″(x)=≥0,∴h′(x)在区间[0,+∞)递增,∵h′(0)=2﹣a<0,h′(lna)=>0,于是存在x0∈(0,+∞),使得h′(x0)=0,∴h(x)在区间(0,x0)上递减,在区间(x0,+∞)递增,∴h(x0)<h(0)=1,此时,h(x)≥1不会恒成立,不合题意,综上,a的范围是(﹣∞,2].【点评】本题考查了曲线的切线方程,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.。
江苏省苏州市2015-2016学年高二(下)期末数学试卷(理科)(解析版)

2015-2016学年江苏省苏州市高二(下)期末数学试卷(理科)一、填空题(共14小题,每小题5分,满分70分)1.命题“∀x≥1,x2≥1”的否定为.2.已知复数z=(i为虚数单位),则|z|的值是.3.四位男生和一位女生站成一排,则女生站在中间的排法共有种.(用数字作答)4.若双曲线的离心率为2,则a等于.5.“a=1”是“直线l1:ax+y+1=0,l2:(a+2)x﹣3y﹣2=0垂直”的条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一)6.函数f(x)=e x+2x(e是自然对数的底数)的图象在点(0,1)处的切线方程是.7.设某批产品正品率为,次品率为,现对该批产品进行测试,设第X次首次测到正品,则P(X=3)的值是.8.求过两点A(0,4),B(4,6)且圆心在直线x﹣2y﹣2=0上的圆的标准方程.9.若f(x)=(x+1)6﹣(x﹣1)5的展开式为f(x)=a0+a1x+a2x2+…+a5x5+a6x6,则a1+a2+…+a5的值是(用数字作答).10.设由0,1,2,3组成的没有重复数字的三位数的集合为A,从A中任取一个数,则取到的数恰好为偶数的概率是.11.已知点A(﹣3,﹣2)在抛物线C:x2=2py的准线上,过点A的直线与抛物线C在第二象限相切于点B,记抛物线C的焦点为F,则直线BF的斜率是.12.假定某篮球运动员每次投篮命中率均为p(0<p<1),现有4次投篮机会,并规定连续两次投篮均不中即停止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是,则p的值是.13.若函数f(x)=2ae x﹣x2+3(a为常数,e是自然对数的底)恰有两个极值点,则实数a的取值范围是.14.若实数a,b满足a=+2,则a的最大值是.二、解答题15.一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.(1)从中取1个小球,求取到白球的概率;(2)从中取2个小球,记取到白球的个数为X,求X的概率分布和数学期望.16.正方体ABCD﹣A1B1C1D1中,点F为A1D的中点.(1)求证:A1B∥平面AFC;(2)求证:平面A1B1CD⊥平面AFC.17.如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y百元.(1)按下列要求写出函数关系式:①设OO1=h(米),将y表示成h的函数关系式;②设∠SDO1=θ(rad),将y表示成θ的函数关系式;(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.18.在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E、F分别是BC,A1C1的中点.(1)求直线EF与平面ABC所成角的正弦值;(2)设D是边B1C1上的动点,当直线BD与EF所成角最小时,求线段BD的长.19.如图,已知椭圆M: +=1(a>b>0)的离心率为,且经过过点P(2,1).(1)求椭圆M的标准方程;(2)设点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,直线OA,OB的斜率分别为k1,k2,且k1k2=﹣.①求x12+x22的值;②设点B关于x轴的对称点为C(点C,A不重合),试求直线AC的斜率.20.已知函数f(x)=e x﹣cx﹣c(c为常数,e是自然对数的底数),f′(x)是函数y=f(x)的导函数.(1)求函数f(x)的单调区间;(2)当c>1时,试求证:①对任意的x>0,不等式f(lnc+x)>f(lnc﹣x)恒成立;②函数y=f(x)有两个相异的零点.请从以下4组中选做2组作答,如果多做,则按作答的前两组题评分.A组[选修4-1:几何证明选讲] 21.如图,在△ABC中,AB=AC,△ABC的外接圆是⊙O,D是劣弧上的一点,弦AD,BC的延长线相交于点E,连结BD并延长到点F,连结CD.