高等数学习题详解-第1章 函数-推荐下载
高等数学 第1章 函数与极限 练习册 解答(10月19修改)
时,就有
2. 极 限 l i m f (x ) A的 定 义 是 : 对 于 0 , 存 在 X 0 , 当 x
f x A .
时,就有
3. 对 于 任 意 的 正 数 , 存 在 正 数 =
,当
时 5x 2 12 , 因 此
lim (5x 2) 12.
x2
解答:
1、当 0 x x0 时; 2、 x X 时;
1.设
xn
n n
1 ,则当 1
n
大于 正整 数
N
时, | xn 1| 104 , 对于任意正数 ,
当 n 大于正整数 N
时,
|
xn
1|
,所以
lim
n
xn
1.
2. 对于任意正数 , 存在正整数 N
cos n
, 当 n N 时,
2 0 , 所以
n
cos n lim 2 0 . n n
3. 设 xn 为任一数列, 又设对于任意正数 , 存在正整数 N1, N2 , 当 n N1 时,
第 1 章 函数与极限
V.同步练习
第 1 章 函数、极限与连续
1.1 函数及其性质
一、填空题
1.已知 f x ax2 bx 5 且 f x 1 f x 8x 3 , 则 a
;b
;
2. y cos 2x 1 的周期为
;
3.
函数
f
(x)
sin
1 x
,
x
0;
的定义域为
; 值域为
.
解. 设圆锥的半径与高分别为r, h , 则 2 r R 2 , 即 r R 2 , 从而
2
h
R2 r2
高数 第一章 函数 习题详解
第 一 章 函 数习 题 1.11.用区间表示下列点集: (1) {}0x x ≠; (2) {}45x x -<; (3) {}10x x +>; (4) {}2560x x x ++<.解 (1) 由于实数全体为),(-∞+∞,因此 {}0(,0)(0,)x x ≠=-∞+∞.(2) 由54<-x ,有91<<-x ,因此 {}45(1,9)xx -<=-. (3) 由01>+x ,有1->x 或1-<x ,因此 {}10(,1)(1,)x x +>=-∞--+∞. (4) 由0652<++x x ,有32x -<<-,因此{}2560(3,2)x xx ++<=--. 2.求下列函数的定义域:(1) 1y x =-(2) 31arcsin 2ln()2x y x -=+; (3) , 11, 1x x y x x >⎧=⎨-≤⎩. 解 (1) 要使函数有定义, 必须⎩⎨⎧≥-≠0102x x ,即[1,0)(0,1]x ∈-,所以函数的定义域为[1,0)(0,1]x ∈-.(2) 使得函数有意义的数集满足以下不等式组:2201021123112x x x x x ⎧+-≥⎪⎪+>⎪⎪⎨+≠⎪⎪-⎪≤⎪⎩, 解之,得121212113x x x x -≤≤⎧⎪⎪>-⎪⎪⎨≠⎪⎪⎪-≤≤⎪⎩, 即1132112x x ⎧-≤<⎪⎪⎨⎪<≤⎪⎩, 所以函数的定义域为111,,1322⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. (3) 分段函数的定义域为各段函数定义域的并,所以函数的定义域为[1,)-+∞.3.设1, 01()2, 12x f x x ≤≤⎧=⎨-<≤⎩,求下列函数的定义域:(1) (3)f x +; (2) (2)f x .解 函数()f x 的定义域为02x ≤≤,所以(1) (3)f x +的定义域为032x ≤+≤,即31x -≤≤-.(2) (2)f x 的定义域为022x ≤≤,即01x ≤≤.4.求下列函数的值:(1) 1()2f x x =+,求()()(2),(2),f x h f x f f h h+-+,其中h 为常数且0,4h ≠-; (2) 1, 1()23, 1x x f x x x +<⎧=⎨+>⎩,求(0),(1.5),(1)f f f h +,其中h 为常数.解 (1) 当2x =时,11(2)224f ==+; 当2x h =+时, 11(2)224f h h h +==+++; 11()()122(2)(2)f x h f x x h x h h x h x -+-+++==+++. (2) 当0x =时,(0)011f =+=;当 1.5x =时,(1.5)2 1.536f =⨯+=;当11x h =+<,即0h <时,(1)2f h h +=+;当11x h =+>,即0h >时,(1)25f h h +=+.5.下列各题的两个函数是否相同? 为什么?(1) y x =与y =;(2) y =y x =;(3) y =y =; (4) 1y =与22cos sin y x x =+. 解 (1) 不相同,因为对应法则不同,所以不是同一函数.(2) 不相同,因为y x ===,它们对应法则不同,所以不是同一函数.(3) 相同,因为y =y =的定义域都是一切实数,且对应法则相同, 所以是相同函数.(4) 相同,因为对于任意),(+∞-∞∈x ,都有22cos sin 1x x +=,所以是相同函数.6.判断下列函数的单调性:(1) 21y x =-; (2) ln y x x =+.解 (1) 因为2y x =在(,0)-∞上是减函数,而在(0,)+∞上是增函数,所以21y x=-在(,0)-∞上是增函数,而在(0,)+∞上是减函数.(2) 因为函数()ln y f x x x ==+的定义域为(0,)+∞,任取12,(0,)x x ∈+∞,且21x x <,则121122()()ln ln f x f x x x x x -=+--1122ln 0x x x x =-+<, 即12()()f x f x <,故ln y x x =+在(0,)+∞上是单增函数.7.证明函数21()25f x x x =++在其定义域内是有界的.证 因为2225(1)44x x x ++=++≥,所以2110254x x <≤++, 故函数21()25f x x x =++在其定义域内是有界的.8.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数?(1) 233y x x =-; (2) (1)(1)y x x x =-+;(3) sin cos 1y x x =-+; (4) 2x xa a y -+=.解 (1) 23()3y f x x x ==-,其定义域为(,)-∞+∞,是对称区间,又因为2323()3()()3f x x x x x -=---=+,()()f x f x -≠,且()()f x f x -≠-,所以()f x 既非偶函数又非奇函数.(2) ()(1)(1)y f x x x x ==-+,其定义域为(,)-∞+∞,是对称区间,因为()([()1][()1]f x x x x -=----+(1)(1)()x x x f x =-+-=-,所以()f x 为奇函数.(3) ()sin cos 1y f x x x ==-+,其定义域为(,)-∞+∞,是对称区间,因为()sin()cos()1sin cos 1f x x x x x -=---+=--+,()()f x f x -≠,且()()f x f x -≠-,所以()f x 既非偶函数又非奇函数.(4) ()2x xa a y f x -+==,其定义域为(,)-∞+∞,是对称区间,因为()()2xxa a f x f x -+-==,所以()f x 为偶函数.9.下列函数中哪些是周期函数?对于周期函数,指出其周期:(1) cos(2)y x =-; (2) 1sin y x π=+;(3) 2sin y x x =; (4) cos3y x =.解 (1 ) 是周期函数,周期为π2.(2) 是周期函数,周期为2.(3) 不是周期函数.(4) 是周期函数,周期为3π.10.当k 为何值时,函数2()22x kf x kx kx +=++的定义域是(,)-∞+∞?解 当0k =时,()2xf x =,此时函数的定义域为(,)-∞+∞;当0k ≠时,只要2220kx kx ++≠, 即2(2)420k k ∆=-⨯<,也就是当02k <<时,函数的定义域为(,)-∞+∞;故当02k ≤<时,函数2()22x kf x kx kx +=++的定义域为(,)-∞+∞.习 题 1.21.已知()1xf x x =-,求(())f f x ,((()))f f f x .解 11(())(1,)12211xx x f f x x x x x-==≠≠---; (())1112((()))(1,,)1(())1323112xf f x x x f f f x x x x x f f x x x-===≠≠≠----.2.已知1,0()0,01,0x f x x x <⎧⎪==⎨⎪->⎩, 求2(1)(1)f x f x --,.解 1,10(1)0,101,10x f x x x -<⎧⎪-=-=⎨⎪-->⎩,即 1,1(1)0,11,1xf x x x <⎧⎪-==⎨⎪->⎩;22221,10(1)0,101,10x f x x x ⎧-<⎪-=-=⎨⎪-->⎩,即 21,1(1)0,11,1x f x x x ⎧<⎪-==⎨⎪->⎩.3.设2(21)f x x -=,求()f x .解 令21t x =-,则1(1)2x t =+,于是21()(1)4f t t =+,即21()(1)4f x x =+.4.设()f x 满足2()(1)x f x f x e +-=,求()f x .解 令1t x =-,则1x t =-,代入原方程得12(1)()t f t f t e --+=,即12(1)()x f x f x e --+=.该方程与原方程联立,解得12()3x xe ef x --=.5.下列函数是哪些函数复合而成的?(1) sin 2y x =;(2) y = (3) 23(1ln )y x =+; (4) 2sin x y a =.解 (1) sin ,2y u u x ==.(2)arctan ,cos ,,2t y u v v w w e t x ====.(3) 32,1,ln y u u v v x ==+=.(4) 2,,sin u y a u v v x ===.6.设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,求(())f g x 和(())g f x .解 将()f x 直接代入()x g x e =,有()1,1(())1,1,1f x e xg f x e x e x -⎧<⎪===⎨⎪>⎩,将()x g x e =直接代入()f x ,有1,1(())0,11,1x x x e f g x e e ⎧<⎪⎪==⎨⎪->⎪⎩.即1,0(())0,01,0xf g x x x <⎧⎪==⎨⎪->⎩.7.求下列函数的反函数: (1) 11xy x -=+; (2) 2sin3y x =;(3) x x x x e e y e e ---=+; (4) 2, 1,142,4x x xy x x x <⎧⎪=≤≤⎨⎪>⎩;(5) 21(1), 0121(2), 123x x y x x ⎧+≤<⎪⎪=⎨⎪+≤≤⎪⎩.