实变和泛函期末试题答案
实变函数与泛函分析报告答案
试卷一 (参考答案及评分标准)一、1. C 2 D 3. B 4. A 5. D二、1.∅ 2、[]0,1; ∅ ; []0,1 3、***()()m T m T E m T CE =⋂+⋂4、充要5、11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集。
三、1.错误……………………………………………………2分例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集……………………….5分3.错误…………………………………………………………2分例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分4.错误…………………………………………………………2分0mE =时,对E 上任意的实函数()f x 都有()0Ef x dx =⎰…5分四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==⎰⎰…8分 2.解:设ln()()cos x n x n f x e x n-+=,则易知当n →∞时,()0n f x → …………………………..2分 又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时,ln()ln()ln 3ln 3(1)33x n n x x n n x x n n x n n ++++=≤≤++………………4分 从而使得ln 3|()|(1)3x n f x x e -≤+…………………………………6分 但是不等式右边的函数,在[)0,+∞上是L 可积的,故有 00lim ()lim ()0n n n n f x dx f x dx ∞∞==⎰⎰…………………………………8分 五、1.设[0,1],E =,\().A E Q B E E Q =⋂=⋂B M B ∴∃⊂Q 是无限集,可数子集 …………………………2分 .A A M M ∴⋃Q :是可数集, ……………………………….3分 (\),(\),()(\),(\),B M B M E A B A M B M A M B M M B M φφ=⋃=⋃=⋃⋃⋃⋂=⋂=Q 且…………..5分 ,.E B B c ∴∴=:………………………………………………6分 2.,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使……….2分 ,()n n x E f x a ∈∴≥Q ………………………………………….3分 ()()lim ()n n f x x f x f x a →∞∴=≥Q 在点连续, x E ∴∈…………………………………………………………5分 E ∴是闭集.…………………………………………………….6分 3.对1ε=,0δ∃〉,使对任意互不相交的有限个(,)(,)i i a b a b ⊂ 当1()n i i i b a δ=-<∑时,有1()()1ni i i f b f a =-<∑………………2分 将[,]a b m 等分,使11ni i i x x δ-=-<∑,对:T ∀101i x z z -=<k i z x <<=L ,有11()()1k i i i f z f z -=-<∑,所以()f x 在1[,]i i x x -上是有界变差函数……………………………….5分所以1()1,i i x x f V -≤从而()b af m V ≤,因此,()f x 是[,]a b 上的有界变差函数…………………………………………………………..6分4、()f x 在E 上可积lim (||)(||)0n mE f n mE f →∞⇒≥==+∞=……2分 据积分的绝对连续性,0,0,,e E me εδδ∀>∃>∀⊂<,有|()|ef x dx ε<⎰………………………………………………….4分 对上述0,,,(||)k n k mE f n δδ>∃∀>≥<,从而|()|n n e n me f x dx ε⋅≤<⎰,即lim 0n n n me ⋅=…………………6分5.,n N ∀∈存在闭集()1,,()2n n n F E m E F f x ⊂-<在nF 连续………………………………………………………………2分令1n k n k F F ∞∞===UI ,则,,,()n n n kx F k x F n k x F f x ∞=∀∈⇒∃∈⋂∀≥∈⇒在F 连续…………………………………………………………4分 又对任意k ,()[()][()]n n n k n k m E F m E F m E F ∞∞==-≤-⋂=⋃-1()2n k n km E F ∞=≤-<∑…………………………………………….6分 故()0,()m E F f x -=在F E ⊂连续…………………………..8分 又()0,m E F -=所以()f x 是E F -上的可测函数,从而是E 上的 可测函数………………………………………………………..10分。
实变函数与泛函分析考试内容及答案
14、建立下面集合之间的具体双射 1)(-1,1)与[-1,1] 2)实数轴和全体无理数3)R 3中除去一点的单位球面与全平面R 24)平面中的开圆盘{(x,y ):x 2+y 2<1}与闭圆盘{(x,y ):x 2+y 2≤1}解:(1)、从(-1,1)与[-1,1]分别取出两个数集A={r 1,r 2,r 3,……,r n }与B={-1,1,r 1,r 2,……,r n-2}则A 、B 之间可定义以下双射:Ф(r 1)=-1, Ф(r 2)=1, Ф(r n )=r n (n>2)然后定义Ф:(-1,1)︱A →[-1,1]︱B x →x 得Ф(-1,1)→[-1,1]是所求双射(2)、从R 与R\Q 中分别取出两个可数集A=Q ∪B 与B=2,则A 与B 之间可定义如下双射:Ф2然后定义:Ф:R|A →(R\Q)|B x →x得:Ф:R →R\Q 是实数轴与全体无理数之间的双射。
