[全]中考数学创新型与新定义型压轴题解析

合集下载

新定义创新型综合压轴问题

新定义创新型综合压轴问题

2023中考数学重难题型押题培优导练案(北京专用)专题01新定义创新型综合压轴问题(北京13-22年最后一题+真题10道模拟30道)【方法归纳】题型概述,方法小结,有的放矢新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型.它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。

在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法. 解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(―2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外一点,点Q为2点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.【真题再现】必刷真题,关注素养,把握核心1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段A A′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;+AB到⊙O的“平移距离”为d1,求d1的最小值;(2)若点A,B都在直线y(3)若点A的坐标为2,AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.2(2019·北京·中考真题)在△ABC中,D,E分别是△ABC两边的中点,如果DE上的所有点都在△ABC的内部或边上,则称DE为△ABC的中内弧.例如,下图中DE是△ABC的一条中内弧.D,E分别是AB,AC的中点.画出△ABC的最长的中内弧(1)如图,在Rt△ABC中,AB=AC=DE,并直接写出此时DE的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=1,求△ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;2②若在△ABC中存在一条中内弧DE,使得DE所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(―2,6),B(―2,―2),C(6,―2).(1)求d(点O,△ABC);(2)记函数y=kx(―1≤x≤1,k≠0)的图象为图形G,若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.4.(2017·北京·中考真题)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P,P P中,⊙O的关联点是_______________.②点P在直线y=-x上,若P为⊙O 的关联点,求点P的横坐标的取值范围.(2)⊙C 的圆心在x轴上,半径为2,直线y=-x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1O的反称点是否存在?若存在,求其坐标;①分别判断点M(2,1),N(3②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x轴、y轴分别交于点A,B,若线段AB上存在(2)⊙C的圆心在x轴上,半径为1,直线y=点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足―M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(―4<x≤2)是不是有界函数?若是有界函数,求其边界值;(1)分别判断函数y=1x(2)若函数y=―x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(―1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么≤t≤1?范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点.已知点D(,),E(0,-2),F(,0)(1)当⊙O的半径为1时,①在点D,E,F中,⊙O的关联点是;②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京朝阳·二模)在平面直角坐标系xOy中,⊙O的半径为1,AB=1,且A,B两点中至少有一点在⊙O外.给出如下定义:平移线段AB,得到线段A′B′(A′,B′分别为点A,B的对应点),若线段A′B′上所有的点都在⊙O的内部或⊙O上,则线段A A′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图1,点A1,B1的坐标分别为(-3,0),(-2,0),线段A1B1到⊙O的“平移距离”为___,点A2,B2的坐标分别为(-12,,(12,,线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A ,B 都在直线y =+AB 到⊙O 的“平移距离”为d ,求d 的最小值;(3)如图2,若点A 坐标为(1,线段AB 到⊙O 的“平移距离”为1,画图并说明所有满足条件的点B 形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy 中,⊙O 的半径为1.对于线段PQ 给出如下定义:若线段PQ 与⊙O 有两个交点M ,N ,且PM =MN =NQ ,则称线段PQ 是⊙O 的“倍弦线”.(1)如图,点A ,B ,C ,D 的横、纵坐标都是整数.在线段AB ,AD ,CB ,CD 中,⊙O 的“倍弦线”是_____________;(2)⊙O 的“倍弦线”PQ 与直线x =2交于点E ,求点E 纵坐标y E 的取值范围;(3)若⊙O 的“倍弦线”PQ 过点(1,0),直线y =x +b 与线段PQ 有公共点,直接写出b 的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy 中,对于点P 和直线y =1,给出如下定义:若点P 在直线y =1上,且以点P 为顶点的角是45°,则称点P 为直线y =1的“关联点”.(1)若在直线x =1上存在直线y =1的“关联点”P .则点P 的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙CC关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;②在P,0,P2(1,4),P3(―3,0)这三个点中,与点O是线段AB的一对平衡点的是______.(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(―3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P 为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是 ;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A (1,3),B (1,1),连接AB .①在P 1(1,4),P 2(1,2),P 3(2,3),P 4(2,1)这四个点中,关于线段AB 的“阳光点”是 ;②线段A 1B 1∥AB ,A 1B 1上的所有点都是关于线段AB 的“阴影点”,且当线段A 1B 1向上或向下平移时,都会有A 1B 1上的点成为关于线段AB 的“阳光点”,若,A 1B 1的长为4,且点A 1在B 1的上方,则点A 1的坐标为 .(2)如图2,已知点C (1,⊙C 与y 轴相切于点D ,若⊙E 的半径为32 ,圆心E 在直线l :y =―+4E 的所有点都是关于⊙C 的“阴影点”,求点E 的横坐标的取值范围;(3)如图3,⊙M 的半径为3,点M 到原点的距离为5,点N 是⊙M 上到原点距离最近的点,点Q 和T 是坐标平面的两个动点,且⊙M 上的所有点都是关于△NQT 的“阴影点”直接写出△NQT 的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P 、Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线段b 的“冰雪距离”,已知O (0,0),A (1,B (m ,n ),C (m ,n +2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:n1,线段BC与线段OA的“冰雪距离”是 ;①当m=②当m=(2)如图2,若点B落在圆心为An≥BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF 的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.,M2,M3(2,3)中,对线段ON的可视度为60º的点是(1)已知点N(2,0),在点M______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An 的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z3(0,4),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是 ,该点对点组C1,C2,C3的中位距离为 ;(3)设M(1,0),,T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,―,Q3(4,―1)中,点O关于点A的“折转点”是______;②点D在直线y=―x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W 1和图形W 2,若图形W 1和图形W 2分别存在点M 和点N (点M ,N 可以重合),使得点M 与点N 关于一条经过原点的直线l 对称,则称图形W 1和图形W 2是“中心轴对称”的.特别地,对于点M 和点N ,若存在一条经过原点的直线l ,使得点M 与点N 关于直线l 对称,则称点M 和点N 是“中心轴对称”的.(1)如图1,在正方形ABCD 中,点A(1,0),点C(2,1),①下列四个点P 1(0,1),P 2(2,2),P 3―12,0,P 4―12,A 是“中心轴对称”的是________;②点E 在射线OB 上,若点E 与正方形ABC D 是“中心轴对称”的,求点E 的横坐标x E 的取值范围;(2)四边形GHJK 的四个顶点的坐标分别为G(―2,2),H(2,2),J(2,―2),K(―2,―2),一次函数y =x +b 图象与x 轴交于点M ,与y 轴交于点N ,若线段与四边形GHJK 是“中心轴对称”的,直接写出b 的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy 中的图形G 和点Q ,给出如下定义:将图形G 绕点Q 顺时针旋转90°得到图形N ,图形N 称为图形G 关于点Q 的“垂直图形”,例如,图1中线段OD 为线段OC 关于点O 的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(―3,3),F(―2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的E E′的长度的最大值.15.(2022·北京丰台·二模)在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,A与⊙O的“关联距离”,记作d(A,⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=+d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(―2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=H P′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线H P′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=―x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=―x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,―1)中,线段OM的“友好点”是_______;(2)直线y=―x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ 上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(―3,4),B2(1,5),B3(4,―3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,―1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(―,B.①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点―1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O的关于直线l的“关联三角形”,直线l是“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=―x+3的图像上,存在“关联轴l”使△ABC 是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知,将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC的最小值和最大值,以及OC 最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(―2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(―,.①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN=45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN―45°对经点.(1)设点A(0,2),(4,0),Q2(2,2),Q3(2+,其中为某点P的线段OA―45°对经点的是___________.①Q②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA―45°对经点,求r的取值范围.(2)已知C(0,t),D(0,―t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD―45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP是⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______关联直的值为______;线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=―3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR 使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(―4,1),P4(1,―4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,―1),点D在直线y=x―3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T 位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是 ;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。

2020年中考数学压轴解答题15 新定义与创新型综合探究问题(学生版)

2020年中考数学压轴解答题15 新定义与创新型综合探究问题(学生版)

备战2020中考数学之解密压轴解答题命题规律专题15 新定义与创新型综合探究问题【类型综述】阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.对于这类题求解步骤是“阅读——分析——理解——创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.【方法揭秘】阅读理解问题在中考中的常考点有新定义学习型,新公式应用型,纠错补全型;图表信息问题在中考中的常考点有表格类信息题,函数图象信息题,图形语言信息题,统计图表信息题等。

解决阅读理解与图表信息问题常用的数学思想是方程思想,类比思想,化归思想;常用的数学方法有分析法,比较法等.【典例分析】【例1】在求1+3+32+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得:3S ﹣S=39﹣1,即2S=39﹣1,∴S=9312-.请阅读张红发现的规律,并帮张红解决下列问题:(1)爱动脑筋的张红想:如果把“3”换成字母m (m≠0且m≠1),应该能用类比的方法求出1+m+m 2+m 3+m 4+…+m 2018的值,对该式的值,你的猜想是______(用含m 的代数式表示). (2)证明你的猜想是正确的. 【例2】阅读材料,解答相应的问题:如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则,称这个正整数为“非慧数”。

例如:222222222222213;325;318;437;4212;4115-=-=-=-=-=-=… 因此:3,5,8,……都是“智慧数”;而1,2,4……都是“非智慧数”。

中考数学专题-新定义与阅读理解创新型问题-(解析版)

中考数学专题-新定义与阅读理解创新型问题-(解析版)

新定义与阅读理解创新型问题一、单选题1.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .4【答案】C 【分析】根据题目中所给的运算法则,分两种情况进行求解即可. 【详解】 令(),y min a b =,当2123x x x +≤-++时,即220x x --≤时,1y x =+, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w ≤时,12x -≤≤, ∴1y x =+(12x -≤≤), ∴y 随x 的增大而增大, ∴当x =2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w >时,2x >或1x <-, ∴2y x 2x 3=-++(2x >或1x <-), ∴2y x 2x 3=-++的对称轴为x =1, ∴当2x >时,y 随x 的增大而减小, ∴当x =2时,2y x 2x 3=-++=3, ∴当2x >时,y <3;当1x <-,y 随x 的增大而增大, ∴当x =-1时,2y x 2x 3=-++=0; ∴当1x <-时,y <0;综上,()2min 123y x x x =+-++,的最大值为3. 故选C . 【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.2.(广东省2021年中考真题数学试卷)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A B .4C .D .5【答案】C 【分析】由已知可得a +b =6,5S ab ==-,把b =6-a 代入S 的表达式中得:256S a a -+S 的最大值.【详解】 ∴p =5,c =4,2a b cp ++= ∴a +b =2p -c =6∴55S ab ==-由a +b =6,得b =6-a ,代入上式,得:25(6)5565S a a a a =--=-+-设2+65y a a =--,当2+65y a a =--取得最大值时,S 也取得最大值 ∴22+65(3)4y a a a =--=--+ ∴当a =3时,y 取得最大值4∴S =故选:C . 【点睛】本题考查了二次函数的性质,关键是由已知得出a +b =6,把面积最大值问题转化为二次函数的最大值问题. 3.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3 B .[]2,3-C .[]2,3-D .[]2,3--【答案】D 【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m ,根据特征数的定义即可求解. 【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++, ∴直线23y x m =-++与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称, ∴点A ,B ,O 在同一直线上, ∴直线23y x m =-++经过原点, ∴m +3=0, ∴m =-3,∴一次函数2y x m =-+的解析式为23y x =--, ∴一次函数2y x m =-+的特征数是[]2,3--. 故选:D 【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A ,B 关于原点对称得到平移后直线经过原点是解题关键.4.(江苏省无锡市2021年中考数学真题)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b≤≤时,总有1211y y -£-£恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论:①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①① B .①① C .①① D .①①【答案】A 【分析】分别求出12y y -的函数表达式,再在各个x 所在的范围内,求出12y y -的范围,逐一判断各个选项,即可求解. 【详解】解:∴∴15y x =-,232y x =+,∴()()1253227y y x x x -=--+=--,当12x ≤≤时,12119y y -£-£-, ∴函数5y x =-,32y x =+在12x ≤≤上不是“逼近函数”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当34x ≤≤时,1211y y -£-£,函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”;∴∴211y x =-,222y x x =-, ∴()()22122112x x x y y x x -=--=-+--,当01x ≤≤时,12314y y -£-£-, ∴01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当23x ≤≤时,12514y y £-£, ∴23x ≤≤不是函数5y x =-,24y x x =-的“逼近区间”. 故选A 【点睛】本题主要考查一次函数与二次函数的性质,掌握一次函数与二次函数的增减性,是解题的关键. 5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b ≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是( ) A .1x >或13x < B .113x -<<C .1x >或1x <-D .13x >或1x <- 【答案】C 【分析】根据新定义运算规则,分别从212x x +≥-和212x x +<-两种情况列出关于x 的不等式,求解后即可得出结论. 【详解】解:由题意得,当212x x +≥-时, 即13x ≥时,(21)(2)21x x x +*-=+, 则213x +>, 解得1x >,∴此时原不等式的解集为1x >; 当212x x +<-时, 即13x <时,(21)(2)2x x x +*-=-, 则23x ->, 解得1x <-,∴此时原不等式的解集为1x <-;综上所述,不等式(21)(2)3x x +*->的解集是1x >或1x <-. 故选:C . 【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x 的不等式.6.(2021·广西中考真题)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N =.已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1 B .0C .1D .2【答案】C 【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可. 【详解】解:∴集合B 的元素1,ba a,a ,可得, ∴0a ≠, ∴10≠a,0b a =,∴0b =,当11a =时,1a =,{}1,0,1A =,{}1,1,0B =,不满足互异性,情况不存在, 当1a a=时,1a =±,1a =(舍),1a =-时,{}1,0,1A =-,{}1,1,0B =-,满足题意, 此时,=1b a -. 故选:C 【点睛】本题考查集合的互异性、确定性、无序性。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