解 (1) 由11x y x -=+,解出11y x y-=+,得反函数11x y x -=+(1)x ≠-. (2) 由2sin3y x =,解出)22(2arcsin 31≤≤-=y y x ,得反函数 )22(2arcsin 31≤≤-=x x y . (3) 由x x x x e e y e e ---=+,解出11ln 21y x y +=-,得反函数11ln (1,1)21x y x x+=∈--. (4) 由2, 1,142,4x x x y x x x <⎧⎪=≤≤⎨⎪>⎩,解出2, 1 116log , 16y y x y y y <⎧=≤≤>⎩,得反函数2, 1 116log , 16x x y x x x <⎧=≤≤>⎩.(5) 当01x ≤<时,21(1)2y x =+的值域为112y ≤<,此时x =当12x ≤≤时,1(2)3y x =+的值域为413y ≤≤,此时32x y =-. 于是112432, 13y x y y ≤<=⎨⎪-≤≤⎪⎩, 故反函数为112432, 13x y x x ≤<=⎨⎪-≤≤⎪⎩.8.指出下列函数是由哪些基本初等函数复合或四则运算而成:(1) arcsin 4(1)x y e=+ ;(2) 2cos y x = (3) 2()1x y x=+;(4) y =解 (1) 4,1,arcsin v y u u e v x ==+=.(2) 2,cos ,,w y x u u v v e w ====(3) 2,1x y u u x==+.(4) tan ,x y u v v e ==.9.下列函数中哪些是初等函数?(1) cos y x = (2) y =;(3) 21, 12cos sin ,24x x y x x x ⎧+-<≤=⎨+<≤⎩; (4) sin ln 2y x x =+.解 (3) 这个分段函数不能用基本初等函数复合或四则运算得到,因此它不是初等函数.而(1),(2),(4)均可由基本初等函数经复合或四则运算得到,因此是初等函数.10.设函数3()f x x x =-,()sin 2x x ϕ=,求(())12f πϕ,(((1)))f f f .解 33113(())()()()()121212228f πππϕϕϕ=-=-=-; (((1)))((0))(0)0f f f f f f ===.习 题 1.31.火车站行李收费规定如下:当行李不超过50千克时,按每千克0.15元收费,当超出50千克时,超重部分按每千克0.25元收费,试建立行李收费()f x (元)与行李重量x (千克)之间的函数关系.解 依题意,函数关系为0.15, 050()0.15500.25(50), 50x x f x x x <≤⎧=⎨⨯+->⎩, 则0.15, 050()7.50.25(50), 50x x f x x x <≤⎧=⎨+->⎩. 2.某商品的总成本函数为2161009C Q Q =++, 产品销售价格P 与产量Q 的关系为1463P Q =-,试将产品全部销售出去后获得的总利润π表示为产量Q 的函数.解 商品总收益函数为211()()(46)4633R R Q QP Q Q Q Q Q ===-=-+. 由于总成本函数为2161009C Q Q =++, 将产品全部销售出去后获得的总利润函数为()()()Q R Q C Q ππ==-221146(6100)39Q Q Q Q =-+-++ 24401009Q Q =-+-. 由于销售价格0P >,即14603Q ->,解得0138Q <<.故利润函数的定义域为0138Q <<.3.某商品的定价为5元/件,每月可销售出1000件,若每件售价降低0.01元,则可多售出10件,试求线性需求函数()Q P ,并求收益R 与多售出件数x 的函数关系式.解 设商品价格为P ,Q a bP =-,由题意知100051010 4.99a b a b =-⎧⎨=-⎩, 即60001000a b =⎧⎨=⎩. 故60001000Q P =-.因为销售量Q 与多售出件数x 的关系是1000Q x =+,所以600010001000P x -=+,解得50.001P x =-,从而收益R 与多售出件数x 的函数关系式为2(50.001)(1000)500040.001R PQ x x x x ==-+=+-.4.收音机每台销售为90元,成本为60元,厂方为了鼓励销售商大量采购,决定凡是订购量超过100台的,每多订购1台,售价就降低1分,但最低价为每台75元.(1) 将每台的实际售价P 表示为订购量x 的函数;(2) 将厂方所获的利润π表示成订购量x 的函数;(3) 某一商行订购了1000台,厂方可获利润多少?解 (1) 90, 0100()90(100)0.01, 100160075, 1600x P x x x x ≤≤⎧⎪=--⨯<<⎨⎪≥⎩;(2) 230, 0100()(60)310.01, 100160015, 1600x x x P x x x x x x π≤≤⎧⎪=-=-<<⎨⎪≥⎩;(3) (1000)21000π=元.5.已知需求函数和供给函数分别为14 1.545d s Q P Q P =-=-,,求: (1) 市场均衡价格;(2) 若每销售一单位商品,政府征税1元, 此时的均衡价格. 解 (1) 因为s d Q Q =,则14 1.545P P -=-,解得 3.45P ≈(元); (2) 14 1.54(1)5P P -=--,得 4.18P ≈(元).6.某手表厂生产一只手表可变成本为15元,每天的固定成本为2000元,如果每只手表出厂价为20元,为了不亏本,该厂每天至少应生产多少手表.解 设手表产量为Q ,成本为C ,收益为R ,则Q R Q C 20,200015=+=,利润为20005-=-Q C R ,令020005≥-=-Q C R ,得400≥Q ,即每天至少生产400只.7.某产品年产量为Q 台,每台售价180元,当年产量在300台以内时,可以全部售出,当年产量超过300台时,经广告宣传后可以多销售200台,超出部分每台的平均广告费20元,生产再多一些,即使广告宣传本年内也就售不出去,试将本年的销售收入R 表示为年产量Q 的函数.解 由题意知,当300Q ≤时,收入180R Q =元;当300500Q <≤时,收入300180160(300)6000160R Q Q =⨯+-=+元; 当500Q >时,收入30018020016020(500)9600020R Q Q =⨯+⨯--=-元; 即本年销售收入R 为年产量x 的函数为180, 3006000160, 3005009600020, 500Q Q R Q Q Q Q ≤⎧⎪=+<≤⎨⎪->⎩.总 习 题 一1.填空题: (1) 若1()1f x x =-,则1()()f f x = ; (2)设1()ln(2)f x x =-的定义域是 ;(3) 设函数()f x 的定义域为(1,2],则函数2(1)f x +的定义域为 ;(4) 已知2()x f x e =,(())1f x x ϕ=-,且()0x ϕ>,则()x ϕ= ,其定义域为 ;(5) 已知()f x 为偶函数,且0x >时,()(1)f x x x =-,则0x <时,()f x 的表达式为 ;(6) 已知221,0()1,0x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则()()f x f x +-= . 解 (1)1x;(2) (2,3)(3,5];(3) [1,0)(0,1]-;(4) ,0)-∞;(5) ()(1)f x x x =-+;(6) 0, 02, 0x x ≠⎧⎨-=⎩.2.选择题: (1) 设1, 1()0, 1x f x x ⎧≤⎪=⎨>⎪⎩,则((()))f f f x 等于( ).(A) 0; (B) 1;(C) 1,10,1x x ⎧≤⎪⎨>⎪⎩; (D)0,11, 1x x ⎧≤⎪⎨>⎪⎩. (2) 设函数()f x 在(,)-∞+∞内有定义,下列函数中一定为偶函数的是( ). (A) ()y f x =; (B) ()y f x =-;(C) ()y f x =; (D) 1()f x -. (3) 下列各对函数中为相同函数的是( ).(A) 2,x y x y x==; (B) 2ln ,2ln y x y x ==;(C) cos y y x ==;(D) y y =.(4) 下列函数在给定的区间内有界的是( ).(A) ()1xxe f x e=+ ; (B) ()1(), 01x f x e x =∈,; (C) ()sin f x x x =; (D) ()()ln , 01f x x x =∈,. (5) 函数cos ()sin xf x x x e=,x -∞<<+∞是( ).(A) 有界函数; (B) 单调函数; (C) 周期函数; (D) 偶函数. (6) 函数2()1xf x x =+在定义域内( ). (A) 有上界无下界; (B) 有下界无上界; (C) 有界,且1()2f x ≤; (D) 有界,且()2f x ≤. (7) 设函数(),()f x g x ,其定义域均为(,)-∞+∞,其中一个是偶函数,一个是奇函数,则必有( ).(A) ()()()()f x g x f x g x -+-=-; (B) ()()()()f x g x f x g x -+-=-+; (C) ()()()()f x g x f x g x -⋅-=⋅; (D) ()()()()f x g x f x g x -⋅-=-⋅. 解 (1) B ; (2) C ; (3) B; (4) A ;(5) D ; (6) C ; (7) D .3.设22, 1()1, 13x f x x x ⎧≤⎪=⎨+<≤⎪⎩,求()(3)(3)g x f x f x =++的定义域.解 ()f x 的定义域为[3,3]-,则(3)f x +的定义域为33360x x -≤+≤⇒-≤≤,(3)f x 的定义域为33311x x -≤≤⇒-≤≤.故()(3)(3)g x f x f x =++的定义域为{}60,11[1,0)x x x -≤≤-≤≤=-.*4.设(,)a b 是一个有限的开区间,证明:对任意的(,)x a b ∈,一定存在x 的一个邻域(,)O a b δ⊂.证 对任何),(b a x ∈,有b x a <<,记},min{a x xb --=δ,则0>δ.下面证明(,)(,)oU x a b δ⊂.对任何(,)ot U x δ∈,有δδ+<<-x t x 且t x ≠;由于},min{a x x b --=δ,则x b -≤δ,从而b x ≤+δ,由δ+<x t 可得b t <;同样a x -≤δ,从而a x ≥-δ,由δ->x t ,可得a t >,因此b t a <<,从而(,)(,)oU x a b δ⊂.5.证明()sin f x x x =在(0,)+∞上是无界函数. 证 对于任意正数0>M ,都存在一个自然数k ,使M k >+22ππ,从而取2(0,)2k x k M ππ=+>∈+∞,则有()22k f x k M ππ=+>,故()f x 在(0,)+∞上是无界函数.6.