(3)、假设单位球面上除去P 点按以下步骤建立双射: i)球心为O P 点关于O 点对称的点为球内的点Q 以Q 为切点作一个切面R 2以O 为原点作一直角坐标系ii )过切点Q 连接PQ iii )连接P 点与球面上异于P 点的任一点M 并延长,点肯定交R 2与一点记为M ’ 这就建立了R 3中除去一点的单位球面与全平面R 2之间的双射。
(4)、首先两个同心圆周之上的点之间可建立一一对应:做圆周集合子列 A n ={(x,y):x 2+y 2=12n } n ∈N 则 令E 1=n-2∞A n ⊂{(x,y):x 2+y 2<1}E 2=n-1∞ A n ⊂{(x,y):x 2+y 2≤1}且 E 1~E 2 又{(x,y):x 2+y 2<1}| E 1={(x,y):x 2+y 2≤1}|E 2 ,令B 1=(x,y):x 2+y 2<1}B 2={(x,y):x 2+y 2≤1}则 B 2=(B 1|E 1) E 2 令 Ф((x,y))= (x 1,y 1)若(x,,y )∈B 1|E 1或(x 2,y 2)若(x,y )∈E 2 由此得:Ф是B 1到B 2的双射。
(完整版)《实变函数与泛函分析基础》试卷及答案要点
试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。
泛函分析期末试题及答案
泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。
以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。
以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。
以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。
三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。
解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
实变函数与泛函分析基础》习题解答
习题 1.4
1. 证:记[0,1]上的无理数所成之集为 I,[0,1]上的有理数全体为 Q.若 I
可数,则 I ∪ Q = [0,1] 可数,这与[0,1]不可数矛盾. 2. 证: A ∈ 2[0,1] ,则 χ A (x) ∈ F.于是 2[0,1] 与 F 的一个子集对等,故
F ≥ 2[0,1] = 2C .另方面, f ∈ F ,{(x, f (x) x ∈[0, 1]}∈ 2R2 .于是 F 对等于
一个子集对等,从而至多可数.
2. 设单调增函数 f 的间断点集为 D, x0 ∈ D : x0 →( f (x0 − 0), f (x0 + 0))
此对应是 D 到直线上某些互不相交的开区间所成之集的一个对等,由习题 1 知,
D 至多可数.
3. An 为 A 的 n 个元素所成子集的全体.由定理 1.3.7 知 An 可数,从而由定
∪ x ∈ A ∩ Bα ⇔ x ∈ ( A ∩ Bα ) . α∈Γ
2.
①因
U U Aα U Bα ⊂ ( Aα ) U ( Bα ) , 所 以
α∈Γ
α∈Γ
U U U U U ( Aα U Bα ) ⊂ ( Aα ) U ( Bα ) . 另 一 方 面 Aα ⊂ ( Aα U Bα ) ,
α∈Γ
8. x ∈ E[ f ≥ a] ⇔ lim fn (x) = f (x) ≥ a, x ∈ E ⇔ ∀ k, ∃ N , 当
n ≥ N 时有
∩ ∪ ∩ fn
(x)
>
a
−
1 k
⇔
x∈
∞ k =1
∞ N =1
∞
E[
n=N
fn
>
实变与泛函期末试题答案
实变与泛函期末试题答案06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ?),(0δ,故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集. (7分)证明一设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即 E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分证明二对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分知 E E E E =?= ,E 为闭集. …………………………………………………… 7分证明三由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证.2. 证明Egorov 定理:设,{()}n m E f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且.)\(δδ<="" e="" m="" p="">证明任选一列自然数}{i n ,与此相应作E 的子集1111[{}][,][||,],i i k i i i E n E n E f f k n i i ∞∞====-<≥则)(x f n 必在}][{i n E 上一致收敛于)(x f .事实上,对0ε?>,选0,i 使01,i ε<则当0i n n >时,对一切00101[{}][,][,],o i i k i i x E n E n E f f k n i ∈?=-<≥都有 01()()n f x f x i ε-<<. ……………………… 6分所以, 0>?δ, 若能适当的选取}{i n , 使(\[{}])i m E E n δ<, 则令[{}]i E E n δ=即可.利用引理, 0,(\[,])0()m E E n n εε?>→→∞. 故对任给的0δ>, 对1,i ε=1,2,3,i =, i n ?,使得1(\[,])2i i m E E n i δ<,取}],[{i n E E =δ所以)}({x f n 在δE 上一致收敛.