c数值算法程序大全c16-2

合集下载

数值方法C++代码大全上(包括二分法迭代法牛顿法等等)

数值方法C++代码大全上(包括二分法迭代法牛顿法等等)

数值方法C++代码大全上(包括二分法迭代法牛顿法等等)1.二分法#include#include#include //调用fabs函数。

double f(double x) //定义函数F(x)。

{return 2*x*x*x-x-1;}void main(){double a,b,w,x;cout<<"请输入方程根的区间[a,b]及误差w:";cin>>a>>b>>w;x=(a+b)/2;while(fabs(f(x))>w&&fabs(a-b)>w){ //用while循环控制中值折算的条件。

if(f(x)*f(b)<0) a=x; //进行二分,缩小求值范围。

else if(f(a)*f(x)<0) b=x;x=(a+b)/2;}cout<<x<<endl;< p="">}2.迭代法#include#include#include#includeusing namespace std;typedef double (*pFun)(double x);double getIterativeValue(double x){return pow((x+1)/2,(double)1.0/3);}double Solve(pFun f,double x,double e,int n){double res;while(n--){res = f(x);if(fabs(res - x) < e){outPrint("第%d次次迭代以后返回值为:%0.7lf \n",10-n,res); break;}elsex = res;outPrint("第%d次迭代以后x值为:%0.7lf\n ",10-n,x);}return res;}int main(){cout << setprecision(7);double x,e;cout << "输入初值和精度:" << endl;cin >> x >> e;cout << Solve(getIterativeValue,x,e,10) << endl;system("pause");return 0;3.牛顿法#include#include#include#includeusing namespace std;typedef double (*pFun)(double x);double getIterativeValue(double x){return pow((x+1)/2,(double)1.0/3);}double Solve(pFun f,double x,double e,int n){double res;while(n--){res = f(x);if(fabs(res - x) < e){printf("第%d次次迭代以后返回值为:%0.7lf \n",10-n,res); break;}elsex = res;printf("第%d次迭代以后x值为:%0.7lf\n ",10-n,x);}return res;}int main()cout << setprecision(7);double x,e;cout << "输入初值和精度:" << endl;cin >> x >> e;cout << Solve(getIterativeValue,x,e,10) << endl; return 0;}4.高斯消元法#include#include#define N 10 //矩阵大小范围/** 使用已经求出的x,向前计算x(供getx()调用)* float a[][] 系数矩阵* float x[] 方程组解* int i 解的序号* int n 矩阵大小* return 公式中需要的和*/float getm(float a[N][N], float x[N], int i, int n) {float m = 0;int r;for(r=i+1; r<="">{m += a[i][r] * x[r];}return m;}* 解方程组,计算x* float a[][] 系数矩阵* float b[] 右端项* float x[] 方程组解* int i 解的序号* int n 矩阵大小* return 方程组的第i个解*/float getx(float a[N][N], float b[N], float x[N], int i, int n){float result;if(i==n-1) //计算最后一个x的值result = float(b[n-1]/a[n-1][n-1]);else //计算其他x值(对于公式中的求和部分,需要调用getm()函数)result = float((b[i]-getm(a,x,i,n))/a[i][i]);return result;}void main()//float a[N][N] = {{2,1,1},{1,3,2},{1,2,2}}; //float b[N] = {4,6,5};float a[N][N]; //系数矩阵float b[N]; //右端项float x[N]; //方程组解int i,j,k;int n=N; //矩阵大小/*用户手工输入矩阵*/printf("请输入系数矩阵的大小:"); scanf("%d", &n);printf("请连续输入矩阵值:");for(i=0; i<="" p="">{for(j=0; j<="" p="">scanf("%f", &a[i][j]);}printf("请输入右端项:");for(i=0; i<="" p="">{scanf("%f", &b[i]);}/*显示原始矩阵*/printf("\n原始矩阵\n");for(i=0; i<="" p="">{for(j=0; j<="" p="">printf("%f ",a[i][j]);printf("\t|\t%f\n",b[i]);}printf("\n\n");/*进行高斯消去*/for(j=0; j<="" p="">{for(i=j+1; i<="" p="">{float m = (float)(a[i][j]/a[j][j]); for(k=j; k<="" p="">{a[i][k] = a[i][k]-m*a[j][k];}b[i] = b[i]-m*b[j];}}/*显示处理后矩阵*/printf("高斯消去后矩阵\n");for(i=0; i<="" p="">{for(j=0; j<="" p="">printf("%f ",a[i][j]);printf("\t|\t%f\n",b[i]);}/*回代方式解方程组*/for(i=n-1; i>=0; i--){x[i] = getx(a,b,x,i,n);}/*显示方程组解*/printf("\n\n方程组解\n");for(i=0; i<="" p="">{printf("x%d = %f\n", i+1,x[i]);}}5.高斯先列主元消元法采用高斯先列主元消元法求解线性方程组AX=b方法说明(以4阶为例):(1)第1步消元——在增广矩阵(A,b)第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b)做初等行变换使原方程组转化为如下形式:,注:“*”代表非0。

C语言数值算法程序大全-第二版

C语言数值算法程序大全-第二版
13.6 线性预测和线性预测编码 478 13.7 用最大熵 (全极 方法的功率谱估计 485 13.8 非均匀取样数据的谱分析 488 13.9 用 FFT 计算傅里叶积分 496 13.10 小波变换 502 13.11 取样定理的数值应用 515 第十四章 数据的统计描述 518
14.3 两种分布是否不同 ? 526 14.4 两种分布的列联表分析 533 14.5 线性相关 539
8.6 等价类的确定 290 第九章 求根与非线性方程组 292
9.3 范 维金加登 -德克尔 -布伦特方法 303 9.4 利用导数的牛顿 -拉斐森算法 305 9.5 多项式的根 311 9.6 非线性方程系统的牛顿 拉斐森方法 320 9.7 非线性方程系统的全局收敛法 324 第十章 函数的极值 334 10.0 引言 334
7.1 一致偏离 229 7.2 变换方法 : 指数偏离和正态偏离 239 7.3 拒绝方法 : Γ偏离 、 泊松偏离 、 二项式偏离 242 7.4 随机位的生成 248 7.5 基于数据加密的随机序列 251 7.6 简单的蒙特卡罗积分 255 7.7 准随机序列 258
8.1 直接插入法和剥壳法 277 8.2 快速排序法 279 8.3 堆积排序法 282 8.4 索引和分秩 284 8.5 挑选第 M 大的元素 286
封面页 1
书名页 1 版权页 1 前言页 1
目录页 1 第一章 绪言 1 1.0 引言 1
1.1 程序组织和控制结构 4 1.2 用 C 语言作科学计算的一些协议 13
1ቤተ መጻሕፍቲ ባይዱ3 误差 、 准确性和稳定性 24 第二章 线性代数方程组求解 27 2.0 引言 27
2.1 高斯 -约当消去法 30 2.2 具有回代过程的高斯消去法 34

c++ 16进制校验位计算

c++ 16进制校验位计算

c++ 16进制校验位计算在计算机通讯中,校验位是一种用于检查数据传输是否正确的方法。

在通讯中,发送方将数据进行处理,添加校验位后发送给接收方,接收方对接收到的数据进行校验,如果校验通过,则认为数据传输正确,否则数据传输有误。

16进制校验位计算是一种常见的校验方式,下面介绍如何使用C++计算16进制校验位。

1.计算校验位首先,我们需要将要传输的数据转换成16进制,并将所有16进制数相加。

例如,要传输的数据为'123456',转换成16进制为'31 32 33 34 35 36',将所有数相加得到0x1E2,其中0x表示16进制,1E2为相加结果。

2.将相加结果转换成两个16进制数将相加结果转换成两个16进制数,例如0x1E2可转换成0x01和0xE2。

3.将两个16进制数进行异或运算将0x01和0xE2进行异或运算,得到0xE3,即为16进制校验位。

4.发送数据将原始数据与16进制校验位拼接后发送给接收方。

下面是使用C++计算16进制校验位的示例代码:```#include <iostream>#include <string>using namespace std;int main(){string sendData = '123456'; // 原始数据int sum = 0;for (int i = 0; i < sendData.length(); i++){sum += sendData[i];}string sumHex = to_string(sum); // 将相加结果转换成字符串string checkCodeHex = sumHex.substr(sumHex.length() - 2, 2); // 取相加结果的最后两个字符作为16进制校验位int checkCode = stoi(checkCodeHex, nullptr, 16); // 将16进制校验位转换成整数int checkCodeXor = checkCode ^ 0xFF; // 进行异或运算string checkCodeXorHex = to_string(checkCodeXor); // 将结果转换成字符串if (checkCodeXorHex.length() == 1){checkCodeXorHex = '0' + checkCodeXorHex; // 如果结果只有一位,则在前面补0}cout << '校验位为:' << checkCodeXorHex << endl;string sendDataWithCheckCode = sendData + checkCodeXorHex; // 拼接原始数据和校验位cout << '发送数据为:' << sendDataWithCheckCode << endl; return 0;}```以上代码中,我们将原始数据'123456'转换成16进制并相加,得到0x1E2,将0x1E2转换成字符串'482',取最后两个字符'82'作为16进制校验位,并将其转换成整数0x82。