太原市中考数学复习难题突破专题三:新定义问题

太原市中考数学复习难题突破专题三:新定义问题

难题突破专题三新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型1 [2019·枣庄] 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34 .(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F(t)的最大值.例题分层分析(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解为________,所以F(m)=________=________;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=________,根据“吉祥数”的定义确定出x与y的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型2 [2019·金华] 如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD=________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1.[2019·潍坊] 定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x]的图象如图Z3-3所示,则方程[x]=12x 2的解为( )图Z3-3A .0或 2B .0或2C .1或- 2 D.2或- 22.[2019·莱芜] 对于实数a ,b ,定义符号min{a ,b},其意义为:当a≥b 时,min{a ,b}=b :当a <b 时,min{a ,b}=a.例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D.533.[2019·成都] 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P(x ,y),我们把点P′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A′,B ′均在反比例函数y =k x 的图象上.若AB =2 2,则k =________.4.[2019·齐齐哈尔] 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z3-45.[2019·湖州] 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2019,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6.[2019·义乌] 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长.②若AC⊥BD,求证:AD =CD.(2)如图Z3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z3-57.[2019·宁波] 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z3-6①,在半对角四边形ABCD 中,∠B =12∠D,∠C =12∠A,求∠B 与∠C 的度数之和;(2)如图Z3-6②,锐角三角形ABC 内接于⊙O,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE=2∠EAF,求证:四边形DBCF 是半对角四边形;(3)如图Z3-6③,在(2)的条件下,过点D 作DG⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n×nnn1 (2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n|=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F(t)的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG. ∵S 矩形AEFG =AE·AG,S ▱ABCD =AE·AD, ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF,∠CFG =12∠CFH.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C,∴∠AHF =∠CFH,∴∠AHE =∠CFG. ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG. ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF=BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x.由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH. 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG=∠CGF=90°,∴∠BEF +∠BFE=∠BFE+∠CFG=90°, ∴∠BEF =∠CFG,∴△GF C∽△BEF, ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x<-1时,y =-2,即有[x]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x]=-1,此时方程无解;当0≤x <1时,y =0,即有[x]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min{2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x<43,y =min{2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A(a ,-a +1),B(b ,-b +1),∴AB 2=(a -b)2+(-a +1+b -1)2=2(a -b)2=(2 2)2,∴(a -b)2=4,∴a -b =±2. A ,B 两点的“倒影点”分别为A′(1a ,11-a ),B ′(1b ,11-b).∵点A′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b,∴a(1-a)=b(1-b),变形得(a -b)(1-a -b)=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A=46°.设∠ACB=x ,则∠ACD=x -46°.∵△ACD 是等腰三角形,又∠ADC>∠BCD,∴∠ADC >∠A ,即AC≠CD. ①若AC =AD ,则∠ACD=∠ADC=x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD=∠A, 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2019, 解这个方程,得x =2019. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB=CD =1且AB∥CD,∴四边形ABCD 是平行四边形, 又∵AB=BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD. ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD, ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD.(2)若EF⊥BC,则AE≠EF,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5. ②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D,∠C =12∠A,∵∠A +∠B+∠C+∠D=360°,∴3∠B +3∠C=360°,∴∠B +∠C=120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO(SAS), ∴∠BDE =∠BOE.又∵∠BCF=12∠BOE,∴∠BCF =12∠BDE.如图,连结OC ,设∠EAF=α,则∠AFE=2α,∴∠EFC =180°-∠AFE=180°-2α. ∵OA =OC ,∴∠OAC =∠OCA=α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC=12∠EFC,∴四边形DBCF 是半对角四边形. (3)如图,作OM⊥BC 交BC 于点M. ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB=120°,∴∠BAC =60°,∴∠BOC=2∠BAC=120°.∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=3BO=3BD.∵DG⊥OB,∴∠HGB=∠BAC=60°.∵∠DBG=∠CBA,∴△DBG∽△CBA,∴△DBG的面积△ABC的面积=(BDBC)2=13.∵DH=BG,BG=2HG,∴DG=3HG,∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.2019-2020学年数学中考模拟试卷一、选择题1.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.95°B.75°C.35°D.85°2.如图,延长正方形ABCD 的AB 边至点E ,使BE=AC ,则∠BED=( )A .20°B .30°C .22.5°D .32.5°3.如图,在菱形ABCD 中,O 、F 分别是AC 、BC 的中点,若3OF =,则AD 的长为( )A .3B .6C .9D .124.下列计算正确的是( ) A.221aa -=-B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭2-5.如图,正方形ABCD 中,E 为CD 的中点,F 为BC 边上一点,且EF ⊥AE ,AF 的延长线与DC 的延长线交于点G ,连接BE ,与AF 交于点H ,则下列结论中不正确的是( )A.AF =CF+BCB.AE 平分∠DAFC.tan∠CGF=34D.BE⊥AG6.△ABC中,∠C=90°,AB=10,AC=6.以点C为圆心、5为半径作圆C,则圆C与直线AB的位置关系是()A.相交B.相切C.相离D.不确定7.2018年舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1010B.49.95×1010C.0.4995×1011D.4.995×10118.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A.∠AIB=∠AOBB.∠AIB≠∠AOBC.2∠AIB﹣12∠AOB=180° D.2∠AOB﹣12∠AIB=180°9.方程组x y33x8y14-=⎧-=⎨⎩的解为()A.{x1y2=-=B.{x1y2==-C.{x2y1=-=D.{x2y1==-10.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案,你认为符合条件的是()A.等边三角形B.等腰梯形C.菱形D.正五边形11.下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣bC.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b212.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A.24B.30C.48D.60二、填空题13.如图,在菱形ABCD 中,AB =5,tanD =34,点E 在BC 上运动(不与B ,C 重合),将四边形AECD 沿直线AE 翻折后,点C 落在C′处,点D′落在D 处,C′D′与AB 交于点F ,当C′D'⊥AB 时,CE 长为_____.14.如图,将一个直角的顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与边BC 相交于点E .且AD =8,DC =6,则=_____.15.如图,AD 是△ABC 的角平分线,AB :AC=3:2,△ABD 的面积为15,则△ACD 的面积为 .16.计算:12019(2)(1)--+-=__________.17.有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为____. 18.若关于x 的分式方程33x ax x+--=2a 无解,则a 的值为_____. 三、解答题19.如图,在平面直角坐标系中点A 在反比例函数图象上,一条抛物线的顶点是(1,2)且过点(2,3),解答下列问题.(1)求反比例函数的解析式;(2)求抛物线的解析式,并在已给的坐标系中画出这条抛物线; (3)根据图象直接判断方程2223x x x-=+在实数范围内有几个根.20.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.=;(1)求证:AE CF=,试探究线段OC与线段DF之间的关系,并说明理由.(2)若AE BC21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为400人,如表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率为;(2)表中A=,B=;(3)该校学生平均每人读多少本课外书?22.汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为10万元/辆,销售一段时间后发现:当该型号汽车售价定为15万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出2辆.(1)若要平均每周售出汽车不低于15辆,该汽车的售价最多定为多少万元?(2)该店计划下调售价,尽可能增加销量,减少库存,但要确保平均每周的销售利润为40万元,每辆汽车的售价定为多少合适?23.为减少雾霾对人体的伤害,某企业计划购进一批防霾口罩免费发放给市民使用,现甲、乙两个口罩厂有相同的防霾口罩可供选择,其具体销售方案如下表.设购买防霾口罩x个,到两家口罩厂购买所需费用分别为y甲(元),y乙(元).(1)该企业发现若从两厂分别购买防霾口罩各2500个共花费9750元,若从两厂分别购买防霾口罩各3000个共花费11600元,请求出m ,n 的值;(2)请直接写出y 甲,y 乙与x 之间的函数关系式;(3)如果你是该企业的负责人,你认为到哪家口罩厂购买防霾口罩才合算,为什么? 24.阅读理解: 观察下列各等式:3526711022,2,2,2,34542464741410424-+=+=+=+=---------…… (1)猜想并用含字母a 的等式表示以上规律; (猜想)(2)证明你写出的等式的正确性. (证明)25.已知抛物线y =ax 2+bx+2经过点A (﹣1,﹣1)和点B (3,﹣1). (1)求这条抛物线所对应的二次函数的表达式.(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.【参考答案】*** 一、选择题二、填空题 13.10714. 15. 16.32-17.1218.1或12三、解答题 19.(1)2y x=;(2)y =(x ﹣1)2+2,(3)方程在实数范围内只有1个根. 【解析】 【分析】(1)将A 点坐标代入反比例函数的解析式中,即可求出待定系数的值;(2)已知了抛物线的顶点坐标,可用顶点式设抛物线的解析式,再将点(2,3)的坐标代入,即可求出抛物线的解析式;(3)所求的方程的根即为两个函数的交点横坐标,可通过观察两个函数图象有几个交点,即可确定所求方程有几个根. 【详解】解:(1)∵反比例函数经过A (﹣1,2), ∴21k=- ,k =﹣2; ∴反比例函数的解析式为:2.y x=-(2)依题意,设抛物线的解析式为y =a (x ﹣1)2+2, 由于抛物线经过(2,3),得: a (2﹣1)2+2=3,a =1;∴二次函数的解析式为:y =(x ﹣1)2+2(3)根据图象,方程在实数范围内只有1个根. 【点睛】此题考查了反比例函数、二次函数解析式的确定,二次函数图象的画法以及函数图象交点的求法. 20.(1)见解析;(2)OC ∥DF ,且OC =12DF ,理由见解析. 【解析】 【分析】(1)由平行四边形的性质得出AD ∥BC ,AD =BC ,得出∠ADB =∠CBD ,证明△BOF ≌△DOE ,得出DE =BF ,即可得出结论;(2)证出CF =BC ,得出OC 是△BDF 的中位线,由三角形中位线定理即可得出结论. 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴∠ADB =∠CBD , ∵O 是对角线BD 的中点, ∴OB =OD ,在△BOF 和△DOE 中,CBD ADB OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BOF ≌△DOE (ASA ), ∴DE =BF , ∴DE =AD =BF ﹣BC , ∴AE =CF ;(2)解:OC ∥DF ,且OC =12DF ,理由如下: ∵AE =BC ,AE =CF , ∴CF =BC , ∵OB =OD ,∴OC 是△BDF 的中位线, ∴OC ∥DF ,且OC =12DF . 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键. 21.(1)40%;(2)960;0.4;(3)4(本). 【解析】 【分析】(1)八年级的人数占全校总人数的百分率=1-32%-28%;(2)由频率的意义可知,B =1﹣0.32﹣0.24﹣0.04,再求出样本容量,利用样本容量×0.24即可求出A 的值;(3)先求出全校总人数,再求该校学生平均每人读的本数即可. 【详解】解:(1)该校八年级的人数占全校总人数的百分率为1﹣32%﹣28%=40%, 故答案为40%;(2)B =1﹣0.32﹣0.24﹣0.04=0.4, 由160÷0.04=4000得图书总数是4000本, 所以A =4000×0.24=960(本); 故答案为960;0.4;(3)因为八年级的人数是400人,占40%, 所以求得全校人数有:400÷40%=1000(人), 所以全校学生平均每人阅读:4000÷1000=4(本). 【点睛】本题考查的是频数分布表和扇形统计图的综合运用,考查分析频数分布直方图和频率的求法.扇形统计图直接反映部分占总体的百分比大小.22.(1)若要平均每周售出汽车不低于15辆,该汽车的售价最多定为13.25万元;(2)每辆汽车的售价定为12万元更合适. 【解析】 【分析】(1)设汽车的售价为x 万元,由题意可得每周多售出1520.5x-⨯辆车,再根据每周售出汽车不低于15辆列出方程求得即可;(2)设每辆汽车售价y 万元,根据每辆的盈利×销售的辆数=40万元,列方程求出y 的值并结合尽可能增加销量的要求选出合适的售价即可。