且……………………………………… 12分1111(\)(\[{}])(\[,])(\[,])i i i i i i i m E E m E E n m E E n mE E n δ∞∞=====111(\[,]),2i i i i m E E n i δδ∞∞==≤<=∑∑……………………………. 15分结论得证.3.证明勒贝格控制收敛定理:设(1) {})(x f n 是可测集E 上的可测函数列;(2) a.e.)()(x F x f n ≤于E ,n =1,2,…,)(x F 在E 上可积分; (3) )()(xf x f n ?, 则)(x f 在E 上可积分,且 ?=EEn ndx x f dx x f )()(lim. (15分)证明证明一由于)()(x f x f n ?,根据Rieze 定理,存在子列{})(x f i n a.e.收敛于)(x f .由于()()a.e.n f x F x ≤于E ,从而a.e.)()(x F x f i n ≤于E ,得 a.e.)()(x F x f ≤于E .因为)(x F 可积,可得到)(x f 在E 上是可积的,且每个)(x f n 在E 上是可积的. …………… ..2分下证lim ()()n Enf x dx f x dx =??.我们分两步证明:(1) 先设mE <+∞.对任何0ε>,因为()F x 在E 上可积,由勒贝格积分的绝对连续性,知存在0δ>,使当e E ?且me δ<时有()4eF x dx ε,使当n N ≥时有[]n mE f f σδ-≥<,其中02mEεσ=>.所以当n N ≥时,[]()4n E f f F x dx σε-≥<,………….………………… ..6分因此-EE n dx x f dx x f )()(=(()())n Ef x f x dx -?()()n Ef x f x dx ≤-?=[][]()()()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<-+-?≤[][](()())()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<++-?[]2()[]n n E f f F x dx mE f f σσσ-≥≤+-<?24mE εσ<?+?=22εεε+= ………………………….……….………………… ..9分这就证明了当mE <+∞时,成立lim ()()n EEnf x dx f x dx =??.(2)设mE =+∞.因()F x 在E 上可积,由非负可测函数L 积分的定义[](lim ()(),kk E E k F x dx F x dx →∞=?[]()()),kk E E F x dx F x dx ≤?? 知对任何0ε>,存在,k E E ?k mE <+∞,使得[]()()4kk EEF x dx F x dx ε<+?,所以dx x F kE E ?-)(=??-EE dx xF dx x F k)()(≤()[()]kk EE F x dx F x dx -?4ε<..……………… .11分另一方面,在k E 上的可测函数列{}n f f -满足:()()2()..n f x f x F x a e -≤于,1,2,k E n =,()()0n f x f x -?(从)()(x f x f n ?),故在k E 上利用(1)的结论(从(1)有lim ()()n EEnf x dx f x dx =??,所以由()()0n f x f x -?,得lim ()()0n Enf x f x dx -=?),知存在正整数N ,使当n N ≥时,()()2kn E f x f x dx ε-<, (13)(注意: 上一步若直接由(1)得到亦正确) 因此()()n EEf x dx f x dx -≤?-En dx x f x f )()(()()()()kkn n E E E f x f x dx f x f x dx -=-+-?2()2kE EF x dx ε-≤+242εεε证毕.证明二由)()(x f x f n ?及黎斯定理 ,存在子列{} )(x f i n a.e.收敛于)(x f . 因为a.e.)()(x F x f n ≤于E ,所以a.e.)()(x F x f i n ≤于E ,因此a.e.)()(x F x f ≤于E .由)(x F 可积,得到每个)(x f n 和)(x f 都是L 可积的. (2) 因为)(x F 在E 上可积,即[]?∞→=EE k k dx xF dx x F k)(lim )(,所以0>?ε,存在0>k ,使得[]?+<e< p="">E k dx xF dx x F k5)()(ε,因此dx x F kE E ?-)(=??-EE dx xF dx x F k)()())()()](([x F x F x F k k ≤=()()5kk E E F x dx F x dx ε≤-<.…………………6分由绝对连续性,0>?δ,使得E e ?,δ<=""><edx x F 5)(ε,对此δ,由)()(x f x f n ?(在E 上,从而在k E 上),所以存在0>N ,使得当N n ≥时,δε<??+≥-)1(5k n k mE f f mE ,……………………10分当N n ≥时,记n H =+≥-)1(5k n k mE f f E ε,所以从δ<n<="" mh="" p="">H dx x F 5)(ε. 因为)()()(n k k n n n H E E E H H E H E --=-= ,所以当N n ≥时-EEn dx x f dx x f )()(=[]?-En dx x f x f )()(≤-En dx x f x f )()(=?--nk H E n dx x f x f )()(+--kE E n dx x f x f )()(+?-nH n dx x f x f )()(([]5(1)k n k n k E H E f f mE ε-=-<+)≤k k mE mE )1(5+ε+2?