(1)求证:DE平分∠CDF;(2)求证:AB2=AD•AE.22.如图,AD,CF是△ABC的两条高,AD,CF相交于点H,AD的延长线与△ABC的外接圆⊙O相交于点G,AE是⊙O的直径.(1)求证:AB•AC=AD•AE;(2)求证:DG=DH.B组[选修4-2:矩阵与变换]23.已知矩阵A=,B=(1)求A的逆矩阵A﹣1;(2)求矩阵C,使得AC=B.24.已知矩阵,其中a∈R,若点P(1,1)在矩阵A的变换下得到点P′(0,﹣3),(1)求实数a的值;(2)求矩阵A的特征值及特征向量.C组[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8cos(θ﹣),曲线C2的参数方程为,(θ为参数).(1)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;(2)若P是曲线C2上的动点,求P到直线l:,(t为参数)的距离的最大值.26.选修4﹣4:坐标系与参数方程曲线C1的参数方程为(α为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率k∈(1,]时,求|OA|•|OB|的取值范围.D组[选修4-5:不等式选讲]27.已知关于x的不等式|ax﹣1|+a|x﹣1|≥1(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集是R,求正实数a的取值范围.28.已知a,b,c均为正实数,求证:(1)+≥;(2)++≥++.2015-2016学年江苏省苏州市高二(下)期末数学试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.命题“∀x≥1,x2≥1”的否定为∃x≥1,x2<1.【考点】命题的否定.【分析】全称命题的否定是特称命题,写出结果即可.【解答】解:由于全称命题的否定是特称命题,所以命题“∀x≥1,x2≥1”的否定为:∃x≥1,x2<1.故答案为:∃x≥1,x2<1.2.已知复数z=(i为虚数单位),则|z|的值是5.【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的计算公式求解.【解答】解:∵z===.∴|z|==5.故答案为:5.3.四位男生和一位女生站成一排,则女生站在中间的排法共有24种.(用数字作答)【考点】计数原理的应用.【分析】根据题意,分2步进行分析:1、先安排女生,易得其有1种排法;2、将4名男生全排列,安排在其他4个位置,由排列数公式可得学生的排法数目,由分步计数原理原理计算可得答案.【解答】解:根据题意,分2步进行分析:1、先安排女生,要求女生必须站在正中间,则其有1种排法;2、将4名男生全排列,安排在其他4个位置,有A44=24种排法;则不同的排法有1×24=24种;故答案为:24.4.若双曲线的离心率为2,则a等于1.【考点】双曲线的简单性质.【分析】先求出b2=3,再由离心率为,得到a的值.【解答】解:由=1可知虚轴b=,而离心率e=,解得a=1.故答案:1.5.“a=1”是“直线l1:ax+y+1=0,l2:(a+2)x﹣3y﹣2=0垂直”的充分不必要条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】先根据两直线垂直,求出a的值,即可判断.【解答】解:∵直线l1:ax+y+1=0和l2:(a+2)x﹣3y﹣2=0垂直,∴a(a+2)﹣3=0,解得a=﹣3,或a=1,故实数“a=1”是“直线l1:ax+y+1=0,l2:(a+2)x﹣3y﹣2=0垂直的充分不必要条件,故答案为:充分不必要.6.函数f(x)=e x+2x(e是自然对数的底数)的图象在点(0,1)处的切线方程是y=3x+1.【考点】利用导数研究曲线上某点切线方程.【分析】求得函数的导数,由导数的几何意义,可得切线的斜率,运用直线的斜截式方程,计算即可得到所求切线的方程.【解答】解:函数f(x)=e x+2x的导数为f′(x)=e x+2,可得f(x)的图象在点(0,1)处的切线斜率为k=e0+2=3,即有图象在点(0,1)处的切线方程为y=3x+1.故答案为:y=3x+1.7.设某批产品正品率为,次品率为,现对该批产品进行测试,设第X次首次测到正品,则P(X=3)的值是.【考点】相互独立事件的概率乘法公式.【分析】X=3是指第一次和第二次都测到次品,第三次测到正品,由此能求出P(X=3).【解答】解:∵某批产品正品率为,次品率为,现对该批产品进行测试,设第X次首次测到正品,∴X=3是指第一次和第二次都测到次品,第三次测到正品,∴P(X=3)==.