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

中考数学压轴题专题创新型与新定义综合问题

中考数学压轴题专题创新型与新定义综合问题

专题18创新型与新定义综合问题【考点1】几何综合探究类阅读理解问题【例1】综合与实践:阅读理解:数学兴趣小组在探究如何求tan 75︒的值,经过思考、讨论、交流,得到以下思路:如图1,作Rt ABC ∆,使90C ∠=︒,30ABC ∠=︒,延长CB 至点D ,使BD BA =,连接AD .设1AC =,则2BD BA ==,BC =.tan 75tan DC DB BC DAC AC AC +︒=∠==2321+==+.请解决下列问题:(1)类比求解:求出tan 22.5︒的值;(2)问题解决:如图2,某住宅楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22.5︒时,住宅在建筑物的墙上留下高3m 的影子CE ;而当光线与地面的夹角是45︒时,住宅楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B ,F ,C 在一条直线上).求住宅楼AB 的高度(结果保留根号);(3)探究发现:如图3,小明用硬纸片做了两个直角三角形,在Rt ABC ∆中,90B ∠=︒,30A ∠=︒,2BC =;在Rt DEF ∆中,90FED ∠=︒,45EFD ∠=︒,2DF =.他将DEF ∆的斜边DF 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿CA 方向移动.在移动过程中,D ,F 两点始终在CA 边上(移动开始时点F 与点C 重合).探究在DEF ∆移动过程中,是否存在某个位置,使得22.5ECD ∠=︒?如果存在,直接写出CD的长度;如果不存在,请说明理由.【变式1-1】如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【变式1-2】综合与实践正方形内“奇妙点”及性质探究定义:如图1,在正方形ABCD中,以BC为直径作半圆O,以D为圆心,DA为半径作 AC,与半圆O 交于点P.我们称点P为正方形ABCD的一个“奇妙点”.过奇妙点的多条线段与正方形ABCD无论是位置关系还是数量关系,都具有不少优美的性质值得探究.性质探究:如图2,连接DP 并延长交AB 于点E ,则DE 为半圆O 的切线.证明:连接OP OD ,.由作图可知,DP DC OP OC ==,,又OD OD = ..OPD OCD SSS ∴ ≌()90OPD OCD ∴∠=∠=︒,∴DE 是半圆O 的切线.问题解决:(1)如图3,在图2的基础上,连接OE .请判断∠BOE 和CDO ∠的数量关系,并说明理由;(2)在(1)的条件下,请直接写出线段DE BE CD ,,之间的数量关系;(3)如图4,已知点P 为正方形ABCD 的一个“奇妙点”,点O 为BC 的中点,连接DP 并延长交AB 于点E ,连接CP 并延长交AB 于点F ,请写出BE 和AB 的数量关系,并说明理由;(4)如图5,已知点E F G H ,,,为正方形ABCD 的四个“奇妙点”.连接AG BH CE DF ,,,,恰好得到一个特殊的“赵爽弦图”.请根据图形,探究并直接写出一个不全等的几何图形面积之间的数量关系.【考点2】代数类新定义及阅读理解型问题【例2】阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,以此类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1、a 2、a 3,…,a n ,…,一般的,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,期中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为______,第5项是______.(2)如果一个数列a 1,a 2,a 3,…,a n ,…,是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,…,a n ﹣a n ﹣1=d ,….所以a 2=a 1+d ,a 3=a 2+d =(a 1+d )+d =a 1+2d ,a 4=a 3+d =(a 1+2d )+d =a 1+3d……,由此,请你填空完成等差数列的通项公式:a n =a 1+(______)d(3)求﹣4039是等差数列﹣5,﹣7,﹣9,…的第几项?并说明理由.【变式2-1】(2019•随州)若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为mn ,易知mn =10m +n ;同理,一个三位数、四位数等均可以用此记法,如abc =100a +10b +c .【基础训练】(1)解方程填空:①若2x +3x =45,则x =__________;②若7y –8y =26,则y =__________;③若93t +58t =131t ,则t =__________;【能力提升】(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被__________整除,mn –nm 一定能被__________整除,mn •nm –mn 一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc (不妨设a >b >c ),试说明其均可产生该黑洞数.【变式2-2】阅读下列材料:小明为了计算22017201812222+++++ 的值,采用以下方法:设220172018S 12222=+++++ ①则2201820192S 2222=++++ ②②-①得20192S S 21-=-∴2201720182019S 1222221=+++++=- (1)291222++++ =;(2)210333+++ =;(3)求2n 1a a a ++++ 的和(0a >,n 是正整数,请写出计算过程).【考点3】函数类新定义综合型问题【例3】已知函数12y kx k =+与函数2223,y x x =-+定义新函数21y y y =-(1)若2,k =则新函数y =;(2)若新函数y 的解析式为22,y x bx =+-则k =,b =;(3)设新函数y 顶点为(),m n .①当k 为何值时,n 有最大值,并求出最大值;②求n 与m 的函数解析式;(4)请你探究:函数1y 与新函数y 分别经过定点,A B ,函数2223y x x =-+的顶点为C ,新函数y 上存在一点D ,使得以点,,,A B C D 为顶点的四边形为平行四边形时,直接写出k 的值.【变式3-1】特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到;③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等.形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.【变式3-1】(2019•山东威海)(1)阅读理解如图,点A ,B 在反比例函数y =1x 的图象上,连接AB ,取线段AB 的中点C .分别过点A ,C ,B 作x 轴的垂线,垂足为E ,F ,G ,CF 交反比例函数y =1x 的图象于点D .点E ,F ,G 的横坐标分别为n ﹣1,n ,n +1(n >1).小红通过观察反比例函数y =1x 的图象,并运用几何知识得出结论:AE +BG =2CF ,CF >DF ,由此得出一个关于11n -,11n +,2n,之间数量关系的命题:若n >1,则__________.(2)证明命题小东认为:可以通过“若a ﹣b ≥0,则a ≥b ”的思路证明上述命题.小晴认为:可以通过“若a >0,b >0,且a ÷b ≥1,则a ≥b ”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【变式3-2】定义一种新运算:a ⊕b =a (a b)b(a b)⎧≤⎨>⎩(1)请写出函数y =x ⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;(2)观察(1)中图象,探究得到y 的最小值是.【考点4】变换操作类阅读型问题【例4】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件:.(2)问题探究:如图2,小红画了一个ABC Rt ∆,其中90ABC ∠=︒,2AB =,1BC =,并将ABC Rt ∆沿B ∠的平分线BB '方向平移得到'''C B A ∆,连结AA '、BC '.小红要使平移后的四边形ABC A ''是“等邻边四边形”,应平移多少距离(即线段BB '的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB AD =,90BAD BCD ∠+∠=︒,AC 、BD 为对角线,AC =.试探究BC 、CD 、BD 的数量关系.【变式4-1】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊的四边形中是勾股四边形的两种图形的名称、;(2)如图1,已知格点(小正方形的顶点)O (0,0)、A (3,0)、B (0,4),点C 为图中所给方格中的另一个格点,四边形OACB 是以OA 、OB 为勾股边且对角线相等的勾股四边形,求点C 的坐标;(3)如图2,将∆ABC (BC >AB )绕顶点B 按顺时针方向旋转60︒,得到∆DBE ,连接AD 、DC ,四边形ABCD 是勾股四边形,其中DC 、BC 为勾股边,求∠DCB 的度数.【变式4-2】根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题)②三个角分别相等的两个凸四边形相似;(__________命题)③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,11AB A B =11BC B C =11CD C D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S的值.1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是()A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=2.阅读理解:解方程2||20x x --=.解:(1)当0x ≥时,原方程可以化为220x x --=,解得122,10x x ==-<(不合题意,舍去);(2)当0x <时,原方程可以化为220x x +-=,解得122,10x x =-=>(舍去),∴原方程的解为122,2x x ==-.那么方程2|1|10x x ---=的解为()A .120,1x x ==B .122,1x x =-=C .121,2x x =-=D .121,2x x ==3.阅读理解:a ,b ,c ,d 是实数,我们把符号a b cd称为22⨯阶行列式,并且规定:a b a d b c cd=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:x y D x DD y D ⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是()A .21732D ==--B .14x D =-C .27y D =D .方程组的解为23x y =⎧⎨=-⎩4.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.5.观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____.6.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,……,第n 个数记为n a ,则4200a a +=_________.7.阅读理解:对于任意正实数a、b,∵()2≥0,∴a-2,∴a+b≥2,当且仅当a=b 时,等号成立.结论:在a+b(a、b均为正实数)中,若ab为定值P,则a+b,当且仅当a=b时,a+b有最小值.根据上述内容,回答下列问题:(1)若x>0,只有当x=时,4x+有最小值为.(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线y=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.(3)已知x>0,则自变量x为何值时,函数y=取到最大值,最大值为多少?8.阅读理解:用“十字相乘法”分解因式的方法.(1)二次项系数;(2)常数项验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果,等于一次项系数-1,即,则.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:.9.阅读理解题.定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC 中,对角线BC 平分∠ACD 和∠ABD ,那么对角线BC 叫“美妙线”,四边形ABDC 就称为“美妙四边形”.问题:(1)下列四边形:平行四边形、矩形、菱形、正方形,其中是“美妙四边形”的有个;(2)四边形ABCD 是“美妙四边形”,AB=33+∠BAD=60°,∠ABC=90°,求四边形ABCD 的面积.(画出图形并写出解答过程)10.(阅读)如图1,若ABD ACE ∆∆∽,且点,,B D C 在同一直线上,则我们把ABD ∆与ACE ∆称为旋转相似三角形.(理解)(1)如图2,ABC ∆和ADE ∆是等边三角形,点D 在边BC 上,连接CE .求证:ABD ∆与ACE ∆是旋转相似三角形.(应用)(2)如图3,ABD ∆与ACE ∆是旋转相似三角形,//AD CE .求证:AC DE =.(拓展)(3)如图4,AC 是四边形ABCD 的对角线,90D ∠=︒,B ACD ∠=∠,25BC =,20AC =,16AD =.试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.11.(阅读理解)对于任意正实数a 、b ,∵20-≥,∴0a b +-≥∴a b +≥,只有当a b =时,等号成立.(数学认识)在a b +≥(a 、b 均为正实数)中,若ab 为定值k ,则a b +≥,只有当a b =时,+a b 有最小值(解决问题)(1)若0x >时,当x =_____________时,1x x+有最小值为_____________;(2)如图,已知点A 在反比例函数3(0)y x x =>的图像上,点B 在反比例函数1(0)y x x=->的图像上,//AB y 轴,过点A 作AD y ⊥轴于点D ,过点B 作BC y ⊥轴于点C .求四边形ABCD 周长的最小值.12.(阅读)如图1,四边形OABC 中,OA=a ,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ[θ,a].(理解)若点D 与点A 重合,则这个操作过程为FZ[45°,3];(尝试)(1)若点D 恰为AB 的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B 落在点E 处,若点E 在四边形OABC 的边AB 上,求出a 的值;若点E 落在四边形OABC 的外部,直接写出a 的取值范围.13.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图,点P 是等边三角形ABC 内一点,1PA =,PB =2PC =.求BPC ∠的度数.为利用已知条件,不妨把BPC ∆绕点C 顺时针旋转60︒得'AP C ∆,连接'PP ,则'PP 的长为_______;在'PAP ∆中,易证'90PAP ∠=︒,且'PP A ∠的度数为________,综上可得BPC ∠的度数为_______;(2)类比迁移如图,点P 是等腰Rt ABC ∆内的一点,90ACB ∠=︒,2PA =,PB =,1PC =.求APC ∠的度数;(3)拓展应用如图,在四边形ABCD 中,5BC =,8CD =,12AB AC AD ==,2BAC ADC ∠=∠,请直接写出BD 的长.14.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD 是对余四边形,则A ∠与C ∠的度数之和为______;证明:(2)如图1,MN 是O 的直径,点,,A B C 在O 上,AM ,CN 相交于点D .求证:四边形ABCD 是对余四边形;探究:(3)如图2,在对余四边形ABCD 中,AB BC =,60ABC ︒∠=,探究线段AD ,CD 和BD 之间有怎样的数量关系?写出猜想,并说明理由.15.阅读理解:如图①,如果四边形ABCD 满足AB=AD ,CB=CD ,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:(4)当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.16.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD 的边AB上的“相似点”:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:()1如图1,A B DEC45∠∠∠=== ,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;()2如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;()3如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.17.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围.可以用如下方法:将ACD △绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.18.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形()A.平行四边形B.矩形C.菱形D.等腰梯形(2)在四边形ABCD 中,AB=AD=BC,∠BAD=90°,AC 是四边形ABCD 的和谐线,请直接写出∠BCD 的度数.19.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.()1概念理解:如图1,在四边形ABCD 中,添加一个条件使得四边形ABCD 是“等邻边四边形”.请写出你添加的一个条件,你添加的条件是________.()2问题探究:如图2,在“等邻边四边形”ABCD 中,60DAB ∠= ,90ABC ADC ∠=∠= ,6AB AD ==,求对角线AC 的长.()3拓展应用:如图3,“等邻边四边形”ABCD 中,AB AD =,60BAD ∠= ,30BCD ∠= ,AC 为对角线,试探究AC ,BC ,DC 的数量关系.20.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形.A .平行四边形B .矩形C .菱形D .等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是命题(填“真”或“假”).(3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.21.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC 中,AB >AC (如图),怎样证明∠C >∠B 呢?分析:把AC 沿∠A 的角平分线AD 翻折,因为AB >AC ,所以点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD ∆≌AC D ∆',所以AC D C ∠'=∠,又因为AC D ∠'>∠B ,所以∠C>∠B .感悟与应用:(1)如图(a ),在△ABC 中,∠ACB=90°,∠B=30°,CD 平分∠ACB ,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分∠BAD ,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.22.如图①,梯形ABCD 中,DC ∥AB ,DE ⊥AB 于点E .阅读理解:在图①中,延长梯形ABCD 的两腰AD 、BC 交于点P ,过点D 作DF ∥CB 交AB 于点F ,得到图②;四边形BCDF 的面积为S ,△ADF 的面积1S ,△PDC 的面积2S.(1)在图②中,若DC=2,AB=8,DE=3,则S=,S 1=______,S 2=;(2)在图②中,若AB a =,AB a =,AB a =,则212S S S =__________,并写出理由;(3)如图③,□DEFC 的四个顶点在△PAB 的三边上,若△PDC 、△ADE 、△CFB 的面积分别为2、3、5,试利用(2)中的结论求△PAB的面积.23.阅读理解,并回答问题:若12,x x 是方程20ax bx c ++=的两个实数根,则有()()212++=--ax bx c a x x x x .即221212()ax bx c ax a x x x ax x ++=-++,于是12()b a x x =-+,12c ax x =,由此可得一元二次方程的根与系数关系:12b x x a +=-,12c x x a=,这就是我们众所周知的韦达定理.(1)已知m ,n 是方程21000x x --=的两个实数根,不解方程求22m n +的值;(2)若123,,x x x 是关于x 的方程2(2)x x t -=的三个实数根,且123x x x <<.①122331x x x x x x ++的值;②求31x x -的最大值.24.(1)阅读理解:如图1,在ABC 中,若10AB =,6AC =.求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连接BE (或将ACD △绕着点D 逆时针旋转180︒得到EBD △),把AB ,AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图2,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF+>(3)问题拓展:如图3,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,140BCD ∠=︒,以C 为顶点作一个70︒角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.25.阅读材料:已知,如图(1),在面积为S 的△ABC 中,BC=a ,AC=b ,AB=c ,内切圆O 的半径为r 连接OA 、OB 、OC ,△ABC 被划分为三个小三角形.1111()2222OBC OAC OAB S S S S BC r AC r AB r a b c r ∆∆∆=++=⋅+⋅+⋅=++ ∴2=++S r a b c .(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a ,BC=b ,CD=c ,AD=d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求12r r 的值.26.阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为20a b ≥,所以0a ab b -+≥,从而a b ab +≥(当a =b 时取等号).阅读2:函数m y x x =+(常数m >0,x >0),由阅读1结论可知:2m m x x x x +≥⋅2m =所以当m x x =即x m =时,函数m y x x=+的最小值为2m 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时,21y y 的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)27.(阅读材料)己知,如图1,在面积为S 的△ABC 中,BC=a ,AC=b ,AB=c ,内切⊙O 的半径为r.连接OA 、OB 、OC ,△ABC 被划分为三个小三角形.∵S=S △OBC +S △OAC +S △OAB =12BC·r +12AC·r +12AB·r=12a·r +12b·r +12c·r=12(a +b +c )r ∴2=++Sr a b c (1)(类比推理)如图2,若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),各边长分别为AB=a ,BC=b ,CD=c ,AD=d ,求四边形的内切圆半径r 的值;(2)(理解应用)如图3,在Rt △ABC 中,内切圆O 的半径为r ,⊙O 与△ABC 分别相切于D 、E 和F ,己知AD=3,BD=2,求r 的值.28.定义:对角互补且有一组邻边相等的四边形称为奇异四边形.(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于奇异四边形的有__________;(2)性质探究:①如图1,四边形ABCD 是奇异四边形,AB =AD ,求证:CA 平分∠BCD ;②如图2,四边形ABCD 是奇异四边形,AB =AD ,∠BCD =2α,试说明:cosα=2BC CD AC+;(3)性质应用:如图3,四边形ABCD 是奇异四边形,四条边中仅有BC =CD ,且四边形ABCD 的周长为6+,∠BAC =45°,AC =,求奇异四边形ABCD 的面积.29.阅读材料:材料一:对实数a ,b ,定义(),T a b 的含义为:当a b <时,(),T a b a b =+;当a b ≥时,(),T a b a b =-.例如:()1,3134T =+=;()()2,1213T -=--=.材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问:1234100?+++++= 据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:()()()11002995051101505050++++++=⨯= .也可以这样理解:令123100S =++++ ①,则10099321S =+++++ ②,①+②:()()()()()2110029939810011001100S =+++++++=⨯+ ,即()100100150502S ⨯+==.根据以上材料,回答下列问题:(1)已知10x y +=,且x y >,求()()5,5,T x T y -的值;(2)对于正数m ,有()21,13T m +-=,求()()()()1,992,993,99199,99T m T m T m T m ++++++++ 的值.30.阅读与探究请阅读下列材料,完成相应的任务:凸四边形的性质研究如果把某个四边形的任何一边向两端延长,其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形.凸四边形是我们数学学习中常见的图形,它有一个非常有趣的性质:任意凸四边形被对角线分成的两对对顶三角形的面积之积相等.例如,在图1中,凸四边形ABCD 的对角线AC ,BD 相交于点О,且AC BD ⊥,AOB ,BOC ,COD △,AOD △的面积分别为1234,,,S S S S ,则有1324·S S S S =⋅,证明过程如下:141212OB OA S OB S OD OD OA ⋅==⋅ 任务:(1)请将材料中的证明过程补充完整;(2)如图2,任意凸四边形ABCD 的对角线,AC BD 相交于点O ,分别记AOB ,BOC ,COD △,AOD △的面积为1234,,,S S S S ,求证1324·S S S S =⋅;(3)如图3,在四边形ABCD 中,对角线,AC BD 相交于点O ,4AOD S = ,6BOC S =△,:1:3AOB COD S S = ,则四边形ABCD 的面积为________________.。

初三数学新定义压轴题详解

初三数学新定义压轴题详解

初三数学新定义压轴题详解
初三数学新定义压轴题详解
原创理科李2021-03-09 14:39:53
做点B关于直线x=1对称点C1(0,4),做点A关于直线x=2对称点C2(3,1)
分别讨论点B在点A左右两侧两种情况,了解直线斜率的意义,以及斜率与角度的对应关系。

点B在点A右侧时,斜率为负,直线过点A求解析式
点B在点A左侧时,斜率为正,直线过点A求解析式
然后分别联立点B所在直线方程求点B坐标
点PQ为等腰直角三角形一腰,且底边与x轴平行,那么PQ所在直线斜率为±1,画草图由远及近移动直线上点P讨论交点情况。

分类讨论a>0及a<0两种情况,写出各种要点坐标由大到小或由小到大画草图,讨论满足a的条件
函数题,了解斜率意义,以及特殊角度斜率大小的对应关系。

二次函数含参问题,习惯性写出顶点坐标,分析顶点轨迹,以及抛物线与各分界线交点坐标。

更多初中数学压轴题请关注公号:理科李
收藏
举报
0 条评论。

中考数学定义新概念压轴题以及答案

中考数学定义新概念压轴题以及答案

1.(2013•安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)考点:四边形综合题.专题:压轴题.分析:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.解答:解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.2.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 7图2 2 12图3 3 17图4 4 22………猜想:在图(n)中,特征点的个数为5n+2(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为2013.考点:规律型:图形的变化类;规律型:点的坐标.专题:压轴题.分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图(2)、图(3)、图(4)的对称中心的横坐标,找到规律,进而得出图(2013)的对称中心的横坐标.解答:解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,…∴图(2013)的对称中心的横坐标为(2×2013)=2013.故答案为22,5n+2;,2013.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律;(2)要注意求的是整个图形的对称中心的横坐标,而不是第2013个正六边形的对称中心的横坐标,这也是本题容易出错的地方.3.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)如图3,在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,则四边形ABCD是不是“准等腰梯形”?请说明理由.考点:四边形综合题.分析:(1)过点A作AE∥CD交BC于点E,则△ABE和四边形AECD就是所求作的图形;(2)由AB∥DE,AE∥DC,就可以得出∠B=∠DEC,∠AEB=∠C,就可以得出△ABE∽△DEC,就可以得出结论;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EG=EH,就可以得出△BEF≌△BEH,就可以得出∠FBE=∠HCE,从而得出∠ABC=∠DCB而得出结论.解答:解:(1)如图,过点A作AE∥CD交BC于点E,∴∠AEB=∠C.∵∠B=∠C∴∠AEB=∠B,∴AB=AE,∴△ABE是等腰三角形;∵AE∥CD,AD≠CD,∴四边形AECD是梯形.∴△ABE和四边形AECD就是所求作的图形;(2)∵AB∥DE,AE∥DC,∴∠B=∠DEC,∠AEB=∠C.∵∠B=∠C,∴∠AEB=∠DEC∴△ABE∽△DCE,∴;(3)四边形ABCD是“准等腰梯形”.理由:作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴∠EFB=∠EHC=90°,EF=EG=EH.在Rt△BEF和Rt△CEH中,∴Rt△BEF≌Rt△CEH(HL);∴∠FBE=∠HCE.∵BE=BC,∴∠EBC=∠ECB,∴∠EBC+∠FBE=∠ECB+∠HCE,∴∠ABC=∠HCB.∴四边形ABCD是“准等腰梯形”.点评:本题考查了等腰三角形的性质的运用,平行线的性质的运用角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用等腰三角形的性质求解是关键.4.(2012•保定一模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.考点:作图—复杂作图;全等三角形的判定与性质.专题:作图题.分析:(1)根据菱形的性质,在菱形对角线上找出除中心外的任意一点即可;(2)作对角线BD的垂直平分线于与另一对角线AC相交于点P,根据线段垂直平分线上的点到线段两端点的距离相等可得点P即为所求的准等距点;(3)连接BD,先利用“角角边”证明△DCF和△BCE全等,根据全等三角形对应边相等可得CD=CB,再根据等边对等角的性质可得∠CDB=∠CBD,从而得到∠PDB=∠PBD,然后根据等角对等边的性质可得PD=PB,根据准等距点的定义即可得证.解答:解:(1)如图2,点P即为所画点.…(1分)(答案不唯一)(2)如图3,点P即为所作点.…(2分)(答案不唯一.)(3)证明:连接DB,在△DCF与△BCE中,,∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.点评:本题考查了复杂作图,主要利用了线段垂直平分线的作法,全等三角形的判定与性质,读懂题意,理解准等距点的定义是解题的关键.5.(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(﹣1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),△ABM≌△ABN(0,﹣1).请通过计算判断C ABM与C ABN是否为全等抛物线;(2)在图2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且能与C ABM全等的抛物线解析式.②若已知M(m,n),当m,n满足什么条件时,存在抛物线C ABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)应该是全等抛物线,由于这两个抛物线虽然开口方向不同,但是开口大小一样,因此二次项的绝对值也应该相等.可用待定系数法求出两抛物线的解析式,然后进行判断即可.(2)与(1)相同都是通过构建平行四边形来得出与△ABM全等的三角形,那么过与△ABM全等的三角形的三个顶点的抛物线都是与C ABM全等的抛物线.解答:解:(1)设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,1),∴抛物线C ABM的解析式为y=﹣x2+1,同理可得抛物线C ABN的解析式为y=x2+1,∵|﹣1|=|1|,∴C ABM与C ABN是全等抛物线.(2)①设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,n),抛物线C ABM的解析式为y=﹣nx2+n,与C ABM全等的抛物线有:y=nx2﹣n,y=n(x﹣1)2,y=n(x+1)2②当n≠0且m≠±1时,存在抛物线C ABM,与C ABM全等的抛物线有:C ABN,C AME,C BMF.点评:本题是函数与几何结合的综合题,解题关键是善于利用几何图形的性质以及函数的性质和定理等知识,主要考查学生数形结合的数学思想方法.6.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD 沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC 的面积.考点:四边形综合题.专题:压轴题.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴CO=OA′,BO=DO,∴四边形A′BDC是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.7.(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.考点:四边形综合题.分析:(1)仿照友好矩形的定义即可得出友好平行四边形的定义;(2)根据友好矩形的定义得出分别以AB为边和对角线得出△ABC的所有“友好矩形”即可;(3)利用勾股定理得出BD,AD的长,进而分别求出以BC、AB、AC为边的“友好矩形”周长比较即可.解答:解:(1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在平行四边形与三角形重合的边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图②所示:(3)如图③,过A做AD⊥BC于D设BD长为x cm,则DC长为(8﹣x)在Rt△ABD和Rt△ADC中AD2=AB2﹣BD2=52﹣x2,AD2=AC2﹣DC2=72﹣(8﹣x)2则52﹣x2=72﹣(8﹣x)2解得:x=2.5,过A做AD⊥BC于D,则有,则以BC为边的“友好矩形”周长为:,以AB为边的“友好矩形”周长为:,以AC为边的“友好矩形”周长为:,∴以BC为边的“友好矩形”周长最大.点评:此题主要考查了四边形综合题以及勾股定理等知识,考查学生的阅读理解、综合分析及分类讨论能力,难度较大.8.(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD 的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)考点:一次函数综合题;角平分线的性质;含30度角的直角三角形;锐角三角函数的定义.专题:计算题;作图题.分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.解答:解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°﹣90°=60°,在Rt△MON中,sin60°==,即m与n所满足的关系式是:m=n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.9.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.考点:一次函数综合题.专题:压轴题.分析:(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.解答:解:(1)由题意,得|x|+|y|=1,∵d(O,P)=1,O(0,0),P(x,y)∴d(0,P)=|x|+|y|∴|x|+|y|=1①x≥0,y≥0∴x+y=1y=1﹣x②x≤0,y≤0∴﹣x﹣y=1y=﹣x﹣1③x≥0,y≤0∴x﹣y=1y=x﹣1④x≤0,y≥0∴﹣x+y=1y=1+x将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.∴点M(2,1)到直线y=x+2的直角距离为3.点评:本题考查了一次函数综合题.正确理解新定义运算法则是解题的关键.10.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.考点:一次函数综合题.专题:计算题.分析:(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2和n=4分别代入n=m﹣1,求出相应的m 值,即可得出点的横坐标m的范围.解答:解:(1)点C()是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3﹣1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),∴y=>2,且小于4,∵C(,)在直线y=x﹣1上,∴点C()是线段AB的“临近点”.(2)∵点Q(m,n)是线段AB的“临近点”,由(1)可以得出:线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2代入y=x﹣1(即n=m﹣1)得:m=3,n=4代入y=x﹣1(即n=m﹣1)得:m=5,∴3<m<5,即m的取值范围是3<m<5.点评:本题考查了有关一次函数的应用,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.11.(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是2;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.考点:圆的综合题;勾股定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.解答:解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.点评:本题是以圆为基础的运动型压轴题,综合考查了圆的相关性质、相似三角形、点的坐标、勾股定理、解方程等重要知识点,难度较大.本题涉及动线与动点,运动过程比较复杂,准确理解运动过程是解决本题的关键.第(3)①问中,关键是画出点M运动轨迹的图形,结合图形求解一目了然;第(3)②问中,注意分类讨论思想的运用,避免漏解.12.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。