-k E E dx x F )(+2?n H dx x F )(<εεε52525++ =ε.…………………………………………………………………………...................15分这证明了?=EEn ndx x f dx x f )()(lim.4.证明康托尔(Cantor)集合的测度为零. (10分) 证明证明一 Cantor 集[]??-= )98,97()92,91()32,31(1,0P ,………....................4分所以[]?+++-=?+++-= 3223232311 27492311,0m mP …………………................8分.0 3211311 3232321311 3322=-?-=++++-= …………………..............10分证明二去掉过程进行到第n 步时,剩下2n个长度为3n -的闭区间,n I 这些区间的总长为22()033n nn =→ (当n →∞时),……………….....4分故,0)32(*→≤n P m ………………………….............8分因此*0,m P = 即0.mP =……………………………………………….……….............10分 5.证明1(0,)lim 11nnndtt t n ∞=??+. (15分)证明当)1,0(∈t 时,2,11111≥≤+n tt n t nn ;……………………………..........2分当),1[+∞∈t 时,1121111112nnn n t t t t t nn =-??+++??+222124,2112n t t n n n t n--≤=<>--.………………............4分+∞∈∈=),,1[,4),1,0(,1t t t tt F 令则当2>n 时,有,)(111t F tn t nn ≤??? ?+………………………………..............6分且+∞∞=+=),0(12164)(dt tt dtdt t F , 即)(t F 在()∞,0上Lebesgue 可积. ……………………….…………………………..........8分又因为tn n ne t n t -∞→??→+111,所以由Lebesgue 控制收敛定理得………...........12分原式=+∞+∞-+∞→==,0(),0(111limdt e t n t dt t n n n .………………............15分6. 证明Banach 不动点定理:设X 是完备的度量空间, T 是X 上的压缩映射, 那么T 有且只有一个不动点. (15分) 证明设0x 为X 中的任一点,令,,,,01021201x T Tx x x T Tx x Tx x n n n =====-. (3)分下面证明点列{}∞=1n n x 是X 中的柯西点列.因为11(,)(,)m m m m d x x d Tx Tx +-=112(,)(,)m m m m d x x d Tx Tx αα---≤= 21210(,)(,),m m m d x x d x x αα--≤≤≤所以当m n >时,1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++1101()(,)m m n d x x ααα+-≤+++011(,),1n mmd x x ααα--=-又因为,10<<α所以,11<--mn α从而 )(),(1),(10m n x x d x x d m n m >-≤,αα.,0),(,,→∞→∞→n m x x d n m 时所以当即{}∞=1n n x 是X 中的柯西点列, …………...8分由X 的完备性知,存在x X ∈,使x x m →.因为…………..................................................10分(,)(,)(,)m m d x Tx d x x d x Tx ≤+1(,)(,)0,m m m d x x d x x α→∞-≤+→ 故(,)0d x Tx =,即x Tx =,所以x 为T 的不动点. ………..................................................12分下证其唯一性.如果又有X x ∈~,使x x T ~~=,则)~,()~,()~,(x x d x T Tx d x x d α≤=,因1<α,故0)~,(=x x d ,即x x ~=,得证. ………....................................................................15分7. 设0mE >, 又设E 上可积函数(),()f x g x 满足()()f x g x <, 试证:()d ()d EEf x xg x x <?. (5分)证明因为()()0g x f x ->, 所以[()()]d 0Eg x f x x -≥?…………………………………3分若[()()]d 0Eg x f x x -=?,则()()0g x f x -=, a.e. …………………………………………….…………………………5分与题设矛盾, 故得()d ()d EEf x xg x x <?.8. 设()f x 在[,]a b 上可导, 证明: ()f x 的导函数()f x '在[,]a b 上可测. (10分) 证明补充定义()()f x f b =(x b >时), 则()f x 在[,)a b 上可导, 对任意N n ∈, 令1()()(),[,)1n f x f x n g x x a b n+-=?∈..………………3分由f 连续, 知每个n g 连续,故可测. …………………………….…………………………5分由f 的可导性知()lim (),[,)n n f x g x x a b →∞'=?∈…….………………7分因此()f x '作为一列可测函数的极限在[,)a b 上必可测, 故在[,]a b 上亦可测….………10分</e<>。
