2014年高二数学第二次月考测试题

合集下载

2014—2015学年度第二学期教学质量检测高二数学试题(理)附答案

2014—2015学年度第二学期教学质量检测高二数学试题(理)附答案

2014—2015学年度第二学期教学质量检测高二数学试题(理)一、选择题(本大题共10小题,每小题5分,共50分)1. 复数23z i =-对应的点Z 在复平面的( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限2.函数2cos y x x =的导数为( ) A. 22cos sin y x x x x '=- B. 22cos sin y x x x x '=+ C. 2cos 2sin y x x x x '=-D. 2cos sin y x x x x '=-3.下列结论中正确的是( )A.导数为零的点一定是极值点B.如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值C.如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极小值D.如果在0x 附近的左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极大值 4. 把三张不同的游园票分给10个人中的3人,分法有( )A .A 310 种B .C 310 种 C .C 310A 310 种 D .30 种5.已知17,35,4a b c =+=+=则a ,b ,c 的大小关系为( )A .a b c >>B .c a b >>C .c b a >>D .b c a >> 6.若11(2)3ln 2ax dx x+=+⎰,则a 的值为( )A. 6B. 4C. 3D.27. 抛物线2y x bx c =++在点(1,2)处的切线与其平行直线0bx y c ++=间的距离是( ) A .24 B . 322 C . 22D .2 8.函数()f x 的导函数()f x '的图像如图所示,那么()f x 的图像最有可能的是( )9. 在用数学归纳法证明不等式)2(2413212111≥≥+++++n n n n 的过程中,当由k n =推到1+=k n 时,不等式左边应( ) A.增加了)1(21+k B.增加了221121+++k k C.增加了221121+++k k ,但减少了11+k D. 以上都不对 10.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有A .(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>二、填空题(本大题共5小题,每小题5分,共25分)11.设复数1z i =+,则复数22z z +的共轭复数为 . 12.曲线3cos (0)2y x x π=≤≤与x 轴以及直线32x π=所围成的面积为 . 13.平面几何中,边长为a 的正三角形内任一点到三边距离之和为定值32a ,类比上述命题,棱长为 a 的正四面体内任一点到四个面的距离之和为 .14.现有5名学生要插入某工厂的四个车间去实习,每个车间至多去2人有________种不同方法. 15.已知函数()ln x f x ae b x =+(,a b 为常数)的定义域为D ,关于函数,给出下列命题:①对于任意的正数a ,存在正数b ,使得对于任意的x D ∈,都有()0f x >; ②当0,0a b ><时,函数()f x 存在最小值; ③若0ab <,则()f x 一定存在极值点;④若0,ab ≠时,方程()()f x f x '=在区间(1,2)内有唯一解. 其中正确命题的序号是________.三、解答题:(本题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(本题满分12分)已知函数32()212181f x x x x =-++(1)求函数()f x 的单调区间 (2)求函数()f x 在[]1,4-上的最值.17.(本题满分12分)数列{}n a 满足1()1,n n n a a a n n N ++=-+∈(1)当12a =时,求234,,a a a ,并猜想出n a 的一个通项公式(不要求证) (2)若13a ≥,用数学归纳法证明:对任意的1,2,3n =,都有2n a n ≥+.18.(本题满分12分)已知函数()1xf x e x =--(e 是自然对数的底数)(1)求证:1xe x ≥+(2)若不等式()1f x ax >-在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正数a 的取值范围19.(本题满分12分)已知ABC ∆的三个内角C B A ,,成等差数列,求证:对应三边,,a b c 满足cb ac b b a ++=+++311把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列. (1)43251是这个数列的第几项? (2)这个数列的第96项是多少? (3)求这个数列的各项和.21.(本题满分14分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

数学-高二年级第二次月考数学试题

数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设点A(2,3,−4)在xOy平面上的射影为B,则|OB|等于( )A. 29B. 5C. 25D. 132.若直线l:x+my+1=0的倾斜角为5π6,则实数m值为( )A. 3B. −3C. 33D. −333.若双曲线x29−y211=1的右支上一点P到右焦点的距离为9,则P到左焦点的距离为( )A. 3B. 12C. 15D. 3或154.点P(x,y)是直线2x+y+4=0上的动点,PA,PB是圆C:x2+(y−1)2=1的两条切线,A,B是切点,则三角形PAB周长的最小值为( )A. 4+5B. 5+5C. 4+455D. 4+255.如图,在直三棱柱ABC−AB1C1中,AC=2,BC=3,CC1=4,∠ACB=90°,则BC1与A1C所成的角的余弦值为( )A. 3210B. 8210C. 30525D. 85256.“a=3”是“直线l1:(a−1)x+2y+1=0与直线l2:3x+ay−1=0平行”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.在平面直角坐标系xOy中,圆C的方程为x2+y2−4y+3=0,若直线y=kx−1上存在点P,使以P点为圆心,1为半径的圆与圆C有公共点,则实数k的取值范围是( )A. (−∞,−14]∪[14,+∞)B. (−∞,− 52]∪[ 52,+∞)C. (−∞,− 52)∪( 52,+∞)D. (−∞,−12]∪[12,+∞)8.已知曲线C :(x 2+y 2)2=9(x 2−y 2)是双纽线,则下列结论正确的是( )A. 曲线C 的图象不关于原点对称B. 曲线C 经过4个整点(横、纵坐标均为整数的点)C. 若直线y =kx 与曲线C 只有一个交点,则实数k 的取值范围为(−∞,−1]D. 曲线C 上任意一点到坐标原点O 的距离都不超过3二、多选题:本题共3小题,共18分。

2014年高二数学期末测试题

2014年高二数学期末测试题

高二数学期末测试题一、选择题 1 不等式21≥-xx 的解集为( ) A .)0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞2.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为( )A .2B .3C .4D .9 3.设p ∶22,x x q --<0∶12xx +-<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.函数y =ax 2+1的图象与直线y =x 相切,则a =( )A .18 B .41 C .21D .1 5命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真6.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .14 B .34C.4 D.37.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件8.已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy) ( )A .有最小值21,也有最大值1 B .有最小值43,也有最大值1 C .有最小值43,但无最大值 D .有最大值1,但无最小值 9.下列结论正确的是( )A .当2lg 1lg ,10≥+≠>xx x x 时且B .21,0≥+>x x x 时当C .x x x 1,2+≥时当的最小值为2D .当xx x 1,20-≤<时无最大值10.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 11.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在12.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( ) A .1 B .2 C .3 D .4 二、填空题13.设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为 。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