计算机二级-C语言常用算法

计算机二级-C语言常用算法

一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。

main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。

假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。

其中t为中间变量,起到“空杯子”的作用。

注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。

main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。

“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。

例1、求1+2+3+……+100的和。

main(){int i,s;s=0; i=1;while(i<=100){s=s+i;i=i+1;}printf("1+2+3+...+100=%d\n",s);}【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。

3.累乘累乘算法的要领是形如“s=s*A”的累乘式,此式必须出现在循环中才能被反复执行,从而实现累乘功能。

牛拉法计算C程序

牛拉法计算C程序

牛拉法计算C程序(总9页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March#include<>#include<>#include<>#define PIstruct NodeType{int N;int Type;double e;double f;double Pd;double Qd;double Ps;double Qs;double Bc;};struct BranchType{int Nbr;int Nl;int Nr;double R;double X;double Bn;double Kt;};int n;int nPQ;int nPV;int nPH;int nbr;int ng;int Mark=0;double **G;double **B;double *dS;double *mid1,*mid2; double *Us;double error=1;double iteration=;double **Jacob;double **invJac;double *dfe;struct NodeType *Node; struct BranchType *Branch; void main()void LoadData(); void FormY();void DeltaS();void FormJacob();void InvJac();void UpdateU();void CalculatePQ();int kk;LoadData();FormY();printf("Îó²î¾«¶È iteration=%lf\n",iteration);kk=0;DeltaS();while(error>iteration&&kk<50){FormJacob();UpdateU();DeltaS();kk++;}printf("µü´ú´ÎÊýΪ%4d\n",kk);CalculatePQ();printf("Îó²îÖµ error=%e\n",error);printf("\n");printf("\n");printf("{×¢:\nNΪ½ÚµãºÅ£¬TpΪ½ÚµãÀàÐÍ£¨ÆäÖÐ1ΪPQ½Úµã£¬2ΪPV½Úµã£¬3Ϊƽºâ½Úµã£©£¬\nAmpΪµçѹ´óС£¬DltaΪÏàλ½Ç£¬PdΪ½ÚµãÊä³öµÄÓй¦¹¦ÂÊ£¬QdΪ½ÚµãÊä³öµÄÎÞ¹¦¹¦ÂÊ£¬\nPsΪ·¢µç»úÊä³öÓй¦¹¦ÂÊ£¬QsΪ·¢µç»úÊä³öÎÞ¹¦¹¦ÂÊ£¬BcΪ²¢ÁªµçÈݵĵ翹ֵ}\n");}void LoadData(){int i,j;int tN,tType;double te,tf,tPd,tQd,tPs,tQs,tBc;FILE *fp;char filename[50]={" "};printf("ÇëÊäÈëÊý¾ÝÎļþÃû(Ìáʾ£ºÊý¾ÝËùÔÚTXTÎļþ)£º");scanf("%s",filename);if((fp=fopen(filename,"r"))==NULL){printf("cannot open the file:\n");return;}fscanf(fp,"%d",&n);printf("½Úµã¸öÊýΪ£º%d\n",n);Node=(struct NodeType *)malloc(sizeof(struct NodeType)*n);printf("µ÷ÕûÇ°µÄ½Úµã²ÎÊýΪ£º\n");for(i=0;i<n;i++)fscanf(fp,"%d%d%lf%lf%lf%lf%lf%lf%lf",&Node[i].N,&Node[i].Type,&Node[i].e,&Node[i].f,&Node[i ].Pd,&Node[i].Qd,&Node[i].Ps,&Node[i].Qs,&Node[i].Bc);for(i=0;i<n;i++){if(Node[i].Type==1)nPQ++;else if(Node[i].Type==2)nPV++;else if(Node[i].Type==3)nPH++;}printf("PQ½Úµã¸öÊý£º%d\n",nPQ);printf("PV½Úµã¸öÊý£º%d\n",nPV);printf("ƽºâ½Úµã¸öÊý£º%d\n",nPH);for(j=0;j<n-1;j++)for(i=0;i<n-j-1;i++){if(Node[i].Type>Node[i+1].Type){tN=Node[i].N;Node[i].N=Node[i+1].N;Node[i+1].N=tN;tType=Node[i].Type;Node[i].Type=Node[i+1].Type;Node[i+1].Type=tType;te=Node[i].e;Node[i].e=Node[i+1].e;Node[i+1].e=te;tf=Node[i].f;Node[i].f=Node[i+1].f;Node[i+1].f=tf;tPd=Node[i].Pd;Node[i].Pd=Node[i+1].Pd;Node[i+1].Pd=tPd;tQd=Node[i].Qd;Node[i].Qd=Node[i+1].Qd;Node[i+1].Qd=tQd;tPs=Node[i].Ps;Node[i].Ps=Node[i+1].Ps,Node[i+1].Ps=tPs;tQs=Node[i].Qs;Node[i].Qs=Node[i+1].Qs;Node[i+1].Qs=tQs;tBc=Node[i].Bc;Node[i].Bc=Node[i+1].Bc;Node[i+1].Bc=tBc;}}Us=(double *)malloc(sizeof(double)*(n-1));for(i=0;i<n-1;i++)Us[i]=Node[i].e;fscanf(fp,"%d",&nbr);printf("֧·¸öÊýΪ£º%d\n",nbr);Branch=(struct BranchType *)malloc(sizeof(struct BranchType)*nbr);for(i=0;i<nbr;i++)fscanf(fp,"%d%d%d%lf%lf%lf%lf",&Branch[i].Nbr,&Branch[i].Nl,&Branch[i].Nr,&Branch[i].R,&Bran ch[i].X,&Branch[i].Bn,&Branch[i].Kt);for(i=0;i<nbr;i++){Mark=0;for(j=0;j<n;j++){if(Branch[i].Nl==Node[j].N&&Mark==0){Branch[i].Nl=j+1;Mark=1; }}}for(i=0;i<nbr;i++){Mark=0;for(j=0;j<n;j++){if(Branch[i].Nr==Node[j].N&&Mark==0){Branch[i].Nr=j+1;Mark=1;}}}fclose(fp);}void FormY(){int i,j;double Z2;G=(double **)malloc(sizeof(double *)*n);B=(double **)malloc(sizeof(double *)*n);for(i=0;i<n;i++){G[i]=(double *)malloc(sizeof(double)*n);B[i]=(double *)malloc(sizeof(double)*n);}for(i=0;i<n;i++)for(j=0;j<n;j++){G[i][j]=0;B[i][j]=0;}for(i=0;i<nbr;i++){Z2=Branch[i].R*Branch[i].R+Branch[i].X*Branch[i].X;if(Branch[i].Kt==0){G[Branch[i].Nl-1][Branch[i].Nr-1]-=Branch[i].R/Z2;B[Branch[i].Nl-1][Branch[i].Nr-1]+=Branch[i].X/Z2;G[Branch[i].Nr-1][Branch[i].Nl-1]=G[Branch[i].Nl-1][Branch[i].Nr-1];B[Branch[i].Nr-1][Branch[i].Nl-1]=B[Branch[i].Nl-1][Branch[i].Nr-1];}else{G[Branch[i].Nl-1][Branch[i].Nr-1]-=Branch[i].R/Z2/Branch[i].Kt;B[Branch[i].Nl-1][Branch[i].Nr-1]+=Branch[i].X/Z2/Branch[i].Kt;G[Branch[i].Nr-1][Branch[i].Nl-1]=G[Branch[i].Nl-1][Branch[i].Nr-1];B[Branch[i].Nr-1][Branch[i].Nl-1]=B[Branch[i].Nl-1][Branch[i].Nr-1]; }}for(i=0;i<n;i++)for(j=0;j<nbr;j++){Z2=Branch[j].R*Branch[j].R+Branch[j].X*Branch[j].X;if(Branch[j].Kt==0&&(Branch[j].Nl-1==i||Branch[j].Nr-1==i)){G[i][i]=G[i][i]+Branch[j].R/Z2;B[i][i]=B[i][i]-Branch[j].X/Z2;}else if(Branch[j].Kt!=0&&(Branch[j].Nl-1==i||Branch[j].Nr-1==i)){G[i][i]=G[i][i]+Branch[j].R/Z2/Branch[j].Kt;B[i][i]=B[i][i]-Branch[j].X/Z2/Branch[j].Kt;}}for(i=0;i<nbr;i++){if(Branch[i].Kt==0){B[Branch[i].Nl-1][Branch[i].Nl-1]+=Branch[i].Bn;B[Branch[i].Nr-1][Branch[i].Nr-1]+=Branch[i].Bn;}else{B[Branch[i].Nl-1][Branch[i].Nl-1]-=(1-Branch[i].Kt)/Branch[i].Kt/Branch[i].Kt/Branch[i].X;B[Branch[i].Nr-1][Branch[i].Nr-1]-=(Branch[i].Kt-1)/Branch[i].Kt/Branch[i].X;}}for(i=0;i<n;i++)B[i][i]=B[i][i]+Node[i].Bc;}void DeltaS(){int i,j;mid1=(double *)malloc(sizeof(double)*n);mid2=(double *)malloc(sizeof(double)*n);dS=(double *)malloc(sizeof(double)*2*(n-1));for(i=0;i<n-1;i++){mid1[i]=0;mid2[i]=0;for(j=0;j<n;j++){mid1[i]=mid1[i]+G[i][j]*Node[j].e-B[i][j]*Node[j].f;mid2[i]=mid2[i]+G[i][j]*Node[j].f+B[i][j]*Node[j].e; }dS[2*i]=Node[i].Ps-Node[i].Pd-(Node[i].e*mid1[i]+Node[i].f*mid2[i]);if(i<nPQ)dS[2*i+1]=Node[i].Qs-Node[i].Qd-(Node[i].f*mid1[i]-Node[i].e*mid2[i]);elsedS[2*i+1]=Us[i]*Us[i]-(Node[i].e*Node[i].e+Node[i].f*Node[i].f);}error=0;for(i=0;i<2*(n-1);i++){if(dS[i]<0&&error<-dS[i])error=-dS[i];else if(dS[i]>0&&error<dS[i])error=dS[i];}}void FormJacob(){int i,j;Jacob=(double **)malloc(sizeof(double *)*2*(n-1));for(i=0;i<2*(n-1);i++)Jacob[i]=(double *)malloc(sizeof(double)*2*(n-1));for(i=0;i<2*(n-1);i++)for(j=0;j<2*(n-1);j++)Jacob[i][j]=0;for(j=0;j<n-1;j++){for(i=0;i<n-1;i++){if(i!=j){Jacob[2*i][2*j]=B[i][j]*Node[i].e-G[i][j]*Node[i].f;Jacob[2*i][2*j+1]=-G[i][j]*Node[i].e-B[i][j]*Node[i].f;}else{Jacob[2*i][2*i]=B[i][i]*Node[i].e-G[i][i]*Node[i].f-mid2[i];Jacob[2*i][2*i+1]=-G[i][i]*Node[i].e-B[i][i]*Node[i].f-mid1[i];}}for(i=0;i<nPQ;i++){if(i!=j){Jacob[2*i+1][2*j]=G[i][j]*Node[i].e+B[i][j]*Node[i].f;Jacob[2*i+1][2*j+1]=B[i][j]*Node[i].e-G[i][j]*Node[i].f; }else{Jacob[2*i+1][2*i]=G[i][i]*Node[i].e+B[i][i]*Node[i].f-mid1[i];Jacob[2*i+1][2*i+1]=B[i][i]*Node[i].e-G[i][i]*Node[i].f+mid2[i];}}for(i=nPQ;i<n-1;i++){if(i==j){Jacob[2*i+1][2*i]=-2*Node[i].f;Jacob[2*i+1][2*i+1]=-2*Node[i].e;}}}}void InvJac(){int i,j,k;double temp;invJac=(double **)malloc(sizeof(double *)*2*(n-1));for(i=0;i<2*(n-1);i++)invJac[i]=(double *)malloc(sizeof(double)*2*(n-1));for(i=0;i<2*(n-1);i++)for(j=0;j<2*(n-1);j++){if(i!=j)invJac[i][j]=0;elseinvJac[i][j]=1;}for(i=0;i<2*(n-1);i++){for(j=0;j<2*(n-1);j++){if(i!=j){temp=Jacob[j][i]/Jacob[i][i];for(k=0;k<2*(n-1);k++){Jacob[j][k]-=Jacob[i][k]*temp;invJac[j][k]-=invJac[i][k]*temp;}}}}for(i=0;i<2*(n-1);i++)if(Jacob[i][i]!=1) {temp=Jacob[i][i];for(j=0;j<2*(n-1);j++)invJac[i][j]=invJac[i][j]/temp;}}void UpdateU(){void InvJac();int i,j;dfe=(double *)malloc(sizeof(double)2*(n-1));InvJac();for(i=0;i<2*(n-1);i++){dfe[i]=0;for(j=0;j<2*(n-1);j++)dfe[i]-=invJac[i][j]*dS[j];}for(i=0;i<n-1;i++){Node[i].e+=dfe[2*i+1];Node[i].f+=dfe[2*i];}}void CalculatePQ(){int i,j;int tN,tType;double te,tf,tPd,tQd,tPs,tQs,tBc;mid1[n-1]=0;mid2[n-1]=0;for(j=0;j<n;j++){mid1[n-1]=mid1[n-1]+G[n-1][j]*Node[j].e-B[n-1][j]*Node[j].f;mid2[n-1]=mid2[n-1]+G[n-1][j]*Node[j].f+B[n-1][j]*Node[j].e; }Node[n-1].Ps=Node[n-1].e*mid1[n-1];Node[n-1].Qs=-Node[n-1].e*mid2[n-1];for(i=nPQ;i<n-1;i++)Node[i].Qs=Node[i].f*mid1[i]-Node[i].e*mid2[i];for(j=0;j<n-1;j++)for(i=0;i<n-j-1;i++){if(Node[i].N>Node[i+1].N){tN=Node[i].N;Node[i].N=Node[i+1].N;Node[i+1].N=tN;tType=Node[i].Type;Node[i].Type=Node[i+1].Type;Node[i+1].Type=tType; te=Node[i].e;Node[i].e=Node[i+1].e;Node[i+1].e=te;tf=Node[i].f;Node[i].f=Node[i+1].f;Node[i+1].f=tf;tPd=Node[i].Pd;Node[i].Pd=Node[i+1].Pd;Node[i+1].Pd=tPd;tQd=Node[i].Qd;Node[i].Qd=Node[i+1].Qd;Node[i+1].Qd=tQd;tPs=Node[i].Ps;Node[i].Ps=Node[i+1].Ps,Node[i+1].Ps=tPs;tQs=Node[i].Qs;Node[i].Qs=Node[i+1].Qs;Node[i+1].Qs=tQs;tBc=Node[i].Bc;Node[i].Bc=Node[i+1].Bc;Node[i+1].Bc=tBc;}}for(i=0;i<n;i++){te=sqrt(Node[i].e*Node[i].e+Node[i].f*Node[i].f);tf=atan(Node[i].f/Node[i].e)*180/PI;Node[i].e=te;Node[i].f=tf;}printf("×îÖÕ½á¹ûΪ£º\n");printf(" N Tp Amp Dlta Pd Qd Ps Qs Bc\n");for(i=0;i<n;i++)printf("%4d%4d%%%%%%%\n",Node[i].N,Node[i].Type,Node[i].e,Node[i].f,Node[i].Pd,Node[i].Qd, Node[i].Ps,Node[i].Qs,Node[i].Bc);}。