决胜2020中考数学压轴题全揭秘下专题18创新型与新定义综合问题试题

决胜2020中考数学压轴题全揭秘下专题18创新型与新定义综合问题试题

专题18创新型与新定义综合问题【考点1】几何综合探究类阅读理解问题【例1】(2019·甘肃天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【答案】(1)四边形ABCD是垂美四边形.理由见解析.(2)见解析.(3)GE73【解析】(1)四边形ABCD是垂美四边形.理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图1,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG2BE2,∴GE2=CG2+BE2-CB2=73,∴GE73【名师点睛】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.【变式1-1】(2019·甘肃白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM (SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.【答案】见解析.【解析】延长A1B1至E,使EB1=A1B1,连接EM1、EC1,如图所示:则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1三点共线,在△A1B1M1和△EB1M1中,11111111 1111A B EBA B M EBMMB M B=⎧⎪∠=∠⎨⎪=⎩,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.【名师点睛】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.【变式1-2】(2019·湖北咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,C D.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.【解析】(1)如图1,∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴»»AD CD,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=12∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=12∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴AF CFDF AF=,即5105DFDF+=,∴DF25.【名师点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.【考点2】代数类新定义及阅读理解型问题【例2】(2019•自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②–①得2S–S=S=22019–1,∴S=1+2+22+…+22017+22018=22019–1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数),请写出计算过程.【答案】(1)210–1;(2)11312-;(3)a=1时,S=n+1;a≠1时,S=111naa+--.【解析】(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②–①得2S–S=S=210–1,∴S=1+2+22+…+29=210–1;故答案为:210–1;(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②–①得2S=311–1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S=1+a+a2+a3+a4+…+a n①,则aS=a+a2+a3+a4+…+a n+a n+1②,②–①得:(a–1)S=a n+1–1,a=1时,不能直接除以a–1,此时原式等于n+1;a≠1时,a–1才能做分母,所以S=111naa+--,即1+a+a2+a3+a4+…+a n=111naa+--.【名师点睛】根据题目给出的信息,提炼解题方法.认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.【变式2-1】(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被__________整除,mn–nm一定能被__________整除,mn•nm–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.【答案】(1)①2.②4.③7.(2)11;9;10.【解析】(1)①∵mn=10m+n,∴若2x+3x=45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案为:495.②当任选的三位数为abc时,第一次运算后得:100a+10b+c–(100c+10b+a)=99(a–c),结果为99的倍数,由于a>b>c,故a≥b+1≥c+2,∴a–c≥2,又9≥a>c≥0,∴a–c≤9,∴a–c=2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…,故都可以得到该黑洞数495.【名师点睛】本题是较为复杂的新定义试题,题目设置的问题较多,但解答方法大同小异,总体中等难度略大.【变式2-2】(2019•济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数;(2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数.例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==. ∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2),∴函数f (x )═6x (x >0)是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=21x +x (x <0), f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74. (1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x +x (x <0)是__________函数(填“增”或“减”); (3)请仿照例题证明你的猜想.【答案】(1)–269,–6316;(2)增;(3)见解析. 【解析】(1)∵f (x )=21x +x (x <0), ∴f (–3)=21(3)-–3=–269,f (–4)=21(4)-–4=–6316, 故答案为:–269,–6316; (2)∵–4<–3,f (–4)>f (–3), ∴函数f (x )=21x +x (x <0)是增函数, 故答案为:增;(3)设x 1<x 2<0,∵f (x 1)–f (x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +) ∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f (x 1)–f (x 2)<0,∴f (x 1)<f (x 2), ∴函数f (x )=21x+x (x <0)是增函数. 【名师点睛】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答. 【考点3】函数类新定义综合型问题 【例3】(2019·江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.【答案】(1)①②③(2)①2,124n n n P ⎛⎫-+ ⎪⎝⎭,21y x =+.21k +③不平行,直线n n C A 的斜率(比例系数)为k n +,与n 取值有关(若两直线平行,则斜率会相等). 【解析】(1)①当x =0,1231y y y ===,所以正确;②123,,y y y 的对称轴分别是直线112x =-,21x =-,332x =-,所以正确;③123,,y y y 与1y =交点(除了点C )横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.(2)①2224124n n n y x nx x +⎛⎫=--+=-++ ⎪⎝⎭,所以顶点24,24n n n P ⎛⎫+- ⎪⎝⎭,令顶点n P 横坐标2n x =-,纵坐标244n y +=,22241142n n y x +⎛⎫==-+=+ ⎪⎝⎭, 即:n P 顶点满足关系式21y x =+.②相邻两点之间的距离相等.理由:根据题意得;()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++, ∴C n C n –1两点之间的铅直高度=()2211k nk k k nk k --++---+=.C n C n –1两点之间的水平距离=1()1k n k n --+---=.∴由勾股定理得C n C n –12=k 2+1, ∴C n C n –121k +. ③n n C A 与11n n C A --不平行. 理由:根据题意得:()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++,(),1nA n-,()11,1nA n--+.过C n,C n–1分别作直线y=1的垂线,垂足为D,E,所以D(–k–n,1),E(–k–n+1,1).在Rt△DA n C n中,tan∠DA n C n=()2211()nnk nkC D k nkk nA D n k n k---++===+----,在Rt△EA n–1C n–1中,tan∠EA n–1C n–1=()22111111(1)nnk nk kC E k nk kk nA E n k n k-----+++-===+--+---+,∵1k n+-≠k n+,∴tan∠DA n C n≠tan∠EA n–1C n–1,∴n nC A与11n nC A--不平行.【变式3-1】(2019•山东威海)(1)阅读理解如图,点A,B在反比例函数y=1x的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=1x的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).小红通过观察反比例函数y=1x的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF,由此得出一个关于11n-,11n+,2n,之间数量关系的命题:若n>1,则__________.(2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解析】(1)∵AE+BG=2CF,CF>DF,AE=11n-,BG=11n+,DF=1n,∴11n-+11n+>2n.故答案为:11n-+11n+>2n.(2)方法一:∵11n-+11n+﹣2n=22222(1)(1)n n n n nn n n++--+-+=2(1)(1)n n n-+,∵n>1,∴n(n﹣1)(n+1)>0,∴11n-+11n+﹣2n>0,∴11n-+11n+>2n.方法二:∵11112n nn+-+=221nn->1,∴11n-+11n+>2n.【名师点睛】本题考查反比例函数图形上的点的坐标特征,反比例函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【变式3-2】定义:如图,若双曲线()ky k0x>=与它的其中一条对称轴y x=相交于两点A,B,则线段AB 的长称为双曲线()ky k0x>=的对径.(1)求双曲线1 yx=的对径;(2)若某双曲线()ky k0x>=对径是102.求k的值;(3)仿照上述定义,请你定义双曲线()ky k0x<=的对径.【答案】(1)22;(2)25;(3)定义见解析.【解析】试题分析:过A点作AC⊥x轴于C,(1)解方程组ky=xy=x⎧⎪⎨⎪⎩,可得到A点坐标为(1,1),B点坐标为(-1,-1),即OC=AC=1,由勾股定理可求AB,于是得到双曲线1y=x的对径;(2)根据双曲线的对径的定义得到当双曲线的对径为102,即AB=102,OA=52,根据OA=2OC =2AC,则OC=AC=5,得到点A坐标为(5,5),把A(5,5)代入双曲线ky=x(k>0)即可得到k的值;(3)双曲线ky=x(k<0)的一条对称轴与双曲线有两个交点,根据题目中的定义易得到双曲线ky=x(k<0)的对径.试题解析:如图,过A点作AC⊥x轴于C,(1)解方程组ky=xy=x⎧⎪⎨⎪⎩,得1212x=1x=1y=1y=1-⎧⎧⎨⎨-⎩⎩,,∴A点坐标为(1,1),B点坐标为(-1,-1).∴OC=AC=1,∴OA2OC2. ∴AB=2OA=2.∴双曲线1y=x的对径是22.(2)∵双曲线的对径为102,即AB=102,OA=52. ∴OA=2OC=2AC,∴OC=AC=5. ∴点A坐标为(5,5).把A(5,5)代入双曲线ky=x(k>0)得k=5×5=25,即k的值为25.(3)若双曲线ky=x(k<0)与它的其中一条对称轴y=-x相交于A、B两点,则线段AB的长称为双曲线ky=x(k<0)的对径.考点:1.新定义;2.反比例函数综合题;3.曲线上点的坐标与方程的关系;4.勾股定理.【考点4】变换操作类阅读型问题【例4】.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊的四边形中是勾股四边形的两种图形的名称、;(2)如图1,已知格点(小正方形的顶点)O(0,0)、A(3,0)、B(0,4),点C 为图中所给方格中的另一个格点,四边形OACB 是以OA 、OB 为勾股边且对角线相等的勾股四边形,求点C 的坐标;(3)如图2,将∆ABC(BC >AB )绕顶点B 按顺时针方向旋转60︒,得到∆DBE ,连接AD 、DC ,四边形ABCD 是勾股四边形,其中DC 、BC 为勾股边,求∠DCB 的度数.【答案】(1)矩形,正方形(答案不唯一);(2)C(3,4),(4,3);(3)∠DCB=30°.【解析】【分析】(1)根据矩形与正方形的性质可得答案;(2)利用勾股定理可得AB=5,然后在格点中找满足OC=5的点即可;(3)连接CE,根据旋转的性质可得△ABC≌△DBE,则BC=BE,因为∠CBE=60°,所以△BCE是等边三角形,则BC=CE,∠BCE=60°,根据勾股四边形的定义与勾股定理的逆定理可得∠DCE=90°,则可得∠DCB的度数.【详解】解:(1)矩形;正方形(答案不唯一);(2),则C点坐标如图为:(3,4),(4,3);(3)连接CE,由旋转的性质得:△ABC≌△DBE,则BC=BE,AC=BD,∵∠CBE=60°,∴△BCE是等边三角形,∴BC=CE,∠BCE=60°,∵四边形ABCD为勾股四边形,其中DC、BC为勾股边,∴,∴,∴∠DCE=90°,∴∠BCD=∠DCE﹣∠BCE=90°﹣60°=30°.【点睛】本题主要考查勾股定理及其逆定理,全等三角形-旋转,等边三角形的判定等,解此题的关键在于准确理解题中勾股四边形的定义,利用勾股定理及其逆定理进行证明.与计算.【变式4-1】1.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1) 概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件: . (2) 问题探究:如图2,小红画了一个ABC Rt ∆,其中90ABC ∠=︒,2AB =,1BC =,并将ABC Rt ∆沿B ∠的平分线BB '方向平移得到'''C B A ∆,连结AA '、BC '.小红要使平移后的四边形ABC A ''是“等邻边四边形”,应平移多少距离(即线段BB '的长)? (3) 应用拓展:如图3,“等邻边四边形”ABCD 中,AB AD =,90BAD BCD ∠+∠=︒,AC 、BD 为对角线,2AC AB =.试探究BC 、CD 、BD 的数量关系.【答案】(1)DA=AB (答案不唯一);(2)应平移2或5或2或1422-的距离;(3)BC 2+CD 2=2BD 2. 【解析】试题分析:(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论; ②由平移的性质易得BB′=AA′,A′B′∥AB ,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF ≌△ADC ,由全等性质得∠ABF=∠ADC ,∠BAF=∠DAC ,AF=AC ,FB=CD ,利用相似三角形判定得△ACF ∽△ABD ,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.解:(1)AB=BC 或BC=CD 或CD=AD 或AD=AB (任写一个即可); (2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形, ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠CAF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2=CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.考点:1.阅读理解题;2.平移,旋转的图形变换性质;3.三角形全等、相似的判定与性质;4.勾股定理的运用.【变式4-2】(2019•湖南长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题)②三个角分别相等的两个凸四边形相似;(__________命题)③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,11ABA B=11BCB C=11CDC D.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求21SS的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似.是真命题.故答案为假,假,真.(2)如图1中,连接BD,B1D1.∵∠BCD =∠B1C 1D 1,且11BC B C =11CDC D , ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD ,∵11AB A B =11BC B C =11CD C D ,∴11BD B D =11AB A B ,∵∠ABC =∠A 1B 1C 1,∴∠ABD =∠A 1B 1D 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B ,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11AB A B =11BC B C =11CD C D =11AD A D ,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2中,∵四边形ABCD 与四边形EFCD 相似,∴DE AE =EFAB, ∵EF =OE +OF ,∴DE AE =OE OFAB+, ∵EF ∥AB ∥CD ,∴DE AD =OE AB ,DE OC OFAD AB AB==,∴DE AD +DE AD =OE AB +OF AB ,∴2DE AD =DE AE, ∵AD =DE +AE ,∴2DE AE +=1AE,∴2AE =DE +AE ,∴AE =DE ,∴21SS=1.【名师点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.1.(2019•湘西州)阅读材料:设ar=(x1,y1),br=(x2,y2),如果ar∥br,则x1•y2=x2•y1,根据该材料填空,已知ar=(4,3),br=(8,m),且ar∥br,则m=__________.【答案】6【解析】∵ar=(4,3),br=(8,m),且ar∥br,∴4m=3×8,∴m=6;故答案为:6.【名师点睛】本题考查新定义,点的坐标;理解阅读材料的内容,转化为所学知识求解是关键.2.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=__________.【答案】85或14【解析】①当∠A为顶角时,等腰三角形两底角的度数为:218080︒-︒=50°,∴特征值k=808505︒=︒;②当∠A为底角时,顶角的度数为:180°–80°–80°=20°,∴特征值k=208014︒=︒;综上所述,特征值k为85或14;故答案为85或14.【名师点睛】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.3.我们定义:对于抛物线()20y ax bx c a=++≠,以y轴上的点()0,M m为中心,作该抛物线关于点M对称的抛物线'y,则我们又称抛物线'y为抛物线y的“衍生抛物线”,点M为“衍生中心”,若抛物线225y x x=--+关于点()0,m的衍生抛物线为'y,若这两条抛物线有交点,则m的取值范围是______. 【答案】m≤5【解析】【分析】先求出抛物线的顶点坐标(-1,6),进而利用待定系数法求出衍生抛物线的解析式,联立即可得出结论;【详解】解∵抛物线y=-x2-2x+5=-(x+1)2+6①,∴抛物线的顶点坐标为(-1,6),∴抛物线的顶点坐标(-1,6)关于(0,m)的对称点为(1,2m-6),即:新抛物线的顶点坐标为(1,2m-6),设衍生抛物线为y′=a(x-1)2+2m-6,∵抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,∴a=1,∴衍生抛物线为y′=(x-1)2+2m-6=x2-2x+2m-5②,联立①②得,x2-2x+2m-5=-x2-2x+5,整理得,2x2=10-2m,∵这两条抛物线有交点,∴10-2m≥0,∴m≤5;【点睛】此题主要考查了待定系数法,抛物线顶点坐标的求法,新定义的理解和掌握,点的对称点坐标的求法,理解新定义是解本题的关键.4.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x的式子表示m=__________;(2)当y=–2时,n的值为__________.【答案】(1)3x ;(2)1.【解析】(1)根据约定的方法可得:m =x +2x =3x ;故答案为:3x ; (2)根据约定的方法即可得x +2x +2x +3=m +n =y . 当y =–2时,5x +3=–2. 解得x =–1. ∴n =2x +3=–2+3=1. 故答案为:1.【名师点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.5.(2019•湖北宜昌•3分)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记p =2a b c++,那么三角形的面积为S =()()()p p a p b p c ---.如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别记为a ,b ,c ,若a =5,b =6,c =7,则△ABC 的面积为A .66B .63C .18D .192【答案】A【解析】∵a =7,b =5,c =6,∴p =5672++=9, ∴△ABC 的面积S 9(95)(96)(97)⨯-⨯-⨯-6.故选A .【名师点睛】考查了二次根式的化简,解题的关键是代入后正确的运算,难度不大.6.(2019•山东临沂)一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它4a 44m =10,则m =__________. 【答案】±1044m =10,∴m 4=104,∴m =±10.故答案为:±10.【名师点睛】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.7.(2019•湖北十堰)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m﹣3)=24,则m =__________. 【答案】﹣3或4【解析】根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0, 所以m 1=﹣3,m 2=4. 故答案为:﹣3或4.【名师点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.4.8.据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =41x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是__________.(填序号) 【答案】①④【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误; ④设点P (m ,14m 2),则Q (m ,-1),∴MP =2221(1)4m m +-=|14m 2+1|,PQ =14m 2+1, ∵点P 在第一象限,∴m >0,∴MP =14m 2+1,∴MP =PQ , 又∵MN ∥PQ ,∴四边形PMNQ 是广义菱形.④正确. 故答案为:①④.【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.9.(2019•浙江湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.【答案】45【解析】如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG=22EM GM+=22+=410,124=45,故答案为:45.∴EH=2【名师点睛】本题考查正方形的性质,七巧板,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10(2019•广西贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是__________.【答案】4【解析】①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;故答案是:4.【名师点睛】理解“鹊桥”函数y=|ax2+bx+c|的意义,掌握“鹊桥”函数与y=|ax2+bx+c|与二次函数y=ax2+bx+c 之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax2+bx+c与x轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.11.(2019·贵州安顺)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a MN=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.【解析】(1)4=log381(或log381=4),故答案为:4=log381;(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴MN=mnaa=a m﹣n,由对数的定义得m﹣n=log aMN,又∵m﹣n=log a M﹣log a N,∴log a MN=log a M﹣log a N;(3)log69+log68﹣log62=log6(9×8÷2)=log636=2.故答案为:2.12.定义:有一个角是其对角两倍的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD 是圆美四边形()1求美角C∠的度数;()2如图1,若Oe的半径为23,求BD的长;()3如图2,若CA平分BCD∠,求证:BC CD AC+=.【答案】(1)120°;(2)6;(3)见解析.【解析】【分析】()1先判断出2C A ∠∠=,再判断出180A C ∠∠+=o ,即可得出结论; ()2先求出60E ∠=o ,再求出DE ,最后用锐角三角函数即可得出结论;()3作出辅助线,判断出BCF V 是等边三角形,得出AFB BCD ∠∠=,进而判断出ABF V ≌DBC V ,得出C AF D =,即可得出结论. 【详解】解:()1Q 四边形ABCD 是圆美四边形,C 2A ∠∠∴=,Q 四边形ABCD 是圆内接四边形,A C 180∠∠∴+=o , A 2A 180o ∠∠∴+=,A 60∠∴=o , C 120∠∴=o ;()2由()1知,A 60∠=o ,如图1,连接DO 并延长交O e 于E ,连接BE ,E A 60∠∠∴==o ,O Q e 的半径为3DE 22343∴=⨯=在Rt DBE V 中,3BD DE sinE 4362=⋅==; ()3如图2,在CA 上截取CF CB =,由()1知,BCD 120∠=o ,CA Q 平分BCD ∠,1BCA ACD BCD 602∠∠∠∴===o , BCF ∴V 是等边三角形,BC BF ∴=,BFC 60o ∠=,AFB 120∠∴=o ,AFB BCD ∠∠=,在ABF V 和BCD V中,BAF BDC AFB BCD BF BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABF V ∴≌()DBC AAS V ,AF DC ∴=,AC CF AF BC CD ∴=+=+.【点睛】此题是圆的综合题,主要考查了圆周角定理,锐角三角函数,等边三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线是解本题的关键.13.(2019•枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(–3)的值;(2)若x ⊗(–y )=2,(2y )⊗x =–1,求x +y 的值.【答案】(1)5;(2)13. 【解析】(1)根据题中的新定义得:原式=8–3=5;(2)根据题中的新定义化简得:2241x y x y -=⎨+=-⎧⎩①②, ①+②得:3x +3y =1,则x +y =13.【名师点睛】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.14.在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);①②③定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).。

