初一数学一元一次方程的应用练习题
完整版七年级数学一元一次方程应用题专题练习
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
一元一次方程应用题专项练习(含答案)
一元一次方程应用题专项练习宇文皓月1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采取一种高新技术后,每天多生产10台,结果用12天,不单完成任务,而且逾额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际依照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各逾额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去观赏博物馆,出租车的收费尺度是:不超出3公里的付费7元;超出3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超出3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.12.某商场一种品牌的服装标价为每件1000元,为了介入市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去观赏,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才干到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看角逐.球迷领队安插车辆若干,若每辆坐4人,车不敷,每辆坐5人,有的车未坐满.问领队安插的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,缺乏1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超出6吨,按每吨1.2元收费;如果超出6吨,未超出的部分仍按每吨1.2元收取,而超出部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去介入课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才干使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去介入一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超出每小时60千米.甲船从A 港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超出20吨,按每吨1.9元收费;如果超出20吨,未超出部分按每吨1.9元收费,超出部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成天职别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费尺度如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超出部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人角逐跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安插一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安插了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班辅佐和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才干完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才干完成任务?61.学校部分师生到离校28千米的地方观赏学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店推销了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔挺的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种分歧颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时介入做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采取“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得酬报600元.若按个人完成的工作量给付酬报,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样即可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机自己的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力建议和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了包管训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安插甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.。
七年级数学一元一次方程解法及应用练习题(附答案)
七年级数学一元一次方程解法及应用练习题一、解答题1.两个容器内共有48 kg的水,乙容器给甲容器加水一倍,然后甲容器又给乙容器加乙容器剩余水的一倍,则两容器的水量相等,最初两容器各有多少千克水?2..甲、乙两列火车的长分别为144m和180m,甲车比乙车每秒多行驶4m.(1)两列车相向行驶,从相遇到全部错开(从两车头相遇到两车尾离开)需9s,问两车速度各是多少?(2)在(1)的条件下若同向行驶,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需多长时间?3.一架飞机在,A B两城市之间飞行,风速为20千米/时,顺风飞行需要8小时,逆风飞行需要8.5小时.求无风时飞机的飞行速度和,A B两城市之间的航程.4.为增强市民的节水意识,某市对居民用水实行“阶梯收费”.规定每户每月不超过月用水标准量部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元,该市规定的每户月用水标准量是多少吨?二、计算题5.解方程:3(x-5)=7x-16.解方程:32x-64=16x+327.解方程-2(x-2)=128.解方程3(x﹣2)=x﹣49.解下列方程:﹣2(x﹣2)=1210、解方程:参考答案1.答案:解:设最初甲容器有水x kg,则乙容器有水()48x -kg.依题意得()()24822482x x x -=--.解得18,4830x x =-=.答:最初甲、乙两容器分别有水18 kg,30 kg.解析:2.答案:(1)甲车每秒行驶20m,乙车每秒行驶16m.(2)81s解析:(1)设乙车每秒行驶m x ,则甲车每秒行驶()4m x +,根据题意,得()94144180x x ++=+. 去括号、移项、合并同类项,得232x =.解得16x =.答:甲车每秒行驶20m,乙车每秒行驶16m.(2)由题意,得()1441804324481+÷=÷=(s).答:需要81s.3.答案:解:设飞机的速度是x(20)8(20)8.5x x +=-660x =解析:4.答案:解:因为1.5121820⨯=<,所以5月份用水量已超标,设该市规定的每户月用水标准量为x 吨,则超标部分为()12x -吨,依题意得()1.5 2.51220x x ++=,解得10x =.答:该市规定的每户月用水标准量为10吨.解析:5.答案:72x =- 解析:6.答案:x=6解析:7.答案:x=-4解析:8.答案:x=1解析:9.答案:x=﹣4解析:。
初中数学一元一次方程应用练习题6(附答案)
初中数学一元一次方程应用练习题一、单选题1.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,则船在静水中的平均速度为( )A.27km /hB.25km /hC.6.75km /hD.3km /h2.甲、乙两人在400米的环形跑道上练习同向竞走.乙每分钟走80米,甲每分钟走100米,现在甲在乙前100米,多少分钟后两人相遇?( )A.5分钟B.20分钟C.15分钟D.10分钟3.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设x 秒后甲追上乙,则下列四个方程中不正确的是( )A.7 6.55x x =+B.75 6.5x x +=C.(7 6.5)5x -=D.6.575x x =-4.某公路的干线上有相距108公里的A,B 两个车站,某日16点整,甲,乙两车分别从A,B 两个车站出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则相遇的时刻是( )A.16时20分B.17时20分C.17时40分D.16时40分5.在800米的环形跑道上有两人在练习中长跑,甲每分钟跑320米,乙每分钟跑280米,若两人同时同地同向起跑,t 分钟后第一次相遇,则t 的值为( )A.10B.15C.20D.3026.李明和王刚从相距25千米的两地同时相向而行,李明每小时走4千米,3小时后两人相遇,设王刚的速度为x 千米/时,则可列方程为( )A.4325x +=B.3425x ⨯+=C.3(4)25x +=D.3(4)25x -=7.粉刷一个房间,甲单独做需要4天完成,乙单独做需要6天完成,丙单独做需要12天完成.甲先单独做2天后有事离开,接下来乙、丙共同完成,则乙、丙合作所需要的天数为( )A.1B.2C.3D.4二、解答题8.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?9.某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行,已知客车每小时行驶80千米,轿车每小时行驶100千米,问经过多少小时后,客车与轿车相距30千米?10.暑假期间,李老师准备将家里的客厅和卧室简单装修一下,他请来一个专门做装修的施工队的工头实地察看,工头说现在人手紧张,只能抽出一名施工员来,但一人做要32天才能完成.李老师觉得时间太长,让他多抽些人手,尽快完成.于是工头决定先由一些人做2天,然后再增加1人和他们一起做4天,完成这项工作的一半,假设这些人的工作效率都相同,那么最初应先安排多少人工作?11.某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.三、填空题12.桐桐从家里骑自行车到学校,每小时骑15千米,可早到10分钟;每小时骑12千米,就会迟到5分钟.问他家到学校的路程是多少千米?设他家到学校的路程为x 千米,则可列方程为_____________.13.梁老师驾车从家乡出发,上国道到南昌,期间用了4.5h ;返回时走高速公路,路程缩短了5km ,平均速度提高了10km/h ,比去时少用了0.5h 回到家乡,设他从家乡到南昌走国道的路程为km x ,则可列方程为___________.14.甲、乙两地相距630千米,一辆快车以90千米/时的速度从甲地出发,2小时后,另有一辆慢车以60千米/时的速度从乙地出发,求慢车出发几小时后两车相遇.设慢车出发x 小时后两车相遇,可列方程为__________.15.修筑一条公路,由3个工程队分筑,第一个工程队筑全路的13;第二个工程队筑剩下的13;第三个工程队筑了20千米,刚好把这条公路筑完.则这条公路共长_________千米.16.某工程甲单独完成要45天,乙单独完成要30天.若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作?设甲、乙共用x 天完成,则可列方程为__________.17.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配套,问应分配_________名工人生产大齿轮,_________名工人生产小齿轮,才能使生产的产品刚好成套.18.一项工程,甲队单独做20天可以完成,乙队单独做30天可以完成,两队合作x 天可以完成该工程的一半,根据题意,可列方程为___________.参考答案1.答案:A解析:设船在静水中的平均速度为km/h x ,根据往返路程相等,列得2(3) 2.5(3)x x +=-.解得27x =.2.答案:B解析:设x 分钟后两人相遇,根据题意得10080300x x -=,解得15x =.故15分钟后两人相遇.故选C.3.答案:B解析:本题相等关系为“追上乙时甲跑的路程等于乙跑的路程”,甲跑的路程为7m x ,乙跑的路程为(6.55)m x +,故可列方程为7 6.55x x =+,通过恒等变形又可得到C,D 两种形式.故错误的是B.4.答案:B解析:设经过x 小时两车相遇,则(4536)108x +=.解得43x =,43小时=1小时20分钟.故相遇的时刻是17时20分.5.答案:C解析:甲、乙两人在环形跑道上同时同地同向起跑,跑得快的人必须多跑一圈才能与跑得慢的人相遇.依据题意,得320280800t t -=.解得20t =.故选C.6.答案:C解析:这是个同时相向而行的相遇问题,根据两人走的路程之和=两地之间的距离,可列方程为3(4)25x +=.故选C. 7.答案:B解析:设乙、丙合作需要x 天,依题意,得111214612x ⎛⎫⨯++= ⎪⎝⎭.解得2x =. 8.答案:解:(1)设甲、乙两队合作t 天, 由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的23, 26020(1)3t ∴+﹣= 解得:24t =(2)(2)设甲、乙合作完成需y 天,则有1116090y ⨯=(+). 解得,36y =,①甲单独完成需付工程款为60 3.5210⨯=(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36(3.52)198⨯+=(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.解析:9.答案:【解】设经过x 小时后两车相距30千米,有两种情况:若相遇前相距30千米,则可列方程(80100)39030x +=-.解得2x =;若相遇后相距30千米,则可列方程(80100)39030x +=+.解得73x =.答:经过2小时或73小时后,客车与轿车相距30千米.解析:10.答案:【解】设最初应先安排x人工作,根据题意,得24(1)1 32322 x x++=.解得2x=.答:最初应先安排2人工作.解析:11.答案:甲、乙两个工程队分别整治了120m,240m. 解析:12.答案:105 15601260 x x+=-解析:根据“根据从出发距上课的时间不变”,可列方程为105 15601260 x x+=-.13.答案:510 4.50.5 4.5x x--=-解析:设梁老师从家乡到南昌走国道的路程为kmx,则返回时走高速公路的路程为(5)kmx-,根据“走高速公路的速度-上国道的速度=10km/h”,可列方程为510 4.50.5 4.5x x--=-.14.答案:902(9060)630x⨯++=解析:设慢车出发x小时后两车相遇,根据“甲先走的路程+甲、乙一起走的路程=630千米”,可列方程为902(9060)630x⨯++=.15.答案:45解析:设这条公路共长s千米.依题意,得111120333s s s⎛⎫+⨯-+=⎪⎝⎭.解得45s=.16.答案:22221 4530x-+=解析:设甲、乙共用x天完成,则甲做剩下的工作用(22)x-天,甲一天做145,乙一天做130,相等关系为“甲做(22)x-天的工作量+乙做22天的工作量=1”.17.答案:25;60解析:设生产大齿轮的人数为x,则生产小齿轮的人数为85x-,因为平均每人每天可加工大齿轮16个或小齿轮10个,所以x人生产大齿轮的个数为16x,(85)x-人生产小齿轮的个数为10(85)x⨯-,因为2个大齿轮与3个小齿轮配成一套,所以316210(85)x x⨯=⨯⨯-,解得25x=.则8560x-=.18.答案:111 20302 x x+=解析:本题相等关系为“甲队工作效率×甲队工作天数+乙队工作效率×乙队工作天数=12”,由题意,甲、乙两队的工作效率分别为11,2030,故可列方程11120302x x+=.。
数学七年级一元一次方程应用题练习
姓名学号得分
一元一次方程应用题练习一
1.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人
分4本,则缺25本。
这个班有多少学生?