DPS数据处理系统V2_C16 聚类分析

DPS数据处理系统V2_C16 聚类分析
dij xik x jk
k 1 m
( xik x jk )
这是一个自身标准化的量。由于它对大的奇异值不敏感,故特别适合高度偏倚的数据。 (5) 马氏距离:
dij ( x(i ) x( j ) ) S 1 ( x(i ) x( j ) )
式中,x(i)为样品 xi 的 m 个指标所组成的向量(i1,2,,n),S1 为样本协方差阵的逆 矩阵。样本的协方差矩阵为
第 16 章 聚 类 分 析
聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的亲疏程度 进行分类。 亲疏程度, 一种方法是把每个样品看成 m 维(变量个数为 m 个)空间的一个点, 进而在 m 维坐标中定义点与点之间的某种距离; 另一方法是用某种相似系数来描述样品 间的亲疏程度。当确定了样品或变量间的距离或相似系数后,就可以对样品或变量进行 分类。分类的方法很多。一类方法是在样品距离的基础上定义类与类之间的距离,首先 将 n 个样品自成一类,然后每次将具有最小距离的两类合并,合并后重新计算类与类之 间的距离,将此过程一直继续到所有样品归为一类为止。最后把这个过程做成一张聚类 谱系图。这种聚类方法称为系统聚类法;另一类方法是将 n 个样品初步分类,然后根据 分类函数尽可能小的原则,对已分类别进行调整,直到分类合理为止。这种聚类方法称 为调试法,如动态聚类就属于该类型。此外,还有在不打乱样本秩序的条件下对样本进 行聚类分析,如有序样本的最优分割法。 非线性映射方法是一种“几何图像降维”的数学方法。该方法可将 n 个样本 m 维空 间点映射到一个维数较低(如二维)的空间,以给出数据构形的直观概念,并在低维空间 进行识别分类。 聚类分析根据分类对象的不同分为 Q 型和 R 型两大类。 Q 型是对样本进行分类处 理,R 型是对变量进行分类处理。在一般科研工作中,用得较多的是 Q 型聚类分析。本 章主要讨论 Q 型聚类分析问题。