2014-2015学年度下学期第二次质量检测卷 高二数学(理)

2014-2015学年度下学期第二次质量检测卷 高二数学(理)

2014-2015学年度下学期第二次质量检测卷高二数学(理)注意事项:1.本试题共分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷共150分,时间120分钟。

2.第I 卷必须使用2B 铅笔填涂答题卡相应题目的答案标号,修改时,要用橡皮擦干净。

3.第II 卷必须使用0.5毫米的黑色墨水签字笔书写在答题纸的指定位置,在草稿纸和本卷上答题无效。

第I 卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.z 是z 的共轭复数,若2)(,2=-=+i z z z z (i 为虚数单位),则复数z 的虚部是( )A .i -B .iC .1D .1- 2.已知xf x f x x f x ∆-∆+=→∆)2()2(lim,1)(0则的值是( ) A . 41 B . 41- C . 2 D . ln 23.下面使用类比推理正确的是( ). A .“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =”B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C .“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D .“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 4.若二项式7)2(x a x +的展开式中31x的系数是84,则实数a = ( )A .2B .54C .1D .425.若离散型随机变量X 的分布列如图,则常数c 的值为( )X 0 1Pc c -29 c 83-A .3132或B .32C .31D .16.用反证法证明命题“设b a ,为实数,则方程03=-+b ax x ,至少有一个实根”时要做的假设是( )A .方程03=-+b ax x 没有实根B .方程03=-+b ax x 至多有一个实根C .方程03=-+b ax x 至多有两个实根D .方程03=-+b ax x 恰好有两个实根7.用数学归纳法证明“))(12(5312)()2)(1(*N n n n n n n n ∈-⨯⋅⋅⋅⨯⨯⨯⨯=+⋅⋅⋅++”时,从1+==k n k n 到,等式左边需要增乘的代数式是( ) A .12+k B .112++k k C .1)22)(12(+++k k k D .132++k k8.若⎰+=12)(2)(dx x f x x f ,则⎰10)(dx x f =( )A .1-B .31-C .31D . 19.某校计划组织高二年级四个班级开展研学旅行活动,初选了甲、乙、丙、丁四条不同的研学线路,每个班级只能在这四条线路中选择其中的一条,且同一条线路最多只能有两个班级选择,则不同的方案有( )A .240种B .204种C .188种D .96种 10.定义在R 上的函数)(x f 满足:'()()1,(0)5f x f x f +>=,则不等式x x e x f e +>4)(的解集为 ( )A .)0,(-∞B .),0()0,(+∞-∞C .),3()0,(+∞-∞D .),0(+∞第II 卷 非选择题 (共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11.把5件不同的产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有____________种(用数字作答).12.设6655443322106)12()12()12()12()12()12()23(-+-+-+-+-+-+=-x a x a x a x a x a x a a x 则=++531a a a ________________. 13.计算dx x ⎰-1024=______________.14.关于)5,4,3,2,1(=i x i 的方程)(10*54321N x x x x x x i ∈=++++的所有解的组数是__________.(用数字作答)15.已知函数()f x 的导函数()f x '的图象如图, 下列说法正确的是 (只填序号)①函数()f x 在1x =处取得极小值1- ; ②函数()f x 在0x =和1x =处取得极值;③函数()f x 在(,1)-∞上是单调递减函数,在(1,)+∞上是单调递增函数; ④函数()f x 在(,0)-∞和(2,)+∞上是单调递增函数,在(0,2)上是单调递减函数;⑤函数()f x 在0x =处取得极小值,在2x =处取得极大值.三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知复数(13i)(1i)(13i)z i-+--+=错误!未找到引用源。

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)