2、某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,什么情况下买卡购物合算?(提示:分别讨论三种情况)
一元一次方程应用题练习二
1.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆
流行驶,用了2.5小时。
已知水流的速度是3千米/小时,求船在静水中的平均速度。
2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母
2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
3.整理一批图书,由一个人做要40小时完成。
现在计划由一部分人先做4
小时,再增加2个人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?。
初一数学一元一次方程应用题_计算题200题
1.某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?2.小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.3.李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.4,初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.5.x 为何值时,代数式21[x-21(x-1)]的值比代数式43x 的值小1.6.某商店出售某种商品,售价为每件900元.在降价竞争中,该商品按售价的九折出售,并让利40元销售,仍可获利10%,求该商品的进价.7. 以时速48公里通过站的快车,通过A 站,30分钟后因积雪时速变为32公里,比预定时间晚点30分通过B 站.求AB 两站间的距离.8.某中学初三师生270人出外参观,若租一辆45座小客车租金为250元,租一辆60座客车租金为300元.已知租用的大客车比小客车多一辆,问租用大小客车各多少辆?9.某工厂原计划每天生产100台机器,实际每天比原计划多 生产20台,那么生产m 台机器提前的天数是____ 10.若方程(a-1)x a 2+5=0是关于x 的一元一次方程,则a= ____11. 若方程53+3(x-20031)=54,则代数式7+30(x-20031)的值是____2 12.要锻造一个半经为5cm 高为8cm 的圆柱形毛坯,应截取半 径为4cm 的圆钢____cm 13.某项工程,甲乙两队单独完成各需12天.16天,则共同完 成此项工程的一半需要_____天. 14. 一个两位数,十位上的数字比各位上的数字小1,十位 上的数字与个位上的数字的和是这个两位数的51,这个两位 数是____用 方 程 解 决 问 题(1)---------比例问题与日历问题15、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的15多3吨,求甲、乙、丙三种货物各多少吨? 16、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷?17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
初中数学一元一次方程应用练习题(附答案)
初中数学一元一次方程应用练习题一、单选题1.某品牌电器专卖店一款电视按原售价降价m元后,再次打8折,现售价为n元,则原售价为( )A.108m n+ B.810m n+ C.108m n- D.810m n-2.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )A.(140%)90%38x x+⨯=- B.(140%)90%38x x+⨯=+C.(140%)90%38x x+⨯=- D.(140%)90%38x x+⨯=+3.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A.不赔不赚B.赚9元C.赔18元D.赚18元二、解答题4.七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.(1)小红同学参加了竞赛,成绩是96分,请问小红在竞赛中答对了多少题?(2)小明也参加了竞赛,考完后他说:“这次竟赛中我一定能拿到110分. ”请问小明有没有可能拿到110分?试用方程的知识来说明理由.5.防控新冠肺炎疫情期问,某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%,己知该商品原价为m元.求该药品降价的百分比是多少?6.某商场用36万元购进,A B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)该商场购进,A B两种商品各多少件?(2)商场第二次以原进价购进,A B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?7.一场足球赛11轮(即每队均需赛11场),胜一场记2分,平一场记1分,负一场记0分,北京“国安”队所负场数是所胜场数的12,结果共得14分,求“国安”队平了多少场.8.某地“奥博园丁杯”篮球赛前四强的积分表如下:(2)观察积分表,请你用式子将积分与胜场数、负场数之间的数量关系表示出来;(3)刘宇辉问:“在这次比赛中,一个队的胜场总积分能不能等于它的负场总积分?”你能帮助他解决这个问题吗?9.盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):(1)从表中可以看出,负一场积分,胜一场积分 ;(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.三、填空题10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他至少答对了_________题.参考答案1.答案:A 解析:2.答案:B 解析:3.答案:C 解析:4.答案:(1)小红在竞赛中答对了26道题(2)小明没有可能拿到110分 解析:5.答案:药店该药品现在降价的百分比是45% 解析:6.答案:(1)设购进A 种商品x 件,B 种商品y 件. 根据题意,得12001000360000,(13801200)(12001000)60000.x y x y +=⎧⎨-+-=⎩化简,得651800,9103000.x y x y +=+=⎧⎨⎩解之,得200,120.x y ==⎧⎨⎩答:该商场购进,A B 两种商品分别为200件和120件. (2)由于A 商品购进400件,获利为 ()1380120040072000-⨯=(元).从而B 商品售完获利应不少于81600720009600-=(元). 设B 商品每件售价为x 元,则120100()09600x -≥. 解之,得1080x ≥.所以,B 种商品最低售价为每件1080元. 解析:7.答案:解:设“国安”队胜x 场, 则12(11)1142x x +--⨯=,1211142x x x +--=,13,62x x ==,11166116322--⨯=--=(场) 答:平了2场.解析:8.答案:(1)由表格可以看出,胜一场得2分,负一场得1分;+=7胜场数负场数等信息 (2)通过表格可看出,×2+1=⨯胜场数负场数总积分.如果设一个队胜m 场,那么就负(7)m -场,于是该队总积分为21(7)7m m m +⨯-=+.(3)设一个队胜m 场,则负(7)m -场若这个队的胜场总积分等于他的负场总积分,则得方程21(7)m m =⨯-,解得73m =因为比赛场次x 是正整数,所以没有一个队的胜场总积分等于他的负场总积分 解析:9.答案:(1)1 2解:(2)能.理由如下:设该队胜了x 场,根据题意可得,222()2x x =-,解得11x =,所以若某队比完22场,胜了11场,则该队的胜场总积分是负场总积分的2倍. 答:若该队在22场比赛中胜了11场,则其胜场总积分是负场总积分的2倍.解析:由表中最后一行的信息可知,某队22场全负共积了22分,所以负一场的积分为22221÷=(分);设胜一场积a 分,则由表中第一行信息可得121034a +=,解得2a =,所以胜一场积2分. 10.答案:19 解析:。
人教版七年级上册数学第三章整一元一次方程应用题专题练习(word版含答案).doc
人教版七年级上册数学第三章整一元一次方程应用题专题练习1.甲、乙、丙、丁四人一共做了820个零件,如果把甲做的个数加10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,那么四人做的个数正好相等,问乙实际上做了多少个零件?2.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?3.某公司给学校赠送了一批图书,学校决定将这批图书分发给七年级所有班级,如果每班分200本,则剩余120本,若每班分240本,则还缺120本,这个学校七年级有多少个班级?4.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.某次篮球联赛中,太阳队目前的战绩是7胜5负,后面还要比赛13场.若太阳队的最终得分为40分,求太阳队一共胜了几场?5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?6.某商场开展优惠活动,将甲种商品六折出售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1600元,某顾客参加活动购买甲、乙两种商品各一件,共付1200元.甲、乙两种商品的原销售单价各是多少元?7.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?8.某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?9.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?10.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?11.某人给东家做长工,一年的工钱是一头羊和12块银元,此人做了10个月后因故不能再做了,东家给他结了10个月的工钱,共是2头羊和3块银元,此人给东家做长工的工钱如果都以银元结算,一年是多少银元?12.2020年新冠疫情来袭,某市有一批医疗物资需要运送到医院,原计划租用载货量30吨的卡车若干辆,恰好可以一次性全部运完;若租用载货量20吨的卡车,则需要多租2辆,且最后-辆卡车还差10吨装满,其他卡车满载.(1)请问租用30吨卡车多少辆?这批医疗物资有多少吨?(2)若载货量20吨的卡车每辆租金为500元,载货量30吨的卡车每辆租金为800元,要使医疗物资一次性运完,怎样租车更合算?13.A、B两地相距300km,甲车80km/h的速度从A地匀速驶往B地,甲车出发30分钟后,乙车以120km/h的速度也从A地匀速驶往B地,两车相继到达终点B地,乙车行驶多长时间后,甲、乙两车恰好相距20km?14.一辆客车和一辆卡车都从A地出发沿同一条公路匀速驶向B地,客车的行驶速度为70千米/小时,卡车的行驶速度为60千米/小时,已知卡车提前1小时出发,结果两车同时到达B地.(1)求A,B两地的距离是多少?(2)客车出发多少小时后,两车第一次相距20千米?15.北京冬奥会花样滑冰双人滑比赛中,中国队隋文静、韩聪圆梦夺金,获得中国代表团本届冬奥会第九金!某商场看准商机,需订购一批冰刀鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我店进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次的2倍多10双,如果你是商场的经理请设计一种购买方案,使得两次总进货价最少,并计算出总进货价为多少元?16.