设下面所考虑函数的定义域关于原点对称,证明:(1) 两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2) 两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证 (1) 设)(),(11x g x f 为奇函数,)(),(22x g x f 为偶函数,则)()()()(2222x g x f x g x f +=-+-,即两个偶函数的和仍为偶函数.而)]()([)()(1111x g x f x g x f +-=-+-,所以两个奇函数的和是奇函数.(2) 设)(),(11x g x f 为奇函数,)(),(22x g x f 为偶函数,则)()()()(2222x g x f x g x f ⋅=-⋅-,所以两个偶函数的乘积仍为偶函数.而)()()()(1111x g x f x g x f ⋅=-⋅-,所以两个奇函数的乘积是偶函数;又)()()]([)()()(211212x f x f x f x f x f x f ⋅-=-⋅=-⋅-所以偶函数与奇函数的乘积是奇函数.7.设1()21x e x f x x x ⎧>=⎨≤⎩,,,2sin 0()0x x x x x ϕ>⎧=⎨≤⎩,,,求[()]f x ϕ.解 (),()1[()]2(),()1x e x f x x x ϕϕϕϕϕ⎧>=⎨≤⎩,当1)(>x ϕ时,有以下两种情况:0>x 时,1sin )(>=x x ϕ不可能; 0≤x 时,1)(2>=x x ϕ,即1-<x .当1)(≤x ϕ时,也有以下两种情况:0>x 时,1sin )(≤=x x ϕ,即0>x ; 0≤x 时,1)(2≤=x x ϕ,即01≤≤-x .综上所述,得22, 1[()]2, 102sin , 0x e x f x x x x x ϕ⎧<-⎪⎪=-≤≤⎨⎪>⎪⎩.8.设()f x =()(...())n f x f f f x =,其中n 为自然数.解 因1()()f x f x ==21()(())f x f f x ===,32()(())f x f f x ===所以不妨设()k f x =,则1()(())k k f x f f x +===.由数学归纳法知()1,2,...n f x n ==.9. 设()f x 为定义在( )l l -, 内的奇函数,若()f x 在(0 )l ,内单调增加,证明:()f x在( 0)l -,内单调增加. 证 任取)0,(,21l x x -∈,且21x x <,则),0(,21l x x ∈--,且12x x -<-,由于)(x f 在),(l l -内是奇函数,且在(0 )l ,内单调增加,则有 0)()()()(1212<+-=---x f x f x f x f ,即)()(21x f x f <,故()f x 在( 0)l -,内单调增加. 10.设()f x 在(0,)+∞内有定义,0,0a b >>,证明: (1) 若()f x x在(0,)+∞内单调减少,则 ()()()f a b f a f b +<+;(2) 若()f x x在(0,)+∞内单调增加,则 ()()()f a b f a f b +>+.证 (1) 由已知,a b a a b b +>+>,又由()f x x在(0,)+∞内单调减少,有 ()()f a b f a a b a +<+,()()f a b f b a b b+<+,于是()()f a b af a a b +<+ 且 ()()f a b b f b a b+<+,将以上两个不等式两端分别相加,得()()()f a b f a f b +<+.(2) 方法与(1)类似略.11.设()f x 是以(0)T T >为周期的函数,证明:()f ax 是以Ta为周期的函数. 证 令()()F x f ax =,因为()f x 是以(0)T T >为周期的函数,即()()f x T f x +=,则()[()]()()()T TF x f a x f ax T f ax F x a a +=+=+==,故函数()f ax 是以Ta为周期.12. 设1()()2x f x f x x -+=,其中0,1x x ≠≠,求()f x . 解 令1x t x -=,即11x t=-,代入原方程得12()()11f f t t t+=--, 即12()()11f f x x x+=--. 再令111u x u -=-,即11x u=-,代入上式,得 112(1)()()1u u f f u u u--+=-, 即112(1)()()1x x f f x x x--+=-. 解联立方程组,得11()11f x x x x=++--. 13.某工厂生产某种产品,年产量为a 吨,分若干批进行生产,每批准备费为b 元,设产品均匀投放市场,且上一批卖完后立即生产下一批,即平均库存量为批量的一半.设每年每吨库存费为c 元,显然,生产批量大库存费高;生产批量少则批数多,准备费增加.为了选择最优批量,试求出一年中库存费与生产准备费之和与批量的关系.解 设批量为x ,库存费与生产准备费之和为y .因为年产量为a ,每年应生产批a x,所以准备费为ab x⋅. 又因为平均库存为2x ,库存费为2xc ⋅.故 2a x ybc x =+.。
中国人民大学出版社(第四版)高等数学一第1章课后习题详解
中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
高等数学第一章函数部分的知识点及例题
−
2 −1
(6)lim 2
→1 2 −−1
3
2 +1
− 1 > 0
(8) = ቐ 2 +2+1
3 +1
1
→∞ 2
(9) lim
+
2
2
≤0
+⋯
2
,求在0处的极限
五、两个重要极限
sin
lim
→0
一般形式:当 →
=1
sin
0时
,求k=
−3
→3
2 +1
(6) lim
→∞ +1
− + = 0,求a,b。
七、无穷小的比较
设和都是同一过程的无穷小
→0
= 0,则是的高阶无穷小 = 0
若 lim
→0
= ≠ 0,则是的同阶无穷小
若 lim
→0
= 1,则是的等价无穷小~
重点:利用函数连续性求极限
若()为初等函数且在有定义
则 lim = 0
→0
若()是连续的
则 lim
→0
= lim
→0
例题、求下列函数的极限
(1)lim ln
x→0
(4)
sin x
x
2x+3 x+1
lim
x→∞ 2x+1
(2)x→0
lim 1 + 2x
结论:
除0以外,无穷小于无穷大互为导数
无穷小与常数的乘积为无穷小
无穷小与有界函数的乘积为无穷小
例题、求下列函数的极限
高等数学上册第一章习题详解
习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=x xy .解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以dcx b ax y ++=的反函数为a cx b dx y -+-=.(4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ;(3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f .()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ;(5) x n =n (-1)n .解 (1)当n →∞时, n n x 21=→0, 021lim =∞→n n .(2)当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212nx n +=→2, 2)12(lim 2=+∞→n n .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5)当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim =++∞→n n n ;(3)1lim22=+∞→na n n (4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n, 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n 41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→n a n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim31=+--→x x x . 证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)分析|)21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim321=+--→x x x . 2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx, 所以0sin lim =+∞→x xx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xxx x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小. 2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx>+21,所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104.4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim 20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2x x x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零) 或 012111lim13lim 4232242=--+=--+∞→∞→x x x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)nn n x2sin2lim ∞→(x 为不等于零的常数). 解 x x x x nn n n n =⋅=∞→∞→22sinlim 2sin 2lim . 2. 计算下列极限: (1)x x x 1)1(lim -→;解 {}111)1(101(1[lim (1[lim )1(lim --→-→→=-+=-+=-e x x x x x x x .(2)xx x 1)21(lim +→;解 []222122101)21(lim )21(lim )21(lim e x x x xx x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '.解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2,22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小? 解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x ,所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -.证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x . (2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xx x x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -.4. 利用等价无穷小的性质, 求下列极限:(1)xxx 23tan lim0→;(2)mn x x x )(sin)sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim -→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性).证明 (1)1lim=αα, 所以α ~α ; (2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);(3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)3)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =⋅+=--⋅+=→→.。
北大版高等数学第一章 函数及极限答案 习题1.3-推荐下载
习题1.31.(1,2,),lim 1,0,,2|-1|,:n n n n nx n x N n n N x εε→∞===>+>< 设证明即对于任意求出正整数使得当时有 并填下表220,1,|-1||1|,2,2222,,|-1|.2.lim ,lim ||||.0,,,||,||||||||,lim ||||.3.{},(1),n n n n n n n n n n n n n x n n n N n N x a l a l N n N a l a l a l a l a l N εεεεεεεεε→∞→∞→∞∀><=-=<>-++⎡⎤=-><⎢⎥⎣⎦==∀>∃>-<-≤-<=不妨设要使只需取则当时就有设证明使得当时此时故设有极限证明存在一个自然数证证1||||1;(2){},,||(12,).(1)1,,,||1,|||||||||| 1.(2)max{||1,||,,||},||(12,).-313(1)lim 23nn n n n n n N n n n N a l a M a M n N n N a l a a l l a l l l M l a a a M n N n n εε→∞<<+≤==∃>-<=-+≤-+<+=+≤=+=- 是一个有界数列即存在一个常数使得对于使得当时此时令则 4.用说法证明下列各极限式:证23/23/2; (2)0;2!(3)lim 0(||1); (4)lim0;111(5)lim 1;1223(1)11(6)lim 0.(1)(2)31311(1),2322(23)nn nn n n nn n q qn n n n nn n n n εεε→∞→∞→∞→∞==<=⎛⎫+++= ⎪-⎝⎭⎛⎫++= ⎪+⎝⎭+∀-=<-- A A A 不妨设要使只需证>0,<1,3113,2113133133,,,lim.22322321(2),,,n n n N n N n n n εεεεεεε→∞>+++⎡⎤=+>-<=⎢⎥--⎣⎦∀<>取当时故>0,ε0.10.010.0010.0001N1819819981999832222333331,.1(3)||(0).41||(1)(1)(2)(1)1266242424,,max{4,}.(1)(2)!111(4),,.11(5)1223nnnn N n Nq n nn n q n n n n n n n n N n n n n n N n n εεαααααααεααεαεαεεε⎡⎤=>⎢⎥⎣⎦=>>+==---++++++⎡⎤<<<>=⎢⎥--⎣⎦⎡⎤≤<>=⎢⎥⎣⎦+++ A A取当时3/23/23/22211(1)1111111111,,.1223(1)1111(6),,.(1)(2)(1)5.lim 0,{},,||(1,2,),lim n n nn n n nn N n n n n n N n n n a b M b M n εεεεεε→∞⎛⎫- ⎪-⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-+-++--=<>= ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦⎝⎭⎝⎭⎡⎤++≤<<>=⎢⎥++⎣⎦=<=A 设是有界数列即存在常数使得证明2222220.0,,||,||||||,lim 0.6. 1.0,11,1.(1)24444,1,,.(1)(1)(1)127.:(1)l nn n n n n n n n n nnn a b N a a b a b M MM a b nn n n N n n n n n n εεεεεεεεεεεεεεε→∞→∞=∀>∃<=≤===∀>-<<+⎡⎤=<<<>=⎢⎥-+-⎣⎦++A 正整数使得故证明要使而只需求下列各极限的值证 证32232244432220.310013/100/1(2)lim lim .4241/2/4(210)(210/)(3)lim lim 16.11/11(4)lim 1lim 1.n n n n n n nn n n n n n n n n n n n n n n n e n n →∞→∞→∞→∞→∞---→∞→∞==+-+-==-+-+++==++⎡⎤⎛⎫⎛⎫+=+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21111(5)lim 1lim 11111111.11lim 1lim 1111111(6)lim 1lim 1,(,1),,,1101nn n n n n n n n n nn n n n n n e n n q N n N qn n e n n -→∞→∞-→∞→∞→∞→∞⎛⎫-= ⎪⎝⎭⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭==⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫-=-∈∃>-<⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫<-⎢ ⎪⎝⎭⎢⎣⎦取当时2211,lim 0,lim 10,lim 10.1111(7)lim 1lim 1lim 1 1.nnn n n nn n n nnnn n n q q n n e n n n e →∞→∞→∞→∞→∞→∞⎡⎤⎛⎫⎛⎫<=-=-=⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫-=+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A 即12221212218.1111(1),,12(1)11112 2.12(1)1111(2),,21212121111111111121222222221n n n n n n n n n n n n nn n n x x x x n n x x n n n x x x x x +++-=+++=+>+<+++=-<-=+++=+>++++-⎛⎫=+++=++++= ⎪⎝⎭ A A 利用单调有界序列有极限证明下列序列极限的存在性:单调增加有上界,故有极限.111 1.12111111(3).0,1222122,0,111(4)11.0,2!!(1)!111111213 3.2231n n n n n n n n n n n n n x x x x n n n n n n n x x x x x x x n n x n n n x +++<-=+++-=-=-<++++++<>=++++-=>+⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭单调增加有上界,故有极限.单调减少有下界,故有极限.单调增加有上界,故11lim 11.2!!n e n →∞⎛⎫++++ ⎪⎝⎭ 有极限.9.证明=211(1)1(1)(1)1112!!(1)(1)1!111111112111112!!!1111111.lim 1lim 112!!2!!nknnn n n n n n n k n n n n k n n n n n n n k n n k n n n n n e n n n →∞→∞---+⎛⎫+=+++++ ⎪⎝⎭--++--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫<++++=+≤++++ ⎪⎝⎭ A A 证1.,11111112111,2!!1111,2!!1111lim 11lim 11.2!!2!!10.:||||,1,2,,nk n n n k n k k n n k n n n e k e k n x k x n →∞→∞+⎛⎫ ⎪⎝⎭>-⎛⎫⎛⎫⎛⎫⎛⎫+>+-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫→∞≥++++ ⎪⎝⎭⎛⎫⎛⎫≥++++=++++ ⎪ ⎪⎝⎭⎝⎭≤= 对于固定的正整数,由上式,当时令得设满足下列条件其中是小于211111.lim 0.||||||||0(),lim 0.n n n n n n n n x x k x k x k x n x →∞-+-→∞=≤≤≤→→∞= 的正数证明由得证。
(word完整版)高等数学习题集及答案
1,1],且是单调递减的是【 】
B.y arccosx
D.y arccot x
若数列收敛,则极限唯一
若函数f (x)在x x0处的左右极限都存在,则
当变量x 0时,与x2等价的无穷小量是
B.1 cos2x
A .sinx
x1是函数f (x)
A.无穷间断点
C.跳跃间断点
下列命题正确的是
当x→0时,
A.无穷பைடு நூலகம்量
x 0是函数
连续点
设数列的通项
A. xn发散
2极限limxx1
A.若f (x0) A,
C.
f (x)在此点处的极限存在
】
ln 1 x2
D.
e2x1
x 2的
x1
】.
B.
D.
可去间断点
连续点
】
lim f(x)
x x0
C.若lim f (x)存在,则极限唯一x x0
B.
D.
若lim f (x) A,则
x x0
以上说法都不正确
f (x0) A
当变量x 0时,与x2等价的无穷小量是
A.连续点
f (x)
B.
C.
3
x
D.
