三角恒等变换知识点和例题.doc

合集下载

专题45 三角恒等变换知识点与典型例题(原卷版)

专题45 三角恒等变换知识点与典型例题(原卷版)

专题45 三角恒等变换知识点与典型例题(原卷版)同角三角函数基本关系式22sin cos 1αα+=sin tan tan cot 1cos ααααα=⇒= ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin •,三式之间可以互相表示) 1.已知tan 2α=, 求:(1)sin 2cos sin cos αααα+-;(2)221sin sin cos 2cos αααα+-.2.已知α是第二象限,且1tan 3α=-,计算: (1)sin()25cos sin()πααπα+--; (2)2sin cos()cos .απαα++1. 两角和与差的正弦、余弦、正切公式: (1)βαβαβαsin cos cos sin )sin(+=+ (2)βαβαβαsin co cos sin )sin(s -=- (3)βαβαβαsin sin cos cos )cos(-=+ (4)βαβαβαsin sin cos cos )cos(+=- (5)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(6)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+3.计算sin 72cos18sin18cos72+ 4.化简,求值: (1)已知3tan 4α=,求tan()4πα+的值; (2)sin 20sin 40cos20cos40︒︒-︒︒.5.已知1tan 3α=-,cos β=,,2⎡⎤∈⎢⎥⎣⎦παπ,0,2⎡⎤∈⎢⎥⎣⎦πβ. (1)求tan β的值;(2)求tan()αβ+的值,并求出αβ+的值. 6.计算:(1)sin14cos16sin76cos74︒︒+︒︒;(2)()()()()sin 54cos 36cos 54sin 36x x x x ︒-︒++︒-︒+. 7.求值:()()()()cos 27cos 18sin 27sin 18x x x x ︒︒︒︒+-++-. 8.求下列各式的值.(1)22cos 22.5sin 22.5︒︒-; (2)cos70sin80sin70sin10︒︒︒︒+. 9.求下列各式的值.(1)cos80cos20sin80sin 20︒︒︒︒+; (2)cos10cos20sin10sin20︒︒︒︒-. 10.化简下列各式(1)()()()()cos 27cos 33sin 27sin 33αααα︒︒︒︒+--+- (2)()()()()sin 15cos 15cos 15sin 15αααα︒︒︒︒-++-+ 11.求值:(1)cos80cos20sin100sin 20︒︒︒︒⋅+; (2)cos160cos25sin 20sin 25︒︒︒︒+⋅; (3)()()sin75cos75sin75cos75︒︒︒︒+⋅-.12.已知tan 2x =,tan 5y =,求tan()x y +,tan()x y -.(7) sin cos a b αα+)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan baϕϕϕ===,该法也叫合一变形).7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a b b a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒=,3215tan -=︒, 3275tan +=︒, (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-13.化简:(1cos x x +; (2cos )x x -.14.已知函数()cos f x x x =+. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间π,π6⎡⎤-⎢⎥⎣⎦上的最大值.”2. 二倍角公式(1)a a a cos sin 22sin =(2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=, (3).2tan 12tan2tan 2ααα-=15.已知4sin 5α,且α是第二象限角. (1)求sin 2α的值;(2)求cos 4πα⎛⎫+⎪⎝⎭的值. 16.已知1tan 23α=,求tan α的值. 17.求下列函数的最小正周期 (1)2cos2x y =; (2)22sin y x =.18.已知函数22()(sin cos )2cos f x x x x =++. (1)求函数()y f x =周期及其单调递增区间; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()y f x =的最大值和最小值.19.已知函数()f x a b =⋅,其中向量()2cos ,1a x =,()cos 2b x x =,x ∈R . (1)求函数()f x 的最小正周期. (2)若,04x π⎡⎫∈-⎪⎢⎣⎭,求()f x 的值域.20.已知函数()2cos cos 1x x x f x =+,x ∈R . (1)求函数()y f x =的单调递增区间; (2)求0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()y f x =的值域.走进高考一、单选题1.(2020年全国卷(理科)新课标Ⅰ)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A .53B .23 C .13D .592.(2020年全国卷(理科)新课标Ⅲ) 已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .23.(2018年全国卷理数全国卷II )若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2π C .34π D .π4.(2018年全国卷Ⅲ) 若1sin 3α=,则cos2α= A .89 B .79C .79-D .89-5.(2016新课标全国Ⅱ理科)若cos (−α)=,则sin 2α=A .B .C .−D .−6.(2016年全国理科数学新课标3卷)若 ,则( )A .B .C .1D .7.(2019年全国卷(理科)新课标Ⅱ) 已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15B .55 C .33D .2558.(2014年全国理科数学新课标Ⅰ)设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=9.(2015新课标全国Ⅰ理科)o o o o sin 20cos10cos160sin10-= A .32- B .32C .12-D .12二、填空题10(2020年全国卷(理科)新课标Ⅲ) 关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 11.(2018年全国理科数学新课标I 卷)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.12.(2018年全国理科数学新课标2卷)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.13.(2016年全国理科数学新课标3卷) 函数的图象可由函数的图象至少向右平移 个单位长度得到.14.(2014年全国理科数学全国Ⅱ卷)函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.。

三角恒等变换专题(蛮全的)

三角恒等变换专题(蛮全的)

三角恒等变换专题复习一.要点精讲1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±; S αβ±()简记: βαβαβαsin sin cos cos )cos( =±; C αβ±()简记: tan tan tan()1tan tan αβαβαβ±±=。

()T αβ±简记:2.二倍角公式αααcos sin 22sin =; 2S α简记ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 2C α简记22tan tan 21tan ααα=-。

(242k k πππααπ≠+≠+且)2T α简记二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,2α是4α的两倍, 3α是32α的两倍,3α是6α的两倍等,所有这些都可以应用二倍角公式。

因此,要理解“二倍角”的含义,即当=2αβ时,α就是β的二倍角。

凡是符合二倍角关系的就可以应用二倍角公式。

3.半角公式2cos 12sinαα-±=2c o s12c o s αα+±=αααc o s1c o s 12t a n +-±=【.2α±公式前的号,取决于所在的象限,注意讨论】(αααααsin cos 1cos 1sin 2tan-=+=)4. (1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。

(αα2cos 1sin22-= αα2c o s 1c o s 22+=)(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中(3)万能公式5.三角函数式的化简、求值、证明(1)三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