专题01 中考数学压轴题-创新题型(解析版)

专题01 中考数学压轴题-创新题型(解析版)

专题01创新题型模块一:定义应用例1.定义[x ]为不超过x 的最大整数,如[3.6] = 3,[ 3.6-] = 4-.对于任意实数x ,下列式子错误的是( ) A .[x ] = x (x 为整数) B .0[]1x x ≤-<C .[][][]x y x y +≤+D .[][]n x n x +=+(n 为整数)【难度】★★ 【答案】C .【解析】由反例[][3.8 2.7] 6.56+==,[3.8][2.7]325+=+=可知C 错误. 【总结】本题考查取整函数[x ]的定义及应用.例2.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,'y ),给出如下定义:若()()0'0y x y y x ⎧≥⎪=⎨-<⎪⎩,则称点Q 为点P 的“可控变点”.如果点(1-,2-)为点M 的可控变点,则点M 的坐标为___________. 【难度】★★ 【答案】(-1,2)【解析】由题意得,当0<x 时,'=-y y ,且x 不变,所以当1x =-,时'2=y , 即点M 坐标为(1-,2).【总结】把握好“可控变点”的定义,找出'y 与y 两者之间存在的关系.例3.定义一种新运算:2x y x y x +*=,如2212122+⨯*==,则()()421**-=______. 【难度】★★ 【答案】0.【解析】先计算()4224224+⨯*==,再计算()()2122102+-⨯*-==. 【总结】根据运算法则进行运算,注意运算顺序.例4.已知1m x =+,2n x =-+,若规定()()11m n m n y m n m n ⎧+-≥⎪=⎨-+<⎪⎩,则y 的最小值为( )A .0B .1C .1-D .2【难度】★★ 【答案】B .【解析】把1m x =+,2n x =-+代入,得到1221222⎧⎛⎫≥ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩x x y x x ,当12≥x 时,1≥y ;当12<x 时,1>y .所以y 的最小值是1,故选B .【总结】考查分段函数求最值的问题.例5.定义运算“*”:规定x y ax by *=+(其中a 、 b 为常数),若113*=,()111*-=,12*=______.【难度】★★ 【答案】4.【解析】把113*=,()111*-=代入运算法则,得31+=⎧⎨-=⎩a b a b ,解得:21=⎧⎨=⎩a b ,所以12*=2×1+1×2=4.【总结】根据新运算,求出a 、b 的值是解答本题的关键.例 6.对于实数m 、n ,定义一种运算“*”为:m n mn n *=+.如果关于x 的方程()14x a x **=-有两个相等的实数根,那么满足条件的实数a 的值是______.【难度】★★ 【答案】0.【解析】根据运算法则,()*=+a x ax x ,()()*+=+++x ax x x ax x ax x , 整理得()()211104++++=a x a x ,此方程有两个相等的实数根, 则()()210110+≠⎧⎪⎨=+-+=⎪⎩a a a ,解得:1201a a ==-,(舍),所以a=0. 【总结】由运算法则整理得一元二次方程的一般形式,再结合一元二次方程根的判别式进行 求解,注意二次项系数不能为零.例7.(2020黄浦区一模)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC =____________度 【答案】145【分析】先画出示意图,由相似三角形的判定可知,在△ABD 和△DBC 中,已知∠ABD=∠CBD ,所以需另一组对应角相等,若∠A=∠C ,则△ABD 与△DBC 全等不符合题意,所以必定有∠A=∠BDC,再根据四边形的内角和为360°列式求解. 【详解】解:根据题意画出示意图,已知∠ABD=∠CBD , △ABD 与△DBC 相似,但不全等, ∴∠A=∠BDC ,∠ADB=∠C.又∠A+∠ABC+∠C+∠ADC=360°, ∴2∠ADB+2∠BDC+∠ABC=360°, ∴∠ADB+∠BDC=145°, 即∠ADC=145°.【点睛】对于新定义问题,读懂题意是关键.例8.(2020杨浦区一模).在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF .如果△DEF 与△ABC 相似(相似比不为1),那么△DEF 的面积为______.【答案】1;【分析】根据小正方形的边长,分别求出ABC 和DEF 三边的长,然后判断它们是否对应成比例,再用三角形面积公式求解即可. 【详解】如图,∵1AB BC ==,AC =∴:?:?AB BC AC =∵DE =2EF =,DF =∴::2DE EF DF ==∴:?:?::AB BC AC DE EF DF = ∴~ABC DEF ∴12112DEFS=⨯⨯= 故答案为:1【点睛】本题考查了在网格中画与已知三角形相似的三角形、三角形全等的判定以及三角形面积公式,熟练掌握三角形全等的判定是解题的关键.例9.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt ABC ∆和Rt ACD ∆中,90ACB ACD ∠=∠=︒,点D 在边BC 的延长线上,如果BC = DC = 3,那么ABC ∆和ACD ∆的外心距是______.【难度】★★ 【答案】3.【解析】直角三角形的外心为斜边的中点,所以ABC ∆和ACD ∆ 的外心分别为AB 和AD 的中点,这两个三角形的外心距 即∆ABD 的中位线,长度是132=BD .【总结】本题考查的知识点有直角三角形的外心、三角形的中位线.例10.定义[a ,b ,c ]为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-的“特征数”是[1,3,2-],函数4y x =-+的“特征数”是[0,1-,4].如果将“特征数”是[2,0,4]的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是__________________. 【难度】★★ 【答案】221=+y x .【解析】由题意得“特征数”是[2,0,4]的函数解析式为224=+y x ,向下平移3个单位可 得新函数的解析式为:221=+y x .【总结】特征数[a ,b ,c ]即为二次函数的三个系数,已知特征数则可求得二次函数的解析 式,再根据抛物线的平移法则“上加下减、左加右减”进行解题.例11.在平面直角坐标系xOy 中,C 的半径为r ,点P 是与圆心C 不重合的点,给出如下定义:若点'P 为射线CP 上一点,满足2'CP CP r =,则称点'P 为点P 关于C 的反演点.如图为点P 及其关于C 的反演点'P 的示意图.请写出点M (12,0)关于以原点O为圆心,以1为半径的O 的反演点'M 的坐标 .AB D【难度】★★★【答案】(2,0).【解析】由反演点的定义可得2'=OM OM r ,即21'12=OM ,解得:'2=OM ,又点'M 在x 轴上, 所以点'M 的坐标为(2,0).【总结】掌握“反演点”的定义中,两点之间存在的关系.例12.如图1,对于平面上不大于90°的MON ∠,我们给出如下定义:如果点P 在MON ∠的内部,作PE OM ⊥,PF ON ⊥,垂足分别为点E 、F ,那么称PE + PF 的值为点P 相对于MON ∠的“点角距离”,记为d (P ,MON ∠).如图2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足d (P ,xOy ∠)= 5,点P 的坐标是__________.【难度】★★★ 【答案】(3,2).x yP' CPO ENF OPM 图1yx-11-11O图2【解析】过点P 分别作PA ⊥x 轴,PB ⊥y 轴, ∵点P 在第一象限内且横坐标比纵坐标大1, ∴设PA =a ,则PB =a +1, ∵d (P ,xOy ∠)= 5,可得:PA +PB =5,即a +a +1=5,解得:a =2, 所以点P 的坐标为(3,2).【总结】本次考查“点角距离”的定义,利用定义求解相关点的坐标.模块二:阅读理解例1.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为______. 【难度】★ 【答案】8.【解析】由题得,x =1+2=3,y =3+5=8. 【总结】本题难度不大,运算也比较简单.例2.四个数a 、b 、c 、d 排列成a b c d,我们称之为二阶行列式.规定它的运算法则为:a b ad bc c d=-.若331233x x x x +-=-+,则x =______.【难度】★★ 【答案】1.【解析】由运算法则得()()22333333+-=+---+x x x x x x ,整理得:1212=x ,解得:x =1.【总结】由运算法则整理,再解关于x 的方程即可.例3.对于两个不相等的实数a 、b ,我们规定符号{max a ,}b 表示a 、b 中的较大值,如:{max 2,}44=,按照这个规定,方程{max x ,}21x x x+-=的解为( )A .1B .2-C .11-D .1+1-【难度】★★ 【答案】D .【解析】当x >0时,{}max x x x -=,,解方程21+=x x x,得:1=x所以1=+x 当x <0时,{}max x x x -=-,,解方程21x x x+-=,得:121==-x x ,所以1=-x ;综上,1=+x 1-,故选D .【总结】本题注意分类讨论,根据定义进行取值,再解关于x 的方程.例4.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于______. 【难度】★★ 【答案】1或2.45x +,45,则180x =,解得:45x =,此三角形为等腰直角三角形, ∴此三角形的面积=12当顶角为x 时,则4545180x x x ++++=,解得:30x =. 如图,2==AB AC ,30A ∠=,作CD ⊥AB ,在Rt ADC ,∵30A ∠=,∴112==CD AC , 211⨯=.综上所述,该三角形的面积等于1或2.【总结】本题注意分类讨论.根据“内角正度值”的定义求出三角形各内角的度数,再进行 面积的求解.例 5.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三D CBA角形”,这条中线称为“有趣中线”.已知Rt ABC ∆,90C ∠=︒,较短的一条直角边边长为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”长等于 . 【难度】★★【解析】“有趣中线”有三种情况:若“有趣中线”为斜边AB 上的中线,直角三角形的斜边中点到三顶点距离相等,不合 题意;若“有趣中线”为BC 边上的中线,根据斜边大于直角边,矛盾,不成立;若“有趣中线”为另一直角边AC 上的中线, 如图所示,BC =1,设2BD x =,则CD x =. 在Rt BCD 中,勾股定理得1+()222=x x , 解得:x,所以BD =2x. 【总结】本题考查“有趣中线”的定义,注意分类讨论.例6.如果一个平行四边形一个内角的平分线分它的一边为1 : 2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为______. 【难度】★★ 【答案】8或10.【解析】由题意可知,存在两种情况:(1)一组邻边长分别为3和1,周长=8; (2)一组邻边长分别为3和2,周长=10.【总结】本题考查“协调平行四边形”的定义及平行四边形的性质.例7.设正n 边形的半径为R ,边心距为r ,如果我们将Rr的值称为正n 边形的“接近度”,那么正六边形的“接近度”是______(结果保留根号).DCBA【难度】★★【解析】设正六边形的边长为a ,则半径为R=a ,边心距为,所以R r【总结】本题考查“接近度”的定义及正六边形的性质.例8.将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得431x x --的值是____________. 【难度】★★ 【答案】1.【解析】由210x x --=,得21=+x x ,代入431x x --=()221311+--=-=x x x x . 【总结】本题运用“降次”及“整体代入”的思想进行解题.例9.在平面直角坐标系中,我们把半径相等且外切、连心线与直线y = x 平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(2-,3A 的所有“孪生圆”的圆心坐标为_________. 【难度】★★【答案】(0,5)或(-4,1).【解析】由题意得,连心线所在直线为5=+y x ,因为两圆外切,设另一圆心为圆B ,所以圆心距=AB (),5+B x x ,所以=AB 解得:10=x ,24=-x ,所以圆心B 的坐标为(0,5)或(-4,1).【总结】本题考查了“孪生圆”的定义、一次函数的图像以及圆与圆的位置关系.例10.当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果1O 、2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是___________. 【难度】★★ 【答案】23<<d .【解析】两个圆有两个公共点即两圆相交,可得24<<d ,当小圆的圆心恰好在大圆上时,3=d ,所以内相交的圆心距d 取值范围是23<<d .【总结】本题考查圆与圆的位置关系及“内相交”的定义.模块三:规律探究例1.观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .6263【难度】★★ 【答案】C .【解析】根据题意,可知规律为221n n -,故第6个数为:3663,化简为47,故选C .【总结】本题考查针对给定的一列数字找规律.例2.按一定规律排列的一列数:12,22,32,52,82,132,….若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的解析式是____________. 【难度】★★ 【答案】=xy z .【解析】由给出的这一列数字,可得出规律:从第三个数字开始,每个数等于它两个数的乘积,所以=xy z .【总结】本题考查针对给定的一列数字找规律.例3.在平面直角坐标系中,有三个点A (1,1-)、B (1-,1-)、C (0,1),点P (0,2)关于点A 的对称点为1P ,1P 关于点B 的对称点为2P ,2P 关于点C 的对称点为3P ,按此规律,继续以点A 、B 、C 为对称中心重复前面的操作,依次得到点4P ,5P ,6P ,…,则点2017P 的坐标为( ) A .(0,0)B .(0,2)C .(2,4-)D .(4-,2)【难度】★★ 【答案】C .【解析】由题意得1P (2,-4)、2P (-4,2)、3P (4,0)、4P (-2,-2)、 5P (0,0),6P (0,2),每6个数形成一个周期,2017÷6=336……1,所以2017P 的坐标和1P 的坐标相同,故选C .【总结】本题考查了点的对称问题及周期问题的处理.例4.如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,…,按照此规律继续下去,则2017S 的值为_____________.【难度】★★★【答案】20141()2.【解析】由题意得1S =2×2=4=22,2S 12=,3S =111⨯==20,…… 由以上规律,可知2017S =2-201420141()2=.【总结】本题考查了找规律在几何图形中的应用.1.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于 度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y , 由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.2.(2020静安二模)如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A =90°,DC=AD,∠B是锐角,cot B=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为.【分析】作CH⊥AB于H,设BH=5a,证明四边形ADCH为矩形,得到AD=CH=12a,根据题意求出a,根据勾股定理求出BC,根据“等分周长线”计算,得到答案.【解答】解:作CH⊥AB于H,设BH=5a,∵cot B=,∴=,∴CH=12a,∵AB∥CD,∴∠D=∠A=90°,又CH⊥AB,∴四边形ADCH为矩形,∴AD=CH=12a,CD=AH,∵DC=AD,∴AH=CD=12a,由题意得,12a+5a=17,解得,a=1,∴AD=CD=AH=12,BH=5,在Rt△CHB中,BC==13,∴四边形ABCD的周长=12+12+17+13=54,∵CE是梯形ABCD的“等分周长线”,∴点E在AB上,∴AE =17+13﹣27=3, ∴EH =12﹣3=9, 由勾股定理得,EC ==15,∴△BCE 的周长=14+13+15=42, 故答案为:42.3.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个【考查内容】新定义题型,黄金三角形 【评析】中等为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边用内角和公式求得∠β= 45,此时为等腰直角三角 【答案】22或215+4.(2020长宁二模)如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是 .【分析】先根据题意画出图形,连接BD 、OD ,设AM =x ,根据AD 2﹣AM 2=OD 2﹣OM 2,列出方程,求出x ,再根据OC =OA ﹣AM ﹣CM 计算即可. 【解答】解:根据题意画图如下:连接BD ,与AC 交与点M , ∵四边形ABCD 是菱形,∴∠AMD=∠DMC=90°,∠ACD=∠ACB,CD=CD,AM=CM,∴DM2=AD2﹣AM2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.5.(2020青浦二模)小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH 分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=.【分析】先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x 的式子表示出DH;按照相似分割线可知,△AGC∽DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.解:∵Rt△ABC,AC=3,AB=5,∴由勾股定理得:BC=4,∵△BCG∽△DFH,∴=,已知DF=8,设AG=x,则BG=5﹣x,∴=,∴DH=10﹣2x,∵△BCG∽△DFH,∴∠B=∠FDH,∠BGC=∠CHF,∴∠AGC=∠DHE,∵∠A+∠B=90°,∠EDH+∠FDH=90°,∴∠A=∠EDH,∴△AGC∽DHE,∴=,又DE=4,∴=,解得:x=3,经检验,x=3是原方程的解,且符合题意.∴AG=3.故答案为:3.6.(2020杨浦二模) 定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是 . 【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可. 【解答】解:因为一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”, 可得:k =2, 故答案为:2.7.定义:如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,那么称这两个函数互为“旋转函数”.若函数2423y x mx =-+-与22y x nx n =-+互为“旋转函数”,则()2017m n +=________. 【难度】★★ 【答案】-1.【解析】由“旋转函数”的定义得42320⎧=-⎪⎨⎪-+=⎩m nn ,解得:32=-⎧⎨=⎩m n ,所以()2017m n +=(-1)2017=-1.【总结】本题考查“旋转函数”的定义.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt ABC ∆中,90C ∠=︒,若Rt ABC ∆是“好玩三角形”,则tan A =_______. 【难度】★★【解析】由于直角三角形斜边上的中线等于斜边的一半,因此斜边上的中线不满足; 故只能是直角边上的中线等于此直角边的长, 如图所示,设BD =2x ,CD =x ,则=BC ,在Rt ABC 中,AC =2x,=BC . 当∠A为较小锐角时,tan A当∠A为较大锐角时,tan A =. 【总结】本题考查“好玩三角形”的定义,注意分类讨论.9.我们把四边形两条对角线中点的连线段称为“奇异中位线”.现有两个全等三角形,边长分别为3cm 、4cm 、5cm .将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是______cm . 【难度】★★【答案】710.【解析】如图,将两个全等的直角ABC 与DEF 的斜边AC 与DF 重合,拼成凸四边形ABCE ,AC 与BE 交于点O ,M 为AC 的中点.∵△ABC ≌△DEF ,易证AO ⊥BE .在Rt AOB 中,AO =AB •cos ∠BAO =95,因为1522==AM AC ,所以5972510=-=-=OM AM OA . 即奇异中位线的长是710. 【总结】本题考查了“奇异中位线”的定义,注意根据题目要求画出合适的图形.10.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[p ,q ]称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[4-,2].请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[2,3],将这个函数的图像先DCBA向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为______. 【难度】★★ 【答案】[6,8].【解析】特征数是[2,3]的二次函数为223=++y x x ,即2(1)2=++y x ,将其向左平移2个单位,再向下平移3个单位后得到的二次函数为2(3)1=+-y x ,即268=++y x x , 所以特征数为[6,8].【总结】本题考查了“特征数”的定义及二次函数图像的平移.11.如图1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r =,则称点'P 是点P 关于圆O 的反演点.如图2,在Rt ABO ∆中,90B ∠=︒,AB = 2,BO = 4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么''A B 的长是______.【难度】★★★ 【答案】5. 【解析】由反演点的定义,可知:2'=OA OA r ,2'=OB OB r ,则'=OA OA 'OB OB ,即''=OA OB OB OA ,又∠=∠O O ,可证''OA B ∽OBA , ∴'''=OB A B OA AB ,即225''=A B ,解得:''A B =5. 【总结】本题考查了“反演点”的定义,以及相似三角形的判定与性质.12.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…,分别在直线y kx b =+(0k >)和x 轴上,已知点1B (1,1),2B OPP'BOA图1 图2(3,2),则点6B 的坐标是__________,点nB 的坐标是__________.【难度】★★★【答案】(63,32),1(212)n n --,. 【解析】由1A (0,1)、2A (1,2), 可求得直线解析式为1=+y x .可求得3A (3,4)、3B (7,4),4A (7,8)、 4B (15,8),5A (15,16)、5B (31,16), 6A (31,32)、6B (63,32), ……, 按照此规律可得n B 1(212)n n --,.【总结】本题考查了一次函数与几何图形背景下找出点坐标的规律.13.对于平面直角坐标系 x Oy 中的点P (a ,b ),若点'P 的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点'P 为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为'P (412+,214⨯+),即'P (3,6).若点P 的“k 属派生点”'P 的坐标为(3,3),请写出一个符合条件的点P 的坐标:____________. 【难度】★★★ 【答案】(2,1).【解析】由题意得33⎧+⎪=⎨⎪+=⎩b a k ka b ,整理得:33+=⎧⎨+=⎩ka b k ka b ,所以1=k , 只要满足3+=a b 即可,可取点P (2,1).x yO1 / 13 【总结】本题考查了“派生点”的定义,关键是求出k 的值,答案不唯一.14.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,…,如此下去,第n 个正方形的边长为__________.【难度】★★★【答案】12-n .【解析】第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,依次规律,第n 个正方形的边长为12-n .【总结】本题考查了几何图形背景下线段长度上存在的规律.A BCD EF G H。