用A型和B型机器生产同样的产品,已知3台A型机器一天的产品装满3箱后还剩5个,6台B型机器一天的产品装满8箱后还剩4个,每台A型机器比每台B型机器一天少生产1个产品,求每箱装多少个产品?17.某商场从厂家购进了A、B两种品牌篮球共120个,已知购买B品牌篮球的总价比购买A品牌篮球总价的3倍还多800元,A品牌篮球每个进价60元,B品牌篮球每个进价100元.(1)求购进A、B两种品牌篮球各多少个?(2)在销售过程中,A品牌篮球每个按进价加价30%销售,很快全部售出;B品牌篮球每个售价140元,售出50个后出现滞销,商场决定打折出售剩余的B品牌篮球,两种品牌篮球全部售出后共获利3080元,求B品牌篮球打几折出售?18.为节约用水,某市决定实行如下收费标准:如果每户每月用水不超过10立方米,则按每立方米1.8元收费;若超过10立方米且不超过30立方米,超过的部分按每立方米2.5元收费;若超过30立方米,则超过的部分按每立方米4.2元收费.(1)某户8月用水25立方米,则该户的8月实际用水的平均价格为每立方米______元?(2)某户居民9月份的水费为28元,则该用户9月用水多少立方米?(3)另一户居民9月份的水费为93.2元,则该用户9月用水多少立方米?19.抗击疫情,人人有责,某校成立教师志愿者分队,共分成测温和宣传两个小组,测温和宣传人数比为3:5,总人数为40人.(1)请问两个组各多少人?(2)现疫情有反扑的趋势,两个组都需加派人手,于是学校另外抽调20名教师支援志愿者分队,使得测温组的人数恰好等于宣传组的人数;应调进测温组和宣传组各多少人?20.学校举办“爱我中华”诗歌朗诵比赛,1班、2班准备给每位同学租一套参赛服装.已知两班共102人,其中1班人数比2班人数多,且1班不到100人.租用服装的价格表如下:如果两个班单独给每位同学租一套服装,那么一共应付5590元.(1)如果1班和2班联合起来给每位同学租一套服装,比两个班单独租可以节省多少钱?(2)1班、2班各有多少名同学?答案1.200个2.(1)甲、乙两种商品原销售单价分别是800元和400元(2)甲、乙两种商品每件的进价分别是450元和270元3.这个学校七年级有6个班4.15场5.人数为7,物价为53钱6.甲商品的原销售单价是400元,乙商品的原销售单价是1200元7.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.8.(1)每个房间需要粉刷的墙面面积为392m(2)一级技工每人每天挣564元,二级技工每人每天挣451元.9.16;410.6.4611.18块银元12.(1)租用30吨卡车3辆,这批医疗物资有90吨(2)租用载货量30吨的卡车1辆,租用载货量20吨的卡车3辆最合算13.13h,h22或3h14.(1)A,B两地的距离是420千米;(2)客车出发4小时后,两车第一次相距20千米.15.(1)120双(2)第一次选择甲供应商实惠,第二次选择乙供应商实惠,总进货价为21600元.16.每箱装6个产品.17.(1)购进A品牌篮球40个,购进B品牌篮球80个(2)B品牌篮球打8折出售18.(1)2.22(2)14(3)3619.(1)测温组有15人,宣传组有25人(2)调进测温组15人,调进宣传组5人20.(1)可以节省1510元;(2)1班有53人,2班有49人。
初中数学一元一次方程练习题60道Word版含解析
(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.
4.已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解 =______.
5.(1)
(2)
6.如果方程 的解与方程 的解相同,求式子 的值.
7.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.
(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;
(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;
(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.
35.如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.
16.一项工程,甲单独做需20天完成,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?
17.一艘轮船从甲码头到乙码头顺流而行,用了 ,从乙码头返回甲码头逆流而行,用了 .已知水流的速度是 ,求船在静水中的平均速度.
18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.
10.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.
初一数学一元一次方程应用题
一元一次方程的应用一、和、差、倍、分问题:1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的60%,假设把甲乙两班合成一个新团队,则新团队男生人数比女生人数多4人,求新团队总人数.2.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色平安帽,女生戴红色平安帽.休息时,他们坐在一起,大家发觉了一个有趣的现象,每位男生看到白色的平安帽和红色的一样多,而每位女同学看到白色的平安帽是红色的平安帽的2倍.求这群学生的总人数.3.目前X市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据X:202X学年度X市教育统计手册).(1)求目前X市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由X市X拨款解决,则X市X要为此拨款多少?4.某城市现有42万人口,方案一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市现有的城镇人口数和农村人口数.二、劳力调配问题:某公司有两个工程队,甲工程队人数比乙工程队人数的12多28人,因有紧急任务,需从乙队抽调21到甲队,这时甲队人数刚好是乙队人数的23,问该公司两个工程队共有多少人?三、配套问题:1.箭鹿服装厂要生产某种型号学生服一批,已知每3 米长的某种布料可以做上衣2件或裤子3条,一件上衣和一条裤子为一套,方案用600 米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2.某车间有技术工人85人,平均每人每天可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?四、等积变形问题:在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?五、行程问题:1.某人从家里骑自行车到学校。
七年级一元一次方程应用题分类大全
七年级一元一次方程应用题(一)1、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?2、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:(1)甲每天生产某种零件80个,3天能生产个零件。
七年级数学一元一次方程应用题专题练习
七年级数学一元一次方程应用题专题练习1、分配问题例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本. 问这个班有多少学生?变式1:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?2、调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米,•如何分配挖土和运土人数,使挖出的土能及时运走?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?(6)某商品的进价是3000元,标价是4500元. ①商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?②若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?③如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?4、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
初一数学一元一次方程应用题大全
一元一次方程应用1、一个两位数,十位数字比个位数字的4倍多1,将两个数字调换位置后所得的数比原数小63.求原数。
2、有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数。
3、有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数。
4、有一个四位数,它的个位数字是8,如果将8调到千位上,那么这个数就增加117,求这个四位数。
5、某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,假设从挖土人员中抽出6人运土,那么挖土和运土的人数相等.求原来挖土和运土的各多少人?6、某校初一〔1〕班学生合买一件纪念品,如果每人出6元钱,那么多48元;如果每人出5元,那么少3元。
这个班有学生多少人?这件纪念品值多少钱?7、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.每3个零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?8、某村承当水利运土准备,参加运土工人中,有的一人挑两只筐,有的两人抬一只筐.现仓库有108只箩筐和57条扁担,需要安排多少人去工地,才能使现有的筐和扁担正好全部用上?9、有三盒粉笔共107支,如果第一盒拿走2支,第二盒拿走5支,第三盒拿走一半,剩下的三盒就一样多,原来三盒粉笔各多少支?10、甲、乙两车分别从相距360 千米的两地相向开出,甲车速度为60千米/小时,乙车速度为40千米/小时.假设甲车先开出1个小时,问乙车开出多少小时后两车相遇?11、A、B两地相距31千米,甲从A地骑自行车去B地,1小时后乙骑摩托车也从A地去B地.甲每小时行12千米,乙每小时行28千米.试问:(1)问乙出发后多少小时追上甲?(2)假设乙到达B地后立即返回,那么在返回路上与甲相遇时距乙出发多长时间?12、某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队伍,共用14.4分钟.求队伍长.13、36千米/时,求两地间路程.14、30米,求甲、乙两人的速度各是多少?15、一项工程甲、乙两队合作10天可以完成,假设甲队独做15天可以完成.现两队合作7天后,其余工程由乙队独做.乙队还需几天能完成?16、检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天有甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?17、某中学组织初一同学春游,原方案租用45座客车假设干辆,但有15人没有座位;如果租用同样数量的60座客车,那么多出一辆,且其余客车恰好坐满.45座客车日租金为每辆220元,60座客车日租金为每辆300元.试问:(1)初一年级人数是多少?