2的x2x 2可去间断点
x 2是函数f (x)
A.连续点
3
xx
2
x2x 2
B.可去间断点
x 2是函数f (x)
x24
x2x 2
若{un}有界,若{un}收敛,
{un}收敛
{un}有界
若{un}无界,若{un}单调有界,则{un}收敛
{un}发散
e3
C.无穷间断点
高等数学(本科)第一章课后习题解答
习题1.11. 求下列函数的定义域. (1) 234y x x=- (2)2ln3x y x-=-(3) y = (4)1arcsin3x y -=解:(1)只要分母不为零即可,即0x ≠且4x ≠.定义域为(,0)(0,4)(4,)-∞+∞ (2)只要203x x->-即可,故定义域为(2,3)(3)只要240x -≥即可,故定义域为(,2][2,)-∞-+∞ (4)只要30x ->并且1113x --≤≤即可,易解得定义域为[2,3)-2. 下列各对函数是否相同?为什么? (1)(),()1x f x g x x==;(2)()()f x g x ==.解:(1)不同,因为定义域不同,()f x 的定义域为{|0,}x x x ≠∈ ,而()g x 的定义域为全体实数.(2)相同,因为定义域相同,均为全体实数,对应法则也相同. 3. 求下列函数的反函数,并指出其定义域.(1)(0)y x =≥ (2)31xy =-解:(1)由y =222y x =+,故222x y =-,由于0x ≥,所以x =原函数的反函数为y =x ≥(2)由31x y =-可得13xy +=,所以3l o g (1)x y =+,故原函数的反函数为3log (1)y x =+,定义域为1x >-4. 判断下列函数的奇偶性(1)sin ()cos x x f x x x -=(2)())f x x =(3)1()ln 1x f x x-=+ (4)()2xxa af x -+=解:(1)由于sin()sin sin ()()cos()cos cos x x x x x x f x f x x x x xx x----+--====---,所以()f x 为偶函数.(注:其中用到了sin()sin ,cos()cos x x x x -=--=)(2)())))f x x x x -====-()f x =-,所以()f x 为奇函数.(3)11()lnln()11x x f x f x xx+--==-=--+,所以()f x 为奇函数.(4)()()2xxaa f x f x -+-==,所以()f x 为偶函数.5.下列函数在指定区间内是否有界? (1)21,(,1],(1,0)y x=-∞-- (2)2,(1,2),(2,)1y x =+∞-解:(1)在(,1]-∞-上,2101x<≤,故有界;而在(1,0)-上,函数无上界,故无界.(2)在(1,2)上,函数无上界,故无界;而在(2,)+∞上,2021x <<-,故有界.6. 将下列复合函数进行分解(1)3sin (32)y x =+ (2)ln ln ln y x = (3)y =(4)2tan xy e=解:(1)3,sin ,32y u u t t x ===+ (2)ln ,ln ,ln y u u t t x === (3)y u x ==+(4)2,,tan uy e u t t x ===7. 已知2(1)3f x x x +=-,求(),(1)f x f x -解:令1x t +=,则1x t =-, 22(1)()(1)3(1)54f x f t t t t t +==---=-+,由于函数与变量符号的选择无关,故2()54f x x x =-+22(1)(1)5(1)4710f x x x x x -=---+=-+8. 设1,||1,()0,||1,()1,||1xx f x x g x e x <⎧⎪===⎨⎪->⎩,求[()],[()]f g x g f x解:当0x <时,0()1x g x e <=<,故[()]1f g x =,当0x =时,()1g x =,故[()]0f g x =,当0x >时,()1x g x e =>,故 [()]1f g x =-.当||1x <时,()1f x =,故[()]g f x e =,当||1x =时,()0f x =,故[()]1g f x =, 当||1x >时,()1f x =-,故1[()]g f x e=.综上,1,0,[()]0,0,1,0x f g x x x <⎧⎪==⎨⎪->⎩1,||1,[()]1,||1,,||1ee x gf x x x <⎧⎪==⎨⎪>⎩9. 两个单调增加的函数的复合函数是否一定单调增加?它们的乘积又如何? 答:两个单调增加的函数的复合函数一定单调增加.但是乘积不一定设()y f u =与()u g x =能够复合,并且都是单调增的函数,即对任意的12x x <,都有12()()g x g x <;对任意的12u u <,都有12()()f u f u <.特别对11()u g x =,22()u g x =,显然有12u u <,故12(())(())f g x f g x <,即证复合函数仍为单调增.下面看乘积,例如()()f x g x x ==,显然在(,)-∞+∞都是单调增的,但是2()()f x g x x = 在(,)-∞+∞并不是单调增的,而()()x f x g x e ==,显然在(,)-∞+∞都是单调增的,2()()xf xg x e= 仍在(,)-∞+∞上单调增.10. 设()f x 是周期为π的奇函数,当(0,]2x π∈时,()sin cos 2f x x x =-+;当(,]2x ππ∈ 时,求()f x 的表达式.解:由于()f x 是周期为π的函数,所以()(0)f f π=,又()f x 是奇函数,可知(0)0f =. 当(,0)2x π∈-时,(0,)2x π-∈,由()f x 是奇函数可得()()(sin()cos()2)sin cos 2f x f x x x x x =--=----+=+-当(,)2x ππ∈时,(,0)2x ππ-∈-,由s i n ()s i n ,c o s ()c o s x x x x ππ-=--=-以及()f x周期为π,可知()()sin()cos()2sin cos 2f x f x x x x x πππ=-=-+--=--- 综上可得sin cos 2,(,)()20,x x x f x x πππ⎧---∈⎪=⎨⎪=⎩11. 设1()2y f t x x=-,且21|52x ty t ==-+,求()f x解:由题即知211|(1)522x ty f t t ==-=-+,故2(1)210f t t t -=-+.令1t x -=,则1t x =+,22(1)()(1)2(1)109f t f x x x x -==+-++=+.所以2()9f x x =+12. 设(sin)1cos 2x f x =+,求(cos)2x f 解:利用二倍角公式22cos 12sin 2cos 122x x x =-=-.2(sin)1cos 22sin22x x f x =+=-,令sin2x t =,则2()22f t t =-.从而2(cos )22cos1cos 22x x f x =-=-.习题1.21. 从图象上观察并写出下列极限(1)0lim 2,lim 2,lim 2,lim 2x x x xx x x x →→∞→-∞→+∞(2)13lim ln ,lim ln ,lim ln ,lim ln x x x x x x x x +→→+∞→→(3)02lim cos ,lim cos ,lim cos ,lim cos x x x x x x x x π→→+∞→-∞→(4)1lim arctan ,lim arctan ,lim arctan ,lim arctan x x x x x x x x →→+∞→-∞→∞解:图略.(1)0lim 21xx →=,lim 2xx →∞不存在,lim 20xx →-∞=,lim 2xx →+∞=+∞(也是不存在)(2)1lim ln 0x x →=,0lim ln x x +→=-∞(不存在),lim ln x x →+∞=+∞(不存在),3lim ln ln 3x x →=(3)0lim cos 1x x →=,lim cos x x →+∞不存在,lim cos x x →-∞不存在,2lim cos 0x x π→=(4)1lim arctan 4x x π→=,lim arctan 2x x π→+∞=,lim arctan 2x x π→-∞=-,lim arctan x x →∞不存在.2. 设函数21,0,()0,0,1,0x x f x x x x ⎧->⎪==⎨⎪-<⎩求当0x →时,函数的左、右极限,并说明当0x →时函数的极限是否存在.解:左极限0lim ()lim (1)1x x f x x --→→=-=,右极限200lim ()lim (1)1x x f x x ++→→=-=-,由于左右极限都存在但是不相等,所以当0x →时函数的极限不存在. 3. 求函数||()x f x x=当0x →时的左、右极限,并说明当0x →时函数的极限是否存在.解:左极限0||lim ()limlim 1x x x x x f x x x---→→→-===-,右极限0||lim ()lim lim 1x x x x x f x xx+++→→→===,由于左右极限都存在但是不相等,所以当0x →时函数的极限不存在. 4. 设函数1,1,()0,1,1,1x x f x x x x +<⎧⎪==⎨⎪->⎩求013lim (),lim (),lim ()x x x f x f x f x →→→解:当0x →时,只关心离0很近的那些点,所以可以认为1x <,故0lim ()lim (1)1x x f x x →→=+=当1x →时,11lim ()lim (1)2x x f x x --→→=+=,11lim ()lim (1)0x x f x x ++→→=-=,左右极限都存在但是不相等,所以1lim ()x f x →不存在.当3x →时,只关心离3很近的那些点,所以可以认为1x >,故33lim ()lim (1)2x x f x x →→=-=.5. 设2||lim arctan 3||2x ax x x bx x π→∞+=--①,求,a b 的值.解:(1)当x →+∞时,可以认为0x >,故||x x =,故=-++∞→xbx x ax x 32lim 3232lim-+=-++∞→b a xbx x ax x ,从而2.32arctan 32limπ-+=-++∞→b a x xbx x ax x , 所以由①式,可知22.32ππ-=-+b a ,即213a b +=--; ② (2)当x →-∞时,可以认为0x <,故||x x =-,故3232lim+-=+--∞→b a xbx x ax x ,从而⎪⎭⎫⎝⎛-+-=+--∞→2.32arctan 32limπb a x xbx x ax x , 所以由①式,可知213a b -=+.综上,可得方程组2323a b a b +=-⎧⎨-=+⎩,解得32a b =⎧⎨=-⎩.(注:lim arctan 2x x π→+∞=,lim arctan 2x x π→-∞=-)6. 设2||()43||x x f x x x +=-.