高中 简单的三角恒等变换 知识点+例题

高中 简单的三角恒等变换 知识点+例题
辅导讲义――简单的三角恒等变换
教学内容
1.公式的常见变形
(1)tanα+tanβ=tan(α+β)(1-tanαtanβ);tanα-tanβ=tan(α-β)(1+tanαtanβ).
(2)sin2α= ;cos2α= ;sinαcosα= sin 2α.
(3)1+cosα=2cos2 ;1-cosα=2sin2 ;
(1)求f( )的值;
(2)设α,β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
解(1)由题设知:
f( )=2sin( - )=2sin = .
(2)由题设知: =f(3α+ )=2sinα,
=f(3β+2π)=2sin(β+ )=2cosβ,
即sinα= ,cosβ= ,
又α,β∈[0, ],∴cosα= ,sinβ= ,
∴cos(α+β)=cosαcosβ-sinαsinβ= × - × = .
11.cos 20°cos 40°cos 60°·cos 80°等于_________.
答案
解析原式= = = = = .
12.定义运算 =ad-bc,若cosα= , = ,0<β<α< ,则β等于______.
答案
解析 方法一因为y= = ,
所以令k= .又x∈ ,
所以k就是单位圆x2+y2=1的左半圆上的动点
P(-sin 2x,cos 2x)与定点Q(0,2)所成直线的斜率.
又kmin=tan 60°= ,所以函数y= 的最小值为 .
方法二y= = = = tanx+ .
∵x∈(0, ),∴tanx>0.
∴ tanx+ ≥2 = .(当tanx= ,即x= 时取等号)

(完整word版)三角恒等变换知识总结

(完整word版)三角恒等变换知识总结

三角恒等变换知识点总结2014/10/24一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1— tan αtan β),有时应用该公式比较方便。

2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-。

要熟悉余弦“倍角”与“二次”的关系(升角-降次,降角-升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。

3.辅助角公式:sin cos4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+。

4。

简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质.(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。

(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。

(4)变换思路:明确变换目标,选择变换公式,设计变换途径. 5。

常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+; (3)向量的数量积:cos ,a b a b a b =,1212a b x x y y =+,12120a b x x y y ⊥⇔+=1221//0a b x y x y ⇔-=;二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=_______________。

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。

三角恒等变换(知识、题型、训练及答案)

三角恒等变换(知识、题型、训练及答案)

三角恒等变换知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan α. 3.辅助角公式函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2·cos(α-φ).(其中,ab =ϕtan )注意:1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.在三角求值时,往往要借助角的范围求值.基础自检测1.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.792.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.453.tan 20°+tan 40°+3tan 20°·tan 40°=________.4.sin 347°cos 148°+sin 77°·cos 58°=________.题型解析题型一 三角函数式的化简【例1】(1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.【训练1】 cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α题型二 三角函数式的求值【例2】(1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.(2)若sin ⎪⎭⎫ ⎝⎛-απ3=14,则cos ⎪⎭⎫ ⎝⎛+απ23=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.【训练2】 (1)已知x ∈(0,π),且cos ⎪⎭⎫ ⎝⎛-22πx =sin 2x ,则tan ⎪⎭⎫ ⎝⎛-4πx =( )A.13B.-13C.3D.-3(2)已知α∈⎥⎦⎤⎢⎣⎡20π,,cos ⎪⎭⎫ ⎝⎛+3πα=-23,则cos α=________.题型三 三角变换的简单应用【例3】 △ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B 2的最大值.【训练3】已知函数f (x )=3cos ⎪⎭⎫ ⎝⎛-32πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡-4,4ππ时,f (x )≥-12.答案诊 断 自 测1.A2.D3.34.22【例1】 (1)sin(α+γ) (2)cos α 【训练1】 D 【例2】(1)6 (2)-78 (3)-3π4【训练2】(1)A (2)15-26【例3】解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A-cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝ ⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,B +A >π2,所以π6<B <π2, 所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 此时B =π3,y max =2.【训练3】 (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12. ∴f (x )≥-12成立.。