故答案为:.8.求过两点A(0,4),B(4,6)且圆心在直线x﹣2y﹣2=0上的圆的标准方程(x﹣4)2+(y﹣1)2=25.【考点】圆的标准方程.【分析】由圆心在直线x﹣2y﹣2=0上,可设圆心坐标为(2b+2,b),再根据圆心到两点A(0,4)、B (4,6)的距离相等,求出b的值,可得圆心坐标和半径,从而求得圆的标准方程.【解答】解:由于圆心在直线x﹣2y﹣2=0上,可设圆心坐标为(2b+2,b),再根据圆过两点A(0,4),B(4,6),可得[(2b+2)﹣0]2+(b﹣4)2=[(2b+2)﹣4]2+(b﹣6)2,解得b=1,可得圆心为(4,1),半径为=5,故所求的圆的方程为(x﹣4)2+(y﹣1)2=25,故答案为:(x﹣4)2+(y﹣1)2=25.9.若f(x)=(x+1)6﹣(x﹣1)5的展开式为f(x)=a0+a1x+a2x2+…+a5x5+a6x6,则a1+a2+…+a5的值是61(用数字作答).【考点】二项式定理的应用.【分析】令x=0,求得a0,利用二项展开式的通项公式求得a6的值;令x=1可得a0+a1+a2+…+a5+a6=64,从而求得a1+a2+…+a5的值.【解答】解:∵f(x)=(x+1)6﹣(x﹣1)5的展开式为f(x)=a0+a1x+a2x2+…+a5x5+a6x6,令x=0,可得a0=2,再根据a6==1,则令x=1可得a0+a1+a2+…+a5+a6=64,∴a1+a2+…+a5=61,故答案为:61.10.设由0,1,2,3组成的没有重复数字的三位数的集合为A,从A中任取一个数,则取到的数恰好为偶数的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】数字0不能排在首位,末位是0时又是偶数,分情况讨论即可.【解答】解:由0,1,2,3组成的没有重复数字的三位数,0是一个比较特殊的数字,0在末位和0不在末位结果不同,0在末位时,共有=6中结果,0不在末位时,共有••=12种结果,故共有6+12=18种结果,设“取到的数恰好为偶数:为事件A,在所给的数字中,0是一个比较特殊的数字,0在末位和0不在末位结果不同,个位是0时,十位和百位从1,2,3这3个元素中选两个进行排列有A32=6种结果,当末位不是0时,个位只能是2,百位从1,3两个元素中选一个,十位从0和余下的元素中选1个根据分类计数原理知共有=4种结果,故偶数共有6+4=10中结果,∴P(A)==,故答案为:.11.已知点A(﹣3,﹣2)在抛物线C:x2=2py的准线上,过点A的直线与抛物线C在第二象限相切于点B,记抛物线C的焦点为F,则直线BF的斜率是.【考点】抛物线的简单性质.【分析】由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,设出切点B(m,)(m<0),对抛物线方程求导,可得切线的斜率,再由两点的斜率公式,解方程可得m,即有B的坐标,运用两点求斜率公式即可得到所求直线BF的斜率.【解答】解:∵点A(3,﹣2)在抛物线C:x2=2py的准线上,即准线方程为:y=﹣2,∴p>0,则﹣=﹣2,即p=4,∴抛物线C:x2=8y,即.设B(m,)(m<0),由y=的导数为y′=,可得切线的斜率为k=,即有,化为m2+6m﹣16=0,解得m=﹣8,或m=2(舍去),可得B(﹣8,8),又F(0,2),则直线BF的斜率是.故答案为:.12.假定某篮球运动员每次投篮命中率均为p(0<p<1),现有4次投篮机会,并规定连续两次投篮均不中即停止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是,则p的值是.【考点】n次独立重复试验中恰好发生k次的概率.【分析】由已知条件利用n次独立重复试验中事件A恰好发生k次的概率计算公式列出方程,由此能求出p的值.【解答】解:∵某篮球运动员每次投篮命中率均为p(0<p<1),现有4次投篮机会,并规定连续两次投篮均不中即停止投篮.该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是,∴﹣2p2(1﹣p)2+p(1﹣p)3=,解得p=.故答案为:.13.若函数f(x)=2ae x﹣x2+3(a为常数,e是自然对数的底)恰有两个极值点,则实数a的取值范围是(0,).【考点】利用导数研究函数的极值.【分析】函数恰有两个极值点,等价于其导函数f′(x)恰有两个零点,通过讨论a讨论函数的单调性,从而结合函数零点的判定定理确定实数a的取值范围.