山东省菏泽市高二数学下学期第二次月考试卷文(探究部,含解析)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数Z=+i2015对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.某市电子认证审查流程图如图:则有几处审查可能不被通过的环节()A.1 B.2 C.3 D.03.李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A.3 B.4 C.5 D.64.不等式ax>b,(b≠0)的解集不可能是()A.∅B.R C.D.5.已知,则()A.p是q的充分而不必要条件B.p是q的必要而不充分条件C.p是q的充要条件D.p是q的既不充分也不必要条件6.根据以下样本数据x 1 2 3 4 y ﹣4 ﹣3.2 ﹣2.1 ﹣1 得到回归方程=bx+a,则下述说法正确的是()A.y与x负相关B.回归直线必经过点(2.5,﹣3)C.a<0,b<0 D.a<0,b>07.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.8 B.18 C.26 D.808.已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i9.复数z1=3+4i,z2=1+i,i为虚数单位,若z22=z•z1,则复数z=()A.﹣ +i B.﹣﹣i C. +i D.﹣i10.定义A﹡B,B﹡C,C﹡D,D﹡A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(5)、(6)所对应的运算结果可能是()A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D11.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则()A.k≥4或k≤﹣4 B.或C.D.12.在技术工程中,常用到双曲正弦函数和双曲余弦函数,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy﹣sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy ﹣shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是()A.sh(x+y)=shxchy+chxshy B.sh2x=2shxchxC.ch2x=2sh2x﹣1 D.ch2x+sh2x=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.观察下列图案,则第n个图案中有白色地面砖块.14.观察等式: =, =1,=照此规律,对于一般的角α,β,有等式.15.已知虚数z满足等式:,则z= .16.设Z1=i4+i5+i6+…+i12,Z2=i4•i5•i6•…•i12,则Z1,Z2关系为.三、解答题:本大题共4小题,满分48分,解答应写出文字说明、证明过程或演算步骤17.已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a•i)2在复平面内对应的点在第一象限,则实数a的取值范围为.18.已知a>0,求证:﹣≥a+.19.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):赞同反对合计男10 20 30女20 5 25合计30 25 55(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.下面的临界值表供参考:P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001k 2.760 3.841 5.024 60635 7.879 10.828 (参考公式:K2=,其中n=a+b+c+d)20.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义.(1)若输入,则由数列发生器产生数列{x n},写出数列{x n}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.(选做,二选一)[选修4-4:坐标系与参数方程]21.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]22.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.23.已知是定义[﹣1,1]在上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.2016-2017学年山东省菏泽市鄄城一中探究部高二(下)第二次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数Z=+i2015对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的出错运算法则,以及复数单位的幂运算,化简复数,推出对应点的坐标即可.【解答】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.2.某市电子认证审查流程图如图:则有几处审查可能不被通过的环节()A.1 B.2 C.3 D.0【考点】EI:流程图的作用.【分析】先运行循环体,看运行后运行的可能不被通过审查的环节就看判断框,从而得到不被通过审查的环节有多少处.【解答】解:从某市电子认证审查流程图看出,判断框有2个,可得在审查过程中可能不被通过审查的环节有2处,故选B3.李江同学在某商场运动品专柜买一件运动服,获100元的代金券一张,此代金券可以用于购买指定的价格分别为18元、30元、39元的3款运动袜,规定代金券必须一次性用完,且剩余额不能兑换成现金.李江同学不想再添现金,使代金券的利用率超过95%,不同的选择方式的种数是()A.3 B.4 C.5 D.6【考点】F4:进行简单的合情推理.【分析】设3款运动袜分别为x,y,z个,则18x+30y+39z>95,可得x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,即可得出结论.【解答】解:设3款运动袜分别为x,y,z个,则18x+30y+39z>95,x=0,y=2,z=1或x=1,y=0,z=2或x=2,y=2,z=0,故不同的选择方式的种数是3种,故选:A.4.不等式ax>b,(b≠0)的解集不可能是()A.∅B.R C.D.【考点】3U:一次函数的性质与图象.【分析】当a=0,b>0时,不等式ax>b,(b≠0)的解集是∅;当a=0,b<0时,不等式ax >b,(b≠0)的解集是R;当a>0时,不等式ax>b,(b≠0)的解集是();当a <0时,不等式ax>b,(b≠0)的解集是(﹣∞,).【解答】解:当a=0,b>0时,不等式ax>b,(b≠0)的解集是∅;当a=0,b<0时,不等式ax>b,(b≠0)的解集是R;当a>0时,不等式ax>b,(b≠0)的解集是();当a<0时,不等式ax>b,(b≠0)的解集是(﹣∞,).∴不等式ax>b,(b≠0)的解集不可能是(﹣∞,﹣).故选D.5.已知,则()A.p是q的充分而不必要条件B.p是q的必要而不充分条件C.p是q的充要条件D.p是q的既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】ab>0⇔≥2=2,即可判断出结论.【解答】解:ab>0⇔≥2=2,∴p是q的充要条件.故选:C.6.根据以下样本数据x 1 2 3 4y ﹣4 ﹣3.2 ﹣2.1 ﹣1得到回归方程=bx+a,则下述说法正确的是()A.y与x负相关B.回归直线必经过点(2.5,﹣3)C.a<0,b<0 D.a<0,b>0【考点】BK:线性回归方程.【分析】根据相关关系的定义及线性回归的性质,逐一分析四个答案的正误,可得结论.【解答】解:由已知中的数据,x增大时,y也呈现增大趋势,故y与x正相关,故A错误;由=2.5, =﹣2.575,可得回归直线必经过点(2.5,﹣2.575),故B错误;由A中分析可知b>0,故C错误,D正确,故选:D7.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.8 B.18 C.26 D.80【考点】EF:程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=2,n=2,不满足退出循环的条件;第二次执行循环体后,S=8,n=3,不满足退出循环的条件;第三次执行循环体后,S=26,n=4,满足退出循环的条件;故输出S值为26,故选:C8.已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i【考点】A5:复数代数形式的乘除运算.【分析】代入复数,利用复数的代数形式的乘除运算,求解即可.【解答】解:∵复数z1=1﹣i,z2=1+i,则====﹣2i.故选:B.9.复数z1=3+4i,z2=1+i,i为虚数单位,若z22=z•z1,则复数z=()A.﹣ +i B.﹣﹣i C. +i D.﹣i【考点】A7:复数代数形式的混合运算.【分析】设复数z=a+bi(a、b∈R),代入z22=z•z1,利用两个复数相等的充要条件解出a、b的值,从而求出复数z.【解答】解:设复数z=a+bi(a b∈R),∵z22 =z•z1,∴2i=(a+bi)(3+4i),∴2i=3a﹣4b+(3b+4a)i,∴3a﹣4b=0,3b+4a=2,∴a=,b=,故复数z=+i,故选 C.10.定义A﹡B,B﹡C,C﹡D,D﹡A的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(5)、(6)所对应的运算结果可能是()A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D【考点】F1:归纳推理.【分析】本题考查的是归纳推理的应用,方法是根据已知图象与运算的关系,进行必要的分析归纳,找出规律,猜想未知的图象与运算的关系.【解答】解:通过观察可知:A表示“|”,B表示“□”,C表示“﹣”,D表示“○”,图中的(5)、(6)所对应的运算结果可能是B*D,A*C故答案选B.11.