(完整版)三角恒等变换知识总结及基础训练

(完整版)三角恒等变换知识总结及基础训练

第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。

2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。

(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

高考数学热点:三角恒等变换

高考数学热点:三角恒等变换

高考数学热点:简单的三角恒等变换【考点梳理】1、两角和与差的三角函数公式sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ−=−cos()cos cos sin sin αβαβαβ+=−cos()cos cos sin sin αβαβαβ−=+tan tan tan()1tan tan αβαβαβ−−=+ tan tan tan()1tan tan αβαβαβ++=− 2、二倍角公式sin 22sin cos ααα= 22cos2cos sin ααα=− 2cos22cos 1αα=−2cos212sin αα=− 22tan tan 21tan ααα=−3、辅助角公式sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 4、降幂公式21cos2cos 2αα+=21cos2sin 2αα−=【典型题型讲解】 考点一:两角和与差公式【典例例题】例1.(2022·广东汕头·高三期末)已知πsin (,π)2αα=∈,则cos()6πα−=( )A .-1B .0C .12D【答案】B 【详解】∵πsin (,π)22αα=∈,∴2π3α=,故ππcos()cos 0.62α−== 故选:B例2.(2022·广东湛江·一模)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )ABC.D.【答案】B 【详解】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 422252510πααα⎛⎫+=+=⨯+= ⎪⎝⎭,故选:B.例3.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−, 整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B【方法技巧与总结】1.三角函数式化简的方法:化简三角函数式常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.2.给值求值:解题的关键在于“变角”,把待求三角函数值的角用含已知角的式子表示出来,求解时要注意对角的范围的讨论. 【变式训练】 1.已知5π1tan()45−=α,则tan =α__________. 【答案】32【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα−−⎛⎫−=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 2.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫−=∈+= ⎪⎝⎭,则tan β=__________. 【答案】17【详解】因为()sin 0,2ππαα⎛⎫−=∈ ⎪⎝⎭,所以sin α=,所以cos α=,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα−+−=+−===⎡⎤⎣⎦+++⨯又 故答案为:173.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ−=B .()tan 1αβ+=C .()tan 1αβ−=−D .()tan 1αβ+=−【答案】C 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++−=−, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ−++=, 即:()()sin cos 0αβαβ−+−=, 所以()tan 1αβ−=−, 故选:C 4.已知sin α=()cos αβ−=304πα<<,304πβ<<,则sin β=( )A.35BC.35D.35【答案】A 【解析】易知()()sin sin βααβ=−−,利用角的范围和同角三角函数关系可求得cos α和()sin αβ−,分别在()sin 5αβ−=和5−两种情况下,利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果. 【详解】2sin 72α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴−<−<,()sin 5αβ∴−=±.当()sin 5αβ−=时,()()()()sin sin sin cos cos sin βααβααβααβ=−−=−−−57==304πβ<<,sin 0β∴>,sin β∴=当()sin αβ−=sin β.综上所述:sin β= 故选:A .5.已知sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13−C .23D .23−【答案】A 【解析】根据题意得到sin 152α⎛⎫︒−= ⎪⎝⎭进而得到26cos 1529α⎛⎫︒−= ⎪⎝⎭,()1cos 303α︒−=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒−︒−=︒−⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒−=︒=︒+︒=︒= ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒−=−︒−= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒−=︒−−︒−= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒−︒−⎣⎦ ()1cos 303α=︒−=,故选A.考点二:二倍角公式【典例例题】例1.(2022·广东中山·高三期末)若2sin 3α=,则cos2α=___________. 【答案】19【分析】根据余弦的二倍角公式即可计算.【详解】2221cos212sin 1239αα⎛⎫=−=−⨯= ⎪⎝⎭.故答案为:19.例2.(2022·广东清远·高三期末)已知tan 2α=,则sin cos 44sin 2⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭=ππααα________. 答案】18−【详解】1sin cos (sin cos )(cos sin )442sin 22sin cos ⎛⎫⎛⎫−+−− ⎪ ⎪⎝⎭⎝⎭=ππααααααααα222sin cos 2sin cos tan 12tan 14sin cos 4tan 8−−+−−+===−ααααααααα.故答案为:18−例3.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪−⎝⎭,则tan α=( )ABCD【答案】A 【详解】cos tan 22sin ααα=−2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===−−,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=−−,解得1sin 4α=, cos 4α∴=sin tan cos 15ααα∴==. 故选:A.【方法技巧与总结】三角恒等变换的基本思路:找差异,化同角(名),化简求值.三角恒等变换的关键在于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系. 【变式训练】1.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】.B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−,整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B2.(2022·广东韶关·二模)已知 1sin cos 5αα+=,则()2tan 12sin sin 2πααα++=+( )A .17524−B .17524C .2524−D .2524【答案】.C【详解】由题知1sin cos 5αα+=,有242sin cos 25αα=−,所以()2tan 12sin sin 2πααα+++()tan 12sin sin cos αααα+=+()sin cos 1cos 2sin sin cos αααααα+=⨯+1252sin cos 24αα==−, 故选:C .3.(2022·广东佛山·二模)已知sin πα43⎛⎫−= ⎪⎝⎭,则sin 2α=___________.【答案】59【详解】sin sin 443ππαα⎛⎫⎛⎫−=−−=⎪ ⎪⎝⎭⎝⎭所以sin 4πα⎛⎫−= ⎪⎝⎭所以225sin 2cos 2cos 212sin 122449πππαααα⎛⎡⎤⎛⎫⎛⎫⎛⎫=−=−=−−=−⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 故答案为:594.(2022·广东肇庆·二模)若sin cos 5θθ+=−,则sin 2θ=______. 【答案】45【详解】∵sin cos θθ+= ∴()29sin cos 12sin cos 5θθθθ+=+=, 所以4sin 22sin cos 5θθθ==. 故答案为:45.5.(2022·广东深圳·二模)已知tan 3α=,则cos 2=α__________. 【答案】45−【详解】解:由题意可知:2214cos 22cos 121tan 15ααα=−=⨯−=−+ .6.若3sin 5α=−,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα−=+( )A .12B .12−C .2D .−2【答案】D 【详解】3sin 2sincos225ααα==−,故2222sincos2tan32225sin cos tan 1222αααααα==−++, 可解得1tan23α=−或tan 32α=−,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=−,故1tan 221tan2αα−=−+, 故选:D7.已知1sin 64x π⎛⎫−= ⎪⎝⎭,则cos 23x π⎛⎫−= ⎪⎝⎭( )A .78−B .78C.4−D.4【答案】B 【详解】因为sin sin 66x x ππ⎛⎫⎛⎫−=−− ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫−=− ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=−−= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.8.已知,22ππα⎛⎫∈− ⎪⎝⎭,且1cos 42πα⎛⎫−= ⎪⎝⎭,则cos2α=( )A. B. C .12D【答案】D 【详解】 因为22ππα−<<,所以3444πππα−<−< 又1cos 42πα⎛⎫−= ⎪⎝⎭,所以43ππα−=−,所以12πα=−所以cos 2cos cos 66ππα⎛⎫=−==⎪⎝⎭故选:D9.已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫−= ⎪⎝⎭( )A .2325B .2325−C D .5−【答案】B 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=−=−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=⨯−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .10.已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α( )A .2425B .2425−C .725D .725−【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==−,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯−=− ⎪⎝⎭。

05三角恒等变换.doc

05三角恒等变换.doc

三角恒等变换一、知识要点1.三角函数式的变形应利用三角公式从以下三个方面入手:(1)变名:注意条件与结论中三角函数式的名称有什么差别及联系, 通过同角三角函数公式,诱导公式,万能公式等,达到统一函数名称的 目的.(2)变角:注意条件与结论中三角函数式的角有什么差别及联系, 通过诱导公式、和、差、倍、半角的三角函数公式等,达到把三角函数 中的角统一起来的目的.(3)变运算形式:根据需要,将条件与结论的运算形式化一,将等 式一边的运算形式化成另一边的运算形式,通过升次与降次的转化以达 到目的.2.应用三角变换公式,要注意公式间的联系,公式成立的条件.每 个三角公式的结构特征,都决定了它的双向功能,从左到右及从右 到左常常可起到不同的作用.所谓三角恒等变形是指在有意义的条件 下有恒等关系,但三角变换常常会改变三角式中角的取值范围,因 此在讨论由三角函数式表示的函数性质时,应首先确定其定义域, 以确保变形后的函数与原函数是同一函数.二、典型例题例1 .某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)22sin 13cos 17sin13cos17︒+︒-︒︒(2)22sin 15cos 15sin15cos15︒+︒-︒︒(3)22sin 18cos 12sin18cos12︒+︒-︒︒(4)22sin (18)cos 48sin(18)cos 48-︒+︒--︒︒(5)22sin (25)cos 55sin(25)cos55-︒+︒--︒︒Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.例2.在△ABC 中,角A 、B 、C 所对的边分别为a,b,c , 已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.例3.求函数342xy2(21)xx x-=++的值域。

专题5.5 三角恒等变换(解析版)

专题5.5   三角恒等变换(解析版)