c语言输出62进制2位数组合代码正确版

c语言输出62进制2位数组合代码正确版

c语言输出62进制2位数组合代码正确版freopen("c++输出62进制2位数秩序律法理式代码正确例题.txt", "w", stdout);//c++输出62进制2位数秩序律法理式代码正确例题C++输出99乘法口诀表#include <iostream>using namespace std;int main(){int i,j,s;for(i=1;i<=9;i++){for(j=1;j<=i;j++){s=i*j;cout<<j<<"*"<<i<<"="<<s<<" ";}cout<<endl;}system("pause");return 0;}c++输出2进制排列组合#include <iostream>using namespace std;int main(){int i,j;for(i=0;i<2;i++){for(j=0;j<2;j++){cout<<i<<j<<endl;}}system("pause");return 0;}c++输出2进制2位数排列组合#include <iostream>using namespace std;int main(){string a[2]={"0","1"};int i,j;for(i=0;i<2;i++){for(j=0;j<2;j++){cout<<a[i]<<a[j]<<endl;}}system("pause");return 0;}c++输出2进制2位数排列组合#include <iostream>using namespace std;int main(){string a[2]={"a","b"};int i,j;for(i=0;i<2;i++){for(j=0;j<2;j++){cout<<a[i]<<a[j]<<endl;}}return 0;}c++输出62进制2位数秩序律法理式代码正确例题#include <iostream>using namespace std;int main(){stringa[62]={"0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f"," g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y", "z","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P"," Q","R","S","T","U","V","W","X","Y","Z"};int i,j;for(i=0;i<62;i++){for(j=0;j<62;j++){cout<<a[i]<<a[j]<<endl;}}return 0;}c++输出62进制2位数秩序律法理式代码正确例题#include <iostream>using namespace std;int main(){freopen("c++输出62进制2位数秩序律法理式.txt", "w", stdout);//c++输出62进制2位数秩序律法理式代码正确例题stringa[62]={"0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f"," g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y", "z","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P"," Q","R","S","T","U","V","W","X","Y","Z"};int i,j;for(i=0;i<62;i++){for(j=0;j<62;j++){cout<<a[i]<<a[j]<<endl;}}return 0;}c++输出2进制2位数随机字符串#include <iostream>#include<time.h>#include<stdlib.h>using namespace std;int main(void){string a[2]={"a","b"};srand((unsigned)time(NULL));int i,j;for(i=0;i<2;i++){cout<<a[rand()%2]<<a[rand()%2]<<endl;}return 0;}c++输出62进制2位数随机字符串#include <iostream>#include<time.h>#include<stdlib.h>using namespace std;int main(void){stringa[62]={"0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f"," g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y", "z","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P"," Q","R","S","T","U","V","W","X","Y","Z"};srand((unsigned)time(NULL));int i,j;for(i=0;i<2;i++){cout<<a[rand()%62]<<a[rand()%62]<<endl;}return 0;}c++输出62进制10位数随机字符串#include <iostream>#include<time.h>#include<stdlib.h>using namespace std;int main(void){stringa[62]={"0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f"," g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y", "z","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P"," Q","R","S","T","U","V","W","X","Y","Z"};srand((unsigned)time(NULL));int i,j;for(i=0;i<5;i++){cout<<a[rand()%62]<<a[rand()%62];}return 0;}。

计算机C++实现任意长整数的四则运算

计算机C++实现任意长整数的四则运算

计算机C++实现任意长整数的四则运算一、什么是任意长整数任意长整数,也称作大整数或无限长整数,可以表示出任意长度的整数,是由多个整数构成的有限序列。

它的最大特征是其位数不受限制,可以用来表示任意大小的整数。

二、任意长整数四则运算1、四则运算任意长整数四则运算是指对任意长整数进行加、减、乘、除四种基本运算的操作。

2、C++实现任意长整数的四则运算(1)首先要明确,任意长整数是由多个整数构成的有限序列,所以要想实现四则运算,必须将单个整数进行相应的计算。

(2)因此,可以采用逐位计算的方法来实现任意长整数的四则运算。

具体的步骤如下:(a)以字符串的形式表示任意长整数,并转换成整型数组,每个元素代表任意长整数中的一位数字;(b)从数组的末尾开始,依次取出每一位数字,根据相应的运算符进行计算;(c)将计算结果存入到一个新的数组中;(d)最后,把新数组中的元素按照从小到大的顺序组合成一个新的字符串,这就是任意长整数的四则运算的结果。

三、C++实现任意长整数的四则运算的算法(1)定义函数原型:string Cal(stringstr1,string str2,char op);(2)申请内存空间:int *arr1 = newint[str1.length()]; int *arr2 = newint[str2.length()]; int *res = newint[max(str1.length(),str2.length())];(3)将字符串转化为整型数组:for(int i=0;i <str1.length();i++) arr1[i] = str1[i] - '0'; for(int j=0;j < str2.length();j++) arr2[j] = str2[j] - '0';(4)根据所传入的运算符,进行相应的运算:switch (op) {case '+': //加法运算break; case '-': //减法运算break; case '*': //乘法运算break; case '/': //除法运算break;}(5)将计算结果存入到新的数组中:for(intk=0;k<max(str1.length(),str2.length());k++) res[k] = add[k];(6)将计算结果的数组转换成字符串:string result=""; for(intl=0;l<max(str1.length(),str2.length());l++) result += to_string(res[l]);(7)返回计算结果return result;(8)释放内存空间delete[] arr1; delete[] arr2; delete[] res;四、总结任意长整数四则运算是指对任意长整数进行加、减、乘、除四种基本运算的操作。

数值计算问题_C语言程序设计(第2版)_[共2页]

数值计算问题_C语言程序设计(第2版)_[共2页]

即判断 m/n 的余数是否为 0。
例如,若要判断 X 是否为偶数,只要判断 X 能否被 2 整除,判断语句中的表达式可以写为 X%2 == 0。
2.累加
形如:
1 + 2 + 3 +…+ 100,
1! + 3! + 5! +…+ n!,
1
1 2
1 3

ቤተ መጻሕፍቲ ባይዱ1 n

等都属于累加的问题。
累加问题一般通过在循环体中设置一个累加器来实现。例如,若累加和存于变量 s 中,x 为每次要
累加的数值,则累加器就写为 s = s + x。在循环之前 s 的初值为 0(即 s = 0),x 的值可随循环而改变。
如前面提到的计算
1
1 2
1 3

1 n
的问题,假设循环变量为
i,则程序中的累加器可写为
s = s + 1.0/i。
3.累乘
形如:
1 × 2 × 3 ×…× n,
1
1 2
1 3

1 n

67
方程、分解因式等。编程解决以上问题时,涉及的主要算法有:计算公式、整除、取整、求余数、
累加、累乘等。熟练掌握这些算法,将对编程带来极大的方便。
1.整除
判断一个数的奇偶性、判断素数、判断一个数能否被另一个数整除等都与整除有关。
设 m,n 是两个整型数值,要判断 m 是否能被 n 整除,只要判断算式 m%n 的结果是否为 0,
第 3 章 C 语言程序控制结构
图 3-29 例 3.27 程序运行结果
3.5 综合程序设计举例
前面已经学习了 C 语言程序控制结构及程序设计的各种方法,利用这些方法,我们可以解决 实际应用中出现的各种问题。

c 16进制 2进制 互转

c 16进制 2进制 互转

c 16进制 2进制互转16进制数是一种计数法,其中使用了16个不同的符号来表示数字:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E和F。

每个符号代表了4个二进制位,因此一个16进制数字等于4个二进制位。

要将16进制数转换为2进制数,可以按照以下步骤进行:1. 找到16进制数的每个字符对应的二进制值,如下所示:- 0的二进制表示为0000- 1的二进制表示为0001- 2的二进制表示为0010- 3的二进制表示为0011- 4的二进制表示为0100- 5的二进制表示为0101- 6的二进制表示为0110- 7的二进制表示为0111- 8的二进制表示为1000- 9的二进制表示为1001- A的二进制表示为1010- B的二进制表示为1011- C的二进制表示为1100- D的二进制表示为1101- E的二进制表示为1110- F的二进制表示为11112. 将16进制数的每个字符转换为其对应的二进制值。

3. 将每个二进制值连接到一起。

例如,将16进制数"3A"转换为2进制数的过程如下:1. 3的二进制值为0011,A的二进制值为1010。

2. 将0011和1010连接起来,得到00111010。

要将2进制数转换为16进制数,可以按照以下步骤进行:1. 将2进制数按照4位一组进行分组。

2. 将每个4位二进制数转换为其对应的16进制字符。

例如,将2进制数"11011011"转换为16进制数的过程如下:1. 将11011011分成11和0110两组。

2. 将11转换为其对应的16进制字符,即B,将0110转换为其对应的16进制字符,即6。

3. 连接B和6,得到16进制数"B6"。

关于以上的16进制到2进制和2进制到16进制的转换过程,可以在计算机科学的教材、编程工具的帮助文档或相关博客中找到详细的描述和示例。

此外,还可以在计算机科学教育网站、在线论坛或知乎等问答社区上查找有关如何进行16进制和2进制之间转换的问题,这些都是提供相关参考内容的常见来源。

电线算法

电线算法
(2)“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
四.三相电知识
(1) 三相电负载的接法
分为三角形接法和Y形接法。
三角形接法的负载引线为三条火线和一条地线,三条火线之间的电压为380V,任一火线对地线的电压为220V;
Y形接法的负载引线为三条火线、一条零线和一条地线,三条火线之间的电压为380V,任一火线对零线或对地线的电压为220V。
说明 口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。
为此将我国常用导线标称截面(平方毫米)排列如下:
1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、 185……
(1) 第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。
二.空气开关
空气开关,又称自动开关,低压断路器。原理是:当工作电流超过额定电流、短路、失压等
情况下,自动切断电路。
目前,家庭总开关常见的有闸刀开关配瓷插保险(已被淘汰)或空气开关(带漏电保护的小型断路器)。目前家庭使用DZ系列的空气开关,常见的有以下型号/规格: C16、 C25、C32、C40、C60、C80、C100、C120等规格,其中C表示脱扣电流,即起跳电流,例如C32表示起跳电流为32安,一般安装6500W热水器要用C32,安装7500W、8500W热水器要用C40的空开。
铝芯线截面积 直径 允许长期电流