原方案租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?18、一件衣服现售价为54元,比原价降低了25%,求原价.19、某件商品的标价为13200元,假设降价以9折出售,仍可获利10%,求该商品的进货价.20、某商店一套夏装的进价为200元,按标价的80%销售可获利72元,求该服装的标价.21、商店中某个玩具的进价为40元,把这个玩具的标价提高10%后,再以八八折出售,这样还能获得21%的利润.求这个玩具的标价.22、某商品的进价是2000元,标价为3000元.商店要求以利润为5%的售价打折出售,售货员应打几折出售此商品?23、某经销商经销一种商品,把它的进价提高40%后作为标价,如果在促销活动中想获得12%的利润,请问要打几折出售?24、某商店出售一种商品,设本钱价为a元,有如下几种方案:〔1〕先提价10%,再九折销售,那么售价为元;〔2〕先提价20%,再八折销售,那么售价为元;〔3〕请思考〔1〕、〔2〕的结果,如果你是老板,你会承受以上方案吗?为什么?25、篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按准确到0.1元的要求,球票票价应定为〔〕26 、一商店把彩电按标价的九折出售,仍可获利20%,假设该彩电的进价是2400元,那么彩电的标价为〔〕A 3200元B 3429元C 2667元D 3168元27、某商店将彩电按进价提高40%,然后在广告上写“大酬宾,八折优惠〞,结果每台彩电仍可获利270元,那么每台彩电进价是〔〕A 2150元B 2200元C 2250元D 2300元30、某商店有两个进价不同的台灯,都卖了64元,其中一个盈利60%,另一个赔本20%.在这次买卖中,这家商店〔〕A 赔了8元B 赚了32元C 不赔不赚 D赚了8元31、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?32、八年级三班在召开期末总结表彰会前,班主任安排班长李强去商店买奖品,下面是李强与售货员的对话:李强说:阿姨好!售货员:同学,你好,想买点什么?李强说:我只有100元,请您帮助安排买10支钢笔和15本笔记本。
初一上册数学一元一次方程练习题
初一上册数学一元一次方程练习题
一、简易解方程
1、9x+8=26
2、55x+54=-1
3、23+58x=81
4、29x-66=21
5、0.4(x-1)+1.5=0.7x+0.5
6、
30x-10(10-x)=100
7、4(x+2)=5(x-2) 8、120-4(x+5)=25
9、15x+29-65x=54 10、11x+64-2x=67
二、应用题练习
1、有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
2、环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
3、国庆期间,“重客隆”綦江店搞促销活动,小军买了一件衣服,按8折销售的售价为88元,问这件衣服的原价是多少元?
4、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?
5、x取什么数时,3x-2的是x-4的相反数?
6、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
7、甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?。
人教版数学七年级上册第三章《一元一次方程实际应用》专项练习
⼈教版数学七年级上册第三章《⼀元⼀次⽅程实际应⽤》专项练习《⼀元⼀次⽅程实际应⽤》专项练习1.某校七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,如果从B班调出6⼈到A班.(1)⽤代数式表⽰两个班共有多少⼈?(2)⽤代数式表⽰调动后,B班⼈数⽐A班⼈数多⼏⼈?(3)x等于多少时,调动后两班⼈数⼀样多?2.列⽅程解应⽤题举世瞩⽬的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给⼈们提供了看⼭、看⽔、看风景的机会.⼀天⼩龙和朋友⼏家去延庆世园会游玩,他们购买普通票⽐购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平⽇普通票?适⽤所有⼈除指定⽇外任⼀平⽇参观120优惠票?适⽤残疾⼈⼠、60周岁以上⽼年⼈、学⽣、中国现役军⼈(具体⼈群规则同指定⽇优惠票)购票及⼊园时需出⽰相关有效证件除指定⽇外任⼀平⽇参观803.(⽤列⽅程或⽅程组解答本题)元旦期间某商店进⾏促销活动,活动⽅式有如下两种:⽅式⼀:购物每满200元减60元;⽅式⼆:标价不超过400元的商品,打8折:标价超过400元的商品,不超过400元的部分打8折,超出400元的部分打5折.设某⼀商品的标价为x元.(1)当x=300元,则按⽅式⼀应该付的钱为元;则按⽅式⼆应该付的钱为元;(2)当400<x<600时,x取何值两种⽅式的实际⽀出的费⽤相同?4.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中⼀条线段的长度是另外⼀条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表⽰的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表⽰的数.【应⽤拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中⼀点到达终点时,两个点运动同时停⽌.当A、P、Q三点中,其中⼀点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.5.⼩明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数⽐原数的2倍少1478,求⼩明的考场座位号.6.为了丰富⽼年⼈的晚年⽣活,甲、⼄两单位准备组织退休职⼯到某风景区游玩.甲、⼄两单位退休职⼯共102⼈,其中⼄单位⼈数少于50⼈,且甲单位⼈数不够100⼈.经了解,该风景区的门票价格如表:数量(张)1~50 51~100 101张及以上单价(元/张)60 50 40 如果两单位分别单独购买门票,⼀共应付5500元.(1)甲、⼄两单位各有多少名退休职⼯准备参加游玩?(2)如果甲单位有12名退休职⼯因⾝体原因不能外出游玩,那么你有⼏种购买⽅案,通过⽐较,你该如何购买门票才能最省钱?7.现有120台⼤⼩两种型号的挖掘机同时⼯作,⼤型挖掘机每⼩时可挖掘⼟⽅360⽴⽅⽶,⼩型挖掘机每⼩时可挖掘⼟⽅200⽴⽅⽶,20⼩时共挖掘⼟⽅704000⽴⽅⽶,求⼤⼩型号的挖掘机各多少台?8.重庆育才中学需要为⽼校友们订制80周年纪念吉祥物“陶娃”,原计划订750份,每份50元,订制公司表⽰:如果多订,可以优惠.根据校庆当天前来的校友数量,学校最终订了1000份,并按原价⼋折购买,但订制公司获得了同样的利润.(1)求订制公司⽣产每套“陶娃”的成本;(2)求订制公司获得的利润.9.元旦期间,某超市对出售A、B两种商品开展元旦促销活动,活动⽅案有如下两种:(同⼀种商品不可同时参与两种活动)商品A B标价(单位:元)200 300 ⽅案⼀每件商品出售价格按标价降价20% 按标价降价a%⽅案⼆若所购商品超过100件(不同商品可累计)时,每件商品按标价降价18%后出售(1)某单位购买A商品40件,B商品30件,共花费14050元,试求a的值;(2)在(1)求出的a值的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数⽐A商品件数的2倍还多⼀件,请问该单位选择哪种⽅案才能获得最⼤优惠?请说明理由.10.蔬菜商店40元/箱的价格从哈达批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过千克数记为正数,不⾜千克数记为负数,称重后记录如下:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2(1)这8箱西红柿⼀共重多少千克?(2)若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?11.我们知道,有理数包括整数、有限⼩数和⽆限循环⼩数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么⽆限循环⼩数如何表⽰为分数形式呢?请看以下⽰例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=.根据以上阅读,回答下列问题:(以下计算结果均⽤最简分数表⽰)【类⽐应⽤】(1)4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.2=,2.0…18=;(注0.2=0.225225…,2.0…18=2.01818…)【拓展发现】(4)若已知0.1428=,则2.8571=.12.某班原分成两个⼩组进⾏课外体育活动,第⼀组28⼈,第⼆组20⼈,根据学校活动器材的数量,要将第⼀组的⼈数调整为第⼆组的⼀半,应从第⼀组调多少⼈到第⼆组去?13.如图,数轴上A,B,C三点对应的数分别是a,b,14,满⾜BC=6,AC=3BC.动点P 从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.14.百姓商场以每件80元的价格购进某品牌衬衫共500件,加价50%后标价销售,在“庆元旦,迎新春”期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批衬衫,仍可盈利20%,求应按⼏折销售;(2)请从A,B两题中任选⼀题作答.A.如果商场先按标价售出400件后再降价,那么剩余的衬衫按⼏折销售,才能使售完这批衬衫后盈利35%;B.如果商场先按标价的九折销售300件,但为了尽快销售完,将剩余数量衬衫在九折的基础上每购买⼀件再送打车费.求购买⼀件送多少元打车费,售完这批衬衫后可盈利25%.15.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了⼀个鱼塘,经过⼀年多的精⼼养殖,今年10⽉份从鱼塘⾥捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10⽉份收⼊52000元,(1)今年10⽉份从鱼塘⾥捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12⽉份再次从鱼塘⾥捕捞.捕捞数量和销售价格上,草鱼数量⽐10⽉份减少了2a千克,销售价格不变;花鲢数量⽐10⽉份减少了a%,销售价格⽐10⽉份减少了,该贫困户在10⽉份和12⽉份两次捕捞中共收⼊了94040元,真正达到了脱贫致富,求a的值.16.研学基地⾼明盈⾹⽣态园的团体票价格如表:数量(张)30~50 51~100 101及以上单价(元/张)80 60 50 某校七年级(1)、(2)班共102⼈去研学,其中(1)班⼈数较少,不⾜50⼈,两个班相差不超过20⼈.经估算,如果两个班都以班为单位购票,则⼀共应付7080元,问:(1)两个班各有多少学⽣?(2)如果两个班联合起来,作为⼀个团体购票,可省多少钱?17.某超市第⼀次⽤3600元购进了甲、⼄两种商品,其中甲种商品80件,⼄种商品120件.已知⼄种商品每件进价⽐甲种商品每件进价贵5元.甲种商品售价为20元/件,⼄种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第⼀次购进甲、⼄两种商品每件各多少元?(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得多少利润?(3)该超市第⼆次⼜购进同样数量的甲、⼄两种商品.其中甲种商品每件的进价不变,⼄种商品进价每件少3元;甲种商品按原售价提价a%销售,⼄种商品按原售价降价a%销售,如果第⼆次两种商品都销售完以后获得的总利润⽐第⼀次获得的总利润多260元,那么a的值是多少?18.