专题5.5三角恒等变换(一)两角和与差的正弦、余弦、正切公式1.C (α-β):cos(α-β)=cos αcos β+sin αsin β;C (α+β):cos(α+β)=cos αcos_β-sin_αsin β;S (α+β):sin(α+β)=sin αcos β+cos αsin β;S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin αα2+cos ;1-sin αα2-cos .(3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin αsin α2±cos 1+cos α=2cos 2α2,1-cos α=2sin 2α2(4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tanα2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.一、单选题1.sin 40sin 50cos 40cos50︒︒-︒︒等于()A .1-B .1C .0D .cos10-︒【答案】C【解析】由两角和的余弦公式得:()()sin 40sin 50cos 40cos50cos 40cos50sin 40sin 50cos 4050cos900︒︒-︒︒=-︒︒-︒︒=-+=-=故选:C2.已知()5cos 2cos 22παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为()A .7-B .7C .1D .1-【答案】D【解析】:因为()5cos 2cos 22παπα⎛⎫-=+ ⎪⎝⎭,所以sin 2cos αα=,所以sin tan 2cos ααα==,又()1tan 3αβ+=,所以()()()12tan tan 3tan tan 111tan tan 123αβαβαβααβα-+-=+-===-⎡⎤⎣⎦+++⨯.故选:D3.已知,αβ均为锐角,且1sin 2sin ,cos cos 2αβαβ==,则()sin αβ-=()A .35B .45C.3D .23【答案】A【解析】:因为1sin 2sin ,cos cos 2αβαβ==,所有22221sin cos 4sin cos 14ααββ+=+=,则2153sin 44β=,又,αβ均为锐角,所以sin β=cos β=所以sin αα==所以()3sin sin cos cos sin 5αβαβαβ-=-=.故选:A.4.已知()1sin 5αβ+=,()3sin 5αβ-=,则tan tan αβ的值为()A .2B .2-C .12D .12-【答案】B【解析】()()1sin sin cos cos sin 53sin sin cos cos sin 5αβαβαβαβαβαβ⎧+=+=⎪⎪⎨⎪-=-=⎪⎩,解得2sin cos 51cos sin 5αβαβ⎧=⎪⎪⎨⎪=-⎪⎩,所以tan sin cos 2tan cos sin ααββαβ==-.故选:B5.已知sin sin 13πθθ⎛⎫++= ⎪⎝⎭,则tan 6πθ⎛⎫+= ⎪⎝⎭()ABC .D .±22【答案】D【解析】sin sin()13πθθ++=,则1sin sin cos 122θθθ++=,即3sin 122θθ+=,故1sin cos 223θθ+=,所以sin 6πθ⎛⎫+= ⎪⎝⎭cos 63πθ⎛⎫+=± ⎪⎝⎭,所以tan 62πθ⎛⎫+=± ⎪⎝⎭故选:D6.下面公式正确的是()A .3sin cos 2πθθ⎛⎫+= ⎪⎝⎭B .2cos212cos θθ=-C .3cos sin 2πθθ⎛⎫+=- ⎪⎝⎭D .cos()sin 2πθθ-=【答案】D 【解析】对A ,3sin cos 2πθθ⎛⎫+=- ⎪⎝⎭,故A 错误;对B ,2cos 22cos 1θθ=-,故B 错误;对C ,3cos sin 2πθθ⎛⎫+= ⎪⎝⎭,故C 错误;对D ,cos()sin 2πθθ-=,故D 正确;故选:D7.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为()A .16B .322C .2213D .1318【答案】B【解析】:因为2tan()5αβ+=,1tan()44πβ-=,所以()tan()tan 44ππααββ⎡⎤⎛⎫+=+-- ⎪⎢⎥⎝⎭⎣⎦()()tan tan 41tan tan 4παββπαββ⎛⎫+-- ⎪⎝⎭=⎛⎫++- ⎪⎝⎭213542122154-==+⨯.故选:B 8.设1cos1022a =-,22tan131tan 13b =+,c =,则a ,b ,c 大小关系正确的是()A .a b c <<B .c b a <<C .a c b <<D .b c a<<【答案】C【解析】()1cos10cos 6010cos 70sin 202a =︒=︒+︒=︒=︒,2222sin132tan13cos132sin13cos13sin 26sin 131tan 131cos 13b ︒︒︒===︒︒=︒︒+︒+︒,sin 25c =,因为函数sin y x =在0,2π⎛⎫⎪⎝⎭上是增函数,故sin 20sin 25sin 26<<,即a c b <<.故选:C.9.已知sin()63πα+=-,则2cos(2)3πα-=()A .23-B .13-C .23D .13【答案】B 【解析】:因为sin()6πα+=2cos 2cos 263παππα⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎣+⎭⎝⎦6cos 2πα⎪+⎛⎫=- ⎝⎭212n 6si πα⎡⎤⎛⎫=-- ⎪⎢⎥⎭⎣+⎝⎦21123⎡⎤⎛⎢⎥=--=- ⎢⎥⎝⎭⎣⎦故选:B 10.若11tan ,tan()72βαβ=+=,则tan =α()A .115B .112C .16D .13【答案】D【解析】:因为11tan ,tan()72βαβ=+=,所以()()()11tan tan 127tan =tan 111tan tan 3127αββααββαββ-+-+-===⎡⎤⎣⎦+++⨯.故选:D.11.已知3cos 16παα⎛⎫--= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭()A .13-B .13C.3-D.3【答案】B【解析】:因为3cos 16παα⎛⎫--= ⎪⎝⎭,即3cos cos sin sin 166ππααα⎛⎫-+= ⎪⎝⎭,即13cos sin 122ααα⎫-+=⎪⎪⎝⎭3sin 12αα-=1cos 123πααα⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎭,所以cos 3πα⎛⎫+= ⎪⎝⎭所以sin 2cos 2662πππαα⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭2cos 22cos 133ππαα⎡⎤⎛⎫⎛⎫=-+=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦21213⎡⎤⎢⎥=--=⎢⎥⎝⎭⎣⎦.故选:B 12.已知4sin 5α=,π5,π,cos ,213αββ⎛⎫∈=- ⎪⎝⎭是第三象限角,则()cos αβ-=()A .3365-B .3365C .6365D .6365-【答案】A【解析】由4sin 5α=,π,π2α⎛⎫∈ ⎪⎝⎭,可得3cos 5α=-由5cos ,13ββ=-是第三象限角,可得12sin 13β=-则()3541233cos cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:A13.