中考数学专题31新定义与阅读理解创新型问题(全国通用解析版)

中考数学专题31新定义与阅读理解创新型问题(全国通用解析版)

新定义与阅读理解创新型问题一.选择题(共3小题)1.(2022•娄底)若10x=N.则称x是以10为底N的对数.记作:x=lgN.例如:102=100.则2=lg100.100=1.则0=lg1.对数运算满足:当M>0.N>0时.lgM+lgN=lg(MN).例如:lg3+lg5=lg15.则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.0【分析】首先根据定义运算提取公因式.然后利用定义运算计算即可求解.【解析】原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.2.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号.加括号后仍只有减法运算.然后按给出的运算顺序重新运算.称此为“加算操作”.例如:(x﹣y)﹣(z ﹣m﹣n)=x﹣y﹣z+m+n.x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n.….下列说法:①至少存在一种“加算操作”.使其运算结果与原多项式相等.②不存在任何“加算操作”.使其运算结果与原多项式之和为0.③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据“加算操作”的定义可知.当只给x﹣y加括号时.和原式相等.因为不改变x.y的运算符号.故不存在任何“加算操作”.使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.因为z.m.n中只有加减两种运算.求出即可.【解析】①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n.与原式相等.故①正确.②∵在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.无法改变x.y的符号.故不存在任何“加算操作”.使其运算结果与原多项式之和为0.故②正确.③在多项式x﹣y﹣z﹣m﹣n中.可通过加括号改变z.m.n的符号.加括号后只有加减两种运算.∴2×2×2=8种.所有可能的加括号的方法最多能得到8种不同的结果.故选:D.3.(2022•常德)我们发现:=3.=3.=3.….=3.一般地.对于正整数a.b.如果满足=a时.称(a.b)为一组完美方根数对.如上面(3.6)是一组完美方根数对.则下面4个结论:①(4.12)是完美方根数对.②(9.91)是完美方根数对.③若(a.380)是完美方根数对.则a=20.④若(x.y)是完美方根数对.则点P(x.y)在抛物线y=x2﹣x上.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】将(4.12).(9.91)代入验证即可判断①②.将(a.380)代入公式.建立方程可得出结论.若(x.y)是完美方根数对.则满足给出公式.化简可得出结论.【解析】将(4.12)代入=4.=4.=4.….∴(4.12)是完美方根数对.故①正确.将(9.91)代入=10≠9.=.∴(9.91)不是完美方根数对.故②错误.③∵(a.380)是完美方根数对.∴将(a.380)代入公式.=a.=a.解得a=20或a=﹣19(舍去).故③正确.④若(x.y)是完美方根数对.则=x.=x.整理得y=x2﹣x.∴点P(x.y)在抛物线y=x2﹣x上.故④正确.故选:C.二.填空题(共1小题)4.(2022•内江)对于非零实数a.b.规定a⊕b=﹣.若(2x﹣1)⊕2=1.则x 的值为.【分析】利用新规定对计算的式子变形.解分式方程即可求得结论.【解析】由题意得:=1.解得:x=.经检验.x=是原方程的根.∴x=.故答案为:.三.解答题(共23小题)5.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y =bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标.(2)若a>0.过x轴上一点P.作x轴的垂线分别交抛物线C1.C2于点M.N.①当MN=6a时.求点P的坐标.②当a﹣4≤x≤a﹣2时.C2的最大值与最小值的差为2a.求a的值.【分析】(1)根据“关联抛物线”的定义可直接得出C2的解析式.再将该解析式化成顶点式.可得出C2的顶点坐标.(2)①设点P的横坐标为m.则可表达点M和点N的坐标.根据两点间距离公式可表达MN的长.列出方程.可求出点P的坐标.②分情况讨论.当a﹣4≤﹣2≤a﹣2时.当﹣2≤a﹣4≤a﹣2时.当a﹣4≤a﹣2≤﹣2时.分别得出C2的最大值和最小值.进而列出方程.可求出a的值.【解析】(1)根据“关联抛物线”的定义可得C2的解析式为:y=ax2+4ax+4a ﹣3.∵y=ax2+4ax+4a﹣3=a(x+2)2﹣3.∴C2的顶点坐标为(﹣2.﹣3).(2)①设点P的横坐标为m.∵过点P作x轴的垂线分别交抛物线C1.C2于点M.N.∴M(m.4am2+am+4a﹣3).N(m.am2+4am+4a﹣3).∴MN=|4am2+am+4a﹣3﹣(am2+4am+4a﹣3)|=|3am2﹣3am|.∵MN=6a.∴|3am2﹣3am|=6a.解得m=﹣1或m=2.∴P(﹣1.0)或(2.0).②∵C2的解析式为:y=a(x+2)2﹣3.∴当x=﹣2时.y=﹣3.当x=a﹣4时.y=a(a﹣4+2)2﹣3=a(a﹣2)2﹣3.当x=a﹣2时.y=a(a﹣2+2)2﹣3=a3﹣3.根据题意可知.需要分三种情况讨论.Ⅰ、当a﹣4≤﹣2≤a﹣2时.0<a≤2.且当0<a≤1时.函数的最大值为a(a﹣2)2﹣3.函数的最小值为﹣3.∴a(a﹣2)2﹣3﹣(﹣3)=2a.解得a=2﹣或a=2+(舍).当1≤a≤2时.函数的最大值为a3﹣3.函数的最小值为﹣3.∴a3﹣3﹣(﹣3)=2a.解得a=或a=﹣(舍).Ⅱ、当﹣2≤a﹣4≤a﹣2时.a≥2.函数的最大值为a3﹣3.函数的最小值为a(a﹣2)2﹣3.∴a3﹣3﹣[a(a﹣2)2﹣3]=2a.解得a=(舍).Ⅲ、当a﹣4≤a﹣2≤﹣2时.a≤0.不符合题意.舍去.综上.a的值为2﹣或.6.(2022•长沙)若关于x的函数y.当t﹣≤x≤t+时.函数y的最大值为M.最小值为N.令函数h=.我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x.当t=1时.求函数y的“共同体函数”h的值.②若函数y=kx+b(k≠0.k.b为常数).求函数y的“共同体函数”h的解析式.(2)若函数y=(x≥1).求函数y的“共同体函数”h的最大值.(3)若函数y=﹣x2+4x+k.是否存在实数k.使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在.求出k的值.若不存在.请说明理由.【分析】(1)①由题意求出M=6066.N=2022.再由定义可求h的值.②分两种情况讨论:②当k>0时.M=kt+k+b.N=kt﹣k+b.h=k.当k<0时.M=kt﹣k+b.有N=kt+k+b.h=﹣k.(2)由题意t﹣≥1.M=.N=.则h=.所以h有最大值.(3)分四种情况讨论:①当2≤t﹣时.M=﹣(t﹣﹣2)2+4+k.N=﹣(t+﹣2)2+4+k.h=t﹣2.②当t+≤2时.N=﹣(t﹣﹣2)2+4+k.M=﹣(t+﹣2)2+4+k.h=2﹣t..③当t﹣≤2≤t.即2≤t≤.N=﹣(t+﹣2)2+4+k.M=4+k.h =(t﹣)2.④当t<2≤t+.N=﹣(t﹣﹣2)2+4+k.M=4+k.h=(t﹣)2.画出h的函数图象.结合图象可得=4+k.解得k=﹣.【解析】(1)①∵t=1.∴≤x≤.∵函数y=4044x.∴函数的最大值M=6066.函数的最小值N=2022.∴h=2022.②当k>0时.函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b.有最小值N =kt﹣k+b.∴h=k.当k<0时.函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b.有最小值N =kt+k+b.∴h=﹣k.综上所述:h=|k|.(2)t﹣≥1.即t≥.函数y=(x≥1)最大值M=.最小值N=.∴h=.当t=时.h有最大值.(3)存在实数k.使得函数y的最大值等于函数y的“共同体函数“h的最小值.理由如下:∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k.∴函数的对称轴为直线x=2.y的最大值为4+k.①当2≤t﹣时.即t≥.此时M=﹣(t﹣﹣2)2+4+k.N=﹣(t+﹣2)2+4+k.∴h=t﹣2.此时h的最小值为.②当t+≤2时.即t≤.此时N=﹣(t﹣﹣2)2+4+k.M=﹣(t+﹣2)2+4+k.∴h=2﹣t.此时h的最小值为.③当t﹣≤2≤t.即2≤t≤.此时N=﹣(t+﹣2)2+4+k.M=4+k.∴h=(t﹣)2.④当t<2≤t+.即≤t<2.此时N=﹣(t﹣﹣2)2+4+k.M=4+k.∴h=(t﹣)2.h的函数图象如图所示:h的最小值为.由题意可得=4+k.解得k=﹣.综上所述:k的值为﹣.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N.若N能被它的各数位上的数字之和m整除.则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19.∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4.∴214不是“和倍数”.(1)判断357.441是否是“和倍数”?说明理由.(2)三位数A是12的“和倍数”.a.b.c分别是数A其中一个数位上的数字.且a>b>c.在a.b.c中任选两个组成两位数.其中最大的两位数记为F(A).最小的两位数记为G(A).若为整数.求出满足条件的所有数A.【分析】(1)根据“和倍数”的定义依次判断即可.(2)设A=(a+b+c=12.a>b>c).根据“和倍数”的定义表示F(A)和G(A).代入中.根据为整数可解答.【解析】(1)∵357÷(3+5+7)=357÷15=23……12.∴357不是“和倍数”.∵441÷(4+4+1)=441÷9=49.∴441是9的“和倍数”.(2)设A=(a+b+c=12.a>b>c).由题意得:F(A)=.G(A)=.∴===.∵a+c=12﹣b.为整数.∴====7+(1﹣b).∵1<b<9.∴b=3.5.7.∴a+c=9.7.5.①当b=3.a+c=9时.(舍)..则A=732或372.②当b=5.a+c=7时..则A=156或516.③当b=7.a+c=5时.此种情况没有符合的值.综上.满足条件的所有数A为:732或372或156或516.8.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素.展现了我国古代数学的文化魅力.其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统.有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021.表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是2022.(2)小华设计了一个n进制数143.换算成十进制数是120.求n的值.(1)根据已知.从个位数字起.将八进制的每一位数分别乘以80.81.82.83.【分析】再把所得结果相加即可得解.(2)根据n进制数和十进制数的计算方法得到关于n的方程.解方程即可求解.【解析】(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022.(2)依题意有:n2+4×n1+3×n0=120.解得n1=9.n2=﹣13(舍去).故n的值是9.9.(2022•盐城)【发现问题】小明在练习簿的横线上取点O为圆心.相邻横线的间距为半径画圆.然后半径依次增加一个间距画同心圆.描出了同心圆与横线的一些交点.如图1所示.他发现这些点的位置有一定的规律.【提出问题】小明通过观察.提出猜想:按此步骤继续画圆描点.所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验.以圆心O为原点.过点O的横线所在直线为x轴.过点O且垂直于横线的直线为y轴.相邻横线的间距为一个单位长度.建立平面直角坐标系.如图2所示.当所描的点在半径为5的同心圆上时.其坐标为(﹣3.4)或(3.4).【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0.m).m为正整数.以OP为直径画⊙M.是否存在所描的点在⊙M上.若存在.求m的值.若不存在.说明理由.【分析】【分析问题】根据题意可知:该点的纵坐标为4.利用勾股定理.即可求出该点的横坐标.进而可得出点的坐标.【解决问题】设所描的点在半径为n(n为正整数)的同心圆上.则该点的纵坐标为(n﹣1).利用勾股定理可得出该点的坐标为(﹣.n﹣1)或(.n ﹣1).结合点横、纵坐标间的关系.可得出该点在二次函数y=x2﹣的图象上.进而可证出小明的猜想正确.【深度思考】设该点的坐标为(±.n﹣1).结合⊙M的圆心坐标.利用勾股定理.即可用含n的代数式表示出m的值.再结合m.n均为正整数.即可得出m.n的值.【解答】【分析问题】解:根据题意.可知:所描的点在半径为5的同心圆上时.其纵坐标y=5﹣1=4.∵横坐标x=±=±3.∴点的坐标为(﹣3.4)或(3.4).【解决问题】证明:设所描的点在半径为n(n为正整数)的同心圆上.则该点的纵坐标为(n﹣1).∴该点的横坐标为±=±.∴该点的坐标为(﹣.n﹣1)或(.n﹣1).∵(±)2=2n﹣1.n﹣1=.∴该点在二次函数y=(x2﹣1)=x2﹣的图象上.∴小明的猜想正确.【深度思考】解:设该点的坐标为(±.n﹣1).⊙M的圆心坐标为(0. m).∴=m.∴m====n﹣1+2+.又∵m.n均为正整数.∴n﹣1=1.∴m=1+2+1=4.∴存在所描的点在⊙M上.m的值为4.10.(2022•遂宁)在平面直角坐标系中.如果一个点的横坐标与纵坐标互为相反数.则称该点为“黎点”.例如(﹣1.1).(2022.﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”.(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.当a>1时.求c的取值范围.【分析】(1)设双曲线y=上的“黎点”为(m.﹣m).构建方程求解即可.(2)抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.推出方程ax2﹣7x+c=﹣x有且只有一个解.即ax2﹣6x+c=0.Δ=36﹣4ac=0.可得结论.【解析】(1)设双曲线y=上的“黎点”为(m.﹣m).则有﹣m=.∴m=±3.经检验.m=±3的分式方程的解.∴双曲线y=上的“黎点”为(3.﹣3)或(﹣3.3).(2)∵抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”.∴方程ax2﹣7x+c=﹣x有且只有一个解.即ax2﹣6x+c=0.Δ=36﹣4ac=0.∴ac=9.∴a=.∵a>1.∴0<c<9.11.(2022•兰州)在平面直角坐标系中.P(a.b)是第一象限内一点.给出如下定义:k1=和k2=两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6.2)的“倾斜系数”k的值.(2)①若点P(a.b)的“倾斜系数”k=2.请写出a和b的数量关系.并说明理由.②若点P(a.b)的“倾斜系数”k=2.且a+b=3.求OP的长.(3)如图.边长为2的正方形ABCD沿直线AC:y=x运动.P(a.b)是正方形ABCD上任意一点.且点P的“倾斜系数”k<.请直接写出a的取值范围.【分析】(1)根据“倾斜系数”k的定义直接计算即可.(2)①根据“倾斜系数”k的的定义分情况得出结论即可.②根据“倾斜系数”k的的定义求出P点坐标.进而求出OP的值即可.(3)根据k的取值.分情况求出a的取值范围即可.【解析】(1)由题意知.k==3.即点P(6.2)的“倾斜系数”k的值为3.(2)①∵点P(a.b)的“倾斜系数”k=2.∴=2或=2.即a=2b或b=2a.∴a和b的数量关系为a=2b或b=2a.②由①知.a=2b或b=2a∵a+b=3.∴或.∴OP==.(3)由题意知.当P点与D点重合时.且k=时.a有最小临界值.如下图:连接OD.延长DA交x轴于E.此时=.则.解得a=.当P点与B点重合时.且k=时.a有最大临界值.如下图:连接OB.延长CB交x轴于F.此时=.则=.解得a=3+.综上所述.若点P的“倾斜系数”k<.则+1<a<3+.12.(2022•北京)在平面直角坐标系xOy中.已知点M(a.b).N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度.再向上(b≥0)或向下(b<0)平移|b|个单位长度.得到点P′.点P′关于点N的对称点为Q.称点Q为点P的“对应点”.(1)如图.点M(1.1).点N在线段OM的延长线上.若点P(﹣2.0).点Q 为点P的“对应点”.①在图中画出点Q.②连接PQ.交线段ON于点T.求证:NT=OM.(2)⊙O的半径为1.M是⊙O上一点.点N在线段OM上.且ON=t(<t<1).若P为⊙O外一点.点Q为点P的“对应点”.连接PQ.当点M在⊙O上运动时.直接写出PQ长的最大值与最小值的差(用含t的式子表示).【分析】(1)①根据定义.先求出P'的坐标.从而得出Q的位置.②连接PP'.利用三角形中位线定理得NT=PP'.从而证明结论.(2)连接PO.并延长至S.使OP=OS.延长SQ到T.使ST=OM.由题意知.PP1∥OM.PP1=OM.P1N=NQ.利用三角形中位线定理得QT的长.从而求出SQ的长.在△PQS中.PS﹣QS<PS+QS.则PS的最小值为PS﹣QS.PS的最大值为PS+QS.从而解决问题.【解析】(1)①由题意知.P'(﹣2+1.0+1).∴P'(﹣1.1).如图.点Q即为所求.②连接PP'.∵∠P'PO=∠MOx=45°.∴PP'∥ON.∵P'N=QN.∴PT=QT.∴NT=PP'.∵PP'=OM.∴NT=OM.(2)如图.连接PO.并延长至S.使OP=OS.延长SQ到T.使ST=OM.由题意知.PP1∥OM.PP1=OM.P1N=NQ.∴TQ=2MN.∵MN=OM﹣ON=1﹣t.∴TQ=2﹣2t.∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1.在△PQS中.PS﹣QS<PS+QS.∴PS的最小值为PS﹣QS.PS的最大值为PS+QS.∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.13.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①.在△ABC和△A'B'C'中.AD.A'D'分别是BC和B'C'边上的高线.且AD=A'D'、则△ABC和△A'B'C'是等高三角形.【性质探究】如图①.用S△ABC.S△A'B'C′分别表示△ABC和△A′B′C′的面积.则S△ABC=BC•AD.S△A'B'C′=B′C′•A′D′.∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②.D是△ABC的边BC上的一点.