为了打造“书⾹校园”,明德华兴中学计划购买20张书柜和⼀批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买⼀张书柜赠送⼀只书架,B超市的优惠政策为所有商品⼋折,设购买书架x只(x≥20).(1)若规定只能到其中⼀个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费⽤⼀样;(2)若学校想购买20张书柜和100只书架,且可到两家超市⾃由选购,你认为⾄少要准备多少货款,请⽤计算的结果来验证你的说法.19.青⽵湖湘⼀外国语学校初2019级全体学⽣从学校统⼀乘车去市科技馆参观学习,然后⼜统⼀乘车原路返回,需租⽤客车若⼲辆.现有甲、⼄两种座位数相同的客车可以租⽤,甲种客车每辆的租⾦为300元,另按实际⾏程每千⽶加收8元;⼄种客车每辆按每千⽶14元收费.(1)当⾏程为多少千⽶时,租⽤两种客车的费⽤相同?(2)青⽵湖湘⼀外国语学校距市科技馆约30公⾥,如果你是年级组杨组长,为节省费⽤,你会选择哪种客车?20.某超市计划购进甲、⼄两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30⼄型45 60 (1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进⾏⼤促销活动,决定对⼄型节能灯进⾏打折销售,要求全部售完后,⼄型节能灯的利润率为20%,请问⼄型节能灯需打⼏折?参考答案1.解:(1)∵七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,∴B班有(2x﹣8)⼈,则x+2x﹣8=3x﹣8,答:两个班共有(3x﹣8)⼈;(2)调动后A班⼈数:(x+6)⼈;调动后B班⼈数:2x﹣8﹣6=(2x﹣14)⼈,∴(2x﹣14)﹣(x+6)=x﹣20(⼈).答:调动后B班⼈数⽐A班⼈数多(x﹣20)⼈;(3)根据题意得:x+6=2x﹣14,解得:x=20.答:x等于20时,调动后两班⼈数⼀样多.2.解:设⼩龙和⼏个朋友购买了x张优惠票,根据题意列⽅程,得:80x+120(x﹣5)=1400,80 x+120x﹣600=1400,200x=2000,x=10.答:⼩龙和⼏个朋友购买了10张优惠票.3.解:(1)当x=300元,按⽅式⼀应该付的钱为:300﹣60=240(元),按⽅式⼆应该付的钱为:300×0.8=240(元).故答案为:240;240;(2)当400<x<600时,400×0.8+0.5(x﹣400)=x﹣120,故当400<x<600时,x取480时,两种⽅式的优惠相同.4.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表⽰的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表⽰的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.5.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:⼩明的考场号是2315.6.解:(1)设甲单位有x名退休职⼯准备参加游玩,则⼄单位有(102﹣x)名退休职⼯准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,答:甲单位有62名退休职⼯准备参加游玩,⼄单位有40名退休职⼯准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买⽅案,⽅案1:甲、⼄两单位分开购票,甲单位购买50张门票、⼄单位购买40张门票;⽅案2:甲、⼄两单位分开购票,甲单位购买51张门票、⼄单位购买40张门票;⽅案3:甲、⼄两单位联合购票,购买90张门票;⽅案4:甲、⼄两单位联合购票,购买101张门票.⽅案1所需费⽤为60×50+60×40=5400(元);⽅案2所需费⽤为50×51+60×40=4950(元);⽅案3所需费⽤为50×90=4500(元);⽅案4所需费⽤为40×101=4040(元).∵5400>4950>4500>4040,∴甲、⼄两单位联合购票,购买101张门票最省钱.7.解:设⼤型挖掘机x台,则⼩型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:⼤型挖掘机70台,⼩型挖掘机50台.8.解:(1)设订制公司⽣产每套“陶娃”的成本是x元,由题意,可得(50﹣x)×750=(50×0.8﹣x)×1000,解得x=10.答:订制公司⽣产每套“陶娃”的成本是10元;(2)(50﹣10)×750=30000(元).答:订制公司获得的利润为30000元.9.解:(1)由题意有,40×200×0.8+30×300×(1﹣a%)=14050,解得a=15.故a的值为15;(2)若某单位购买A商品x件(x为正整数),则购买B商品(2x+1)件.当x+2x+1=100时,解得:x=33,当总数不⾜101时,即只能选择⽅案⼀获得最⼤优惠;当总数达到或超过101,即x>33时,⽅案⼀需付款:200×0.8x+300×0.85(2x+1)=160x+510x+255=670x+255,⽅案⼆需付款:[200x+300(2x+1)]×0.82=656x+246,∵(670x+255)﹣(656x+246)=14x+9>0,∴选⽅案⼆优惠更⼤.综上所述:当x≤33时,只能选择⽅案⼀获得最⼤优惠;当x>33时,采⽤⽅案⼆获得最⼤优惠.10.解:(1)25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿⼀共重192千克;(2)设在销售过程中西红柿的单价应定为每千克x元,根据题意得:192x﹣40×8=160,解得:x=2.5.故在销售过程中西红柿的单价应定为每千克2.5元.11.解:(1)4.=4=4;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:∴∴0.=;(3)0.2==,∵∴∴;(4)∵0.1428=,∴等号两边同时乘以1000得:714..8571=,∴2.8571=714.8571﹣712=﹣712=.故答案为:4;,;.12.解:设应从第⼀组调x⼈到第⼆组去,依题意,得:28﹣x=(20+x),解得:x=12.答:应从第⼀组调12⼈到第⼆组去,13.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.14.解:(1)设应按x折销售,则80×(1+50%)×0.1x﹣80=80×20%解得x=8答:应按8折销售;(2)A、设剩余的衬衫按a折销售,由题意,得80×(1+50%)×400+80×(1+50%)×0.1a×(500﹣400)﹣80×500=80×35%×500.解得a=5.答:剩余的衬衫按5折销售,才能使售完这批衬衫后盈利35%;B、设购买⼀件送b元打车费,由题意,得80×(1+50%)×0.9×500﹣(500﹣300)b﹣80×500=80×25%×500 解得b=20答:购买⼀件送20元打车费,售完这批衬衫后可盈利25%.15.解:(1)设今年10⽉份从鱼塘⾥捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10⽉份从鱼塘⾥捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.16.解:(1)设七年级(1)班的⼈数为x,则(2)班的⼈数为(102﹣x),由题得:80x+60(102﹣x)=7080化简得:20x=960解得:x=48(⼈)∴102﹣x=102﹣48=54(⼈)答:七年级(1)班有48⼈,(2)班有54⼈.(⽤算术⽅法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元)则节省的钱数为:7080﹣5100=1980(元)答:如果两个班联合起来购票可省1980元.17.解:(1)设该超市第⼀次购进甲种商品每件x元,⼄种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第⼀次购进甲种商品每件15元,⼄种商品每件20元.(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.18.解:(1)设购买书架x只时,到两家超市购买所需费⽤⼀样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费⽤⼀样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:⾄少要准备9120元货款.19.解:(1)设当⾏程为x千⽶时,租⽤两种客车的费⽤相同,依题意有300+8x=14x,解得x=50.故当⾏程为50千⽶时,租⽤两种客车的费⽤相同;(2)300+8×30×2=780(元),14×30×2=840(元),∵840>780,∴为节省费⽤,会选择甲种客车.20.解:(1)设商场购进甲型节能灯x只,则购进⼄型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进⼄型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进⼄型节能灯600只进货款恰好为37000元.(2)设⼄型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:⼄型节能灯需打9折.。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
初中数学一元一次方程的应用练习题含答案
初中数学一元一次方程的应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店()A.亏损8元B.盈利8元C.不亏不盈D.以上都不正确2. 我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里,慢马先走10天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意可列方程为( )A.120+10x=200xB.120x+200x=120×10C.200x=120x+200×10D.200x=120x+120×103. 在某月历表中,竖列相邻的三个数的和为39,则该列第一个数是()A.6B.12C.13D.144. 某商店卖出两个电子产品,每个168元,其中一件赚20%,另一件亏20%,那么这两个电子产品卖出后,商店是()A.不赚不亏B.赚37.2元C.赚14元D.亏14元5. 河北省某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.20x=15(34−x)B.2×20x=3×15(34−x)C.3×20x=2×15(34−x)D.3×20(34−x)=2×15x6. 某童装店剩有两件进价不同的童装,处理时都卖了60元,其中一件赢利20%,另一件亏本25%,针对这两件童装,这家童装店( )A.赚了5%B.赚了10元C.亏了5%D.亏了10元7. 《九章算术》中有一道题,原文是:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.走路慢的人先走100步,走路快的人走多少步才能追上走路慢的人?答( )A.300步B.250步C.200步D.150步8. 若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A.8cmB.6cmC.5cmD.10cm9. 某商店出售两件衣服,每件售价600元,其中一件赚了20%,而另一件赔了20%,那么这家商店销售这两件衣服的总体收益情况是()A.赚了50元B.赔了50元C.赚了80元D.赔了80元10. 如图,将矩形ABCD分割成1个灰色矩形与148个面积相等的小正方形,若灰色矩形的长与宽的比为5:3,则AD:AB的值是( )A.5:3B.11:7C.23:15D.47:2911. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.12. 互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为________元.13. 甲、乙两车站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,________小时相遇;(2)快车先开30分钟,两车相向而行,慢车行驶________小时两车相遇.14. 我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房________间.15. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打7折销售,则该商品每件销售利润为________元.16. 有一道古算题:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?"题目大意是:一些客人到李三公的店中住宿,若每间房住7人,则有7人没地方住;若每间房住9人,则空出一间房.问有多少房间?多少客人?若有x间房,则根据题意可列出方程为________.17. 自来水厂为鼓励节约用水,对水费按以下方式收费:每月用水量不超过10吨,每吨按2元收费,超过10吨的部分按每吨3元收费,王老师家12月份平均水费为每吨2.5元,则王老师家12月份的用水量是________吨.18. 如图,甲、乙两个等高圆柱形容器,内部底面积分别为20cm2,50cm2,且甲中装满水,乙是空的若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了3cm,则甲、乙两容器的高度均为________.19. 如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为________.20. 如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,则剪下的长条的面积之和为________.21. 某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,这个班共有多少名学生?22. 已知A,B两地相距400千米,甲、乙两车从A地向B地运送货物.甲车的速度为每小时60千米,乙车的速度为每小时80千米,甲车先出发0.5小时后乙车才开始出发. (1)乙车出发几小时后,才能追上甲车?(2)若乙车到达B地后,立即原路原速返回A地,则乙车返回时再经过多少小时与甲车再次相遇?23. 张新和李明到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.24. 某商场用加权平均数来确定什锦糖的单价,由单价为每千克15元的甲种糖果30千克,单价为每千克12元的乙种糖果50千克,单价为每千克10元的丙种糖果20千克混合成的什锦糖果的单价应定为每千克多少元?25. 某学校安排学生住宿,若每间宿舍住7人,则有10人无法安排;若每间宿舍住8人,则恰好空出2间宿舍.这个学校的住宿生有多少人?26. 如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,那么每一长条的面积为多少?原正方形的面积为多少?27. 某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售;(2)如果商场先按标价的九折销售60部,但为了尽快销售完,将剩余数量手机在九折的基础上每购买一部再送打车费,若在销售完这些手机时还需要支出其他费用8000元,求购买一部手机送多少元打车费,使售完这批手机后可盈利15%.28. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每3人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?29. 某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面问题:求小明原计划购买文具袋多少个?30. 国庆节期间,甲、乙两商场以同样价格出售相同的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出部分打八折;在乙商场累计购物超过100元后,超出部分打九折.(1)购买多少元商品时(大于200元),两个商场的实际花费相同?(2)小李要购买350元的商品,选哪个商场购物实际花费会少些?31. “双十一购物狂欢节”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某网络直播平台推销A、B两种商品,每件A商品售价为200元,B商品售价为150元.(1)已知一件A商品的进价为120元,B商品的进价为100元,该直播平台在“双十一”前一天卖出A、B商品共200件,总利润为13600元,求A、B商品各卖出去多少件;(2)“双十一”当天,该平台决定将A商品的售价下调10%,B商品的售价保持不变,结果与(1)中的销售量相比,A商品的销售量增加了2a%,而B商品的销售量增加了a%,当天最终的销售额比前一天的销售额增加了14160元,求a的值.32. 一根长为18m的铁丝围成一个长是宽的2倍的长方形,求长方形的面积.33. 列方程解应用题:新年联欢会要美化教室环境,有几个同学按需要做一些拉花.这几个同学如果每人做3个还剩1个未做,如果每人做4个则缺少2个做拉花的材料,求做拉花的同学的人数.34. 把一个正方形的一边加长4cm,另一边缩小1cm,则产生的长方形面积比原正方形面积增加了20cm2,求原正方形的边长.35. 某市居民生活用电基本价格为每度0.60元,若每月用电量超过a度,超出部分按基本电价的120%收取.(1)某用户6月份用电150度,共交电费93.6元,求a;(2)在(1)的条件下,若该用户7月份的电费平均每度为0.66元,求7月份用电多少度?应交多少电费?36. 在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,求每个小长方形花圃的面积.37. 如图是某长方体包装盒的展开图,具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是________与________,________与________,________与________;(2)若设长方体的宽为xcm,则长方体的长为________cm,高为________cm;(用含x的式子表示)(3)求这种长方体包装盒的体积.38.(1)张阿姨到商场以940元购买了一件羽绒服和一条裙子,已知羽绒服打8折,裙子打6折,结果比标价购买时共节省了360元.那么该羽绒服及裙子的标价分别是多少元?(2)某校为防疫需要,实行错时错峰测温并开通专用通道上学,该校七、八年级人数如下表所示:①八年级学生进校时同时开通了A,B两通道,经过6分钟,八年级全部学生进校,已知A通道每分钟通过的人数是B通道每分钟通过人数的2倍.求A,B通道每分钟通过的人数各是多少人?②考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A通道旁边增开C 通道,在B通道旁边增开D通道,已知C通道每分钟通过的人数比A通道每分钟通过的人数多20%,D通道每分钟通过的人数比B通道每分钟通过的人数少20%.求七年级全部学生进校所需时间是多少分钟?39. 2019年12月14日,中国教育学会第32次学术年会在山东济南召开,某校选派16名教师前往参会,准备用一辆七座汽车(除司机外限载6人,从学校出发),送16位教师去高铁站与机场,其中11位教师准备一起到学校正东方向25千米处的机场,另外5位教师准备一起到学校正东方向15千米处的高铁站,其中去机场的老师中有6人因工作需要需先赶去机场,已知这辆汽车的平均速度为45千米/小时,教师步行的平均速度为5千米/小时.(注:不计教师上、下车时间,教师上车后,中途不下车,汽车到达目的地后立即沿原路返回)(1)求汽车送第一批教师到达机场所用的时间.(2)若只有这辆汽车送这16位教师去目的地后返回学校,请设计一种方案使该车所用总时间最短,并求出这个最短时间.40. 某药品在2006年涨价30%后,2007年降价70%至39元,则这种药品在2006年涨价前的价格为多少元?参考答案与试题解析初中数学一元一次方程的应用练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】一元一次方程的应用——工程进度问题【解析】已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是−25%y元,列方程y+(−25%y)=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店亏损8元.故选:A.2.【答案】D【考点】一元一次方程的应用——路程问题【解析】设快马x天可追上慢马,根据“快马走的总路程=慢马走的总路程”即可列出方程.【解答】解:设快马x天可追上慢马,根据题意,得200x=120x+120×10.故选D.3.【答案】A【考点】一元一次方程的应用——工程进度问题【解析】日历上竖列相邻的三个数一定相隔7,那么等量关系是:第一个数+第二个数+第三个数=39.根据等量关系,列方程并求解即可.【解答】解:设该列的第一个数是x,根据题意得x+(x+7)+(x+2×7)=39,解得,x=6.则该列的第一个数是6.故选A.4.【答案】D【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:根据题意得2×20x=3×15(34−x).故选B.6.【答案】D【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设第一件童装的进价为x元,第二件童装的进价为y元,根据题意得(1+20%)x=60,(1−25%)y=60,解得x=50,y=80元,即60×2−50−80=−10(元).∴这家商店是亏10元.故选D.7.【答案】B【考点】一元一次方程的应用——路程问题【解析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100−60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故选B.8.【答案】C【考点】一元一次方程的应用——面积问题【解析】试题分析:原来正方形的边长为x,则(x+3)2−x2=39,解得:x=5【解答】此题暂无解答9.【答案】B【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——其他问题【解析】设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,根据售价=成本×(1+利润率),即可得出关于x,y的一元一次方程,解之即可得出x,y的值,再利用利润=售价-成本,即可求出结论.【解答】设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,依题意,得:(1+20%)x=600,(1−20%)y=600,解得:x=500,y=750,∴600+600−500−750=−50(元).10.【答案】D【考点】一元一次方程的应用——面积问题【解析】可设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【解答】解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,则2(5x+3x)+4=148,解得x=9,则5x=45,3x=27,则AD=45+2=47,且AB=27+2=29,即ADAB =4729.