若sin 25α=,()sin 10βα-=,且,4απ⎡⎤∈π⎢⎥⎣⎦,3,2βππ⎡⎤∈⎢⎥⎣⎦,则αβ+的值是()A .54πB .74πC .54π或74πD .54π或94π【答案】B【解析】,,2,242ππαπαπ⎡⎤⎡⎤∈∴∈⎢⎥⎢⎥⎣⎦⎣⎦,又∵sin 2,2,,,242πππααπα⎡⎤⎡⎤=∴∈∈⎢⎥⎢⎥⎣⎦⎣⎦,∴cos 25α==-.又∵35,,,224πππβπβα⎡⎤⎡⎤∈∴-∈⎢⎥⎢⎥⎣⎦⎣⎦,∴()cos βα-==,于是()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦5105102⎛⎛⎫=---= ⎪ ⎪⎝⎭⎝⎭,易得5,24αβπ⎡⎤+∈π⎢⎥⎣⎦,则74αβπ+=.故选:B.14.)sin20tan50=()A .12B .2C D .1【答案】D【解析】原式()()()()sin20sin 50cos502sin 20sin 50602sin 20sin 9020cos50cos50cos 9050++===-2sin 20cos 20sin 401sin 40sin 40===.故选:D.15.若1cos ,sin(),0722ππααβαβ=+=<<<<,则角β的值为()A .3πB .512πC .6πD .4π【答案】A 【解析】∵0,022ππαβ<<<<,0αβπ∴<+<,由1cos 7α=,()sin αβ+=,得sin α=11cos()14αβ+=±,若11cos()14αβ+=,则sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+1110714=-<,与sin 0β>矛盾,故舍去,若11cos()14αβ+=-,则cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++111147147=-⨯+⨯12=,又(0,)2πβ∈,3πβ∴=.故选:A.16.若7171212ππα<<,且7cos 268πα⎛⎫+=- ⎪⎝⎭,则5cos 12πα⎛⎫-=⎪⎝⎭()A .B .CD .14-【答案】A【解析】由27cos 212sin 6128ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭,得215sin 1216πα⎛⎫+= ⎪⎝⎭.因为7171212ππα<<,所以233122πππα<+<,所以sin 122πα⎛⎫⎛⎫+∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以15sin 124πα⎛⎫+= ⎪⎝⎭所以5cos cos sin 1221212ππππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:A17.已知sin cos αα-=0απ≤≤,则sin 23πα⎛⎫-= ⎪⎝⎭()A B .34410-C .D 【答案】D【解析】:因为sin cos αα-=()22sin cos αα-=⎝⎭,即222sin 2sin cos cos 5αααα-+=,即21sin 25α-=,所以3sin 25α=,又sin cos 45πααα⎛⎫-=-=⎪⎝⎭,即2sin 42πα⎛⎫-= ⎪⎝⎭,因为0απ≤≤,所以3444πππα-≤-≤,所以044ππα<-≤,即42ππα<≤,所以22παπ<≤,所以4cos 25α==-,所以sin 2sin 2cos cos 2sin333πππααα⎛⎫-= ⎪⎝⎭23145252⎛⎫=⨯--⨯ ⎪⎝⎭故选:D18.若10,0,cos ,cos 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭()A B .C D .【答案】C 【解析】cos cos cos cos sin sin 2442442442βππβππβππβαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+--=+-++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为0,022ππαβ<<-<<所以3,444πππα⎛⎫+∈ ⎪⎝⎭,,4242πβππ⎛⎫-∈ ⎪⎝⎭,因为1cos 43πα⎛⎫+= ⎪⎝⎭,cos 423πβ⎛⎫-= ⎪⎝⎭所以sin 4πα⎛⎫+ ⎪⎝⎭sin 42πβ⎛⎫-= ⎪⎝⎭则122cos 233βα⎛⎫+=+ ⎪⎝⎭C 19.已知π43cos sin 65αα⎛⎫-+= ⎪⎝⎭,则2πcos 3α⎛⎫+ ⎪⎝⎭的值是()A .45-B .45C .5-D .5【答案】A【解析】由πcos sin 6αα⎛⎫-+= ⎪⎝⎭ππ3πcos cossin sin sin sin 6623αααααα⎛⎫++=+=-=⎪⎝⎭,所以,π4cos 35α⎛⎫-= ⎪⎝⎭,所以,2πππ4cos cos πcos 3335ααα⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A.20.已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin 45πα⎛⎫+= ⎪⎝⎭,则cos()α-=()A .10B .10C .10-D .222110【答案】C【解析】因为,2παπ⎛⎫∈ ⎪⎝⎭,所以35,444πππα⎛⎫+∈ ⎪⎝⎭.又2sin 45πα⎛⎫+= ⎪⎝⎭,所以cos 45πα⎛⎫+==- ⎪⎝⎭,cos()cos cos cos cos sin sin 44444410ππππππααααα⎡⎤⎛⎫⎛⎫⎛⎫-==+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:C.二、多选题21.对于函数()sin 22f x x x =,下列结论正确的是()A .()f x 的最小正周期为πB .()f x 的最小值为2-C .()f x 的图象关于直线6x π=-对称D .()f x 在区间,26ππ⎛⎫-- ⎪⎝⎭上单调递增【答案】AB【解析】()1sin 222(sin 2cos 2)2sin(2)223f x x x x x x π=+=+=+,22T ππ==,A 正确;最小值是2-,B 正确;(2sin()0633f πππ-=-+=,C 错误;(,26x ππ∈--时,22(,0)33x ππ+∈-,232x ππ+=-时,()f x 得最小值2-,因此函数不单调,D 错误,故选:AB .22)A .222cos2sin 1212ππ-B .1tan151tan15+︒-︒C .cos 75︒︒D .cos15︒︒【答案】ABC【解析】A :222cos 2sin 2cos 12126πππ-==B :1tan15tan 45tan15tan 601tan151tan 45tan15+︒︒+︒==︒=-︒-︒︒C :cos 754sin15230︒︒=︒︒=︒=D :cos152sin(3015)2sin15︒︒=︒-︒=︒.故选:ABC23.已知函数2()sin 222x x xf x =-,则下列结论正确的有()A .()f x 的最小正周期为4πB .直线23x π=-是()f x 图象的一条对称轴C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D .若()f x 在区间,2m π⎡⎤-⎢⎥⎣⎦上的最大值为12,则3m π≥【答案】BD【解析】:()21cos 1cos sin sin 222262x x x xf x x x π-⎛⎫=-=-=+- ⎪⎝⎭,所以()f x 的最小正周期为2,π故A 不正确;因为2362πππ-+=-,所以直线23x π=-是()f x 图象的一条对称轴,故B 正确;当02x π<<时,2+663x πππ<<,而函数sin y x =在2,63ππ⎛⎫⎪⎝⎭上不单调,故C 不正确;当2x m π-≤≤时,++366x m πππ-≤≤,因为()f x 在区间,2m π⎡⎤-⎢⎥⎣⎦上的最大值为12,即11sin 622x π⎛⎫+-≤ ⎪⎝⎭,所以sin 16x π⎛⎫+≤ ⎪⎝⎭,所以+62m ππ≥,解得3m π≥,故D 正确.