【解答】解:函数恰有两个极值点,等价于f′(x)=2ae x﹣2x恰有两个零点,①当a<0时,函数f(x)=2ae x﹣x2+3,函数f′(x)=2ae x﹣2x,令f′(x)=0,ae x=x,由函数图象可知,y=ae x和y=x仅有一个交点,∴f(x)=2ae x﹣x2+3仅有一个极值点;②当a=0时,f(x)=﹣x2+3,由二次函数图象可知,f(x)仅有一个极值点;③当a>0时,函数f(x)=2ae x﹣x2+3,函数f′(x)=2ae x﹣2x,令f′(x)=0,a=,设g(x)=,则g′(x)=,令g′(x)=0,解得x=1,当g′(x)>0,x<1,当g′(x)<0,x>1,g(x)在(﹣∞,1)单调递增,(1,+∞)单调递减;∴g(x)最大值为g(1)=,总上可知,实数a的取值范围是(0,).故答案为:(0,).14.若实数a,b满足a=+2,则a的最大值是20.【考点】根式与分数指数幂的互化及其化简运算.【分析】用换元法,设=x,=y,则x≥0,y≥0;求出b与a的解析式,由a=+2得出y与x的关系式,再根据其几何意义求出a的最大值.【解答】解:设=x,=y,且x≥0,y≥0;∴b=x2,4a﹣b=y2,即a==;∴a=+2可化为=y+2x,即(x﹣4)2+(y﹣2)2=20,其中x≥0,y≥0;又(x﹣4)2+(y﹣2)2=20表示以(4,2)为圆心,以2为半径的圆的一部分;∴a==表示圆上点到原点距离平方的,如图所示;∴a的最大值是×(2r)2=r2=20故答案为:20.二、解答题15.一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.(1)从中取1个小球,求取到白球的概率;(2)从中取2个小球,记取到白球的个数为X,求X的概率分布和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式.【分析】(1)先求出基本事件总数和其中取到白球包含的基本事件个数,由此能求出取到白球的概率.(2)由题意X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(1)一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.从中取1个小球,基本事件总数n=6,其中取到白球包含的基本事件个数m=2,∴取到白球的概率p==.(2)由题意X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PEX==.16.正方体ABCD﹣A1B1C1D1中,点F为A1D的中点.(1)求证:A1B∥平面AFC;(2)求证:平面A1B1CD⊥平面AFC.【考点】平面与平面垂直的判定;平面与平面平行的判定.【分析】(1)连接BD交AC于点O,连接FO,要证A1B∥平面AFC,只需证明直线A1B平行平面AFC 内的直线FO即可;(2)要证平面A1B1CD⊥平面AFC,只需证明平面A1B1CD内的直线B1D垂直平面AFC即可.【解答】证明:(1)连接BD交AC于点O,连接FO,则点O是BD的中点.∵点F为A1D的中点,∴A1B∥FO.又A1B∉平面AFC,FO⊂平面AFC,∴A1B∥平面AFC.(2)在正方体ABCD﹣A1B1C1D1中,连接B1D.∵AC⊥BD,AC⊥BB1,∴AC⊥平面B1BD,AC⊥B1D.又∵CD⊥平面A1ADD1,AF⊂平面A1ADD1,∴CD⊥AF.又∵AF⊥A1D,∴AF⊥平面A1B1CD.∵AC⊥B1D,∴B1D⊥平面AFC.而B1D⊂平面A1B1CD,∴平面A1B1CD⊥平面AFC.17.如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y百元.(1)按下列要求写出函数关系式:①设OO1=h(米),将y表示成h的函数关系式;②设∠SDO1=θ(rad),将y表示成θ的函数关系式;(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.【考点】不等式的实际应用. 【分析】(1)分别用h ,θ表示出圆锥的侧面积,圆柱的侧面积和底面积,得出y 关于h (或θ)的关系式;(2)求导数,判断函数的单调性,利用单调性求出最小值. 【解答】解:(1)①当OO 1=h 时,SO 1=8﹣h ,SC==,S 圆柱底=π×42=16π,S 圆柱侧=2π×4×h=8πh ,S 圆锥侧=π×4×.∴y=2(S 圆柱底+S 圆柱侧)+4S 圆锥侧=32π+16πh +16π(h ≥4).②若∠SDO 1=θ,则SO 1=4tan θ,SD=.