16计数器 c语言实现原理 -回复

16计数器 c语言实现原理 -回复

16计数器c语言实现原理-回复实现16计数器主要依靠C语言的逻辑和数学运算。

以下是一步一步详细回答关于16计数器C语言实现原理的文章。

首先,我们需要了解什么是16计数器。

16计数器是一种能够计数0到15的设备或程序,它可以循环地计数从0到15,并在达到最大值后重新回到0。

接下来,我们将一步一步实现一个简单的16计数器。

第一步,我们需要定义一个计数器变量。

在C语言中,我们可以使用整型变量来表示计数器。

根据16进制数的表示,我们可以选择使用unsigned char类型来存储计数器变量。

这样,计数器变量的范围就是从0到255。

cunsigned char counter;第二步,我们需要初始化计数器变量。

在计数器开始工作之前,我们需要将其值设置为0,从而确保计数器从最小值开始计数。

ccounter = 0;第三步,我们需要编写一个循环来实现计数器的循环计数功能。

在C语言中,我们可以使用while循环或for循环来实现这个功能。

这里,我们选择使用while循环,并设置一个无限循环。

在循环的每个迭代中,我们将计数器值打印出来,并根据需要执行其他操作。

cwhile(1) {printf("当前计数值: d\n", counter);其他操作}第四步,我们需要实现计数器的递增功能。

在每次循环迭代中,我们将计数器的值递增1。

当计数器达到最大值15时,我们需要将其值重新设置为0,以完成循环计数的要求。

cwhile(1) {printf("当前计数值: d\n", counter);counter++;if(counter > 15) {counter = 0;}其他操作}通过以上几个步骤,我们已经完成了一个简单的16计数器的实现。

这个计数器将从0开始递增,当计数值达到15时,重新回到0,并不断重复这个过程。

在实际应用中,我们可以根据需要对计数器的功能进行扩展。

例如,可以添加按键检测的逻辑,当按下某个特定的按键时,重置计数器的值为0,从而在需要时可以重新开始计数。

C数值算法程序大全 c12-6

C数值算法程序大全 c12-6

12.6External Storage or Memory-Local FFTsSometime in your life,you might have to compute the Fourier transform of a really large data set,larger than the size of your computer’s physical memory.In such a case, the data will be stored on some external medium,such as magnetic or optical tape or disk.Needed is an algorithm that makes some manageable number of sequential passes through the external data,processing it on thefly and outputting intermediate results to other external media,which can be read on subsequent passes.In fact,an algorithm of just this description was developed by Singleton[1]very soon after the discovery of the FFT.The algorithm requires four sequential storage devices,each capable of holding half of the input data.Thefirst half of the input data is initially on one device,the second half on another.Singleton’s algorithm is based on the observation that it is possible to bit-reverse2M values by the following sequence of operations:On thefirst pass,values are read alternately from the two input devices,and written to a single output device(until it holds half the data), and then to the other output device.On the second pass,the output devices become input devices,and vice versa.Now,we copy two values from thefirst device,then two values from the second,writing them(as before)first tofill one output device,then tofill a second. Subsequent passes read4,8,etc.,input values at a time.After completion of pass M−1, the data are in bit-reverse order.Singleton’s next observation is that it is possible to alternate the passes of essentially this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos combination formula(12.2.3).The scheme,roughly,is this:One starts as before with half the input data on one device,half on another.In thefirst pass,one complex value is read from each input device.Two combinations are formed,and one is written to each of two output devices.After this“computing”pass,the devices are rewound,and a“permutation”pass is performed,where groups of values are read from thefirst input device and alternately written to thefirst and second output devices;when thefirst input device is exhausted,the second is similarly processed.This sequenceof computing and permutation passes is repeated M−K−1times,where2K is the size of internal buffer available to the program.The second phase of the computation consists of afinal K computation passes.What distinguishes the second phase from thefirst is that,now,the permutations are local enough to do in place during the computation.There are thus no separate permutation passes in the second phase. In all,there are2M−K−2passes through the data.Here is an implementation of Singleton’s algorithm,based on[1]:#include<stdio.h>#include<math.h>#include"nrutil.h"#define KBF128void fourfs(FILE*file[5],unsigned long nn[],int ndim,int isign)One-or multi-dimensional Fourier transform of a large data set stored on external media.On input,ndim is the number of dimensions,and nn[1..ndim]contains the lengths of each di-mension(number of real and imaginary value pairs),which must be powers of two.file[1..4] contains the stream pointers to4temporaryfiles,each large enough to hold half of the data. The four streams must be opened in the system’s“binary”(as opposed to“text”)mode.The input data must be in C normal order,with itsfirst half stored infile file[1],its second half in file[2],in nativefloating point form.KBF real numbers are processed per buffered read or write.isign should be set to1for the Fourier transform,to−1for its inverse.On output,values in the array file may have been permuted;thefirst half of the result is stored in file[3],the second half in file[4].N.B.:For ndim>1,the output is stored by columns, i.e.,not in C normal order;in other words,the output is the transpose of that which would have been produced by routine fourn.{void fourew(FILE*file[5],int*na,int*nb,int*nc,int*nd);unsigned long j,j12,jk,k,kk,n=1,mm,kc=0,kd,ks,kr,nr,ns,nv;int cc,na,nb,nc,nd;Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).float tempr,tempi,*afa,*afb,*afc; double wr,wi,wpr,wpi,wtemp,theta; static int mate[5]={0,2,1,4,3}; afa=vector(1,KBF);afb=vector(1,KBF);afc=vector(1,KBF);for(j=1;j<=ndim;j++){n*=nn[j];if(nn[j]<=1)nrerror("invalid float or wrong ndim in fourfs"); }nv=1;jk=nn[nv];mm=n;ns=n/KBF;nr=ns>>1;kd=KBF>>1;ks=n;fourew(file,&na,&nb,&nc,&nd);Thefirst phase of the transform starts here.for(;;){Start of the computing pass.theta=isign*3.141592653589793/(n/mm);wtemp=sin(0.5*theta);wpr=-2.0*wtemp*wtemp;wpi=sin(theta);wr=1.0;wi=0.0;mm>>=1;for(j12=1;j12<=2;j12++){kr=0;do{cc=fread(&afa[1],sizeof(float),KBF,file[na]);if(cc!=KBF)nrerror("read error in fourfs");cc=fread(&afb[1],sizeof(float),KBF,file[nb]);if(cc!=KBF)nrerror("read error in fourfs");for(j=1;j<=KBF;j+=2){tempr=((float)wr)*afb[j]-((float)wi)*afb[j+1];tempi=((float)wi)*afb[j]+((float)wr)*afb[j+1];afb[j]=afa[j]-tempr;afa[j]+=tempr;afb[j+1]=afa[j+1]-tempi;afa[j+1]+=tempi;}kc+=kd;if(kc==mm){kc=0;wr=(wtemp=wr)*wpr-wi*wpi+wr;wi=wi*wpr+wtemp*wpi+wi;}cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);if(cc!=KBF)nrerror("write error in fourfs");cc=fwrite(&afb[1],sizeof(float),KBF,file[nd]);if(cc!=KBF)nrerror("write error in fourfs");}while(++kr<nr);if(j12==1&&ks!=n&&ks==KBF){na=mate[na];nb=na;}if(nr==0)break;}fourew(file,&na,&nb,&nc,&nd);Start of the permutation pass.jk>>=1;while(jk==1){mm=n;Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).jk=nn[++nv];}ks>>=1;if(ks>KBF){for(j12=1;j12<=2;j12++){for(kr=1;kr<=ns;kr+=ks/KBF){for(k=1;k<=ks;k+=KBF){cc=fread(&afa[1],sizeof(float),KBF,file[na]);if(cc!=KBF)nrerror("read error in fourfs");cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);if(cc!=KBF)nrerror("write error in fourfs");}nc=mate[nc];}na=mate[na];}fourew(file,&na,&nb,&nc,&nd);}else if(ks==KBF)nb=na;else break;}j=1;The second phase of the transform starts here.Now,the remaining permutations are suf-ficiently local to be done in place.for(;;){theta=isign*3.141592653589793/(n/mm);wtemp=sin(0.5*theta);wpr=-2.0*wtemp*wtemp;wpi=sin(theta);wr=1.0;wi=0.0;mm>>=1;ks=kd;kd>>=1;for(j12=1;j12<=2;j12++){for(kr=1;kr<=ns;kr++){cc=fread(&afc[1],sizeof(float),KBF,file[na]);if(cc!=KBF)nrerror("read error in fourfs");kk=1;k=ks+1;for(;;){tempr=((float)wr)*afc[kk+ks]-((float)wi)*afc[kk+ks+1];tempi=((float)wi)*afc[kk+ks]+((float)wr)*afc[kk+ks+1];afa[j]=afc[kk]+tempr;afb[j]=afc[kk]-tempr;afa[++j]=afc[++kk]+tempi;afb[j++]=afc[kk++]-tempi;if(kk<k)continue;kc+=kd;if(kc==mm){kc=0;wr=(wtemp=wr)*wpr-wi*wpi+wr;wi=wi*wpr+wtemp*wpi+wi;}kk+=ks;if(kk>KBF)break;else k=kk+ks;}if(j>KBF){cc=fwrite(&afa[1],sizeof(float),KBF,file[nc]);if(cc!=KBF)nrerror("write error in fourfs");cc=fwrite(&afb[1],sizeof(float),KBF,file[nd]);if(cc!=KBF)nrerror("write error in fourfs");j=1;}Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).}na=mate[na];}fourew(file,&na,&nb,&nc,&nd); jk>>=1;if(jk>1)continue;mm=n;do{if(nv<ndim)jk=nn[++nv];else{free_vector(afc,1,KBF);free_vector(afb,1,KBF);free_vector(afa,1,KBF);return;}}while(jk==1);}}#include<stdio.h>#define SWAP(a,b)ftemp=(a);(a)=(b);(b)=ftempvoid fourew(FILE*file[5],int*na,int*nb,int*nc,int*nd)Utility used by fourfs.Rewinds and renumbers the fourfiles.{int i;FILE*ftemp;for(i=1;i<=4;i++)rewind(file[i]);SWAP(file[2],file[4]);SWAP(file[1],file[3]);*na=3;*nb=4;*nc=1;*nd=2;}For one-dimensional data,Singleton’s algorithm produces output in exactly the same order as a standard FFT(e.g.,four1).For multidimensional data,the output is the transpose of the conventional arrangement(e.g.,the output of fourn).This peculiarity,which is intrinsic to the method,is generally only a minor inconvenience.For convolutions,one simply computes the component-by-component product of two transforms in their nonstandard arrangement, and then does an inverse transform on the result.Note that,if the lengths of the different dimensions are not all the same,then you must reverse the order of the values in nn[1..ndim] (thus giving the transpose dimensions)before performing the inverse transform.Note also that,just like fourn,performing a transform and then an inverse results in multiplying the original data by the product of the lengths of all dimensions.We leave it as an exercise for the reader tofigure out how to reorder fourfs’s output into normal order,taking additional passes through the externally stored data.We doubt that such reordering is ever really needed.You will likely want to modify fourfs tofit your particular application.For example, as written,KBF≡2K plays the dual role of being the size of the internal buffers,and the record size of the unformatted reads and writes.The latter role limits its size to that allowed by your machine’s I/O facility.It is a simple matter to perform multiple reads for a much larger KBF,thus reducing the number of passes by a few.Another modification of fourfs would be for the case where your virtual memory machine has sufficient address space,but not sufficient physical memory,to do an efficient FFT by the conventional algorithm(whose memory references are extremely nonlocal).In that case,you will need to replace the reads,writes,and rewinds by mappings of the arrays Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).afa,afb,and afc into your address space.In other words,these arrays are replaced byreferences to a single data array,with offsets that get modified wherever fourfs performs anI/O operation.The resulting algorithm will have its memory references local within blocksof size KBF.Execution speed is thereby sometimes increased enormously,albeit at the costof requiring twice as much virtual memory as an in-place FFT.Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P CITED REFERENCES AND FURTHER READING:Singleton,R.C.1967,IEEE Transactions on Audio and Electroacoustics,vol.AU-15,pp.91–97.[1]Oppenheim,A.V.,and Schafer,R.W.1989,Discrete-Time Signal Processing(Englewood Cliffs,NJ:Prentice-Hall),Chapter9. rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).。