故选:BD.24.已知函数22()cos cos sin (0)f x x x x x ωωωωω=+->的周期为π,当π[0]2x ∈,时,()f x 的()A .最小值为2-B .最大值为2C .零点为5π12D .增区间为π06⎡⎤⎢⎥⎣⎦,【答案】BCD【解析】22()cos cos sin (0)f x x x x x ωωωωω=+->2cos 2x xωω=+2sin 26x πω⎛⎫=+ ⎪⎝⎭,因为()f x 的周期为π,所以22ππω=,得1ω=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,当π[0]2x ∈,时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,所以12sin 226x π⎛⎫-≤+≤ ⎪⎝⎭,所以()f x 的最小值为1-,最大值为2,所以A 错误,B 正确,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,得26x ππ+=,解得512x π=,所以()f x 的零点为5π12,所以C 正确,由2662x πππ≤+≤,得06x π≤≤,所以()f x 的增区间为π06⎡⎤⎢⎣⎦,,所以D 正确,故选:BCD25.关于函数()cos 2cos f x x x x =-,下列命题正确的是()A .若1x ,2x 满足12πx x -=,则()()12f x f x =成立;B .()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增;C .函数()f x 的图象关于点π,012⎛⎫⎪⎝⎭成中心对称;D .将函数()f x 的图象向左平移7π12个单位后将与2sin 2y x =的图象重合.【答案】ACD 【解析】()1cos 2cos cos 222cos 222f x x x x x x x x ⎛⎫=-== ⎪ ⎪⎝⎭π2cos 23x ⎛⎫=+ ⎪⎝⎭,对于A ,若1x ,2x 满足12πx x -=,则()()()1222ππ2cos 2π2cos 233f x x x f x ⎡⎤⎛⎫=++=+= ⎪⎢⎥⎣⎦⎝⎭成立,故A 正确;对于B ,由ππ2π22π2π,3k x k k Z +≤+≤+∈,得:π5πππ,36k x k k +≤≤+∈Z ,即()f x 在区间π5π,36⎡⎤⎢⎣⎦上单调递增,故B 错误;对于C ,因为πππ2cos 2012123f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象关于点π,012⎛⎫⎪⎝⎭成中心对称,故C 正确;对于D ,将函数()f x 的图象向左平移7π12个单位后得到7π7ππ3π2cos 22cos 22sin 2121232y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,其图象与2sin 2y x =的图象重合,故D 正确.故选:ACD 三、解答题26.求下列各式的值(1)cos54cos36sin54sin36⋅-⋅(2)sin7cos37cos(7)sin(37)⋅+-⋅-(3)ππcos sin 1212⋅(4)22ππsincos 88-【答案】(1)0;(2)12-;(3)14;(4)2-.【解析】(1)cos54cos36sin54sin36cos(5436)cos900⋅-⋅=+==.(2)sin7cos37cos(7)sin(37)sin7cos37cos7sin37⋅+-⋅-=⋅-⋅1sin(737)sin(30)2=-=-=-.(3)ππ1π1cossin 1212264⋅==.(4)22πππsin cos cos 8842-=-=-.27.已知3sin 5α=,其中2απ<<π.(1)求tan α;(2)若0,cos 2πββ<<=()sin αβ+的值.【答案】(1)34-(2)5-【解析】(1)由3sin 5α=可得4cos 5α=±,因为2απ<<π,故4cos 5α=-,进而sin 3tan cos 4ααα==-(2)π0,cos 2ββ<<=,故sin β==;()34sin =sin cos cos sin 55αβαβαβ++==28.已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin 10βα-=(1)证明:04πα<<;(2)求β.【答案】(1)证明见解析(2)3.4πβ=【解析】(1)证明:因为1tan23α=,所以2122tan332tan 1tan 1441tan 129απαα⨯===<=--,因为α为锐角且函数tan y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1ααααα⎧==⎪⎨⎪+=⎩,结合角α为锐角,解得3sin 5α=,4cos 5α=,因为2πβαπ<-<,且()sin 10βα-=所以()cos βα-==()()()sin sin sin cos cos sin βαβααβααβα⎡⎤=+-=-+-⎣⎦3247225105102⎛=⨯-+⨯ ⎝⎭又5224πππαβπα<+<<+<,所以3.4πβ=29.已知α,β为锐角,π33sin 314α⎛⎫-=⎪⎝⎭,()11cos 14αβ+=-.(1)求cos α的值;(2)求角β.【答案】(1)17(2)π3【解析】(1)因为π0,2α⎛⎫∈ ⎪⎝⎭,所以ππ336πα⎛⎫-∈ ⎪⎝⎭-,,又π33sin 314α⎛⎫-=⎪⎝⎭所以π13cos 314α⎛⎫-== ⎪⎝⎭所以ππcos =cos +33αα⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦ππππ1cos cos sin sin =33337αα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭(2)因为α,β为锐角,所以0αβ<+<π,则()sin 0αβ+>,因为()11cos 14αβ+=-,所以()sin 14αβ+==.又α为锐角,1cos 7α=,所以sin α==,故()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦111714=+=因为β为锐角,所以π3β=.30.已知sincos22αα-=(1)求sin α的值;(2)若αβ,都是锐角,()3cos 5αβ+=,求sin β的值.【答案】(1)12【解析】(1)解:2221sin cos sin 2sin cos cos 1sin 2222222a αααααα⎛⎫-=-+=-= ⎪⎝⎭,1sin 2a =.(2)因为αβ,都是锐角,所以0αβ<+<π,()4sin 5αβ+==,13sin cos 22a a =⇒=,()()()43sin cos c 0s 13si o 55n sin sin 221αβααβααββα-=-+=+-=+-=⨯⨯⎡⎤⎣⎦31.已知tan ,tan αβ是方程23570x x +-=的两根,求下列各式的值:(1)()tan αβ+(2)()()sin cos αβαβ+-;(3)()cos 22αβ+.【答案】(1)12-(2)54(3)35【解析】(1)由题意可知:57tan tan ,tan tan 33αβαβ+=-=-()5tan tan 13tan 71tan tan 213αβαβαβ-++===--+(2)()()5sin sin cos cos sin tan tan 537cos cos cos sin sin 1tan tan 413αβαβαβαβαβαβαβαβ-+++====-++-(3)()22222211cos ()sin ()1tan ()34cos 221cos ()sin ()1tan ()514αβαβαβαβαβαβαβ-+-+-++====++++++。