∴OO 1=8﹣4tan θ. ∵OO 1≥4,∴0<tan θ≤1.∴0.∴S 圆柱底=π×42=16π,S 圆柱侧=2π×4×(8﹣4tan θ)=64π﹣32πtan θ,S 圆锥侧=π×4×=.∴y=2(S 圆柱底+S 圆柱侧)+4S 圆锥侧=32π+128π﹣64πtan θ+=160π+64π().(2)选用y=160π+64π(),则y ′(θ)=64π<0,∴y (θ)在(0,]上是减函数,∴当时.y 取得最小值y ()=160π+64π×=96π+64π.∴制作该存储设备总费用的最小值为96π+64π.18.在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=AA 1=2,E 、F 分别是BC ,A 1C 1的中点. (1)求直线EF 与平面ABC 所成角的正弦值;(2)设D 是边B 1C 1上的动点,当直线BD 与EF 所成角最小时,求线段BD 的长.【考点】直线与平面所成的角;点、线、面间的距离计算.【分析】(1)取AC的中点M,连结FM,EM.则可证FM⊥平面ABC,故而∠FEM为所求的角,(2)以A为原点建立空间直角坐标系,设=λ,求出和的坐标,计算cos<>得出cos<>关于λ的函数,求出|cos<>|取得最大值时对应的λ的值,得到的坐标,求出||.【解答】解:(1)取AC的中点M,连结FM,EM.∵F,M分别是A1C1,AC的中点,四边形ACC1A1是矩形,∴FM∥AA1,FM=AA1=2,∵AA1∥平面ABC,∴FM⊥平面ABC,∴∠FEM是EF与平面ABC所成的角.∵E,M分别是BC,AC的中点,∴EM==1.∴EF==.∴sin∠FEM==.∴直线EF与平面ABC所成角的正弦值为.(2)以A为原点,以AB,AC,AA1为坐标轴建立空间直角坐标系,如图所示:则B(2,0,0),E(1,1,0),F(0,1,2).B1(2,0,2),C1(0,2,2).∴=(﹣1,0,2),=(0,0,2),=(﹣2,2,0),设=λ=(﹣2λ,2λ,0),则=+=(﹣2λ,2λ,2).(0≤λ≤1)∴=2λ+4.∴cos<>===.∴当即λ=时,cos<>取得最大值,即直线BD与EF所成角最小.此时,=(﹣,,2),∴|BD|=||=.19.如图,已知椭圆M: +=1(a>b>0)的离心率为,且经过过点P(2,1).(1)求椭圆M的标准方程;(2)设点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,直线OA,OB的斜率分别为k1,k2,且k1k2=﹣.①求x12+x22的值;②设点B关于x轴的对称点为C(点C,A不重合),试求直线AC的斜率.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和P的坐标满足椭圆方程,结合a,b,c的关系,解方程可得椭圆方程;(2)①运用直线的斜率公式,可得k1k2==﹣,两边平方,再由点A,B的坐标满足椭圆方程,化简整理即可得到所求值;②由题意可得C(x2,﹣y2),运用椭圆方程可得y12+y22=,配方可得(y1+y2)2=(3+4y1y2),(x1﹣x2)2=6﹣2x1x2=6+8y1y2,再由直线的斜率公式,化简整理,即可得到所求值.【解答】解:(1)由题意可得e==, +=1,a2﹣b2=c2,解得a=,b=,可得椭圆标准方程为+=1;(2)①由题意可得k1k2==﹣,即为x12x22=16y12y22,又点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,可得4y12=6﹣x12,4y22=6﹣x22,即有x12x22=(6﹣x12)(6﹣x22),化简可得x12+x22=6;②由题意可得C(x2,﹣y2),由4y12=6﹣x12,4y22=6﹣x22,可得y12+y22==,由x12+x22=(x1﹣x2)2+2x1x2=6,可得(x1﹣x2)2=6﹣2x1x2,由y12+y22=(y1+y2)2﹣2y1y2=,可得(y1+y2)2=+2y1y2=(3+4y1y2),由=﹣,即x1x2=﹣4y1y2,可得(x1﹣x2)2=6﹣2x1x2=6+8y1y2,则直线AC的斜率为k AC==±=±.20.已知函数f(x)=e x﹣cx﹣c(c为常数,e是自然对数的底数),f′(x)是函数y=f(x)的导函数.(1)求函数f(x)的单调区间;(2)当c>1时,试求证:①对任意的x>0,不等式f(lnc+x)>f(lnc﹣x)恒成立;②函数y=f(x)有两个相异的零点.