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则()A.k≥4或k≤﹣4 B.或C.D.【考点】A7:复数代数形式的混合运算.【分析】关于x的方程x2+(k+2i)x+3+ki=0有实根,考虑到k是实数,用复数相等的条件可解本题.【解答】解:∵方程x2+(k+2i)x+3+ki=0有实根,不妨令x为实数,∴,消去x得,∴k=±2.故选:C.12.在技术工程中,常用到双曲正弦函数和双曲余弦函数,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy﹣sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy ﹣shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是()A.sh(x+y)=shxchy+chxshy B.sh2x=2shxchxC.ch2x=2sh2x﹣1 D.ch2x+sh2x=1【考点】F3:类比推理.【分析】由余弦的二倍角公式可知,ch2x=1﹣2sh2x,可得结论.【解答】解:类比关系式,得sh(x+y)=shxchy+chxshy,sh2x=2shxchx,ch2x+sh2x=1正确.由余弦的二倍角公式可知,ch2x=1﹣2sh2x,即C不正确;故选C.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.观察下列图案,则第n个图案中有白色地面砖4n+2 块.【考点】F1:归纳推理.【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【解答】解:第1个图案中有白色地面砖6块;第2个图案中有白色地面砖10块;第3个图案中有白色地面砖14块;…设第n个图案中有白色地面砖n块,用数列{a n}表示,则a1=6,a2=10,a3=14,可知a2﹣a1=a3﹣a2=4,…可知数列{a n}是以6为首项,4为公差的等差数列,∴a n=6+4(n﹣1)=4n+2.故答案为4n+2.14.观察等式: =, =1,=照此规律,对于一般的角α,β,有等式=tan.【考点】F1:归纳推理.【分析】由已知可得:等式左边的分式是两个角的正弦和,分母是两个角的余弦和,等式右边是两个角和的半角的正切值.【解答】解:∵ ==tan60°=tan()=1=tan45°=tan(),==tan30°=tan(),…∴对于一般的角α,β,有等式=tan,故答案为: =tan.15.已知虚数z满足等式:,则z= 1+2i .【考点】A3:复数相等的充要条件.【分析】设复数 z=a+bi (a、b∈R),根据两个复数相等的充要条件,待定系数法求出a、b的值,从而求出z.【解答】解:∵虚数z满足等式:,∴设复数 z=a+bi (a、b∈R),由题意得(2a+2bi)﹣(a﹣bi)=1+6i,a+3bi=1+6i,∴a=1,3b=6,∴a=1,b=2,∴z=1+2i,故答案为:1+2i.16.设Z1=i4+i5+i6+…+i12,Z2=i4•i5•i6•…•i12,则Z1,Z2关系为Z1=Z2.【考点】A1:虚数单位i及其性质.【分析】由虚数单位的性质分别计算可得结论.【解答】解:Z1=i4+i5+i6+…+i12=1+i﹣1﹣i+…+1=1,Z2=i4•i5•i6•…•i12=1×i×(﹣1)×(﹣i)…×1=(﹣1)2×1=1∴Z1=Z2,故答案为:Z1=Z2三、解答题:本大题共4小题,满分48分,解答应写出文字说明、证明过程或演算步骤17.已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a•i)2在复平面内对应的点在第一象限,则实数a的取值范围为{a|2<a<6} .【考点】A5:复数代数形式的乘除运算.【分析】设z=m+ni,由Z+2i=m+ni+2i是实数,求得n=﹣2, =为实数,求得m=4,故z=4﹣2i.所以(z+ai)2=(12﹣a2+4a)+(8a﹣16)i,再由复数(z+ai)2在复平面对应的点在第一象限,能求出实数a的取值范围.【解答】解:(1)设z=m+ni∵Z+2i=m+ni+2i是实数,∴n=﹣2, =为实数,∴m=4,∴z=4﹣2i,∴(z+ai)2=(4﹣2i+ai)2=16+8(a﹣2)i+(a﹣2)2i2=(12﹣a2+4a)+(8a﹣16)i,∵复数(z+ai)2在复平面对应的点在第一象限,∴,解得:2<a<6,∴实数a的取值范围是{a|2<a<6},故答案为:{a|2<a<6}.18.已知a>0,求证:﹣≥a+.【考点】R6:不等式的证明.【分析】根据分析法的证明步骤,即可证明结论.【解答】证明:要证﹣≥a+,只要证明+2≥a++.∵a>0,∴只要证明(+2)2≥(a++)2,只要证明2≥(a+),只要证明≥2,显然成立,∴﹣≥a+.19.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):赞同反对合计男10 20 30女20 5 25合计30 25 55(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.下面的临界值表供参考:P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001k 2.760 3.841 5.024 60635 7.879 10.828 (参考公式:K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(I)由题设知K2=≈11.978>7.879,由此得到结果;(Ⅱ)所抽样本中男士有=2,女士有4人,基本事件总数为=15个,满足恰有1名男士和1名女士的基本事件有2×4=8个,由此能求出事件“恰有1名男士和1名女士”的概率.【解答】解:(Ⅰ)K2=≈11.978>7.879,所以有99.5%以上的把握认为赞同“男女同龄退休”与性别有关;(Ⅱ)所抽样本中男士有=2,女士有4人,基本事件总数为=15个,满足恰有1名男士和1名女士的基本事件有2×4=8个,所以恰有1名男士和1名女士的概率为.20.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义.(1)若输入,则由数列发生器产生数列{x n},写出数列{x n}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.【考点】EF:程序框图.【分析】(1)利用f(x)=,x0=及工作原理,注意函数的定义域,直接可求得数列{x n}的只有三项;(2)要数列发生器产生一个无穷的常数列,则有f(x)==x,从而求出相应的初始数据x0的值;【解答】解:(1)∵函数f(x)的定义域D=(﹣∞,﹣1)∪(﹣1,+∞),∴数列{x n}只有3项,x x=,x2=,x3=﹣1.(2)令f(x)==x,即x2﹣3x+2=0,解得:x=2,或x=1,故当x0=2或x0=1时,x n+1==x n,所以,输入的初始数据x0=1时,得到常数列x n=1;x0=2时,得到常数列x n=2.(选做,二选一)[选修4-4:坐标系与参数方程]21.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.【考点】J1:圆的标准方程;J8:直线与圆相交的性质.【分析】(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴t=,代入y=tsinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,圆心到直线的距离d=.∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.[选修4-5:不等式选讲]22.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.【考点】R5:绝对值不等式的解法.【分析】(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,配方后,可证得结论.【解答】解:(I)当x<时,不等式f(x)<2可化为:﹣x﹣x﹣<2,解得:x>﹣1,∴﹣1<x<,当≤x≤时,不等式f(x)<2可化为:﹣x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:﹣ +x+x+<2,解得:x<1,∴<x<1,综上可得:M=(﹣1,1);证明:(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.23.已知是定义[﹣1,1]在上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.【考点】3R:函数恒成立问题;3N:奇偶性与单调性的综合.【分析】(1)根据题意,设﹣1≤x1<x2≤1,则有f(x1)﹣f(x2)=f(x1)+f(﹣x2)=(x1﹣x2),结合题意分析可得f(x1)﹣f(x2)的符号,由函数单调性的定义分析可得答案;(2)根据题意,由函数的单调性以及定义域可得,解可得x的取值范围,即可得答案;(3)根据题意,由函数的单调性可得f(x)≤t2﹣2at+1对任意x∈[﹣1,1],则有t2﹣2at+1≥1恒成立,即t2﹣2at≥0恒成立,令g(a)=t2﹣2at,分析有g(a)=t2﹣2at≥0在[﹣1,1]上恒成立,由一次函数的性质可得,解可得t的取值范围,即可得答案.【解答】解:(1)证明:根据题意,设﹣1≤x1<x2≤1,f(x1)﹣f(x2)=f(x1)+f(﹣x2)=(x1﹣x2),又由﹣1≤x1<x2≤1,则x1﹣x2<0,且>0,故有f(x1)﹣f(x2)<0,则函数f(x)在[﹣1,1]上是增函数;(2)由(1)可得,f(x)在[﹣1,1]上是增函数,若;则有,解可得﹣≤x<﹣1,故不等式的解集为{x|﹣≤x<﹣1},(3)由(1)可得,f(x)在[﹣1,1]上是增函数,且f(1)=1,则有对于任意x∈[﹣1,1],有f(x)≤f(1)=1,若f(x)≤t2﹣2at+1对任意x∈[﹣1,1],则有t2﹣2at+1≥1恒成立,即t2﹣2at≥0恒成立,其中a∈[﹣1,1],令g(a)=t2﹣2at,a∈[﹣1,1],若g(a)=t2﹣2at≥0在[﹣1,1]上恒成立,则有,即,解可得t≥2或t≤﹣2或t=0,故t的取值范围是t≥2或t≤﹣2或t=0.。