三角恒等变换知识点归纳(可编辑修改word版)

三角恒等变换知识点归纳(可编辑修改word版)

α第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 ⑴ c os (- ) = cos cos + s in sin ;⑵ c os (+ ) = cos cos - s in sin ; ⑶ s in (-) = s incos - c os sin ;⑷ s in (+) = s incos + c os sin ;⑸tan (-)= tan - tan⇒ 1+ tan tan⑹tan (+ ) = tan + tan⇒1- tan tan( tan - tan = tan (- )(1+ tan tan ) );( tan + tan = tan (+ )(1- tan tan ) ).25、二倍角的正弦、余弦和正切公式: ⑴⇒ 1 ± s in 2= s in 2 + c os 2 ± 2 s incos = (sin± c os )2sin 2= 2 sincos.⑵ cos 2= cos 2- sin 2= 2 cos 2-1 = 1- 2 sin 2⇒ 升幂公式1 + cos = 2 cos 2 2 ⇒ 降幂公式cos 2cos 2+1,- cos = 2 s in 2221- cos 226、 =2万能公式:sin= .22 tan α 1 - tan 2 αsin α= 2 ; cos α=2 1 + tan 2 α 2 1 + tan 2 α 2tan 2=2 tan.1- tan227、半角公式:cos = ± 2 1+ cos α α ; sin ± 2 21- cos α2 tan α= 2⇒ (后两个不用判断符号,更加好用)28、合一变形 ⇒ 把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的y = A sin(x +) + B 形式。

A sin + B cos =(+) ,其中tan= B . A29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件, 灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1) 角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的A 2+ B 2,1= sin α = 1- cos α 1+ cos α sin α 1- cos α 1+ cos α3(差异,使问题获解,对角的变形如:①2是的二倍;4是2的二倍;是的二倍;是的二倍;o o o o o 30o2 2 4②15 = 45 - 30 = 60 - 45 = ;问:sin2 12 =;cos =12;③= (+) -;④+=4 2-) ;4⑤2= (+) + (-) = (4 +) -4-) ;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换一、半角公式(不要求记忆)
典型例题1:
二、三角恒等变换的常见形式
三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.
1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.
2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.
3、三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典型例题2:
三、三角函数式的化简要遵循“三看”原则
1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
3、三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
典型例题3:
四、三角函数求值有三类
1、“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
2、“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
3、“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
典型例题4:
三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y=Asin(ωx+φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.典型例题5:
【作者:吴国平】。

高中数学必修四第三章三角恒等变换

高中数学必修四第三章三角恒等变换

必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。

例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。

例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。

例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析

三角恒等变换各种题型归纳分析三角恒等变换一、知识点:一)公式回顾:cos(α±β)=cosαcosβ∓sinαsinβ,简记为C(α±β)sin(α±β)=sinαcosβ±cosαsinβ,简记为S(α±β)sin2α=2sinαcosα,XXX为S2αcos2α=cos²α-sin²α,XXX为C2αtan2α=(α≠kπ/2且α≠kπ)简记为T2α2、二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,α/2是α/4的两倍,3α是3α/2的两倍,α/3是α/6的两倍等,所有这些都可以应用二倍角公式。

因此,要理解“二倍角”的含义,即当α=2β时,α就是β的二倍角。

凡是符合二倍角关系的就可以应用二倍角公式。

二)公式的变式1±sin²α=(sinα±cosα)²cos²α=1/(1+tan²α)1-cos²α=2sin²αtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)公式前的±号,取决于2合1公式所在的象限,注意讨论。

absinx+cosx=a+ba+b其中tanθ=b/a二、经典例题剖析:基础题型例1:已知sin2α=5π/13,0<α<π/2,求sin4α,cos4α,tan4α.例2:在△ABC中,cosA=4/5,tanB=2,求tan(2A+2B).题型二:公式的逆向运用例3:求下列各式的值:2tan15°1.化简下列各式:1) sin²22.5°cos²22.5°;2) (1-2sin²75°)/(21-tan15°);3) sin(3π/4)/[1-(tanπ/5)²].2.化简下列各式:1) sin⁴θ-cos⁴θ;2) -αcosα-(3α²/4).3.求值:1) cos(π/12)cos(π/6);2) cos36°cos72°.题型三:升降幂功能与平方功能的应用例3.化简下列各式:1) 1+sin40°;2) 1-sinα;3) 1+cos20°;4) 1-cosα.1) (cos²θ+sin²θ+2sinθcosθ-cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2sinθ/(1-cos2θ);2) (cos²θ+sin²θ+2sinθcosθ+cos²θ)/(cos²θ+sin²θ-2sinθcosθ) = 2cosθ/(1+cos2θ).3.已知sinx+cosx=3/2.x∈(0,π),求sin2x和cos2x.2sinxcosx = sin2x。

三角函数恒等变换知识点和习题(含答案)教师版

三角函数恒等变换知识点和习题(含答案)教师版

三角函数恒等变换知识点和习题(含详解答案)一.要点精讲1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。

2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3.半角公式2cos 12sinαα-±=2cos 12cosαα+±=αααcos 1cos 12tan+-±=(αααααsin cos 1cos 1sin 2tan-=+=)4.(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。

(αα2cos 1sin22-= αα2cos 1cos 22+=)(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中5.三角函数式的化简、求值、证明(1)三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

(2)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(3)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

二.典例解析题型1:巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),例1:(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____(答:322); (2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729);(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)题型2:三角函数名互化(切化弦)例2(1)求值sin 50(1)o o(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)题型3:公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±m 。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换一、 三角基础知识1. 定义α终边过点),(y x P ,22y x OP r +==,则,sin r y =α,cos r x =α,tan x y =α ,csc y r =α,sec x r =α.cot yx =α其中αsec 称为角α的正割,αcsc 称为角α的余割.2. 同角三角函数的基本关系式(1) 平方关系:1cos sin 22=+αααα22sec 1tan =+ αα22csc 1cot =+(2) 商数关系:ααααααsin cos cot ,cos sin tan == (3) 倒数关系:1cot tan =∙αα1csc sin =⋅αα 1sec cos =⋅αα3. 诱导公式4. 三角函数恒等变形公式 (1) 两角和与差公式()βαβαβαsin cos cos sin sin ±=± ()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±(2) 二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=(3) 三倍角公式ααα3sin 4sin 33sin -= αααcos 3cos 43cos 3-=(4) 半角公式2cos 12sinαα-±= 2cos 12cos αα+±= αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±= (5) 万能公式2tan 12tan2sin 2ααα+=,2tan 12tan 1cos 22ααα+-=,2tan 12tan2tan 2ααα-=(6) 积化和差()()[]βαβαβα-++=sin sin 21cos sin , ()()[]βαβαβα--+=sin sin 21sin cos ,()()[]βαβαβα-++=cos cos 21cos cos ,()()[]βαβαβα--+-=cos cos 21sin sin(7) 和差化积2cos2sin2sin sin ϕθϕθϕθ-+=+,2sin 2cos 2sin sin ϕθϕθϕθ-+=-,2cos 2cos 2cos cos ϕθϕθϕθ-+=+,2sin 2sin 2cos cos ϕθϕθϕθ-+-=-,二、 例题讲解例1.(2004北京高考)在ABC ∆中,,3,2,22cos sin ===+AB AC A A 求A tan 的值和ABC ∆的面积.[解法一] 解方程组⎪⎩⎪⎨⎧=+=+1cos sin 22cos sin 22A A A A 得⎪⎪⎩⎪⎪⎨⎧-=+=462cos 462sin A A ,故 32tan --=A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品
三角恒等变换基本解题方法
1 、两角和与差的正弦、余弦、正切公式及倍角公式:
sin
sin cos cos sin
cos
cos cos msin sin
tan
tan
tan
1mtan tan
2 tan tan 2
2
1 tan