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求得f(x)的导数,讨论c的范围:当c≤0时,当c>0时,解不等式即可得到所求单调区间;(2)①作差可得,f(lnc+x)﹣f(lnc﹣x)=c(e x﹣e﹣x﹣2x),设g(x)=e x﹣e﹣x﹣2x,x>0,求出导数g′(x),运用基本不等式判断单调性,即可得证;②求出f(x)的导数,求得单调区间和极小值,且为最小值,判断小于0,即可得证.【解答】解:(1)函数f(x)=e x﹣cx﹣c的导数为f′(x)=e x﹣c,当c≤0时,f′(x)>0恒成立,可得f(x)的增区间为R;当c>0时,由f′(x)>0,可得x>lnc;由′(x)<0,可得x<lnc.可得f(x)的增区间为(lnc,+∞);减区间为(﹣∞,lnc);(2)证明:①f(lnc+x)﹣f(lnc﹣x)=e lnc+x﹣c(lnc+x)﹣c﹣e lnc﹣x+c(lnc﹣x)+c=c(e x﹣e﹣x﹣2x),设g(x)=e x﹣e﹣x﹣2x,x>0,g′(x)=e x+e﹣x﹣2,由x>0可得e x+e﹣x﹣2>2﹣2=0,即g′(x)>0,g(x)在(0,+∞)递增,可得g(x)>g(0)=0,又c>1,则c(e x﹣e﹣x﹣2x)>0,可得不等式f(lnc+x)>f(lnc﹣x)恒成立;②函数f(x)=e x﹣cx﹣c的导数为f′(x)=e x﹣c,c>1时,f(x)的增区间为(lnc,+∞);减区间为(﹣∞,lnc),可得x=lnc处f(x)取得极小值,且为最小值,由f(lnc)=e lnc﹣clnc﹣c=c﹣clnc﹣c=﹣clnc<0,可得f(x)=0有两个不等的实根.则函数y=f(x)有两个相异的零点.请从以下4组中选做2组作答,如果多做,则按作答的前两组题评分.A组[选修4-1:几何证明选讲] 21.如图,在△ABC中,AB=AC,△ABC的外接圆是⊙O,D是劣弧上的一点,弦AD,BC的延长线相交于点E,连结BD并延长到点F,连结CD.(1)求证:DE平分∠CDF;(2)求证:AB2=AD•AE.【考点】与圆有关的比例线段;弦切角.【分析】(1)推导出∠ABC=∠DEC,∠ABC=∠ADB,∠ADB=∠EDF,由此能证明DE平分∠CDF.(2)由∠ABE=∠ADB,∠BAD=∠BAE,得△ABD∽△ABE,由此能证明AB2=AD•AE.【解答】证明:(1)∵圆O是四边形ABCD的外接圆,∴∠ABC=∠DEC,∵AB=AC,∴∠ABC=∠ADB,∵∠ADB与∠EDF是对顶角,∴∠ADB=∠EDF,∴∠DEC=∠EDF,∴DE平分∠CDF.(2)∵∠ABE=∠ADB,∠BAD=∠BAE,∴△ABD∽△ABE,∴,∴AB2=AD•AE.22.如图,AD,CF是△ABC的两条高,AD,CF相交于点H,AD的延长线与△ABC的外接圆⊙O相交于点G,AE是⊙O的直径.(1)求证:AB•AC=AD•AE;(2)求证:DG=DH.【考点】与圆有关的比例线段.【分析】(1)连接CE,证明△ADB∽△ACE,即可证明AB•AC=AD•AE;(2)根据三角形高的定义得到∠BEC=90°,∠ADC=90°,根据等角的余角相等得到∠EBC=∠3,根据同弧或等弧所对的圆周角相等得到∠CBG=∠3,则∠EBC=∠CBG,然后根据等腰三角形三线合一即可得到结论.【解答】证明:(1)连接CE,∵AE是⊙O的直径,∴AC⊥CE,∵AD是△ABC的两条高,∴AD⊥BC,∵∠B=∠E,∴△ADB∽△ACE,∴,∴AB•AC=AD•AE;(2)连接BG,∵AD、BE、CF分别是△ABC三边的高,H是垂心,∴∠BEC=90°,∠ADC=90°,∴∠EBC+∠ECB=∠3+∠ACD,∴∠EBC=∠3,∵∠CBG=∠3,∴∠EBC=∠CBG,而BD⊥HG,∴BD平分HG,即DH=DG.B组[选修4-2:矩阵与变换]23.已知矩阵A=,B=(1)求A的逆矩阵A﹣1;(2)求矩阵C,使得AC=B.【考点】逆变换与逆矩阵.【分析】(1)求出矩阵的行列式,即可求A的逆矩阵A﹣1;(2)由AC=B得(A﹣1A)C=A﹣1B,即可求矩阵C,使得AC=B.【解答】解:(1)因为|A|=2×3﹣1×4=2,所以;(2)由AC=B得(A﹣1A)C=A﹣1B,故.24.已知矩阵,其中a∈R,若点P(1,1)在矩阵A的变换下得到点P′(0,﹣3),(1)求实数a的值;(2)求矩阵A的特征值及特征向量.【考点】特征值与特征向量的计算;二阶矩阵.【分析】(1)根据点P在矩阵A的变化下得到的点P′(0,﹣3),写出题目的关系式,列出关于a的等式,解方程即可.(2)写出矩阵的特征多项式,令多项式等于0,得到矩阵的特征值,对于两个特征值分别解二元一次方程,得到矩阵A的属于特征值﹣1的一个特征向量和矩阵A的属于特征值3的一个特征向量.