2014安徽阜南高二数学下第二次月考试卷含答案理科

2014安徽阜南高二数学下第二次月考试卷含答案理科

2014安徽阜南高二数学下第二次月考试卷(含答案理科)(120分钟 150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数23i32i+-等于( ) (A)-i (B)i (C)12-13i (D)12+13i2.若点P 在曲线y=x 3-x 上移动,则过P 点的切线的倾斜角的取值范围是( )(A)[0,π) (B)(0,2π)∪[34π,π) (C)[0,2π)∪(2π, 34π] (D)[0,2π)∪[34π,π)3..函数)(x f 在定义域R 内连续可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<4.若复数z 2+2=0,则z 3等于( )(A)±22 (B)2 (C)±22i (D)-22i 5.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围是( )(A)a ≥3 (B)a=3 (C)a ≤3 (D)0<a<3 6.复数(3-i)m-(1+i)对应的点在第三象限内,则实数m 的取值范围是( )(A)m >13 (B)-1<m <13 (C)13<m <1 (D)m <-1 7.利用数学归纳法证明不等式:()n1111f n 2321+++⋯+<-(n ≥2,n ∈N *)的过程,由n=k 到n=k+1时,左边增加了( )(A)1项 (B)k 项 (C)2k-1项 (D)2k项8.由曲线y=x 2,y=x 3围成的封闭图形的面积为( ) (A)112 (B)14 (C)13 (D)7129.已知函数f(x)=x m+ax 的导函数为f ′(x)=2x+1,则数列{()1f n }(n ∈N *)的前n 项和为( ) (A)n n 1- (B)n 1n + (C)n n 1+ (D)n 2n 1++ 10.已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题(本大题共5小题,每小题5分,共25分,请把正确的答案填在题中的横线上) 11.若等差数列{a n }的首项为a 1,公差为d ,前n 项和s n ,则数列{ns n }为等差数列,且通项为2)1(1dn na sn-+=,类似地,若各项均为正数的等比数列{b n }的首项为b 1,公比为q ,前n 项的积为T n ,则数列{nnT}为等比数列,通项为______________.12.用数学归纳法证明()()111n13352n 12n 12n 1++⋯+=⨯⨯-++,n 是正整数,假设n=k 时,等式成立,则当n=k+1时,应推证的目标等式是_____________.13.满足条件|z-i |=|1+3i |的复数z 在复平面上对应的点(x,y)的轨迹方程为____________________.14.函数f(x)=x 3+3ax 2+3[(a+2)x+1]有极大值又有极小值,则a 的取值范围是 __________________. 15.给出以下命题:①若()0baf x dx >⎰,则()0f x >;②20sin 4xdx π=⎰;③若函数()f x 为奇函数,则()0aaf x dx -=⎰;④函数()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则0()()aa Tf x dx f x dx +=⎰⎰.其中正确命题是 (写出所有正确命题的编号).三、解答题(本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤) 16.(12分)(1)计算21i 5i()34i 2+++; (2)复数z=x+yi(x,y ∈R)满足z+2i z =3+i 求复数z.18.(12分)已知抛物线C:y=-x 2+2x,过点A(0,0),B(2,0)分别作抛物线的切线L 1,L 2. (1)求切线L 1和L 2的方程.(2)求抛物线C 与切线L 1和L 2所围成的图形面积S.19.(12分)已知a 为实数,且函数f(x)=(x 2-4)(x-a)(1)求导函数f ′(x);(2)若f ′(-1)=0,求函数f(x)在[-2,2]上的最大值、最小值. 20.(13分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式;(2)用数学归纳法证明你的猜想,并求出a n 的表达式. 21.(14分)设函数f(x)=lnx-错误!未找到引用源。