CRC16校验C语言程序源码(附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码)

CRC16校验C 语言程序源码 (附完整的可执行的 C 语言代码)//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的 2种//实现方法进行测试。

方法一:查表法(256长度的校验表)速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易岀现错误 // .................. --POPULAR POLYNOMIALS ....................// CCITT: x A 16 + x A 12 + x A 5 + x A 0(0x1021) // CRC-16: x A 16 + xA15 + xA2 + xA0(0x8005)#defi neCRC_16_POLYNOMIALS0x8005const BYTE chCRCHTalbe[]=// CRC 高位字节值表{0x00, 0xC1, 0x81, 0x40, 0x01, OxCO, 0x80, 0x41, 0x01, OxCO, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1,0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1,0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41,0x00, 0xC1,0x81,0x40,0x01, 0xC0, 0x80, 0x41,0x01,0xC0, 0x80, 0x41, 0x00, 0xC1,0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1,0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01,0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01,0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1,0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,0xC0, 0x80, 0x41, 0x01,0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40 };con st BYTE chCRCLTalbe[] = // CRC 低位字节值表 {0x00, 0xC0, 0xC1,0x01,0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1代 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, OxD1, OxDO, 0x10, OxFO, 0x30, 0x31, OxF1,0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61,0xA1,0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,0x41, 0x81, 0x80, 0x40};WORD CRC16_1(BYTE* pchMsg, WORD wDataLe n){BYTE chCRCHi = 0xFF; // 高CRC字节初始化BYTE chCRCLo = 0xFF; // 低CRC字节初始化WORD win dex; // CRC 循环中的索引while (wDataLe n--){// 计算CRCwin dex = chCRCLo A *pchMsg++ ;chCRCLo = chCRCHi A chCRCHTalbe[wl ndex]; chCRCHi =chCRCLTalbe[wi ndex];}return ((chCRCHi << 8) | chCRCLo);}方法一:列表法(简单表)con st WORD wCRCTalbeAbs[]={0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800,0xB401,0x5000, 0x9C01,0x8801,0x4400,};WORD CRC16_2(BYTE* pchMsg, WORD wDataLe n){WORD wCRC = OxFFFF;WORD i;BYTE chChar;for (i = 0; i < wDataLe n; i++){chChar = *pchMsg++;wCRC = wCRCTalbeAbs[(chChar A wCRC)& 15] A (wCRC>> 4);wCRC = wCRCTalbeAbs[((chChar >> 4) A wCRC) & 15] A (wCRC >> 4);}return wCRC;}方法二:定义法根据CRC16/MODBUS理直接计算,算法简单但对单片机计算压力大。

c语言中2个16位数相乘

c语言中2个16位数相乘

c语言中2个16位数相乘摘要:一、C语言简介二、16位数的概念三、两个16位数相乘的步骤1.定义变量2.初始化变量3.进行乘法运算4.输出结果四、总结正文:C语言是一种广泛应用的编程语言,其强大的功能和灵活性使其在各种领域都得到了广泛的应用。

在C语言中,我们可以处理各种类型的数据,包括整数、浮点数等。

其中,16位数是一种整数类型,其数值范围为-32768到32767。

在C语言中,如果我们想要计算两个16位数相乘的结果,可以按照以下步骤进行操作:首先,我们需要定义两个16位数类型的变量,例如:`short a = 10; short b = 20;`。

在这里,我们定义了两个16位数类型的变量a和b,并分别初始化为10和20。

接下来,我们需要使用一个中间变量来存储乘法的结果。

由于16位数类型的数值范围较小,可能无法直接存储两个16位数相乘的结果,因此我们通常使用一个32位数类型的变量来存储中间结果,例如:`int result;`。

然后,我们可以使用循环来进行乘法运算。

由于16位数最大为32767,我们可以使用16个循环来完成乘法运算,例如:`for (int i = 0; i < 16; i++) { result += (a * b) << i; }`。

在这里,我们使用一个循环来累加a和b的乘积,每次循环将a和b的乘积向左移动16的i次方,然后将其加到结果变量result中。

最后,我们可以输出乘法的结果。

由于我们使用的是32位数类型的变量来存储结果,因此可以直接输出结果,例如:`printf("两个16位数相乘的结果为: %d", result);`。

在这里,我们使用printf函数输出结果。

0.618法的C语言程序

0.618法的C语言程序
fa=fun(a);fb=fun(b);
h=b-a;
p=a+(1-t)*h;
q=a+t*h;
fp=fun(p);fq=fun(q);
while((fabs(fb-fa)>epsilon)&&(fabs(b-a)>delta))
{
if(fp<=fq)
{
a=a;
b=q;
fb=fq;
q=p;
fq=fp;
h=b-a;
}运行结果为:
printf("\n步长为:alpha=%lf\n\n",alpha);
printf("极小值点:x=%lf\n\n",s);
return fs;
}
int main()
{
dob=3.0;;
fk=golds(a,b);
printf("极小值为:fk=%lf\n\n",fk);
{
double f;
f=pow(x,3)-2*x+1;
return f;
}
double golds(double a,double b)
{
double t,fp,fq,fa,fb, p,q,s,fs,ds,df, epsilon,alpha,delta,h;
t=(sqrt(5)-1)/2;epsilon=1e-5; delta=1e-4;
或c等编程语言编写0618法的程序并求解语言程序为
0.618法:
1.用C或C++等编程语言编写0.618法的程序,并求解
的近似最优解,初始搜索区间为 ,区间精度为 .
解:用0.618法的C语言程序为:

c数值算法程序大全c6-2

c数值算法程序大全c6-2

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).which is related to the gamma function byB (z,w )=Γ(z )Γ(w )Γ(z +w )(6.1.9)hence#include <math.h>float beta(float z,float w)Returns the value of the beta function B (z,w ).{float gammln(float xx);return exp(gammln(z)+gammln(w)-gammln(z+w));}CITED REFERENCES AND FURTHER READING:Abramowitz,M.,and Stegun,I.A.1964,Handbook of Mathematical Functions ,Applied Mathe-matics Series,Volume 55(Washington:National Bureau of Standards;reprinted 1968by Dover Publications,New York),Chapter nczos,C.1964,SIAM Journal on Numerical Analysis ,ser.B,vol.1,pp.86–96.[1]6.2Incomplete Gamma Function,ErrorFunction,Chi-Square Probability Function,Cumulative Poisson FunctionThe incomplete gamma function is defined byP (a,x )≡γ(a,x )Γ(a )≡1Γ(a )x0e −t t a −1dt(a >0)(6.2.1)It has the limiting valuesP (a,0)=0andP (a,∞)=1(6.2.2)The incomplete gamma function P (a,x )is monotonic and (for a greater than one orso)rises from “near-zero”to “near-unity”in a range of x centered on about a −1,and of width about √a (see Figure 6.2.1).The complement of P (a,x )is also confusingly called an incomplete gamma function,Q (a,x )≡1−P (a,x )≡Γ(a,x )Γ(a )≡1Γ(a )∞xe −t t a −1dt(a >0)(6.2.3)Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).24681012140.2.4.6.81.0 a = 3.01.00.5i n c o m p l e t e g a m m a f u n c t i o n P (a ,x )xa = 10Figure 6.2.1.The incomplete gamma function P (a,x )for four values of a .It has the limiting valuesQ (a,0)=1andQ (a,∞)=0(6.2.4)The notations P (a,x ),γ(a,x ),and Γ(a,x )are standard;the notation Q (a,x )is specific to this book.There is a series development for γ(a,x )as follows:γ(a,x )=e−x xa∞n =0Γ(a )Γ(a +1+n )x n(6.2.5)One does not actually need to compute a new Γ(a +1+n )for each n ;one ratheruses equation (6.1.3)and the previous coefficient.A continued fraction development for Γ(a,x )isΓ(a,x )=e −x xa1x +1−a 1+1x +2−a 1+2x +··· (x >0)(6.2.6)It is computationally better to use the even part of (6.2.6),which converges twice as fast (see §5.2):Γ(a,x )=e −x x a1x +1−a −1·(1−a )x +3−a −2·(2−a )x +5−a −··· (x >0)(6.2.7)It turns out that (6.2.5)converges rapidly for x less than about a +1,while (6.2.6)or (6.2.7)converges rapidly for x greater than about a +1.In these respectiveregimes each requires at most a few times √a terms to converge,and this manyonly near x=a,where the incomplete gamma functions are varying most rapidly. Thus(6.2.5)and(6.2.7)together allow evaluation of the function for all positive a and x.An extra dividend is that we never need compute a function value near zero by subtracting two nearly equal numbers.The higher-level functions that returnP(a,x)and Q(a,x)arefloat gammp(float a,float x)Returns the incomplete gamma function P(a,x).{void gcf(float*gammcf,float a,float x,float*gln);void gser(float*gamser,float a,float x,float*gln);void nrerror(char error_text[]);float gamser,gammcf,gln;if(x<0.0||a<=0.0)nrerror("Invalid arguments in routine gammp");if(x<(a+1.0)){Use the series representation.gser(&gamser,a,x,&gln);return gamser;}else{Use the continued fraction representation gcf(&gammcf,a,x,&gln);return1.0-gammcf;and take its complement.}}float gammq(float a,float x)Returns the incomplete gamma function Q(a,x)≡1−P(a,x).{void gcf(float*gammcf,float a,float x,float*gln);void gser(float*gamser,float a,float x,float*gln);void nrerror(char error_text[]);float gamser,gammcf,gln;if(x<0.0||a<=0.0)nrerror("Invalid arguments in routine gammq");if(x<(a+1.0)){Use the series representationgser(&gamser,a,x,&gln);return1.0-gamser;and take its complement.}else{Use the continued fraction representation.gcf(&gammcf,a,x,&gln);return gammcf;}}The argument gln is set by both the series and continued fraction procedures to the value lnΓ(a);the reason for this is so that it is available to you if you want to modify the above two procedures to giveγ(a,x)andΓ(a,x),in addition to P(a,x) and Q(a,x)(cf.equations6.2.1and6.2.3).The functions gser and gcf which implement(6.2.5)and(6.2.7)are#include<math.h>#define ITMAX100#define EPS3.0e-7void gser(float*gamser,float a,float x,float*gln)Returns the incomplete gamma function P(a,x)evaluated by its series representation as gamser. Also returns lnΓ(a)as gln.{float gammln(float xx);Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).void nrerror(char error_text[]);int n;float sum,del,ap;*gln=gammln(a);if (x <=0.0){if (x <0.0)nrerror("x less than 0in routine gser");*gamser=0.0;return;}else {ap=a;del=sum=1.0/a;for (n=1;n<=ITMAX;n++){++ap;del *=x/ap;sum +=del;if (fabs(del)<fabs(sum)*EPS){*gamser=sum*exp(-x+a*log(x)-(*gln));return;}}nrerror("a too large,ITMAX too small in routine gser");return;}}#include <math.h>#define ITMAX 100Maximum allowed number of iterations.#define EPS 3.0e-7Relative accuracy.#define FPMIN 1.0e-30Number near the smallest representablefloating-point number.void gcf(float *gammcf,float a,float x,float *gln)Returns the incomplete gamma function Q (a,x )evaluated by its continued fraction represen-tation as gammcf .Also returns ln Γ(a )as gln .{float gammln(float xx);void nrerror(char error_text[]);int i;float an,b,c,d,del,h;*gln=gammln(a);b=x+1.0-a;Set up for evaluating continued fractionby modified Lentz’s method (§5.2)with b 0=0.c=1.0/FPMIN;d=1.0/b;h=d;for (i=1;i<=ITMAX;i++){Iterate to convergence.an =-i*(i-a);b +=2.0;d=an*d+b;if (fabs(d)<FPMIN)d=FPMIN;c=b+an/c;if (fabs(c)<FPMIN)c=FPMIN;d=1.0/d;del=d*c;h *=del;if (fabs(del-1.0)<EPS)break;}if (i >ITMAX)nrerror("a too large,ITMAX too small in gcf");*gammcf=exp(-x+a*log(x)-(*gln))*h;Put factors in front.}Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).Error FunctionThe error function and complementary error function are special cases of the incomplete gamma function,and are obtained moderately efficiently by the above procedures.Their definitions areerf (x )=2√πxe −t 2dt (6.2.8)anderfc (x )≡1−erf (x )=2√π∞xe −t 2dt(6.2.9)The functions have the following limiting values and symmetries:erf (0)=0erf (∞)=1erf (−x )=−erf (x )(6.2.10)erfc (0)=1erfc (∞)=0erfc (−x )=2−erfc (x )(6.2.11)They are related to the incomplete gamma functions byerf (x )=P12,x 2 (x ≥0)(6.2.12)anderfc (x )=Q12,x2(x ≥0)(6.2.13)We’ll put an extra “f”into our routine names to avoid conflicts with names already in some C libraries:float erff(float x)Returns the error function erf (x ).{float gammp(float a,float x);return x <0.0?-gammp(0.5,x*x):gammp(0.5,x*x);}float erffc(float x)Returns the complementary error function erfc (x ).{float gammp(float a,float x);float gammq(float a,float x);return x <0.0?1.0+gammp(0.5,x*x):gammq(0.5,x*x);}If you care to do so,you can easily remedy the minor inefficiency in erff and erffc ,namely that Γ(0.5)=√πis computed unnecessarily when gammp or gammq is called.Before you do that,however,you might wish to consider the following routine,based on Chebyshev fitting to an inspired guess as to the functional form:#include<math.h>float erfcc(float x)Returns the complementary error function erfc(x)with fractional error everywhere less than 1.2×10−7.{float t,z,ans;z=fabs(x);t=1.0/(1.0+0.5*z);ans=t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+ t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+t*(-0.82215223+t*0.17087277)))))))));return x>=0.0?ans:2.0-ans;}There are also some functions of two variables that are special cases of the incomplete gamma function:Cumulative Poisson Probability FunctionP x(<k),for positive x and integer k≥1,denotes the cumulative Poisson probability function.It is defined as the probability that the number of Poisson random events occurring will be between0and k−1inclusive,if the expected mean number is x.It has the limiting valuesP x(<1)=e−x P x(<∞)=1(6.2.14)Its relation to the incomplete gamma function is simplyP x(<k)=Q(k,x)=gammq(k,x)(6.2.15) Chi-Square Probability FunctionP(χ2|ν)is defined as the probability that the observed chi-square for a correct model should be less than a valueχ2.(We will discuss the use of this function in Chapter15.)Its complement Q(χ2|ν)is the probability that the observed chi-square will exceed the valueχ2by chance even for a correct model.In both casesνis an integer,the number of degrees of freedom.The functions have the limiting valuesP(0|ν)=0P(∞|ν)=1(6.2.16)Q(0|ν)=1Q(∞|ν)=0(6.2.17)and the following relation to the incomplete gamma functions,P(χ2|ν)=Pν2,χ22=gammpν2,χ22(6.2.18)Q(χ2|ν)=Qν2,χ22=gammqν2,χ22(6.2.19)Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).CITED REFERENCES AND FURTHER READING:Abramowitz,M.,and Stegun,I.A.1964,Handbook of Mathematical Functions,Applied Mathe-matics Series,Volume55(Washington:National Bureau of Standards;reprinted1968by Dover Publications,New York),Chapters6,7,and26.Pearson,K.(ed.)1951,Tables of the Incomplete Gamma Function(Cambridge:Cambridge University Press).6.3Exponential IntegralsThe standard definition of the exponential integral isE n(x)=∞1e−xtt ndt,x>0,n=0,1,...(6.3.1)The function defined by the principal value of the integralEi(x)=−∞−x e−ttdt=x−∞e ttdt,x>0(6.3.2)is also called an exponential integral.Note that Ei(−x)is related to−E1(x)by analytic continuation.The function E n(x)is a special case of the incomplete gamma functionE n(x)=x n−1Γ(1−n,x)(6.3.3) We can therefore use a similar strategy for evaluating it.The continued fraction—just equation(6.2.6)rewritten—converges for all x>0:E n(x)=e−x1x+n1+1x+n+11+2x+···(6.3.4)We use it in its more rapidly converging even form,E n(x)=e−x1x+n−1·nx+n+2−2(n+1)x+n+4−···(6.3.5)The continued fraction only really converges fast enough to be useful for x>∼1. For0<x<∼1,we can use the series representationE n(x)=(−x)n−1(n−1)![−ln x+ψ(n)]−∞m=0m=n−1(−x)m(m−n+1)m!(6.3.6)The quantityψ(n)here is the digamma function,given for integer arguments byψ(1)=−γ,ψ(n)=−γ+n−1m=11m(6.3.7)Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press. P rograms Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server c omputer, is strictly prohibited. To order Numerical Recipes books, d iskettes, or CDROMs visit website or call 1-800-872-7423 (North America only), o r send email to trade@ (outside North America).。

全国计算机二级C常考算法编程指导汇总.