《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)
《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)ob 得分试卷⼀:⼀、单项选择题(3 分×5=15 分)1、1、下列各式正确的是()∞ ∞∞ ∞(A ) lim A n = ? ? A k ; (B ) lim A n = ? ? A k ; n →∞n =1 k =n n →∞n =1 k =n∞ ∞∞ ∞(C ) lim A n = ? ? A k ; (D ) lim A n = ? ? A k ;n →∞n =1 k =nn →∞n =1 k =n2、设 P 为 Cantor 集,则下列各式不成⽴的是()(A ) P = c (B) mP = 0 (C) P '= P(D) P = P3、下列说法不正确的是()(A) 凡外侧度为零的集合都可测(B )可测集的任何⼦集都可测 (C) 开集和闭集都是波雷⽿集(D )波雷⽿集都可测 4、设{ f n (x )} 是 E 上的a .e . 有限的可测函数列,则下⾯不成⽴的是()(A )若 f n (x ) ? f (x ) , 则 f n (x ) → f (x )(B) sup { f n (x )} 是可测函数n(C ) i nf { f n (x )} 是可测函数;(D )若 f n (x ) ? nf (x ) ,则 f (x ) 可测5、设 f(x)是[a , b ] 上有界变差函数,则下⾯不成⽴的是()(A) f (x ) 在[a , b ] 上有界(B) f (x ) 在[a , b ] 上⼏乎处处存在导数(C ) f '(x ) 在[a , b ] 上 L 可积 (D)af '(x )dx = f (b ) - f (a )⼆. 填空题(3 分×5=15 分)1、(C s A ? C s B ) ? ( A - ( A - B )) =2、设 E 是[0,1]上有理点全体,则 E '=, E =, E = .3 、设 E 是R n 中点集,如果对任⼀点集T 都有得分,则称E 是L 可测的4、f (x) 可测的条件是它可以表成⼀列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设 f (x) 为[a, b]上的有限函数,如果对于[a, b]的⼀切分划,使f (x) 为, 则称[a, b]上的有界变差函数。
(完整)实变与泛函期末试题答案
06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分)证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>∃δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ⊂),(0δ,故0x 为E 的内点。
由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集。
(7分)证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ∃中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ∂⊂=⊂,……………………… 5分 知E E E E =∂= ,E 为闭集。
…………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证。
实变函数与泛函分析概要答案
实变函数与泛函分析概要答案以下是十道实变函数与泛函分析的概要试题及答案:1.试题:定义实变函数及其特点。
答案:实变函数是以实数为自变量的函数,其特点是定义域和值域均为实数集合,并且满足函数的基本运算法则。
2.试题:定义实变函数的连续性。
答案:实变函数在其中一点连续,意味着在这一点的函数值与自变量趋近这一点时的函数值趋近于相同的值。
3.试题:什么是函数的一致连续性?答案:函数的一致连续性是指函数在整个定义域上均满足连续性的性质,即对于任意给定的正数ε,存在对应的正数δ,使得函数在任意两个自变量间的距离小于δ时,函数值的差的绝对值小于ε。
4.试题:定义函数的导数。
答案:函数在其中一点的导数表示了函数在这一点的变化率,即函数值的变化对应于自变量的变化。
5.试题:什么是函数的凸性?答案:函数的凸性是指函数的导函数是递增的性质,即函数的曲线在任意两点之间的斜率是递增的。
6.试题:定义泛函。
答案:泛函是一类以函数为自变量的函数,其值为实数或复数。
泛函可以看作函数的函数,用来描述函数集合的性质。
7.试题:什么是泛函空间?答案:泛函空间是指一组满足一定运算性质的泛函所构成的向量空间。
8.试题:定义泛函的线性性质。
答案:泛函的线性性质指泛函满足线性运算法则,即对于任意给定的两个函数f和g以及标量α和β,有泛函T(αf+βg)=αT(f)+βT(g)。
9.试题:什么是极小值和极大值?答案:函数在其中一点的极小值是指在这一点的函数值小于或等于附近的其他函数值,而极大值则相反。
10.试题:定义泛函的变分。
答案:泛函的变分是指泛函在给定函数上的微小变化,用来研究泛函的极值性质。
(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档
试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。
《实变函数与泛函分析基础》试卷及答案要点
试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E是[]0,1上有理点全体,则'E=______,o E=______,E=______.3、设E是n R中点集,如果对任一点集T都有_________________________________,则称E是L可测的4、)(xf可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x为[],a b上的有限函数,如果对于[],a b的一切分划,使_____________________________________________________,则称()f x为[],a b上的有界变差函数。