若BD=3.DC=4.则S△ABD:S△ADC=3:4.(2)如图③.在△ABC中.D.E分别是BC和AB边上的点.若BE:AB=1:2.CD:BC=1:3.S△ABC=1.则S△BEC=.S△CDE=.(3)如图③.在△ABC中.D.E分别是BC和AB边上的点.若BE:AB=1:m.CD:BC=1:n.S△ABC=a.则S△CDE=.【分析】(1)根据等高的两三角形面积的比等于底的比.直接求出答案.(2)同(1)的方法即可求出答案.(3)同(1)的方法即可求出答案.【解析】(1)∵BD=3.DC=4.∴S△ABD:S△ADC=BD:DC=3:4.故答案为:3:4.(2)∵BE:AB=1:2.∴S△BEC:S△ABC=BE:AB=1:2.∵S△ABC=1.∴S△BEC=.∵CD:BC=1:3.∴S△CDE:S△BEC=CD:BC=1:3.∴S△CDE=S△BEC=×=.故答案为:..(3)∵BE:AB=1:m.∴S△BEC:S△ABC=BE:AB=1:m.∵S△ABC=a.∴S△BEC=S△ABC=.∵CD:BC=1:n.∴S△CDE:S△BEC=CD:BC=1:n.∴S△CDE=S△BEC=•=.故答案为:.14.(2022•常州)在四边形ABCD中.O是边BC上的一点.若△OAB≌△OCD.则点O叫做该四边形的“等形点”.(1)正方形不存在“等形点”(填“存在”或“不存在”).(2)如图.在四边形ABCD中.边BC上的点O是四边形ABCD的“等形点”.已知CD=4.OA=5.BC=12.连接AC.求AC的长.(3)在四边形EFGH中.EH∥FG.若边FG上的点O是四边形EFGH的“等形点”.求的值.【分析】(1)根据“等形点”的定义可知△OAB≌△OCD.则∠OAB=∠C=90°.而O是边BC上的一点.从而得出正方形不存在“等形点”.(2)作AH⊥BO于H.由△OAB≌△OCD.得AB=CD=4.OA=OC=5.设OH=x.则BH=7﹣x.由勾股定理得.(4)2﹣(7﹣x)2=52﹣x2.求出x的值.再利用勾股定理求出AC的长即可.(3)根据“等形点”的定义可得△OEF≌△OGH.则∠EOF=∠HOG.OE=OG.∠OGH=∠OEF.再由平行线性质得OE=OH.从而推出OE=OH=OG.从而解决问题.【解析】(1)∵四边形ABCD是正方形.∴∠C=90°.∵△OAB≌△OCD.∴∠OAB=∠C=90°.∵O是边BC上的一点.∴正方形不存在“等形点”.故答案为:不存在.(2)作AH⊥BO于H.∵边BC上的点O是四边形ABCD的“等形点”.∴△OAB≌△OCD.∴AB=CD=4.OA=OC=5.∵BC=12.∴BO=7.设OH=x.则BH=7﹣x.由勾股定理得.(4)2﹣(7﹣x)2=52﹣x2.解得.x=3.∴OH=3.∴AH=4.∴CH=8.在Rt△CHA中.AC===4.(3)如图.∵边FG上的点O是四边形EFGH的“等形点”.∴△OEF≌△OGH.∴∠EOF=∠HOG.OE=OG.∠OGH=∠OEF.∵EH∥FG.∴∠HEO=∠EOF.∠EHO=∠HOG.∴∠HEO=∠EHO.∴OE=OH.∴OH=OG.∴OE=OF.∴=1.15.(2022•青海)两个顶角相等的等腰三角形.如果具有公共的顶角的顶点.并把它们的底角顶点连接起来.则形成一组全等的三角形.把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1.若△ABC和△ADE是顶角相等的等腰三角形.BC.DE分别是底边.求证:BD=CE.(2)解决问题:如图 2.若△ACB和△DCE均为等腰直角三角形.∠ACB=∠DCE=90°.点A.D.E在同一条直线上.CM为△DCE中DE边上的高.连接BE.请判断∠AEB的度数及线段CM.AE.BE之间的数量关系并说明理由.【分析】(1)根据△ABC和△ADE是顶角相等的等腰三角形.证明△ABD≌△ACE(SAS).即可得BD=CE.(2)根据△ACB和△DCE均为等腰直角三角形.可得△ACD≌△BCE(SAS).即有AD=BE.∠ADC=∠BEC.从而可得∠BEC=∠ADC=135°.即知∠AEB =∠BEC﹣∠CED=90°.由CD=CE.CM⊥DE.∠DCE=90°.可得DM=ME =CM.故AE=AD+DE=BE+2CM.【解答】(1)证明:∵△ABC和△ADE是顶角相等的等腰三角形.∴AB=AC.AD=AE.∠BAC=∠DAE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.∴△ABD≌△ACE(SAS).∴BD=CE.(2)解:∠AEB=90°.AE=BE+2CM.理由如下:如图:∵△ACB和△DCE均为等腰直角三角形.∴AC=BC.DC=EC.∠ACB=90°=∠DCE.∴∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE.∠ADC=∠BEC.∵△CDE是等腰直角三角形.∴∠CDE=∠CED=45°.∴∠ADC=180°﹣∠CDE=135°.∴∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°.∵CD=CE.CM⊥DE.∴DM=ME.∵∠DCE=90°.∴DM=ME=CM.∴DE=2CM.∴AE=AD+DE=BE+2CM.16.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1).用直尺和圆规作AB上的一点P.使AP:AB=1:.”小东的作法是:如图2.以AB为斜边作等腰直角三角形ABC.再以点A为圆心.AC长为半径作弧.交线段AB于点P.点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP.点D为线段AC上的动点.点E在AB的上方.构造△DPE.使得△DPE∽△CPB.①如图3.当点D运动到点A时.求∠CPE的度数.②如图4.DE分别交CP.CB于点M.N.当点D为线段AC的“趣点”时(CD<AD).猜想:点N是否为线段ME的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明.再利用AC=AP.即可得出结论.(2)①由题意可得:∠CAB=∠B=45°.∠ACB=90°.AC=AP=BC.再求解∠ACP=∠APC=67.5°.∠CPB=112.5°.证明∠DPE=∠CPB=112.5°.从而可得答案.②先证明△ADP∽△ACB.可得∠APD=45°.DP∥CB.再证明MP=MD=MC =MN.∠EMP=45°.∠MPE=90°.从而可得出结论.【解析】(1)赞同.理由如下:∵△ABC是等腰直角三角形.∴AC=BC.∠A=∠B=45°.∴cos45°=.∵AC=AP.∴.∴点P为线段AB的“趣点”.(2)①由题意得:∠CAB=∠B=45°.∠ACB=90°.AC=AP=BC.∴=67.5°.∴∠BCP=90°﹣67.5°=22.5°.∴∠CPB=180°﹣45°﹣22.5°=112.5°.∵△DPE∽△CPB.D.A重合.∴∠DPE=∠CPB=112.5°.∴∠CPE=∠DPE+∠CPB﹣180°=45°.②点N是线段ME的趣点.理由如下:当点D为线段AC的趣点时(CD<AD).∴.∵AC=AP.∴.∵.∠A=∠A.∴△ADP∽△ACB.∴∠ADP=∠ACB=90°.∴∠APD=45°.DP∥CB.∴∠DPC=∠PCB=22.5°=∠PDE.∴DM=PM.∴∠MDC=∠MCD=90°﹣22.5°=67.5°.∴MD=MC.同理可得MC=MN.∴MP=MD=MC=MN.∵∠MDP=∠MPD=22.5°.∠E=∠B=45°.∴∠EMP=45°.∠MPE=90°.∴=.∴点N是线段ME的“趣点”.17.(2022•兰州)如图.在Rt△ABC中.∠ACB=90°.AC=3cm.BC=4cm.M为AB 边上一动点.BN⊥CM.垂足为N.设A.M两点间的距离为xcm(0≤x≤5).B.N 两点间的距离为ycm(当点M和B点重合时.B.N两点间的距离为0).小明根据学习函数的经验.对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程.请补充完整.(1)列表:下表的已知数据是根据A.M两点间的距离x进行取点、画图、测量.分别得到了y与x的几组对应值:x/cm00.51 1.5 1.82 2.53 3.54 4.55 y/cm4 3.96 3.79 3.47a 2.99 2.40 1.79 1.230.740.330请你通过计算.补全表格:a= 3.2.(2)描点、连线:在平面直角坐标系中.描出表中各组数值所对应的点(x.y).并画出函数y关于x的图象.(3)探究性质:随着自变量x的不断增大.函数y的变化趋势:y随x的增大而减小.(4)解决问题:当BN=2AM时.AM的长度大约是 1.67cm.(结果保留两位小数)【分析】(1)先求出AB边上的高.进而求出AM'.判断出点M与M'重合.即可得出答案.(2)先描点.再连线.即可画出图象.(3)根据图象直接得出结论.(4)利用表格和图象估算出AM的长度.【解析】(1)如图.在Rt△ABC中.AC=3.BC=4.根据勾股定理得.AC=5.过点C作CM'⊥AB于M.∴S△ABC=AC•BC=AB•CM'.∴CM'=.在Rt△ACM'中.根据勾股定理得.AM'==1.8.当x=1.8时.点M与点M'重合.∴CM⊥AB.∵BN⊥CM.∴点M.N重合.∴a=BN=BM=AB﹣AM=3.2.故答案为:3.2.(2)如图所示.(3)由图象知.y随x的增大而减小.故答案为:y随x的增大而减小.(3)借助表格和图象得.当BN=2AM时.AM的长度大约是1.67cm.故答案为:1.67.18.(2022•深圳)二次函数y=2x2.先向上平移6个单位.再向右平移3个单位.用光滑的曲线画在平面直角坐标系上.y=2x2y=2(x﹣3)2+6(0.0)(3.m)(1.2)(4.8)(2.8)(5.14)(﹣1.2)(2.8)(﹣2.8)(1.14)(1)m的值为6.(2)在坐标系中画出平移后的图象并写出y=﹣x2+5与y=x2的交点坐标.(3)点P(x1.y1).Q(x2.y2)在新的函数图象上.且P.Q两点均在对称轴同一侧.若y1>y2.则x1<或>x2.(填不等号)【分析】(1)根据平移的性质分析对应点的坐标.(2)利用描点法画函数图象.联立方程组求得两函数的交点坐标.(3)结合二次函数图象的性质分析求解.【解析】(1)将(0.0)先向上平移6个单位.再向右平移3个单位后对应点的坐标为(3.6).∴m=6.故答案为:6.(2)平移后的函数图象如图:联立方程组.解得.∴y=﹣x2+5与y=x2的交点坐标为(.).(﹣.).(3)∵点P(x1.y1).Q(x2.y2)在新的函数图象上.且P.Q两点均在对称轴同一侧.当P.Q两点同在对称轴左侧时.若y1>y2.则x1<x2.当P.Q两点同在对称轴右侧时.若y1>y2.则x1>x2.故答案为:<或>.19.(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展.小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据.分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度.横轴表示年度.纵轴表示年产量).如图.小亮认为.可以从y=kx+b(k>0).y=(m>0).y=﹣0.1x2+ax+c中选择适当的函数模型.模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由.(2)请从小亮提供的函数模型中.选择适当的模型分别模拟①号田和②号田的年产量变化趋势.并求出函数表达式.(3)根据(2)中你选择的函数模型.请预测①号田和②号田总年产量在哪一年最大?最大是多少?【分析】(1)由当m>0时.y=的性质可得答案.(2)观察①号田和②号田的年产量变化趋势可知.①号田为y=kx+b(k>0).②号田为y=﹣0.1x2+ax+c.用待定系数法可得模拟①号田的函数表达式为y=0.5x+1.模拟①号田的函数表达式为y=﹣0.1x2+x+1.(3)设①号田和②号田总年产量为w吨.w=0.5x+1+(﹣0.1x2+x+1)=﹣0.1x2+1.5x+2=﹣0.1(x﹣7.5)2+7.625.根据二次函数性质可得答案.【解析】(1)认同.理由是:当m>0时.y=中.y随x的增大而减小.而从图中描点可知.x增大y随之增大.故不能选y=(m>0).(2)观察①号田和②号田的年产量变化趋势可知.①号田为y=kx+b(k>0).②号田为y=﹣0.1x2+ax+c.把(1.1.5).(2.2.0)代入y=kx+b得:.解得.∴y=0.5x+1.把(1.1.9).(2.2.6)代入y=﹣0.1x2+ax+c得:.解得.∴y=﹣0.1x2+x+1.答:模拟①号田的函数表达式为y=0.5x+1.模拟②号田的函数表达式为y=﹣0.1x2+x+1.(3)设①号田和②号田总年产量为w吨.由(2)知.w=0.5x+1+(﹣0.1x2+x+1)=﹣0.1x2+1.5x+2=﹣0.1(x﹣7.5)2+7.625.∵﹣0.1<0.抛物线对称轴为直线x=7.5.而x为整数.∴当x=7或8时.w取最大值.最大值为7.6.答:①号田和②号田总年产量在2023年或2024年最大.最大是7.6吨.20.(2022•潍坊)为落实“双减”.老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1.﹣1).且不经过第一象限.写出满足这些条件的一个函数表达式.【观察发现】请完成作业.并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同.请举例说明.【概括表达】小博士认为这个作业的答案太多.老师不方便批阅.于是探究了二次函数y=ax2+bx+c的图象与系数a.b.c的关系.得出了提高老师作业批阅效率的方法.请你探究这个方法.写出探究过程.【分析】由题意写出一个符合条件的函数解析式即可.【观察发现】画出一个符合条件的函数图象即可.【思考交流】由题意可知抛物线的对称轴可以在y轴的左侧.也可以在y轴的右侧.或者是y轴.抛物线的图象一定在x轴的下方.【概括表达】设经过点(﹣1.﹣1)的函数解析式为y=a(x+1)2+m(x+1)﹣1.则b=2a+m.c=a+m﹣1.由a<0.c≤0.a﹣b+c=﹣1.可得b<1.【解析】y=﹣x2(答案不为唯一).【观察发现】如图:【思考交流】∵抛物线的对称轴为x=﹣.a<0.∴抛物线的对称轴可以在y轴的左侧.也可以在y轴的右侧.或者是y轴.例如:y=﹣x2.∴小亮的说法不正确.∵抛物线不经过第一象限.∴抛物线的图象一定在x轴的下方.∴小莹的说法不正确.【概括表达】设经过点(﹣1.﹣1)的函数解析式为y=a(x+1)2+m(x+1)﹣1.∴y=ax2+(2a+m)x+a+m﹣1.∵y=ax2+bx+c.∴b=2a+m.c=a+m﹣1.∵二次函数的图象不经过第一象限.∴a<0.c≤0.∵经过点(﹣1.﹣1).∴a﹣b+c=﹣1.∴a+m﹣1≤0.∴a+m≤1.∴b=2a+m=a+a+m≤a+1.∴b<1.综上所述:a<0.b<1.c≤0且a﹣b+c=﹣1.21.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂).小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm).确定支点O.并用细麻绳固定.在支点O左侧2cm的A处固定一个金属吊钩.作为秤钩.第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中.把重物挂在秤钩上.秤砣挂在支点O右侧的B处.秤杆平衡.就能称得重物的质量.当重物的质量变化时.OB的长度随之变化.设重物的质量为xkg.OB的长为ycm.写出y关于x的函数解析式.若0<y<48.求x的取值范围.(2)调换秤砣与重物的位置.把秤砣挂在秤钩上.重物挂在支点O右侧的B处.使秤杆平衡.如图2.设重物的质量为xkg.OB的长为ycm.写出y关于x的函数解析式.完成下表.画出该函数的图象.x/kg……0.250.5124……y/cm……421……【分析】(1)根据阻力×阻力臂=动力×动力臂解答即可.(2)根据阻力×阻力臂=动力×动力臂求出解析式.然后根据列表、描点、连线的步骤解答.【解析】(1)∵阻力×阻力臂=动力×动力臂.∴重物×OA=秤砣×OB.∵OA=2cm.重物的质量为xkg.OB的长为ycm.秤砣为0.5kg.∴2x=0.5y.∴y=4x.∵4>0.∴y随x的增大而增大.∵当y=0时.x=0.当y=48时.x=12.∴0<x<12.(2)∵阻力×阻力臂=动力×动力臂.∴秤砣×OA=重物×OB.∵OA=2cm.重物的质量为xkg.OB的长为ycm.秤砣为0.5kg.∴2×0.5=xy.∴y=.当x=0.25时.y==4.当x=0.5时.y==2.当x=1时.y=1.当x=2时.y=.当x=4时.y=.故答案为:4.2.1...作函数图象如图:22.(2022•赤峰)阅读下列材料定义运算:min|a.b|.当a≥b时.min|a.b|=b.当a<b时.min|a.b|=a.例如:min|﹣1.3|=﹣1.min|﹣1.﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0.2|=1.②min|﹣.﹣4|=﹣4.(2)如图.已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时.min|.﹣2x+b|=(x+1)(x﹣3)﹣x2.求这两个函数的解析式.【分析】(1)根据定义运算的法则解答即可.(2)根据反比例函数和一次函数图象的性质解答即可.【解析】(1)由题意可知:①min|(﹣3)0.2|=1.②min|﹣.﹣4|=﹣4.故答案为:1.﹣4.(2)当﹣2<x<0时.min|.﹣2x+b|=(x+1)(x﹣3)﹣x2=﹣2x﹣3.∵一次函数y2=﹣2x+b.∴b=﹣3.∴y2=﹣2x﹣3.当x=﹣2时.y=1.∴A(﹣2.1)将A点代入y1=中.得k=﹣2.∴y1=﹣.23.(2022•赤峰)【生活情境】为美化校园环境.某学校根据地形情况.要对景观带中一个长AD=4m.宽AB=1m的长方形水池ABCD进行加长改造(如图①.改造后的水池ABNM仍为长方形.以下简称水池1).同时.再建造一个周长为12m的矩形水池EFGH(如图②.以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0).加长后水池1的总面积为y1(m2).则y1关于x的函数解析式为:y1=x+4(x>0).设水池2的边EF的长为x(m)(0<x<6).面积为y2(m2).则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6).上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小.则EF长度的取值范围是3≤x<6(可省略单位).水池2面积的最大值是9m2.(2)在图③字母标注的点中.表示两个水池面积相等的点是C.E.此时的x (m)值是1或4.(3)当水池1的面积大于水池2的面积时.x(m)的取值范围是0<x<1或4<x<6.(4)在1<x<4范围内.求两个水池面积差的最大值和此时x的值.(5)假设水池ABCD的边AD的长度为b(m).其他条件不变(这个加长改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学创新型与新定义型压轴题解析
近年来,各地中考数学试题不断呈现出新颖、灵活的特征,特别是在压轴题中,更富有挑战性和创新理念。