河北省任丘一中北校区2013-2014学年高二下学期第二次月考数学理试题 Word版含答案

河北省任丘一中北校区2013-2014学年高二下学期第二次月考数学理试题 Word版含答案

任丘一中北校区2013—2014学年第二学期高二年级第二次月考数学试题(理)考试时间:4月5日 考试范围:选修2-2第二、三章;选修2-3第一章—2.2.1一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知2a i b i i+=+(,a b R ∈),其中i 为虚数单位,则a b +=( ) A .-1B .1C .2D .3 2. 在二项式⎝⎛⎭⎫x 2-1x 5的展开式中,含x 4的项的系数是 ( ) A .-5 B .5 C .-10 D .103. 某汽车生产厂家准备推出10款不同的轿车参加车展,但主办方只能为该厂提供6个展位,每个展位摆放一辆车,并且甲、乙两款车不能摆放在1号展位,那么该厂家参展轿车的不同摆放方案有 ( )A .C 210A 48 种B .C 19A 59 种 C .C 18A 59 种D .C 18A 58 种4. 已知{1,2}⊆Z ⊆{1,2,3,4,5},满足这个关系式的集合Z 共有 ( ) A .2个 B .4个 C .6个 D .8个5. 从5双不同颜色的手套中任取4只,其中恰好有一双同色的取法有( )A .120B .240C .360D .726. 设X 是一个离散型随机变量,其分布列为X1- 0 1 P 12 12q - 2q则q 的值为( )A .1B .221±C .221+D . 221- 7. 在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A .35B .25C . 59D .1108. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 ( )A .4种B .10种C .18种D .20种9. 在数字1,2,3与符号“⊗”,“*”这5个元素的所有全排列中,任意两个数字都不相邻的全排列个数是 ( )A .6B .12C .18D .2410. 从甲袋中取出一个红球的概率是13,从乙袋中取出一个红球的概率是12,从两袋中各取出一个球,则概率等于23的是( ) A .两个球不都是红球 B .两个球都是红球C .两个球中至少有一个球是红球D .两个球中恰有一个球是红球11. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .-g (x )B .-f (x )C .g (x )D . f (x )12. 直线l 1∥l 2,l 1上有4个点,l 2上有6个点,以这些点为端点连成线段,他们在l 1与l 2之间最多的交点个数是( )A .24B .45C .80D .90二.填空题(本大题共4小题,每小题5分,共20分,把正确答案填在答题纸给定的横线上)13. 设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.14. 随机变量X 的概率分布列为()(1,2,3,4)(1)a P X n n n n ===+,其a 是常数,则⎪⎭⎫ ⎝⎛<<2521X P 的值为________. 15. 在()()611-+x x 展开式中5x 的系数是 . 16. 设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有 种.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17. (x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10. (1)求a 1+a 2+…+a 10;(2)求(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2.18.已知(x-2x2)n(n∈N*)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)证明:展开式中没有常数项;(2)求展开式中二项式系数最大的项;(3)求展开式中有多少项有理项?(不必一一列出)19.有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住多个人,求下列问题中各有多少种不同的住法?(1) 每人随意选择,则所有的入住方法;(2) 第1号房间有1人,第2号房间有3人;(3) 指定的4个房间中各有1人;(4) 恰有1个房间中有2人;(5) 恰有2个房间中各有2人.20.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求得分大于4的概率.21.试证当n为正整数时,f(n)=32n+2-8n-9能被64整除.22. 某同学参加科普知识竞赛需回答3个问题,竞赛规则规定:答对第1、2、3个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第1、2、3个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(1)求这名同学得200分的概率;(2)如果规定至少得300分则算通过,求某同学能通过竞赛的概率.任丘一中北校区2013—2014学年第二学期高二年级第二次月考数学试题(理)答案一、选择题 1-5 BDCDA 6-10 DCBBB 11-12 AD二、填空题 13.0 14. 5615. 9 16. 5 三、解答题 17.解析: (1) 令f (x )=(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,a 0=f (0)=25=32,a 0+a 1+a 2+…+a 10=f (1)=0,∴a 1+a 2+…+a 10=-32.(2)(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2=(a 0+a 1+a 2+…+a 10)(a 0-a 1+a 2-…+a 10) =f (1)·f (-1)=0.18.解析:由题意第五项系数为C n 4·(-2)4,第三项的系数为C n 2·(-2)2,则C n 4·(-2)4C n 2(-2)2=101,解得n =8(n =-3舍去). 通项公式T r +1=C 8r (x )8-r ·(-2x 2)r =C 8r (-2)r ·x 8-5r 2. (1)证明:若T r +1为常数项,当且仅当8-5r 2=0,即5r =8,且r ∈Z ,这是不可能的,所以展开式中没有常数项.(2)展开式中的二项式系数最大的项为T 5=11206x -.(3)由T r +1=C 8r (-2)r x 8-5r 2,若T r +1为有理项,当且仅当8-5r 2为整数,而0≤r ≤8,故r =0,2,4,6,8,即展开式的有理项有5项。

【新课标版】2013-2014学年高二下学期第二次月考数学文Word版含答案

【新课标版】2013-2014学年高二下学期第二次月考数学文Word版含答案

2013-2014学年度下学期第二次月考高二数学(文)试题【新课标】时间:100分钟 总分:120分第Ⅰ卷(共60分)一、选择题:(每小题5分,每题只有一个正确答案,共60分) 1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0, 1,2} 2.i 是虚数单位,则1+i 3等于( )A.iB.-iC.1+iD.1-i 3.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ()A .充要条件.B .必要不充分条件.C .充分不必要条件.D .既不充分也不必要条件 4.下列命题错误的是( )A.“x =1”是“232=0x x -+”的充分不必要条件。

B.对于命题p :x R ∃∈,使得210x x ++<;则 :p x R ⌝∀∈,均有210x x ++≥C.命题“若m>0,则方程2m=0x x +-有实根”的逆否命题为“若方程2m=0x x +-无实根,则m ≤0”D.命题“若xy=0,则x 、y 中至少有一个为零”的否定式“若xy ≠0,则x 、y 都不为零” 5.函数x y 2sin 3=的图象可以看成是将函数)3x 2sin(3y π-=的图象( ) A .向左平移个6π单位 B .向右平移6π个单位 C .向左平移3π个单位 D .向右平移3π个单位6.对于函数()2sin cos f x x x =,下列选项中正确的是 ( ) A .()f x 在(4π,2π)上是递增的 B .()f x 的图像关于原点对称 C .()f x 的最小正周期为2π D .()f x 的最大值为27.如图是今年元宵花灯展中一款五角星灯,连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )A. B. C. D. 8.阅读右图所示的程序框图,运行相应的程序,输出的结果是( )A.3B.11C.38D.1239.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc k a d c d a c b d -=++++ 算得,22110(40302020)7.860506050k ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A. 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”B. 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别五关”C. 有99%以上的把握认为“爱好该项运动与性别有关”D. 有99%以上的把握认为“爱好该项运动与性别无关”11. 直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( ) A .(-32, 31) B . (31,-32) C .(21, -31) D .(-31,21 ) 12.设函数)(x f 在R 上可导,其导函数为)('x f ,且函数)(x f 在2-=x 处取得极小值,则函数)('x xf y =的图象可能是( )第II 卷(非选择题共60分)二、填空题:(每小题5分,共20分) 13.已知α是第二象限的角4tan(2)3πα+=-,则tan α=___________. 14.已知函数2()in os 2os 1f x xC x C x =+-,(x ∈R )的最小正周期是___________.15.已知双曲线22221(,0)x y a o b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为___________.16.函数()3)ln f x x x =-(在点(1,(1)f )处切线方程为___________.三、解答题:(每题10分,共40分)17.如图Ⅰ,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在AD 上,且CE ∥AB. (1) 求证:CE ⊥平面PAD ;(2)若PA=AB=1,AD=3,CDA=45°,求四棱锥P-ABCD 的体积 18. 如图Ⅱ,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