求:(1)lim ()x f x →+∞;(2)lim ()x f x →-∞;(3)0lim ()x f x +→;(4)0lim ()x f x -→;(5)0lim ()x f x →.解:由于23,0,2||43()2143||,0.437x xx x x x xf x x xx x x x x +⎧=>⎪+⎪-==⎨--⎪=<⎪+⎩故易得(1)lim ()3x f x →+∞= (2)1lim ()7x f x →-∞=(3)0lim ()3x f x +→= (4)01lim ()7x f x -→=(5)0lim ()x f x →不存在(左右极限都存在但是不相等).习题1.31. 下列函数在自变量怎样的变化过程中为无穷小量?在怎样的变化过程中为无穷大量? (1)242x y x -=-; (2)311y x =+; (3)21xy =-; (4)1x y e =解:(1)2422x y x x -==+-在2x =处无定义.由22lim lim (2)0x x y x →-→-=+=,可知此函数在2x →-时为无穷小量;由lim lim (2)x x y x →∞→∞=+=∞,可知此函数在x →∞时为无穷大量.(2)311y x =+在1x =-处无定义.由31lim lim01x x y x →∞→∞==+,可知此函数在x →∞时为无穷小量;由3111lim lim1x x y x →-→-==∞+,可知此函数在1x →-时为无穷大量.(3)由0lim lim (21)0xx x y →→=-=,可知此函数在0x →时为无穷小量;由lim lim (21)xx x y →+∞→+∞=-=+∞,可知此函数在x →+∞时为无穷大量.(4)1x y e =在0x =处无定义.由1lim lim 0x x x y e --→→==,可知此函数在0x -→时为无穷小量;由1lim lim x x x y e ++→→==+∞,可知此函数在0x +→时为无穷大量. 2. 两个无穷小量的商是否为无穷小量?请举例说明.答:不一定,比如说当0x →时,2x 与2(2)x 都是无穷小量,221lim0(2)4x xx →=≠,故不是无穷小量,又2x 与x 都是无穷小量,2lim lim 0x x xx x→→==,是无穷小量.3. 求下列极限. (1)sin limx x x→∞; (2)2arctan limx x x→∞; (3)3113lim ()11x x x →---; (4)2211lim23x x x x →-+-(5)322lim ()2121x xxx x →∞-+-; (6)321lim34x x x x →∞--+; (7)342lim1x x x x →∞+-+;(8)33221lim423x x x x →∞++-; (9)11lim()1nx x n x +→-∈-Z ; (10)0()lim()nnx a x an x+→+-∈Z解:(1)由于|sin |1x ≤,可知sin x 在(,)-∞+∞上为有界函数,而当x →∞时,10x→,为无穷小量,有界函数乘以无穷小量仍为无穷小量,故sin 1lim lim (sin )0x x x x xx→∞→∞== (2)由于|arctan |2x π<,可知arctan x 在(,)-∞+∞上为有界函数,而当x →∞时,210x→,为无穷小量,故22arctan 1limlim (arctan )0x x x x xx→∞→∞==(3)2332111131323lim ()lim ()lim ()111113x x x x x x x x x x x →→→++-+-====---++ (通分,消元)(4)22111121limlim23342x x x x x x x →→-+===+-+(5)3232222(21)(21)lim ()lim2121(21)(21)x x xxx x x x x x x x →∞→∞--+-=+-+-3232lim4221x x xx x x →∞--=-+-23111lim1114422x xxxx→∞--==--+-(6)322211limlim1134134x x x x xx x xx →∞→∞--==∞-+-+(7)3344411122limlim 0111x x x x xxxx x→∞→∞+-+-==++(8)33323122121limlim1142342423x x x xx x x x→∞→∞++===+-+-(注:5,6,7,8类型相同,当x →∞时,多项式的商的极限主要看分子分母的次数,分子次数大于分母次数,则极限为∞;分子次数小于分母次数,则极限为0;分子次数等于分母次数,极限为最高次项系数的商.做法见上) (9)12121111(1)(1)limlimlim (1)11nn n n n x x x x x xxxxn x x ----→→→--+++==+++=--(10) 12220()lim limn n n n nn nn x x a nax C ax x aa x axx--→→++++-+-=12221lim (())n n n n n x naC ax x na----→=++=4. 设21lim31x x ax b x→++=-,求,a b 的值.解:由于1lim (1)0x x →-=,故21lim()0x x ax b →++=,从而2x ax b ++可被1x -整除,不妨设2(1)()x ax b x x c ++=-+,则1,a cbc =-=-.由极限211limlim ()1x x x ax b x c x→→++=-+-13c =--=可知4c =-.故5,4a b =-=5. 设322()2ax bx cx df x x x +++=+-,满足:(1)lim ()1x f x →∞=;(2)1lim ()0x f x →=,求,a b ,,c d 的值.解:由lim ()1x f x →∞=可知分子次数等于分母次数,且此时极限为b ,故有0,1a b ==.由1lim ()0x f x →=,可知21lim ()0x x cx d →++=,从而2x cx d ++可被1x -整除,不妨设2(1)()x cx d x x e ++=-+,则1,c e d e =-=-.由极限2211limlim22x x x cx d x e x x x →→+++=+-+1012e +==+可知1e =-.故2,1c d =-=.6. 设()g x 在0x =的某邻域内有界,且(),0,()0,0.xg x x f x x ≠⎧=⎨=⎩求0lim ()x f x →.解:()g x 在0x =的某邻域内有界,而当0x →时x 为无穷小量,从而可知0lim ()0x f x →=.7. 设1lim ()x f x →存在,且21()23lim ()x f x x x f x →=+,求().f x解:由题可知,只需求出1lim ()x f x →即可,在21()23lim ()x f x x x f x →=+两边同时求当1x →时的极限.21111lim ()lim (23lim ())23lim ()x x x x f x x x f x f x →→→→=+=+,易解得1lim ()1x f x →=-,从而2()23f x x x =-.习题1.41. 利用数列极限存在的准则Ⅰ,求下列极限. (1)222111lim ()(1)()n nn n n →∞+++++ (2)1lim n n n →∞(3)22212lim ()2n n n n n n πππ→∞++++++ (4)limn →∞解:(1)设222111(1)()n a nn n n =+++++ ,显然有2222222211111111()()()()n n n a n n n n n n n n nnnn++=+++<<+++=++++ ,而2211limlim0()n n n n n n n→∞→∞++==+,由两边夹原理可知222111lim ()0(1)()n nn n n →∞+++=++ .(2)当1n >时,11nn >,令11n n n a -=,则显然0n a >.且由二项式公式有2(1)(1)12nnn n n n n n n a na a a -=+=++++ ,故2(1)2n n n n a ->,从而0n a <<而lim0n →∞=,不等式左边常数也是0,由两边夹原理可知lim 0n n a →∞=,从而1lim 1n n n →∞=.(3)设222122n n a n n n n πππ=++++++ ,显然有22222222(1)1212(1)2()2()n n n n n n n a n n n n n n n n n n n n ππππππππ++=+++<<+++=++++++++ 而22(1)(1)1limlim2()2()2n n n n n n n n n ππ→∞→∞++==++,由两边夹原理可知222121lim ()22n nn n n n πππ→∞+++=+++ .(4<<limlim3n n →∞→∞==,由两边夹原理可知lim 3n →∞=.2. 利用数列极限存在的准则Ⅱ,求下列数列的极限 (1; (2)1103,n x x +<<=(3)111,(),(,0)2n n nb x a x x a b x +==+>.解:(1)显然数列为单调增的,设12a=<,22a=<=,依次得32a=<=,归纳可得2na<.即数列有上界,由单调有界原理可知此数列有极限,不妨设为a.对1na+=a=2a=或者1a=-(显然不可能).故数列极限为2.(2)(i)当132x=时,232x==,依次可得32nx=,故此数列为常数数列,显然极限存在,且为32.(ii)当132x≠时,利用几何算术平均值不等式可知1123322x xx+-=<=,依次可得32nx<<(1n>).而11nnxx+=>=(1n>),故此数列除了1x以外,均为单调增加的,且有界.由单调有界原理可知数列2{}n nx∞=有界,而数列的极限与前有限项无关,故原数列极限也存在,不妨设为a.对1nx+=a=32a=或者0a=(显然不可能).故数列极限为32.综合(i)(ii)可知数列极限为32.(3)(i)当1x a==2111()2bx xx=+=nx=(ii)当1x≠时,利用几何算术平均值不等式可知2111()2bx xx=+>=,依次可得nx>1n>).而11()02n n nnbx x xx+-=-<(1n>),故此数列除了1x以外,由单调有界原理可知数列2{}n nx∞=有界,而数列的极限与前有限项无关,故原数列极限也存在,不妨设为A.对11()2n nnbx xx+=+两端同时取极限,可得1()2bA AA=+,解得A=或者A=..综合(i)(ii)可知数列极限为3. 若lim n n x a →∞=,证明:lim ||||n n x a →∞=.证明:由lim n n x a →∞=,可知对0ε∀>,都0N ∃>,当n N >时,就有||n x a ε-<.从而当n N >时,||||||n n x a x a ε-≤-<,由定义可知lim ||||n n x a →∞=.(注:此结论对函数极限也同样成立,即“若lim ()x f x A →∙=,则lim |()|||x f x A →∙=”.反过来不对.但是有“若lim |()|0x f x →∙=,则lim ()0x f x →∙=”,对数列也成立.)4. 对于数列{}n x ,若212lim lim k k k k x x a -→∞→∞==,证明:lim n n x a →∞=.