实变函数与泛函分析课后习题答案
实变函数与泛函分析课后习题答案。
1.设f(x) = x^2 - 2x + 1,求f(x)的最小值。
解:要求f(x)的最小值,可以通过求导来找到极小值点。
首先对f(x)求导得到f'(x) = 2x - 2。
令f'(x) = 0,可以得到2x - 2 = 0,解得x = 1。
再对f(x)求二阶导数得到f''(x) = 2,由于f''(x)大于0,所以x = 1是f(x)的极小值点。
将x = 1代入f(x)得到f(1) = 1^2 - 2(1) + 1 = 0。
所以f(x)的最小值为0。
2.设f(x) = e^x,求f(x)的泰勒级数展开式。
解:泰勒级数展开式可以表示函数在某一点附近的近似值。
对于函数f(x) = e^x,可以通过求导得到其各阶导数。
首先求f(x)的一阶导数:f'(x) = e^x。
再求f(x)的二阶导数:f''(x) = e^x。
依次求得f(x)的各阶导数为:f'(x) = e^x,f''(x) = e^x,f'''(x) =e^x。
通过观察可以发现,f(x)的各阶导数都等于e^x,所以f(x)的泰勒级数展开式为:f(x) = f(0) + f'(0)x + f''(0)(x^2/2!) + f'''(0)(x^3/3!) + 。
代入f(x) = e^x的导数值可以得到:f(x) = e^0 + e^0x + e^0(x^2/2!) + e^0(x^3/3!) + 。
化简得到:f(x) = 1 + x + x^2/2! + x^3/3! + 。
所以f(x)的泰勒级数展开式为1 + x + x^2/2! + x^3/3! + 。
3.证明函数f(x) = x^2在区间[-1, 1]上是连续的。
解:要证明函数f(x) = x^2在区间[-1, 1]上是连续的,需要证明对于任意给定的ε > 0,存在δ > 0,使得当|x - x0| < δ时,|f(x) - f(x0)| < ε。
泛函分析期末考试题库及答案
泛函分析期末考试题库及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是泛函分析中的基本概念?A. 线性空间B. 线性算子C. 微分方程D. 范数答案:C2. 希尔伯特空间中的内积满足的性质不包括以下哪一项?A. 线性B. 对称性C. 正定性D. 可逆性答案:D3. 以下哪个是紧算子的性质?A. 有界B. 可逆C. 连续D. 可微答案:A4. 以下哪个定理是泛函分析中的基本定理?A. 泰勒定理B. 格林定理C. 里斯表示定理D. 牛顿-莱布尼茨定理答案:C二、填空题(每题5分,共20分)1. 在泛函分析中,一个线性空间的基是一组线性______的向量。
答案:无关2. 一个线性算子是______的,如果它将一个有界集映射到一个有界集。
答案:有界3. 一个线性算子是______的,如果它将一个紧集映射到一个紧集。
答案:紧4. 一个线性算子是______的,如果它在某个线性空间上是连续的。
答案:连续三、简答题(每题10分,共30分)1. 简述什么是线性空间,并给出其基本性质。
答案:线性空间是一个集合,其中的元素称为向量,满足加法和数乘两种运算,并且满足加法交换律、加法结合律、数乘分配律等性质。
2. 解释什么是紧算子,并给出一个例子。
答案:紧算子是一个线性算子,它将任意有界序列映射到一个收敛序列。
例如,考虑在L^2空间上的算子K,定义为K(f)(x) =∫f(t)sin(x-t)dt,它是一个紧算子。
3. 描述什么是希尔伯特空间,并说明其与欧几里得空间的关系。
答案:希尔伯特空间是一个完备的内积空间,它允许无限维向量的存在。
希尔伯特空间是欧几里得空间的推广,其中欧几里得空间是有限维的希尔伯特空间。
四、计算题(每题15分,共30分)1. 给定线性算子A: L^2(0,1) → L^2(0,1),定义为A(f)(x) =∫₀^x f(t)dt,证明A是一个紧算子。
答案:略2. 考虑在L^2(-1,1)上的算子B,定义为B(f)(x) = xf(x),证明B是一个有界算子,并求出其范数。
泛函分析之期末考习题解答-实变函数与泛函分析概要第二册
25.P1,P2均为可换投影算子,则P=P1+P2-P1P2也是投影算子,且P>=P1,P>=P2,当任意投影算子Q,Q>=P1,Q>=P2时必有Q>=P
证:
P1,P2,P1P2均为投影算子,故(PX,Y)=…=(X,PY),即P自伴
又P2=…=P,故P为投影算子
知: 闭集F E,ST,mF>0&& |Kn(s,t)-K(s,t)|dt→0在F一致成立
mF>0 点s0 F,ST, U(s0),m(U(s0)∩F)>0又s0 F E
|K(s0,t)|dt>α-ε, U(s0),N,ST, s U(s0)∩F,有:
|K(s,t)-K(s0,t)|dt≤ |K(s,t)-KN(s,t)|+|KN(s,t)-KN(s0,t)|+
ε,令E={s [a,b]: |K(s,t)|dt>α-ε},mE>0
|K(s,t)|dt关于s本性有界 |K(s,t)|dtdt<∞
连续函数Kn(s,t),ST, |Kn(s,t)-K(s,t)|dt→0(n→∞)
由里斯定理, 子列nk,ST,上式对n=nk几乎处处收敛于0
不妨设 |Kn(s,t)-K(s,t)|dt 0(n→∞),则由叶果洛夫定理
{ Ln(t)}张成的空间在L2[0,∞)稠密
P232
4.K(s,t)是a≤t≤b,a≤s≤b的可测函数, |K(s,t)|dt对[a,b]几乎所有s存在,且作为s的函数本性有界,令y=Tx:y(t)= K(s,t)x(s)ds,则T是L[a,b]到L[a,b]的有界线性算子,且||T||=vraisup |K(s,t)|dt.