2014春邯郸市高二数学第二次月考文科试卷(带答案)

2014春邯郸市高二数学第二次月考文科试卷(带答案)

2014春邯郸市高二数学第二次月考文科试卷(带答案)2014春邯郸市高二数学第二次月考文科试卷(带答案)Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则满足的集合B的个数是()A.1B.3C.4D.82.点M的直角坐标为化为极坐标为()A.B.C.D.3.已知函数f(x)=3-4x-2x2,则下列结论不正确的是()A.在(-∞,+∞)内有最大值5,无最小值B.在-3,2]内的最大值是5,最小值是-13C.在1,2)内有最大值-3,最小值-13D.在0,+∞)内有最大值3,无最小值4.已知命题,,那么命题为()A.B.C.D.5.参数方程表示什么曲线(A.一条直线B.一个半圆C.一条射线D.一个圆6.函数,0,3]的值域是()A、B、-1,3]C、0,3]D、-1,0]7.函数的定义域是()A.B.C.D.8.下列函数中,在其定义域内既是奇函数又是减函数的是()A.B.C.D.9.函数的反函数的图象与y轴交于点(如图2所示),则方程的根是()A.4B.3C.2D.110.直线:3x-4y-9=0与圆:,(θ为参数)的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心11.设f(x)为定义域在R上的偶函数,且f(x)在的大小顺序为()A.B.C.D.12.已知定义在实数R上的函数不恒为零,同时满足且当x>0时,f(x)>1,那么当xA.B.C.D.Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.函数则.14.函数对于任意实数满足条件,若则______。

15.极坐标方程的直角坐标方程是。

16.关于函数,有下列命题:①函数y=的图像关于y轴对称;②当x>0时是增函数,当x③函数的最小值是lg2;④当x>1,时没有反函数。

其中正确命题的序号是(注:把你认为正确的序号都填上).三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知集合A=,B={x|2(Ⅰ)求A∪B,(CRA)∩B;(Ⅱ)如果A∩C≠φ,求a的取值范围.18.(本小题满分12分)已知命题若非是的充分不必要条件,求的取值范围.19.(本小题满分12分)已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。

【新课标版】2013-2014学年高二下学期第二次月考数学理Word版含答案

【新课标版】2013-2014学年高二下学期第二次月考数学理Word版含答案

2013-2014学年度下学期第二次月考高二数学(理)试题【新课标】时间:100分钟 总分:134第Ⅰ卷(共60分)一、选择题:(每小题5分,每题只有一个正确答案,共60分) 1.设,a b R ∈。

“0a =”是“复数a bi +是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.设离散型随机变量ξ的概率分布如下表:则p 的值为( ) A .12 B .13 C .16 D .143.已知命题122121:,,(()())()0p x x R f x f x x x ∀∈--≥,则p ⌝是( )A .122121,,(()())()0x x R f x f x x x ∃∈--≤B .122121,,(()())()0x x R f x f x x x ∃∈--<C .122121,,(()())()0x x R f x f x x x ∀∈--≤D .122121,,(()())()0x x R f x f x x x ∀∈--< 4.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种B .10种C .9种D .8种5.观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=( )A .123B .76C .28D .199 6.下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为-1A .,p p 24B .12,p pC .23,p pD .,p p 347. 从0,2中选一个数字.从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A. 24 B. 18 C. 6 D. 128. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )A B . C .8D .49.已知函数c x x y +-=33的图像与x 轴恰有两个公共点,则c =( ) A. -3或1 B. -9或3 C. -1或1 D. -2或210. 排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A .33!⨯ B .33(3!)⨯ C .4(3!) D .9!11.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )A .25π B .32C .43 D .2π12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3 张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 A .232 B .252 C .472 D .484第II 卷(非选择题共74分)二、填空题:(每小题5分,共20分)13.曲线33y x x =-+在点(1,3)处的切线方程为 .14.用数学归纳法证明222221135(21)(41)3n n n ++++-=-的过程中,由n k =递推到1n k =+时,等式左边增加的项是 .15.在6)2(xx -的二项展开式中,常数项等于 .16.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 . 三、解答题:(每题10分,共40分)17. 在如图所示的几何体中,四边形ABCD 是等腰梯形,AB //CD ,60,DAB FC ∠=⊥平面,,ABCD AE BD CB CD CF ⊥==.(1)求证:BD ⊥平面AED ; (2)求二面角F BD C --的余弦值.18. 在一次购物活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张中任取2张,求; (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的概率分布列.19. 已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率. (1)求椭圆2C 的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程.20.设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (1)求a 的值;(2)求函数()f x 的极值.附加题:(本题可做可不做,满分14分,所得分数计入总分) 已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; (2)若21()2f x x ax b ≥++,求(1)a b +的最大值.参考答案一、 选择题BBBAAADDDCCC 二、填空题012=+-y x 2(21)k + -1603419. 解:(1)(2)20.附加题:(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔=得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()xg x e y g x '=+>⇒=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔< 得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++> 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔>当x =max ()2e F x =当1,a b ==时,(1)a b +的最大值为2e。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y k x =22014年高二数学第二次月考测试题(理科)
一、选择题:(本大题10个小题,每小题5分,共50分。