全国计算机二级C常考算法编程指导汇总.

全国计算机二级C常考算法编程指导1.变量交换void swap(int *x, int *y){ int temp;temp=*x; *x=*y; *y=temp;}2.累加用C语言实现1+2+3+4+5+…+n的累加。

【方法1】while循环实现int add(int n){ int i,sum;sum=0; i=1;while(i<=n){ sum=sum+i; i=i+1; }return sum;}main(){ int s,n;printf("\nInput n:\n");scanf("%d",n);s=add(n); /*函数调用*/printf("1+2+...+%d=%d\n",n,s);}【方法2】for循环实现(main函数同上)int add(int n){ int i,sum=0;for(i=1;i<=n;i++) sum=sum+i;return sum;}do-while循环也可以实现累加,请读者自己完成。

3.累乘用C语言求n的阶乘:n! = 1´2´3´4´…´n (n≥1) int product (int n){ int i,p=1;for(i=2;i<=n;i++) p=p*i;return p;}如果n的值比较大,函数返回值和存放乘积的变量p应定义为long或者double型。

4.排序(1)冒泡排序(主函数main参考教材181-182页)void BubbleSort(int a[],int n) { int i,j, tmp;for(i=0;i<n-1;i++) /*排序趟次*/{ for(j=0; j<n-1-i; j++) /*从前往后比*/if(a[j]>a[j+1]) /*从小到大,升序*/{ tmp=a[j]; a[j]=a[j+1]; a[j+1]=tmp;}/*交换a[j]与a[j+1],大数后移*/}}(2)选择排序void SelectSort(int a[],int n){ int i,j,min,tmp;for(i=0; i<n-1; i++){ min=i; /*假设第一个数最小,记录其下标*/for(j=i+1; j<n; j++)if(a[j]<a[min]) min=j;/*找最小的数,将最小数的下标记录下来*/if(i!=min){ tmp=a[i]; a[i]=a[min]; a[min]=tmp; } /*将最小的数与第一个数进行交换*/}}(3)插入排序void InsertSort(int a[],int n){ int i,j,tmp;for(i=1; i<n; i++){ tmp=a[i]; /* 空出a[i]单元*/for(j=i-1; j>=0 && a[j]>tmp; j--)a[j+1]=a[j]; /* 大于tmp的数向后移位*/a[j+1]=tmp; /* tmp归位*/}}5.归并(合并)将两个有序数组A、B合并成另一个有序的数组C(升序或降序)。

C166 汇编语言程序设计

C166 汇编语言程序设计

返回指令 RET RETS RETP RETI
系统控制指令 SRST IDLE PWRDN SRVWDT DISWDT EINIT
其他 NOP ATOMIC EXTR EXTP EXTS
EXTPR EXTSR
C166 汇编语言程序设计.txt 根据选择位的状态,在当前程短有条件跳转到相对目标地址 根据选择位的状态,用取反测试位,在当前程序段有条件跳转到相对目标
逻辑指令
AND ANDB
OR
ORB
XOR XORB
两字或字节位与 两字或字节位或 两字或字节位与或
比较和循环指令 CMP CMPB 两字或字节比较 CMPI1 CMPI2 带增长1或2的两字比较 CMPD1 CMPD2 带增长LDL BSET BCLR BMOV BMOVN BAND BOR BXOR BCMP
在当前程序段中有条件调用绝对或间接地址的子程序 在当前程序段中无条件调用相对地址的子程序 在当前程序中无条件调用绝对地址的子程序 在当前程序段中将选择寄存器压入堆栈无条件调用绝对地址的子程序 在程序段中无条件跳转到中断或陷阱矢量跳转表 在当前程序段从子程序返回 在任何程序段从子程序返回 在当前程序段从子程序返回,外加从系统堆栈中弹出一个选择寄存器 从中断服务程序中返回 通过软件复位 进入休闲状态 进入掉电状态 服务看门狗定时器 关闭看门狗定时器 表示初始化程序结束 空操作要求2个存储和最小执行时间 定义一个不分离的指令序列 切换“reg”、“bitoff”和“bitaddr”寻址模式到扩展SFR空间 不管DPP寻址调度,用特定数据页代替DPPs并有选择的切换到ESFR之间 不管DPP寻址调度,用特定段代替DPPs并有选择的切换到ESFR之间
第2页
txt指令功能描述算数指令addaddcsubsubcmuldivdivlcplnegaddbaddcbsubbsubcbmuludivudivlucplbnegb两字或字节加法带进位的两字或字节加法两字或字节减法带进位的两字或字节减法16位乘16位带符号或无符号乘法16位除16位带符号或无符号除法32位除16位带符号或无符号除法一个字或字节的1的补数一个字或字节的2的补数逻辑指令andandbororbxorxorb两字或字节位与两字或字节位或两字或字节位与或比较和循环指令cmpcmpbcmpi1cmpi2cmpd1cmpd2两字或字节比较带增长1或2的两字比较带增长1或2的两字比较布尔位操作指令bfldhbfldlbsetbclrbmovbmovnbandborbxorbcmp字的高位字节或低位字节的可屏蔽位的操作对某位置1对某位清零移动某一位反相移动某位两位相与两位相或两位相与或两位比较移位和循环移位指令shrshlrorrolashr字右移字左移字循环右移字循环左移带符号位右移优化指令prior决定移位次数以正则化字数操作数支持浮点数数据转移指令movmovbmovbsmovbz两字或字节的标准数据转移字节转移为字用零或符号扩展系统堆栈指令pushpopscxt将字压入堆栈将字弹出堆栈将字保存在堆栈然后用新值数新旧值跳转指令jmpajmpijmprjmps当前程序段有条件跳转到绝对间接或相对目标地址在任何程序段无条件跳转到绝对目标地址第1页c166汇编语言程序设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.2 Adaptive Stepsize Control for Runge-Kutta
715
the calculation of this information will add to the computational overhead, but the investment will generally be repaid handsomely. With fourth-order Runge-Kutta, the most straightforward technique by far is step doubling (see, e.g., [1]). We take each step twice, once as a full step, then, independently, as two half steps (see Figure 16.2.1). How much overhead is this, say in terms of the number of evaluations of the right-hand sides? Each of the three separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single and double sequences share a starting point, so the total is 11. This is to be compared not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore a factor 1.375. What does it buy us? Let us denote the exact solution for an advance from x to x + 2h by y(x + 2h) and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size h). Since the basic method is fourth order, the true solution and the two numerical approximations are related by y(x + 2h) = y1 + (2h)5 φ + O (h6 ) + . . . y(x + 2h) = y2 + 2(h5 )φ + O (h6 ) + . . . (16.2.1)
Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press.Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further g of machinereadable files (including this one) to any servercomputer, is strictly prohibited. To order Numerical Recipes books,diskettes, or CDROMs visit website or call 1-800-872-7423 (North America only),or send email to trade@ (outside North America).
16.2 Adaptive Stepsize Control for Runge-Kutta
A good ODE integrator should exert some adaptive control over its own progress, making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with minimum computational effort. Many small steps should tiptoe through treacherous terrain, while a few great strides should speed through smooth uninteresting countryside. The resulting gains in efficiency are not mere tens of percents or factors of two; they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy may be demanded not directly in the solution itself, but in some related conserved quantity that can be monitored. Implementation of adaptive stepsize control requires that the stepping algorithm signal information about its performance, most important, an estimate of its truncation error. In this section we will learn how such information can be obtained. Obviously,
CITED REFERENCES AND FURTHER READING: Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), §25.5. [1] Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 2. [2] Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York: Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93–121. [3] Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.
Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) Copyright (C) 1988-1992 by Cambridge University Press.Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machinereadable files (including this one) to any servercomputer, is strictly prohibited. To order Numerical Recipes books,diskettes, or CDROMs visit website or call 1-800-872-7423 (North America only),or send email to trade@ (outside North America).
where, to order h5 , the value φ remains constant over the step. [Taylor series expansion tells us the φ is a number whose order of magnitude is y(5) (x)/5!.] The first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second expression involves 2(h5 ) since the error on each step is h5 φ. The difference between the two numerical estimates is a convenient indicator of truncation error ∆ ≡ y2 − y1 (16.2.2)
相关文档
最新文档