实变函数与泛函分析答案new
山东农业大学数学与应用数学专业考试必备!! 一、5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交 (ii )i ni i n i B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E na x f x E n }1)(|{1n a x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈所以 })(|{}1)(|{1a x f x E n a x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=10.证明:3R 中坐标为有理数的点是可数的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>∃δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ⊂),(0δ,故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集. (7分)证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ∃中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ∂⊂=⊂,……………………… 5分 知E E E E =∂=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证.2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>∀δ, 存在子集E E ⊂δ, 使)}({x f n 在δE 上一致收敛, 且.)\(δδ<E E m (15分)证明 任选一列自然数}{i n ,与此相应作E 的子集 则)(x f n 必在}][{i n E 上一致收敛于)(x f .事实上,对0ε∀>,选0,i 使1,i ε<则当0i n n >时,对一切 00101[{}][,][,],o i i k i i x E n E n E f f k n i ∈⊂=-<≥都有1()()n f x f x i ε-<<. ……………………… 6分 所以, 0>∀δ, 若能适当的选取}{i n , 使(\[{}])i m E E n δ<, 则令[{}]i E E n δ=即可.利用引理, 0,(\[,])0()m E E n n εε∀>→→∞. 故对任给的0δ>, 对1,iε=1,2,3,i =L , i n ∃,使得1(\[,])2i i m E E n i δ<,取}],[{i n E E =δ所以)}({x f n 在δE 上一致收敛.且……………………………………… 12分111(\[,]),2i i i i m E E n i δδ∞∞==≤<=∑∑……………………………. 15分结论得证.3.证明勒贝格控制收敛定理:设(1) {})(x f n 是可测集E 上的可测函数列;(2) a.e.)()(x F x f n ≤于E ,n =1,2,…,)(x F 在E 上可积分; (3) )()(x f x f n ⇒, 则)(x f 在E 上可积分,且 ⎰⎰=EEn ndx x f dx x f )()(lim. (15分)证明证明一 由于)()(x f x f n ⇒,根据Rieze 定理,存在子列{})(x f i n a.e.收敛于)(x f .由于()()a.e.n f x F x ≤于E ,从而 a.e.)()(x F x f i n ≤于E ,得 a.e.)()(x F x f ≤于E .因为)(x F 可积,可得到)(x f 在E 上是可积的,且每个)(x f n 在E 上是可积的. …………… ..2分下证lim ()()n EEnf x dx f x dx =⎰⎰.我们分两步证明:(1) 先设mE <+∞.对任何0ε>,因为()F x 在E 上可积,由勒贝格积分的绝对连续性,知存在0δ>,使当e E ⊂且me δ<时有()4e F x dx ε<⎰. …………………………… ..4分又因为)()(x f x f n ⇒,所以存在0N >,使当n N ≥时有[]n mE f f σδ-≥<,其中02mEεσ=>.所以当n N ≥时,[]()4n E f f F x dx σε-≥<⎰,………….………………… ..6分因此⎰⎰-EEn dx x f dx x f )()(=(()())n Ef x f x dx -⎰=[][]()()()()n n n n E ff E f f f x f x dx f x f x dx σσ-≥-<-+-⎰⎰=22εεε+= ………………………….……….………………… ..9分这就证明了当mE <+∞时,成立lim ()()n EEnf x dx f x dx =⎰⎰.(2)设mE =+∞.因()F x 在E 上可积,由非负可测函数L 积分的定义[](lim ()(),kk E E k F x dx F x dx →∞=⎰⎰[]()()),kk E E F x dx F x dx ≤⎰⎰ 知对任何0ε>,存在,k E E ⊂k mE <+∞,使得[]()()4kk EEF x dx F x dx ε<+⎰⎰,所以dx x F kE E ⎰-)(=⎰⎰-EE dx xF dx x F k)()(≤()[()]kk EE F x dx F x dx -⎰⎰4ε<..……………… .11分 另一方面,在k E 上的可测函数列{}n f f -满足:()()2()..n f x f x F x a e -≤于,1,2,k E n =L , ()()0n f x f x -⇒(从)()(x f x f n ⇒),故在k E 上利用(1)的结论(从(1)有lim ()()n EEnf x dx f x dx =⎰⎰,所以由()()0n f x f x -⇒,得lim ()()0n Enf x f x dx -=⎰),知存在正整数N ,使当n N ≥时,()()2kn E f x f x dx ε-<⎰, (13)(注意: 上一步若直接由(1)得到亦正确) 因此242εεε<⋅+= (15)证毕.证明二 由)()(x f x f n ⇒及黎斯定理 ,存在子列{})(x f i n a.e.收敛于)(x f . 因为a.e.)()(x F x f n ≤于E ,所以a.e.)()(x F x f i n ≤于E ,因此a.e.)()(x F x f ≤于E .由)(x F 可积,得到每个)(x f n 和)(x f 都是L 可积的. (2)因为)(x F 在E 上可积,即[]⎰⎰∞→=EE k k dx xF dx x F k)(lim )(,所以0>∀ε,存在0>k ,使得[]⎰⎰+<EE k dx xF dx x F k5)()(ε,因此dx x F kE E ⎰-)(=⎰⎰-EE dx xF dx x F k)()(()()5kk E E F x dx F x dx ε≤-<⎰⎰.