本节例举两例,分析在解决此类问题过程中的思路与方法。

一、几何综合探究类阅读理解问题
【例题1】如图1,对角线互相垂直的四边形叫做垂美四边形。

(1)概念理解:如图2,在四边形ABCD 中,AB = AD , CB = CD , 问四边形ABCD 是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形ABCD 的对角线AC、BD 交于点O,AC⊥BD。

试证明:AB2 + CD2 = AD2 + BC2;
(3)解决问题:如图3,分别以Rt△ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE,连接CE、BG、GE。

已知AC = 4 , AB = 5 , 求GE 的长。

【解析】
(1)四边形ABCD 是垂美四边形。

理由如下:
∵AB = AD ,
∴点A 在线段BD 的垂直平分线上,
∵CB = CD ,
∴点C 在线段BD 的垂直平分线上,
∴直线AC 是线段BD 的垂直平分线,
∴AC⊥BD,即四边形ABCD 是垂美四边形;(2)如图1,
∵AC⊥BD,
∴∠AOD = ∠AOB = ∠BOC = ∠COD = 90°,
由勾股定理得:
AB2 + CD2 = AO2 + BO2 + DO2 + CO2 = AD2 + BC2,(3)如图3,连接CG、BE,
∵∠CAG = ∠BAE = 90°,
∴∠CAG + ∠BAC = ∠BAE + ∠BAC,即∠GAB = ∠CAE,在△GAB 和△CAE 中,
AG = AC , ∠GAB = ∠CAE,AB = AE,
∴△GAB ≌△CAE(SAS),
∴∠ABG = ∠AEC,又∠AEC + ∠AME = 90°,
∴∠ABG + ∠AME = 90°,即CE⊥BG,
∴四边形CGEB 是垂美四边形,
由(2)得,CG2 + BE2 = CB2 + GE2,
∵AC = 4 , AB = 5 ,
∴BC = 3 , CG = 4√2 , BE = 5√2 ,
∴GE2 = CG2 + BE2 - CB2 = 73 ,
∴GE = √73 .
【归纳总结】
(1)根据线段垂直平分线的判定定理证明即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)根据垂美四边形的性质,勾股定理、结合(2)的结论计算。

本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键。

二、抛物线新定义创新型压轴题问题
【例题2】我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.
(1)判断抛物线y=x2 与y=﹣x2 是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;
(2)抛物线y=x2﹣2x 与y=x2﹣2mx﹣3 是“共点抛物线”,且“共点”在x 轴上,求抛物线y=x2﹣2mx﹣3 的函数关系式;
(3)抛物线L1:y=﹣x2+2x+1 的图象如图所示,L1 与L2:y=﹣2x2 + mx 是“共点抛物线”;
①求m 的值;
②点P 是x 轴负半轴上一点,设抛物线L1、L2 的“共点”为Q,作点P 关于点Q 的对称点P′,以PP′为对角线作正方形PMP′N,当点M 或点N 落在抛物线L1 上时,直接写出点P 的坐标.
【解析】解:
(1)是,(0,0),
∵x2=﹣x2,
∴x=0;
(2)令y=x2﹣2x=0,
解得x1=0,x2=2,
当x=0 时,﹣3 ≠0 ,
∴(0,0)不是共点,
当x=2 时,4﹣4m﹣3=0 ,
解得m=1/4 ,
∴y=x2 - 1/2 x - 3 ;
(3)
①若两个抛物线是“共点抛物线”,
则方程﹣x2+2x+1=﹣2x2+mx 有两个相等的实数根,即x2+(2﹣m)x+1=0 有两个相等的实数根,
∴△=(2﹣m)2﹣4=0,
解得m=0 或m=4,
∴m 的值为0 或4.
②P(﹣3,0)或P(﹣5,0)或P(﹣13,0),设点P(a,0),
当m=0 时,Q(﹣1,﹣2),
∴P'(﹣2﹣a,﹣4),
∵PM=MP',∠A=∠B,∠AMP=∠BP'M,
∴△APM≌△BMP'(AAS),
设M(x,y),N(a,b),
∴可得M(1,﹣3﹣a),N(﹣3,a﹣1),
分别代入L1 解析式可得:a1=﹣5,a2=﹣13,当m=4 时,Q(1,2),
∴P'(2﹣a,4),
∵PM=MP',∠A=∠B,∠AMP=∠BP'M,
∴△APM≌△BMP'(AAS),
设M(p,q),N(x,y),
∴可得M(﹣2,4﹣a),N(3,1+a),
分别代入L1 解析式可得:a1=﹣3,a2=11(舍),∴P(﹣3,0)或P(﹣5,0)或P(﹣13,0).。

相关文档
最新文档