证明:第一种证法,用几何意义来说(不严格).由212lim lim k k k k x x a -→∞→∞==可知,对0ε∀>,数列21{}k x -中落在区间(,)a a εε-+外的只有有限多项,数列2{}k x 中落在区间(,)a a εε-+外的也只有有限多项.而对于数列{}n x 来说,其中的项不在数列21{}k x -之中就在数列2{}k x 之中,从而落在区间(,)a a εε-+外的也只有有限多项.由几何意义即知lim n n x a →∞=.第二种证法:用极限定义.由21lim k k x a -→∞=,可知对0ε∀>,都10K ∃>,当1k K >时,就有21||k x a ε--<.由2lim k k x a →∞=,可知对上述的0ε>,都20K ∃>,当2k K >时,就有2||k x a ε-<.令12m ax{,}K K K =,2N K =,则当n N >时,有||n x a ε-<.由定义可知lim n n x a →∞=.习题1.51. 求下列各极限. (1)0sin 5limx x x → (2)0sin lim(0)sin x ax b bx→≠ (3)3tan sin limx x xx→- (4)1lim sinx x x→∞(5)lim (1)m xx k x →∞-(6)22lim ()1xx x x →∞++ (7) cot 0lim (13tan )xx x →- (8) 111lim (32)xx x -→-(9)2sin 0lim (1)x x x →+ (10)lim tan n x n n→∞(11)11lim (sin cos)x x xx→∞+ (12)2sec 2lim (1cos )xx x π→-解:(1)0sin 5sin 5limlim (5)55x x x x xx→→==(2)0sin sin limlim ()sin sin x x ax ax bx ax a bxax bx bx b→→== (3)23200022sintan sin sin 1cos sin 112lim lim ()lim ()cos cos 24()2x x x xx x x x x x x x x x x x →→→--=== (4)1sin 1lim sinlim11x x x x xx→∞→∞== (当x →∞时,10t x =→) (5)令x t k=-,则m x m kt =-,且当x →∞时,t →∞,所以11lim (1)lim (1)lim[(1)]m xm kt t m k m kx t t k ex t t---→∞→∞→∞-=+=+= (6)2221lim ()lim (1)11x xx x x x x →∞→∞+=+++,令1t x =+,则1x t =-,且当x →∞时,t →∞,所以22(1)2222111lim ()lim (1)lim[(1)](1)1xt t x t t x e x t t t--→∞→∞→∞+=+=++=+(7)令3tan t x =-,则3cot x t=-,且当0x →时,0t →.所以31cot 3300lim (13tan )lim (1)lim[(1)]xtt x t t x t t e---→→→-=+=+=(8)111111lim (32)lim[13(1)]x x x x x x --→→-=+-,令3(1)t x =-,则当1x →时,0t →,所以1313311lim (32)lim (1)lim[(1)]xtt x t t x t t e----→→→-=+=+=(9)2122sin sin 0lim (1)lim[(1)]xx x x x x x x e →→+=+=(10)因为0tan sin 1limlim1cos x x x x xxx→→== ,由数列极限与函数极限的关系可知1tan1limlim tan 11n n n n n n→∞→∞==,从而当0x ≠时,tan lim tan limn n x x n n x x x n n→∞→∞==当0x =时,lim tan 0n x n n →∞=.综合可知lim tan n xn x n →∞=.(11)1111lim (sin cos )lim [1(sin cos 1)]x xx x x x x x →∞→∞+=++-11(sincos1)111sin cos 111lim [1(sin cos 1)]x x x x xx x x +-+-→∞⎧⎫⎪⎪=++-⎨⎬⎪⎪⎩⎭,令11sincos1t xx=+-,则当x →∞时,0t →,又1111lim (sincos1)lim sinlim (cos1)x x x x x x xxxx→∞→∞→∞+-=+-2111sin cos12()2limlim1lim1111x x x x x x xxx→∞→∞→∞--=+=+=,故11lim (sincos)xx e xx→∞+=.(12)令cos t x =-,则22sec x t=-,且当2x π→时,0t →,所以212sec 222lim (1cos )lim (1)lim[(1)]xtt t t x x t t e π---→→→-=+=+=.2. 求下列各极限. (1)0limx x→ (2)lim x →+∞(3)0limx →(4)0lim(,0)x m n →> (5)01lim []x x x +→ (6)limx →+∞(7)lim (ln(1)ln )x x x x →+∞+- (8)0lim x +→解:(1)000limlimlim1x x x x→→→===(2)lim limlim0x x x →+∞→+∞→+∞===(3)0sin 41)limlimlimx x x x x→→→==s i n 4l i m11)84x x x→=+= (4)22limlim2x x n n mm→→===(分子分母同时有理化)(5)讨论0x +→时函数的极限时,我们只关心那些离0很近的正数,不妨设01x <<,有11x >,故1111[]x x x-<≤,不等式三边同时乘以x ,不改变不等号的方向,故有111(1)[]1x x x x x x -<≤=,而001lim (1)lim (1)1x x x x x++→→-=-=,不等式右边为常数1,由两边夹原理可知01lim []1x x x+→=.(622211ln(cos 2sin )ln(1sin )x x x xxee++==,其中20ln(1sin )ln 2x ≤+≤,2ln(1sin )x +为有界函数,而当x →+∞时,10x→,为无穷小量,故21limln(1sin )0x x x→+∞+=.从而可得0lim1x e →+∞==(7)111lim (ln(1)ln )lim lnlim ln(1)lim ln[(1)]ln 1xx x x x x x x x x x e xxx→+∞→+∞→+∞→+∞++-==+=+==(8)11limlim (coslim [1(cos1)]xx x x x +++→→→==+1l i m {[1(s }x +→=+-,而222sin2sin cos112lim lim lim 22x x x xx +++→→→--===-,故12limx e+-→=.习题1.61. 比较下列无穷小的阶.(1) 当0x →时,323x x +与sin x (2) 当1x →-时,1x +与31x +(3) 当0x →时,3tan x x x +与(1cos )x x +(4) 当0x →1与1-解:(1)由于32322033lim limlim (3)0sin x x x x x x xx x xx→→→++==+=,故323x x +是sin x 的高阶无穷小. (2)由于3211111limlim113x x x xx x →-→-+==+-+,故1x +是31x +的同阶无穷小.(3)由于33tan tan limlimlim0(1cos )(1cos )(1cos )x x x x x xx x xx x x x x x →→→+=+=+++,故3tan x x x +是(1cos )x x +的高阶无穷小.(4)由于21(1lim lim1x x x →→+==1与1-是等价无穷小.2. 证明:当0x →时, (1)x x 21~1+; (2)322(tan )x x o x +=证明:(1)由于01lim 1)lim02x x x →→-==,从而要证x x 21~1+只需计算极限即可.0limlim111)22x x xxx →→==,由定义即知x x 21~1+.(2)由于32lim (2)lim tan 0x x x x x →→+==,从而要证322(tan )x x o x +=只需计算极限即可.32322022limlimlim (2)0tan x x x x x x xx x xx→→→++==+=,由定义即知322(tan )x x o x +=.3. 利用极限的运算法则和无穷小的有关性质求下列极限. (1)21limcos 1xx ex →-- (2)21limsin1x xx x→∞+ (3)0limtan x x→(4)sin 01limln(13)xx ex →-+ (5)21limx x→-(6)0lim1x e →-(7)1limx → (8)213sin coslim(1cos )tan x x x x x x→++ (9)0limx +→(10)31lim [sin ln(1)sin ln(1)]x x xx →∞+-+.解:(1)2221limlim21cos 12xx x ex x x→→-==--- (2)222211limsinlimlim111x x x xxxx xx xx x→∞→∞→∞===+++ (x →∞时,10x→,所以11sinxx)(3)0limlimlimlimtan tan tan tan x x x x xxxx→→→→==-(由()x x αα~1+)001111532lim lim236x x x x xx→→-=-=+=(4)sin 01sin 1limlimln(13)33xx x ex x x→→-==+(5)22201()1limlimlim 4x x x kx kx→→→-===(6)0limlim1xx x e →→=-lim1x →==,其中第一步用到了有理化.(7)111limlimlimx x x →→→===(8)222001113sin cos3sin cos cos3sin limlimlimlim(1cos )tan (1cos )(1cos )(1cos )x x x x x x x x x x x x x x xx xx xx x→→→→++==+++++1cos33lim2(1cos )2x x x x →=+=+,其中第二项中,01lim cos 0x x x →= (无穷小乘以有界函数仍为无穷小) (9)01limlim 2x x ++→→==(10)3131lim [sin ln(1)sin ln(1)]lim sin ln(1)lim sin ln (1)x x x x x x xxxx→∞→∞→∞+-+=+-+3131lim ln(1)lim ln(1)lim lim 312x x x x x x xxxxxx→∞→∞→∞→∞=+-+=-=-=习题1.71. 讨论函数2,01,()2,1 2.x x f x x x ⎧≤≤=⎨-<≤⎩ 在1x =处的连续性.