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】250【考点】一元一次方程的应用——路程问题【解析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100−60)t=100,解得:t=2.5,∴100t=100×2.5=250.故答案为:250.12.【答案】100【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】设这件商品的进价为x元,根据利润=售价-进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】设这件商品的进价为x元,依题意,得:200×0.6−x=20%x,解得:x=100.13.【答案】316360【考点】由实际问题抽象出一元一次方程一元一次方程的应用——路程问题【解析】(1)设两车行驶了x小时相遇,则慢车走的路程为65xkm,快车走的路程为85xkm,根据慢车与快车的路程和为450km建立方程求出其解即可;(3)设慢车行驶了x小时后两车相遇,则快车行驶了(0.5+x)小时,根据慢车与快车的路程和为450km建立方程求出其解即可.【解答】解:(1)设两车行驶x小时相遇,根据题意,得65x+85x=450,解得:x=3.故答案为:3.(2)30分钟=1小时.2设慢车行驶x小时后两车相遇,+x)=450,根据题意,得65x+85(12解得:x=163.60.故答案为:1636014.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.15.【答案】4【考点】一元一次方程的应用——打折销售问题【解析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为:4.16.【答案】7x+7=9(x−1)【考点】由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题解一元一次方程【解析】此题暂无解析【解答】解:根据题意若每间房住7人,则有7人没地方住;若每间房住9人,则空出一间房,得7x+7=9(x−1).故答案为:7x+7=9(x−1).17.【答案】20【考点】一元一次方程的应用——其他问题【解析】此题暂无解析【解答】解:由题意得:则该户居民12月份实际用水超过10吨.设该户居民12月份实际用水为x吨,根据题意得:10×2+3(x−10)=2.5×x,解得:x=20.故答案为:20.18.【答案】5cm【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——其他问题【解析】设甲、乙两容器的高度均为xcm,根据将水倒入前后水的体积不变列出方程,解之可得.【解答】设甲、乙两容器的高度均为xcm,根据题意,得:20x=50(x−3),解得:x=5,即甲、乙两容器的高度均为5cm,19.【答案】20cm?【考点】一元一次方程的应用——面积问题【解析】设小长方形的长为xcm,宽为16−x3cm,观察图形即可列出关于x的一元一次方程,解之即可得出x的值,即可求出结论.【解答】设小长方形的长为xcm,宽为16−x3cm,由题意得:2×16−x3+8=x+16−x3解得:x=10所以16−x3=2,…小长方形的面积为20:故答案是:20cm220.【答案】72cm2【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是3cm,第二次剪下的长条的长是(x−3)cm,宽是4cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少,即可求解.【解答】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是3cm,第二次剪下的长条的长是(x−3)cm,宽是4cm,则3x=4(x−3),去括号,可得:3x=4x−12,移项,可得:4x−3x=12,解得x=12,3x=3×12=36,36×2=72(cm2)故剪下的长条的面积之和为72cm2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】这个班学生共有48人.【考点】一元一次方程的应用——工程进度问题【解析】设这个班学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程求解.【解答】解:设这个班学生共有x人,根据题意得:x 8=x6−2,解得:x=48,22.【答案】解:(1)设乙车出发x小时后,才能追上甲车,依题意得60×0.5+60x=80x,解得:x=1.5.答:乙车出发1.5小时后,才能追上甲车.(2)设乙车返回时经过y小时与甲车再次相遇,依题意得60y+80y=400−60×(400÷80+0.5)解得:y=0.5.答:乙车经过0.5小时与甲车再次相遇.【考点】一元一次方程的应用——路程问题【解析】此题暂无解析【解答】解:(1)设乙车出发x小时后,才能追上甲车,依题意得60×0.5+60x=80x,解得:x=1.5.答:乙车出发1.5小时后,才能追上甲车.(2)设乙车返回时经过y小时与甲车再次相遇,依题意得60y+80y=400−60×(400÷80+0.5)解得:y=0.5.答:乙车经过0.5小时与甲车再次相遇.23.【答案】李明上次所买书籍的原价为100元.【考点】一元一次方程的应用——工程进度问题【解析】假设原价为x元,即可得出等式方程70%x+20=x−10,求出即可.【解答】解:设原价为x元,根据题意得:70%x+20=x−10,解之得:x=100.24.【答案】什锦糖果的单价应定为每千克12.5元【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x−2),解得:x=26,∴这个学校的住宿生为:8×24=192.【考点】一元一次方程的应用——其他问题【解析】设这个学校的有x间宿舍,根据题意列出方程即可求出答案.【解答】解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x−2),解得:x=26,∴这个学校的住宿生为:8×24=192.26.【答案】解:设正方形的边长是xcm,则根据题意得:4x=5(x−4),解得:x=20,则4x=80(cm2),20×20=400(cm2).答:每一长条的面积为80cm2,原正方形的面积为400cm2.【考点】一元一次方程的应用——面积问题【解析】设正方形的边长是xcm,根据“两次剪下的长条面积正好相等”这一等量关系列出方程进而求出未知量即可.【解答】解:设正方形的边长是xcm,则根据题意得:4x=5(x−4),解得:x=20,则4x=80(cm2),20×20=400(cm2).答:每一长条的面积为80cm2,原正方形的面积为400cm2.27.【答案】解:(1)设应按x折销售,则500×(1+50%)×0.1x−500=500×20%,解得x=8.答:应按八折销售.(2)设购买一部手机送y元打车费,由题意,得500×(1+50%)×0.9×100−(100−60)y−500×100−8000=500×15%×100.解得y=50.答:购买一部手机送50元打车费,使售完这批手机后可盈利15%.【考点】一元一次方程的应用——打折销售问题【解析】无无【解答】解:(1)设应按x折销售,则500×(1+50%)×0.1x−500=500×20%,解得x=8.答:应按八折销售.(2)设购买一部手机送y元打车费,由题意,得500×(1+50%)×0.9×100−(100−60)y−500×100−8000=500×15%×100.解得y=50.答:购买一部手机送50元打车费,使售完这批手机后可盈利15%.28.【答案】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人).答:有39人,15辆车.【考点】一元一次方程的应用——调配与配套问题【解析】找准等量关系:人数是定值,列一元一次方程二元一次方程组或可解此题.【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人).答:有39人,15辆车.29.【答案】解:设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x−17.解得x=17.答:小明原计划购买文具袋17个.【考点】一元一次方程的应用——打折销售问题【解析】设小明原计划购买文具袋x个,则实际购买了(x+1)个,根据对话内容列出方程并解答;【解答】解:设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x−17.解得x=17.答:小明原计划购买文具袋17个.30.【答案】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得200+(x−200)×80%=100+(x−100)×90%,解得x=300.答:当购买300元商品时,两个商场的实际花费相同.(2)当小李购买350元商品时,在甲商场实际花费为:200+(x−200)×80%=200+(350−200)×80%=320(元),在乙商场实际花费为:100+(x−100)×90%=100+(350−100)×90%=325(元),320<325,所以小李选甲商场购物实际花费会少些.【考点】一元一次方程的应用——其他问题一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得200+(x−200)×80%=100+(x−100)×90%,解得x=300.答:当购买300元商品时,两个商场的实际花费相同.(2)当小李购买350元商品时,在甲商场实际花费为:200+(x−200)×80%=200+(350−200)×80%=320(元),在乙商场实际花费为:100+(x−100)×90%=100+(350−100)×90%=325(元),320<325,所以小李选甲商场购物实际花费会少些.31.【答案】设A商品卖出去x件,B商品卖出去y件,解得,答:A商品卖出去120件,B商品卖出去80件;∵A商品的售价下调10%,∴A商品的售价为:200×(1−10%)=180(元).∵A商品的销售量增加了2a%,而B商品的销售量增加了a%,∴A商品的销售量为:120(3+2a%)件,B商品的销售量为:80(1+a%)件.依题意得,180×120(8+2a%)+150×80(1+a%)=200×120+150×80+ 14160,化简得,552a=16560,解得,a=30.故所求a的值为30.【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】此题暂无解答32.【答案】长方形的面积是18m2.【考点】一元一次方程的应用——工程进度问题【解析】首先根据长与宽的关系以及周长得出长与宽的长度,进而得出面积.【解答】解:设长方形的宽为xm,则长为2xm,根据题意得出:2(x+2x)=18,解得:x=3,∴长方形的面积为:3×6=18(m2),33.【答案】做拉花的同学有3人.【考点】一元一次方程的应用——工程进度问题【解析】根据每人做3个还剩1个未做,如果每人做4个则缺少2个做拉花的材料得出等式求出即可.【解答】解:设做拉花的同学有x人,依题意3x+1=4x−2.解得x=3.34.【答案】解:设原正方形边长为xcm.根据题意,得(x+4)(x−1)=x2+20,解得x=8.∴原正方形边长为8cm.【考点】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
一元一次方程的应用练习题
基础题,请你做一做
1. 已知矩形的周长为20厘米,设长为x 厘米,则宽为( )
A. 20-x
B. 10-x
C. 10-2x
2•学生a人,以每10人为一组,其中有两组各少
A. 10a —2
B. 10 —2a
C.