sin2
2sin cos

cos2
cos 2 sin 2
2cos 2
1 1 2sin 2
cos 2 = 1+cos2
2
sin 2 = 1 cos2
2
如( 1 )下列各式中,值为
1
的是
2
A 、
o
o
B 、
2
2
C 、
tan 22.5o 1 cos30o
sin15 cos15
cos 12 sin
12
tan 2 22.5o
D 、
1 2
( 2 )命题 P : tan( A B ) 0 ,命题 Q : tan A tan B
0,则 P 是Q 的
A 、充要条件
B 、充分不必要条件
C 、必要不充分条件
D 、既不充分也不必要条件
( 3)已知 sin(
)cos
cos(
)sin
3
,那么 cos 2 的值为 ____
5
1
3
o 的值是 ______
( 4 )
o
sin 80
sin 10
(5) 已知 tan110 0
a ,求 tan 50
a 3 1 a 2
的值(用 a 表示)甲求得的结果是 ,乙求得的结果是
,对甲、
1
3a
2a
乙求得的结果的正确性你的判断是 ______
2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与
角之间的关系, 注意角的一些常用变式, 角的变换是三角函数变换的核心! 第二看函数名称之间的关系,通常“切化弦” ;第三观察代数式的结构特点。

基本的技巧有 :
(1 )巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其
和差角的变换 .
2
2
如( )
(
),2(
) (
),2(
) (
) ,

2
2
2 等),
精品
如( 1 )已知 tan(
)
2

tan(
) 1
,那么
tan(
) 的值是 _____
5
4
4
4
(2)已知 0
,且 cos( ) 1 , sin(
2
) 的值
9
),求 cos(
2
2
2
3
(2) 三角函数名互化 (切化弦 ) , 如( 1 )求值 sin 50o (1
3 tan10o )
( 2 )已知
sin
cos
1,tan( )
2
,求
tan(
2 ) 的值
1 cos2
3
(3) 公式变形使用( tan
tan tan 1mtan tan 。

如( 1)已知 A 、B 为锐角,且满足
tan A tan B tan A tan B 1,则 cos( A
B) = _____
(2) 设 ABC 中, tan A tan B 3 3 tan Atan B , sin Acos A
3 ,则此三角形是 三角形
4
____
(4) 三角函数次数的降升
(降幂公式: cos 2
1 cos
2 , sin 2 1 cos2 与
2
2
升幂公式 1 cos 2
2cos 2 , 1 cos2 2sin 2 )。

如(1) 若
3 1 1 1 1 ( ,),化简
2 2 2 cos2 为_____
2
2
( 2 )函数 f ( x ) 5 sin x cos x 5 3cos 2 x
5 3( x R ) 的单调递增区间为 ___________
2
(5) 式子结构的转化 ( 对角、函数名、式子结构化同 )。

精品
2cos4 x 2cos2 x 1
如( 1)化简:
2
x)sin 2 (
2 tan( x)
4 4
(6)常值变换主要指“ 1 ”的变换(1 sin2x cos2x
tan 4sin 2L 等),
如已知 tan 2 ,求sin2sin cos3cos 2
(7)正余弦— sin x cosx、sin xcosx ”的内存联系――“知一求二”,如( 1 )若sin x cosx t ,则 sin x cos x__
(2)若(0, ),sincos 1
,求 tan 的值。

2
8 、辅助角公式中辅助角的确定:asin x b cosx a2b2 sin x( 其中角所在的象限由 a , b 的符号
b
确定,角的值由 tan确定)在求最值、化简时起着重要作用。

a
如( 1 )若方程sin x 3 cos x c 有实数解,则 c 的取值范围是___________.
( 2)当函数y 2 cos x 3 sin x 取得最大值时,tanx 的值是______
( 3 )如果f x sin x 2cos(x ) 是奇函数,则 tan =
4、求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三
精品
角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)。

如( 1 )若 ,
(0, ) ,且 tan
、 tan 是方程 x 2 5x 6 0 的两根,则求
的值 ______
( 2)
ABC 中, 3sin A 4cos B 6,4sin B 3cos A 1 ,则 C = _______
( 3 )若 0
2 且 sin sin sin 0 , cos cos cos 0 ,求
的值
课后练习题
3 1:(1) 已知 ∈( , ), sin =
, 则 tan( ) 等于( )
2
5
4
1 B.7
C.-
1 D.-7
A.
7
7
(2) sin163 ° sin223 ° +sin253 ° sin313( °等于)
A.-
1
B.
1
3 3 C. -
D.
2
2
2
2
3 :设 cos (

) = - 1
, sin ( -β)= 2
,且 π

<π, 0<β< π

2 9 2
3 2 2
求 cos (
+ β).
精品
4 :在△ ABC 中,角 A 、 B 、 C 满足
4sin
2 A C
-- cos2B= 7
,求角 B 的度数 . 2 2
5 . 已知 α为锐角,且 tan
1 ,求 sin
2 cossin 的值 .
2
sin 2 cos2
6 . 已知 f ( x) 3 sin 2 x sin x cosx ;
(1) 求 f (
25
) 的值; (2) 设(0, ), f ( ) 1
3
,求 sin α的值.
6 2
4 2
7 :已知
sin x 2 cos x
2 2
( 1 )求 tan x 的值;
cos2x
(2)求
的值.
2 cos(
x) sin x
4
2
8 设函数 f(x)=2
sin x cos cosx sin sin x(0
) 在 x
处取最小值 .
精品(1)求.的值 ;
(2)在ABC 中 , a,b,c分别是角 A,B,C 的对边 ,已知a 1, b2, f ( A)
3
,求角 C.. 2。

相关文档
最新文档