…………………6分由绝对连续性,0>∃δ,使得E e ⊂,δ<me 时,有⎰<edx x F 5)(ε,对此δ,由)()(x f x f n ⇒(在E 上,从而在k E 上),所以存在0>N ,使得当N n ≥时,δε<⎥⎦⎤⎢⎣⎡+≥-)1(5k n k mE f f mE ,……………………10分当N n ≥时,记n H =⎥⎦⎤⎢⎣⎡+≥-)1(5k n k mE f f E ε,所以从δ<n mH ,有 ⎰<nH dx x F 5)(ε. 因为)()()(n k k n n n H E E E H H E H E --=-=Y Y Y ,所以当N n ≥时⎰⎰-EEn dx x f dx x f )()(=[]⎰-En dx x f x f )()(≤⎰-En dx x f x f )()(=⎰--nk H E n dx x f x f )()(+⎰--kE E n dx x f x f )()(+⎰-nH n dx x f x f )()(([]5(1)k n k n k E H E f f mE ε-=-<+)≤k k mE mE )1(5+ε+2⎰-k E E dx x F )(+2⎰n H dx x F )(<εεε52525++ =ε.…………………………………………………………………………...................15分这证明了⎰⎰=EEn ndx x f dx x f )()(lim.4.证明康托尔(Cantor)集合的测度为零. (10分) 证明证明一 Cantor 集[]⎥⎦⎤⎢⎣⎡-=K Y Y Y )98,97()92,91()32,31(1,0P ,………....................4分 所以[]⎪⎪⎭⎫⎝⎛+++-=⎪⎭⎫⎝⎛+++-=K K 3223232311 27492311,0m mP …………………................8分.0 3211311 3232321311 3322=-⨯-=⎪⎪⎭⎫ ⎝⎛++++-=K …………………..............10分 证明二 去掉过程进行到第n 步时,剩下2n个长度为3n -的闭区间,n I 这些区间的总长为22()033n nn =→ (当n →∞时),……………….....4分 故,0)32(*→≤n P m ………………………….............8分因此*0,m P = 即0.mP =……………………………………………….……….............10分 5.证明1(0,)lim 11nnndtt t n ∞=⎛⎫+ ⎪⎝⎭⎰. (15分)证明 当)1,0(∈t 时,2,11111≥≤⋅⎪⎭⎫ ⎝⎛+n ttn t nn;……………………………..........2分当),1[+∞∈t 时,222124,2112n t t n n n t n--≤=<>--.………………............4分⎪⎪⎩⎪⎪⎨⎧+∞∈∈=),,1[,4),1,0(,1)(2t t t tt F 令 则当2>n 时,有,)(111t F tn t nn ≤⎪⎭⎫ ⎝⎛+………………………………..............6分且⎰⎰⎰+∞∞=+=),0(12164)(dt tt dtdt t F , 即)(t F 在()∞,0上Lebesgue 可积. ……………………….…………………………..........8分又因为tn n ne t n t -∞→−−→−⋅⎪⎭⎫ ⎝⎛+111,所以由Lebesgue 控制收敛定理得………...........12分 原式=⎰⎰+∞+∞-+∞→==⎪⎭⎫ ⎝⎛+),0(),0(111limdt e t n t dt t n n n .………………............15分6. 证明Banach 不动点定理:设X 是完备的度量空间, T 是X 上的压缩映射, 那么T 有且只有一个不动点. (15分) 证明 设0x 为X 中的任一点,令ΛΛ,,,,01021201x T Tx x x T Tx x Tx x n n n =====-. …………………...3分下面证明点列{}∞=1n n x 是X 中的柯西点列.因为所以当m n >时,又因为,10<<α所以,11<--mn α从而)(),(1),(10m n x x d x x d mn m >-≤,αα.,0),(,,→∞→∞→n m x x d n m 时所以当即{}∞=1n n x 是X 中的柯西点列, …………...8分 由X 的完备性知,存在x X ∈,使x x m →.因为…………..................................................10分 故(,)0d x Tx =,即x Tx =,所以x 为T 的不动点. ………..................................................12分下证其唯一性.如果又有X x ∈~,使x x T ~~=,则)~,()~,()~,(x x d x T Tx d x x d α≤=,因1<α,故0)~,(=x x d ,即x x ~=,得证. ………....................................................................15分7. 设0mE >, 又设E 上可积函数(),()f x g x 满足()()f x g x <, 试证:()d ()d EEf x xg x x <⎰⎰. (5分)证明 因为()()0g x f x ->, 所以[()()]d 0Eg x f x x -≥⎰…………………………………3分若[()()]d 0Eg x f x x -=⎰,则()()0g x f x -=, a.e. …………………………………………….…………………………5分 与题设矛盾, 故得()d ()d EEf x xg x x <⎰⎰.8. 设()f x 在[,]a b 上可导, 证明: ()f x 的导函数()f x '在[,]a b 上可测. (10分) 证明 补充定义()()f x f b =(x b >时), 则()f x 在[,)a b 上可导, 对任意N n ∈, 令1()()(),[,)1n f x f x n g x x a b n+-=∀∈..………………3分 由f 连续, 知每个n g 连续,故可测. …………………………….…………………………5分 由f 的可导性知()lim (),[,)n n f x g x x a b →∞'=∀∈…….………………7分因此()f x '作为一列可测函数的极限在[,)a b 上必可测, 故在[,]a b 上亦可测….………10分。