综合题,请你试一试
1. 在课外活动中,张老师发现同学们的年龄大多是后你们的年龄是我年龄的三分之一?”
D. 20-2x
1人,则学生共有( )组.
10 —(2 —a) D.(10+2)/a
13岁•就问同学:我今年45岁,几年以
2•小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元,请你帮小明算一算这种储蓄的年利率.
3.小赵去商店买练习本,回来后问同学:店主告诉我,如果多买一些就给我八折优惠•我就买
了20本,结果便宜了 1.60元.”你能列出方程吗?
总结:方程解应用题的一般步骤是:
(1) “找”:看清题意,分析题中及其关系,找出用来列方程的__________
(2) “设”:用字母(例如x)表示问题的___________ ;
(3) ___________________________________________________ “列”:用字母的代数式表示相关的量,根据_________________________________________________ 列出方程;
(4) “解”:解方程;
(5) “验”:检查求得的值是否正确和符合实际情形,并写出答案;
(6) “答”:答出题目中所问的问题。
【行程问题】
一、本课重点
1. 基本关系式(公式):__________________ ________________________________
2. 基本类型:相遇问题;相距问题;
3. 基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分)
4. 航行问题的数量关系:
(1)顺流(风)航行的路程=逆流(风)航行的路程
(2)顺水(风)速度= ___________________________
逆水(风)速度= ______________________________
、基础题
1、甲的速度是每小时行 4 千米,则他 x 小时行( )千米 .
2、乙 3 小时走了 x 千米,则他的速度是( )
)小时 .
三、综合题 1.
甲、乙两地路程为 180千米,一人骑自行车从甲地出发每时走 15 千米,另一人骑摩托车从乙
地出发,已知摩托车速度是自行车速度的 3 倍,若两人同时出发,相向而行,问经过多少时间 两人相
遇?
2. 甲、乙两地路程为 180 千米,一人骑自行车从甲地出发每时走 15千米,另一人骑摩托车从乙 地出发,已知摩托车速度是自行车速度的 3 倍,若两人同向而行,骑自行车在先且先出发 2 小时, 问摩托车经过多少时间追上自行车?
3.一架直升机在 A ,B 两个城市之间飞行,顺风飞行需要 4小时,逆风飞行需要 5小时 .如果 已知风速为 30km/h ,求 A ,B 两个城市之间的距离 .
四、易错题
1. 甲、乙两人都以不变速度在 400 米的环形跑道上跑步,两人在同一地方同时出发同向而行, 甲的速度为 100 米/分乙的速度是甲速度的 3/2 倍,问( 1)经过多少时间后两人首次遇( 2)第 二次相遇呢?
【调配问题】
、本课重点
初步学会列方程解调配问题各类型的应用题;分析总量等于 ______________ 一类应用题的基本方法 和关键所在 .
、基础题
1•某人用三天做零件 330个,已知第二天比第一天多做
3个,第三天做的是第二天的 2倍少3
3、甲每小时行 (
4 千米,乙每小时
行 )千米 . 5 千米,则甲、乙一小时共行(
)千米, y 小时共行
4、某一段路程 x 千米,如果火车以 49千米 /时的速度行驶,那么火车行完全程需要
个,则他第一天做了多少个零件?
解:设他第一天做零件x个,则他第二天做零件_______________ 个,
第三天做零件_____________________ 个,根据某人用三天做零件330个”
列出方程得:__________________________________________ .
解这个方程得:_______________ .
答:他第一天做零件__________ 个•
2•初一甲、乙两班各有学生48人和52人,现从外校转来12人插入甲班x人,其余的都插入乙班,问插入后,甲班有学生__________________ 人,乙班有学生 _____________ 人,若已知插入后,
甲班学生人数的3倍比乙班学生人数的2倍还多4人,列出方程是:________________________ 三、综合题
1•有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?
2. 为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么
每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。
若某用户五月份的水费为平均每吨 1.5元,问,该用户五月份应交水费多少元?
3. 甲种糖果的单价是每千克20元,乙种糖果的单价是每千克15元,若要配制200千克单价为每千克18元的混合糖果,并使之和分别销售两种糖果的总收入保持不变,问需甲、乙两种糖果各多少千克?
【工程问题】
、本课重点
1.工程问题中的基本关系式:
工作总量=工作效率x工作时间
各部分工作量之和=工作总量
二、基础题
1 •做某件工作,甲单独做要8时才能完成,乙单独做要12时才能完成,问:
①甲做1时完成全部工作量的几分之几?________ ________________________
②乙做 1 时完成全部工作量的几分之几?________ ________________________
③甲、乙合做 1 时完成全部工作量的几分之几?_________ _________________
④甲做x时完成全部工作量的几分之几? ________ _________________________________ 。
⑤甲、乙合做x时完成全部工作量的几分之几? ________ 。
⑥甲先做2时完成全部工作量的几分之几?________ —。
乙后做3时完成全部工作量的几分之几? _________ ____________________________________ 。
甲、乙再合做x 时完成全部工作量的几分之几?_________ ______________________________ 。
三次共完成全部工作量的几分之几?
结果完成了工作,则可列出方程:— ________ _____
三、综合题
1•一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?
2•食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量•
3•—水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。
现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
【储蓄问题】
一、本课重点,请你理一理
1.本金、利率、利息、本息这四者之间的关系:
(1)利息=本金x利率
(2)本息=本金+利息
(3)税后利息=利息-利息x利息税率
2•通过经历问题情境一一建立数学模型一一解释、应用与拓展”的过程,理解和体会数学建模思想在解决实际问题中的作用•
二、基础题,请你做一做
1. 某商品按定价的八折出售,售价14.80元,则原定价是____________ 元。
2. 盛超把爸、妈给的压岁钱1000元按定期一年存入银行。
当时一年期定期存款的年利率为 1.98%, 利息税的税率为20%到期支取时,利息为___________
税后利息________ ,小明实得本利和为 ___________ .
3. A、B两家售货亭以同样价格出售商品,一星期后A家把价格降低了10%,再过一个星期又提
高20% , B家只是在两星期后才提价10%,两星期后 _____ 家售货亭的售价低。
4. 某服装商贩同时卖出两套服装,每套均卖168元,以成本计算其中一套盈利20%另一套亏本
20%则这次出售商贩_____________ (盈利或亏本)
三、综合题
1. 小明爸爸前年存了年利率为
2.43%的二年期定期储蓄,今年到期后,扣除利息税,利息税的税率为20%,所得利息正好为小明买了一只价值48.60 元的计算器,问小明爸爸前年存了多少元?
2.青青的妈妈前年买了某公司的二年期债券4500 元,今年到期,扣除利息税后,共得本利和约
4700 元,利息税的税率为20%,问这种债券的年利率是多少?(精确到0.01%)
3. 一商店将某型号彩电按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”,经顾客投诉后,执法部门按已得非法收入10倍处以每台2700 元的罚款,求每台彩电的原售价?。