【解答】解:(1)由=,得a+1=﹣3∴a=﹣4(2)由(1)知,则矩阵A的特征多项式为令f(λ)=0,得矩阵A的特征值为﹣1或3当λ=﹣1时二元一次方程∴矩阵A的属于特征值﹣1的一个特征向量为当λ=3时,二元一次方程∴矩阵A的属于特征值3的一个特征向量为.C组[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8cos(θ﹣),曲线C2的参数方程为,(θ为参数).(1)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;(2)若P是曲线C2上的动点,求P到直线l:,(t为参数)的距离的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)将极坐标方程展开,两边同乘ρ,根据极坐标与直角坐标的对应关系得出C1的直角坐标方程,根据同角三角函数的关系消元得出C2的普通方程;(2)求出直线l的普通方程,根据点到直线的距离公式得出P到直线l的距离d关于θ的函数,利用三角恒等变换得出d的最大值.【解答】解:(1)∵曲线C1的极坐标方程为ρ=8cos(θ﹣),∴ρ=8sinθ﹣8cosθ,∴ρ2=8ρsinθ﹣8ρcosθ,∴曲线C1的极坐标方程为x2+y2﹣8y+8x=0,即(x+4)2+(y﹣4)2=32.∵曲线C2的参数方程为,(θ为参数)∴曲线C2的普通方程为.(2)直线l的普通方程为x﹣2y﹣7=0.∴P(8cosθ,3sinθ)到直线l的距离d==.∴当cos(θ+φ)=﹣1时,d取得最大值=.∴P到直线l的最大距离为.26.选修4﹣4:坐标系与参数方程曲线C1的参数方程为(α为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率k∈(1,]时,求|OA|•|OB|的取值范围.【考点】参数方程化成普通方程.【分析】(1)先将C1的参数方程化为普通方程,再华为极坐标方程,将C2的极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;(2)求出l的参数方程,分别代入C1,C2的普通方程,根据参数的几何意义得出|OA|,|OB|,得到|OA|•|OB|关于k的函数,根据k的范围得出答案.【解答】解:(1)曲线C1的直角坐标方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,∴曲线C1的极坐标方程为ρ2﹣2ρcosθ=0,即ρ=2cosθ.∵曲线C2的极坐标方程为ρcos2θ=sinθ,即ρ2cos2θ=ρsinθ,∴曲线C2的直角坐标方程为x2=y.(2)设射线l的倾斜角为α,则射线l的参数方程为(t为参数,).把射线l的参数方程代入曲线C1的普通方程得:t2﹣2tcosα=0,解得t1=0,t2=2cosα.∴|OA|=|t2|=2cosα.把射线l的参数方程代入曲线C2的普通方程得:cos2αt2=tsinα,解得t1=0,t2=.∴|OB|=|t2|=.∴|OA|•|OB|=2cosα•=2tanα=2k.∵k∈(1,],∴2k∈(2,2].∴|OA|•|OB|的取值范围是(2,2].D组[选修4-5:不等式选讲]27.已知关于x的不等式|ax﹣1|+a|x﹣1|≥1(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集是R,求正实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=1时,可得2|x﹣1|≥1,即|x﹣1|≥,由此求得不等式的解集.(2)不等式|ax﹣1|+|ax﹣a|≥1解集为R,等价于|a﹣1|≥1,由此求得实数a的取值范围.【解答】解:(1)当a=1时,可得2|x﹣1|≥1,即|x﹣1|≥,解得x﹣1≥或x﹣1≤﹣,∴x≥或x≤﹣∴不等式的解集为(﹣∞,﹣]∪[,+∞).…(2)∵|ax﹣1|+|ax﹣a|≥|a﹣1|,不等式|ax﹣1|+|ax﹣a|≥1解集为R,等价于|a﹣1|≥1.解得a≥2,或a≤0.又∵a>0,∴a≥2.∴实数a的取值范围为[2,+∞).…28.已知a,b,c均为正实数,求证:(1)+≥;(2)++≥++.【考点】不等式的证明.【分析】(1)运用两个正数的均值不等式,可得a+b≥2, +≥2,相乘即可得证;(2)由(1)可得+≥;同理可得+≥; +≥.三式相加,整理即可得证.【解答】证明:(1)a,b均为正实数,可得a+b≥2,+≥2,相乘可得(a+b)(+)≥2•2=4,当且仅当a=b,取得等号.则+≥;(2)由(1)可得+≥;同理,由b,c为正实数,可得+≥;由c,a为正实数,可得+≥.相加可得,2(++)≥++,即有++≥++.2016年8月9日。