) 1. 已知集合2{|47},{|120}M x x N x x x =-≤≤=-->,则M
N 为( )
A .{|43x x -≤<-或47}x <≤
B .{|43x x -<≤-或47}x ≤<
C .{|3x x ≤-或4x >}
D .{|3x x <-或4}x ≥
2.已知命题p :若220(,)x y x y R +=∈,则,x y 全为0 ;命题q :若a b >,则
11
a b
<,给出下列四个命题:①p 且q ,②p 或q ,③p ⌝,④q ⌝,其中真命题的个数为( )
A. 1
B. 2
C. 3
D. 4
3.已知等比数列{}n a 的公比为正数,且2
39522,1a a a a ⋅==,则1a 等于( )
A .12 B
.2
C
.2
4.0m n >>是“方程221mx ny +=表示焦点在y 轴上的椭圆的” ( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件 5.如果不等式2(1)210m x mx m ++++>对任意实数x 都成立,则实数m 的取值范围是( ) A .1m >- B .112
m -<<-
C .12m >-
D .1m <-或1
2
m >-
6.已知两点12(1,0),(1,0)F F -,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨
迹方程是( )
A.
221169x y += B. 2211612x y += C. 22143x y += D. 22134
x y += 7.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,则20a 等于 A .1 B .1- C .3 D .7 8.ABC ∆中,2,3
BC B π
==
,当ABC ∆
sin C 等于 A

2 B .12 C
.3 D
.4
9.已知0,0m n >>
,则
11
m n
++ A .5 B .4 C .
.2 10.2222(4)(4)0x y -+-=表示的图形是( )
A.两个点
B. 四个点
C. 两条直线
D.四条直线 二、填空题(本题共有5个小题,每小题5分)
11.命题“R x ∈∃0,002
0≥-x x .”的否定是________________________.
12.设等比数列{}n a 的公比为12q =
,前n 项和为n S ,则44
S
a =__________ 13.若椭圆的一短轴端点与两焦点连线成120°角,则该椭圆的离心率为
14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 15.椭圆 的离心率为 ,若直线 与椭圆的一
个交点的横坐标为b ,则k 的值为 .
三、解答题:(本大题共6小题,满分75分.解答须写出文字说明、证明过程和演算步骤.)
16.(本小题满分12分)
已知m R ∈,设命题P : |m -5|≤3;命题Q :函数f (x )=3x 2+2mx +m +4
3有两个不同零
点.求使命题“P 或Q ”为真命题的实数m 的取值范围.
22
22
1(0)x y a b a b +=>>
17.(本小题满分12分)
如图所示,F1,F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其
纵坐标等于短半轴长的2
3,求椭圆的离心率

18. (本小题满分12分)
已知ABC
∆周长为1),且sin sin
B C A
+=
(1)求边长a的值;
(2)若3sin
ABC
S A

=,求cos A的值
19、(本题满分12分)
如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广
场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽
度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面
积.
20.(本小题满分13分)
已知动点P与平面上两定点(A B连线的斜率的积为定值
1
2
-.
(Ⅰ)试求动点P的轨迹方程C;
(Ⅱ)设直线1
:+
=kx
y
l与曲线C交于M、N两点,当|MN|=
3
2
4
时,求直线l的方程.
21.(本小题满分14分)
已知数列{}
n
a与{}
n
b,若
1
3
a=且对任意正整数n满足
1
2,
n n
a a
+
-=数列{}
n
b的前n项和
2
n n
S n a
=+

(1)求数列{}{}
n n
a b
,的通项公式;
(2的前n项和.
n
T
月考测试题答案
一、ABBCC CABBB
二、11、0,2
<-∈∀x x R x 12、15 13
14、50 15、
2

2-
三、16、解:对P : |m -5|≤3,即2≤m ≤8
对Q:由已知得f (x )=3x 2+2mx +m +4
3
=0的判别式
Δ=4m 2-12(m +4
3)=4m 2-12m -16>0,得m <-1或m >4.
所以,要使“P 或Q ”为真命题,只需求其反面,P 假且Q 假, 即⎩⎨
⎧≤≤-<>4
12
8m m m 或
∴21<≤-m
∴实数m 的取值范围是()[),12,-∞-⋃+∞
17、解:设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c.
则焦点为F 1(-c ,0),F 2(c ,0),M 点的坐标为⎝ ⎛⎭⎪⎫
c ,23b
则△MF 1F 2为直角三角形.
在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF1|2,即4c 2+4
9b 2=|MF 1|2. 而|MF 1|+|MF 2|=
4c 2
+49b 2+2
3b =2a ,
整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .
所以b 2a 2=49.∴e 2
=c 2
a 2=a 2-
b 2a 2=1-b 2a 2=59,∴e =53.
18、解:(1)因为
ABC ∆周长为1),所以(
)
124+=++c b a
……①
又sin sin B C A +=,所以a c b 2=+……② 由①,②可解的4=a
(2)由(1)可知24=+c b ……③ 因为3sin ABC S A
∆=,
所以
A A bc sin 3sin 2
1
=,则6=bc ……④ , 由③,④得2022=+c b 所以3
1
1216202cos 222=-=-+=
bc a c b A 19、解:设休闲广场的长为x 米,则宽为
x
2400
米,绿化区域的总面积为s 平方米. )42400
)(
6(--=x
x s )2400
64(2424
x x ⨯+-= )600,6(),3600
(42424∈+-=x x x
因为)600,6(∈x ,所以1203600
23600=∙≥+x
x x x 当且仅当x
x 3600
=
,即x=60时取等号 此时S 取得最大值,最大值为1944. 答:当休闲广场的长为60米,宽为40米时,绿化区域总面积最大, 最大面积为1944平方米. 20、解:(Ⅰ)设点(,)P x
y
1
2=-,
整理得.12
22
=
+y x 由于x ≠
所以求得的曲线C 的方程为:2
21(2
x y x +=≠ (Ⅱ)由.04)21(:.1,12222
2=++⎪⎩
⎪⎨⎧+==+kx x k y kx y y x 得消去 解得x 1=0, x 2=
212
,(214x x k k
+-分别为M ,N 的横坐标).由
,234
|214|1||1||2
2212=++=-+=k
k k x x k MN
.1:±=k 解得
所以直线l 的方程x -y +1=0或x +y -1=0
21、解:(1)由题意知数列{}n a 是公差为2的等差数列 又因为13a = 所以21n a n =+ 当1n =时,114b S ==;
当2n ≥时,()
()()2
2
121121121n n n b S S n n n n n -⎡⎤=-=++--+-+=+⎣⎦
对1=4b 不成立
所以,数列{}n b 的通项公式: 4,(1)2n 1,(n 2)n n b =⎧=⎨+≥⎩
(2)1n =时,2n ≥时,
121
n ++
+1n =仍然适合上式。

相关文档
最新文档