高二2015理科参考答案doc

2015年下学期高二理科数学参考答案一、选择题:本大题共12小题,每小题5分,共60分.1.已知{}n a 是等比数列,2512,4a a =-=,则公比q = A A .12- B .-2 C .2 D .12 2. 曲线34y x x =-在点(1,3)--处的切线方程是 DA .74y x =+B .4y x =-C .72y x =+D .2y x =-3. 由曲线2y x =,3y x =围成的封闭图形的面积为A A .112B 。
14C 。
13D 。
7124. 设两个实数变量,x y 满足约束条件0121x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩错误!未找到引用源。
则目标函数5z x y =+的最大值为 DA. 2 错误!未找到引用源。
B. 3 C. 4 D. 55. 已知12,F F 是椭圆221169x y +=的两个焦点,过点2F 的直线交椭圆于点 错误!未找到引用源。
,错误!未找到引用源。
,若 错误!未找到引用源。
,则 错误!未找到引用源。
的值为 CA. 9B. 10C. 11D. 166. 已知3()f x x ax =-在[)1,+∞上不是单调函数,则a 的取值范围是 CA .]3,(-∞B .(,3)-∞C .(3,)+∞D .),3[+∞7. 已知,,,a b c d 是实数,且a b >,则“c d >” 是“a c b d +>+” BA .必要非充分条件B .充分非必要条件C .充分必要条件D .非充分非必要条件8. 已知 错误!未找到引用源。
,错误!未找到引用源。
,,,,x a b y 成等差数列,错误!未找到引用源。
成等比数列,则2()a b cd+ 的最小值是 D A. 0 B. 1C. 2D. 4 9. 已知0a >,函数2()f x ax bx c =++。
0x 满足方程20ax b +=,则下列选项的命题中为假命题的是 CA. 0,()(x )x R f x f ∃∈≤ B 。
2015~2016学年度第二学期高二年级期末考试数学理科试卷

4.某中学从 4 名男生和 3 名女生中推荐 4 人参加某高校自主招生考试,若这 4 人中必须既 有男生又有女生,则不同的选法共有 ( A.14
5.某四面体的三视图如图所示.该四面 体的六条棱的长度中,最大的是( A. 2 5 B. 2 6 C. 2 7 )
9 1 , 2] (0, ] 4 2 9 2 C. ( , 2] (0, ] 4 3
A. (
11 1 , 2] (0, ] 4 2 11 2 D. ( , 2] (0, ] 4 3
B. (
第 II 卷(非选择题)
二、填空题(本大题共 5 小题,每小题 5 分,共 25 分) 11.某校开展“爱我海西、爱我家乡”摄影比赛,9 位评委为参赛作品 A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分 后,算得平均分为 91,复核员在复核时,发现有一个数字(茎叶图中的 x)无法看清,若 记分员计算无误,则数字 x 应该是__________. 12.花园小区内有一块三边长分别是 5 m,5 m,6 m 的三角形绿化地,有一只小花猫在其 内部玩耍,若不考虑猫的大小,则在任意指定的某时刻,小花猫与三角形三个顶点的距 离均超过 2 m 的概率是________. 13.某班级有一个 7 人小组,现任选其中 3 人相互调整座位,其余 4 人座位不变,则不同的 调整方案的种数为________. 14.已知 a b ,且 ab 1 ,则
19. (本小题满分 12 分) 某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级 800 名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的 有 60 人, 数学成绩优秀但物理不优秀的有 140 人, 物理成绩优秀但数学不优秀的有 100 人. (1)能否在犯错概率不超过 0.001 的前提下认为该校学生的数学成绩与物理成绩有关系? (2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取 3 名学生的成绩,记抽取的 3 个成绩中数学、物理两科成绩至少有一科优秀的次数为 X,