解:由于211lim ()lim 1(1)x x f x x f --→→===,故()f x 在1x =处左连续,又11lim ()lim (2)1(1)x x f x x f ++→→=-==,故()f x 在1x =处右连续,因此()f x 在1x =处连续.2. 求函数23()6x f x x x +=+-的连续区间,并求极限2lim ()x f x →、3lim ()x f x →-、0lim ()x f x →.解:由于()f x 为初等函数,所以()f x 在(,3)-∞-、(3,2)-和(2,)+∞上都连续.2lim ()x f x →=∞,2333311lim ()limlim625x x x x f x x x x →-→-→-+===-+--,031lim ()62x f x →==--3. 讨论下列函数的间断点,并指出间断点的类型. (1)21()2f x x x =+- (2)sin xy x=(3)21()cos f x x= (4)112xy =解:(1)由于()f x 为初等函数,故只有两个间断点,1x =和2x =-,而221211limlim 22x x x x x x →→-==∞+-+-,所以这两个都是第二类间断点.(2)由于sin xy x=为初等函数,故只在sin 0x =处间断,从而间断点为x k π=(k ∈Z ).当0k =时,0lim 1sin x x x →=,故0x =为可去间断点;当0k ≠时,lim sin x k xx π→=∞,故x k π=(0k ≠)为第二类间断点.(3)由于()f x 为初等函数,故只在0x =处间断,而当0x →时()f x 的左右极限都不存在,故0x =为第二类间断点.(4)由于()f x 为初等函数,故只在0x =处间断,而11lim2x x-→=∞(当0x -→时,1x→-∞,120x →),故0x =为第二类间断点 4.已知函数0,(),0,2,0x f x a x x b x <==⎨⎪+>⎪⎩在0x =处连续,求a 与b 的值.解:由于()f x 在0x =处连续,故()f x 在0x =处既是左连续又是右连续,从而0lim ()lim 2lim ()lim (2)x x x x f x a f x x b b --++→→→→=====+=,即得2a b ==.5. 证明:方程531x x -=在区间(1,2)内至少有一个实根.证明:令5()31f x x x =--,显然()f x 在[1,2]上连续.又(1)13130f =--=-<,5(2)23213261250f =--=--=> ,由零点定理可知(1,2)ξ∃∈,使得()0f ξ=.即方程531x x -=在区间(1,2)内至少有一个实根. 6. 证明:方程3sin x x =在区间(,)2ππ内至少有一个实根.证明:令()3sin f x x x =-,显然()f x 在[,]2ππ上连续.又()3sin302222f ππππ=-=->,()3sin 0f ππππ=-=-<,由零点定理可知(,)2πξπ∃∈,使得()0f ξ=.即方程3sin x x =在区间(,)2ππ内至少有一个实根.7. 确定,a b 的值,使下式成立.(1)21lim ()01x x ax b x →+∞+--=+(2)lim )0x ax b →-∞-=.解:(1)由221(1)()1lim ()lim011x x x a x a b x bax b x x →+∞→+∞+--++---==++可知分子次数小于分母次数,从而10a -=,0a b +=.故1a =,1b =-. (2)由222lim )limx x ax b →-∞→-∞-=221(1)(12)(1)lim0x a x ab b →-∞--++-==可知21a =(若21a ≠,则极限为∞)且1a ≠(若1a =,则极限不能确定),因此1a =-.并且120ab +=,故12b =.8. 设函数()f x 在区间[],a b 上连续,且()a f x b ≤≤,证明:必存在点[],c a b ∈,使得()f c c =.证明:令()()F x f x x =-,显然()F x 在区间[],a b 上连续,()()0F a f a a =-≥,()()0F b f b b =-≤.(i ) 若()0F a =,取c a =即得. (ii ) 若()0F b =,取c b =即得.(iii )若()F a 与()F b 都不等于0,则有()()0F a F b < ,由零点定理可知(,)c a b ∃∈,使得()0F c =,即()f c c =.综合(i )(ii )(iii )可得必存在点[],c a b ∈,使得()f c c =.复习题11. 已知2()x f x e =,[()]1f x x ϕ=-,且()0x ϕ≥,求()x ϕ并写出它的定义域.解:2()[()]1x f x e x ϕϕ==-,故2()ln(1)x x ϕ=-,而()0x ϕ≥,所以()x ϕ=,其定义域为(,0]-∞.2. 设函数1,0,()1,0.x f x x ≥⎧=⎨-<⎩ 2,0,()1,0.x x g x x x ⎧≥=⎨-<⎩ 求[()]f g x ,[()]g f x .解:当0x ≥时,2()0g x x =≥ ,所以[()]1f g x =;当0x <时,()10g x x =->,所以[()]1f g x =.因此[()]1f g x ≡.当0x ≥时,()10f x =≥ ,所以2[()]11g f x ==;当0x <时,()10f x =-<,所以[()]1(1)2g f x =--=.因此1,0,[()]2,0.x g f x x ≥⎧=⎨<⎩.3. (1)设()f x 定义在区间(,)l l -内,判断函数1()[()()]2F x f x f x =+-与1()[()()]2G x f x f x =--的奇偶性;(2)证明:定义在区间(,)l l -内的任何函数()f x 都可以表示为一个偶函数与一个奇函 数之和.解:(1)由11()[()(())][()()]()22F x f x f x f x f x F x -=-+--=-+=可知()F x 为偶函数;由1()[()()]()2G x f x f x G x -=--=-,可知()G x 为奇函数.(2)显然()()()f x F x G x =+,故得证.4. 设函数()f x 在(,)-∞+∞内有定义,()g x 是()f x 的反函数,求()2xy f =及(21)y f x =+的反函数.解:由()2x y f =可得()2xg y =,故2()x g y =,所以()2xy f =的反函数为2()y g x =;由(21)y f x =+可得21()x g y +=,故()12g y x -=,所以(21)y f x =+的反函数为()12g x y -=.5. 求下列极限.(1)21111lim ()3153541n n →∞++++- ;(2)()()()nx x x n 22111lim +++∞→ ,(||1x <); (3)2lim coscoscos222nn x x x →∞; (4)limn →∞; (5)142sin lim ()||1xx xe x x e →+++;(6)20lim (cot )sin xx ex x→-; (7)0lim (cosxx π+→; (8)1lim ()xx x x e →+.解:(1)2111111111111(1)31535412335572121n n n ++++=-+-+-++---+11(1)221n =-+,故21111111lim ()lim (1)31535412212n n n n →∞→∞++++=-=-+ . (2)()()()1111lim 22<+++∞→x xx x nn因()()()()()()()[]xxxx x x x x x x n nn--=-+++-=++++111111.1111122222 ,故()()()xxxxx x n nn n -=--=++++∞→∞→1111lim 111lim 1222.(注意到当||1x <时,12lim 0n n x+→∞=)(3)当0x ≠时,nnx x x x 2sin2cos2cos 2cos 2nn nnnx x x x x 2sin22sin2cos 2cos2cos 22=nnx x 2s i n2s i n =故=∞→nnn x x x x 2sin2cos2cos2coslim 2nnn x x 2sin 2sin lim∞→xx x x nnn sin 2.2sin lim==∞→;当0x =时,12sin 2cos2cos2coslim 2=∞→nnn x x x x .综合可知⎪⎩⎪⎨⎧=≠=∞→.0,1,0,sin 2sin2cos2cos2coslim 2x x xxx x x x nnn (4≤≤,以及limlim1n n →∞→∞==,由两边夹原理可知lim1n →∞=.(5)1141302sin 21sin lim ()lim lim 1||1xxx x x xxxe x e x x xeee+++-→→→-+++=+=++,(1l i m x x e +→=∞)11442sin 2sin lim ()lim lim 211||11x xx x x xxe x e x x xee---→→→+++=+=-=-++(1lim 0x x e -→=)左右极限都存在并且相等,所以142sin lim ()1||1xx xe x x e →++=+.(6)2220cos (cos 1)(1)lim (cot )limlimsin sin xxxx x x ex e x ex x x x→→→-----==2201cos 1122limlimlimlim2xx x x x xx ex xxxx→→→→---=-=-=-.(7)0limlim lim x xxxx x eeπππ+→++→→==,而2112lim ln(coslim lim lim 2x x x x xxxxπππ++++→→→→-====-从而2lim xx e ππ+-→=(8)0111ln()limln()lim ()lim xxx x e x e xxxxx x x e ee→++→→+==,而1ln[1(1)]11limln()limlimlimlim2xxxxx x x x x x e x e x e x e xxxxx→→→→→++-+--+===+=,从而12lim ()x x x x e e →+=.6. (1)如果数列{}n x ,{}n y 都发散,问数列{}n n x y +是否发散? (2)如果数列{}n x 收敛,{}n y 发散,问数列{}n n x y 是否一定发散?答:(1)不一定,比如{}{}{}n n x n y ==都发散,{}{2}n n x y n +=也发散.又{}{}n x n =与{}{}n y n =-都发散,但是{}{0}n n x y +=为常数列显然收敛.(2)也不一定.比如1{}{}n x n=收敛,{}{}n y n =发散,{}{1}n n x y =为常数列显然收敛;。
高等数学第一章函数例题及答案
高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
大学高等数学第一章函数习题精讲
大学高等数学第一章函数习题精讲数学作为一门基础学科,在大学的学习中扮演着重要的角色。
其中,高等数学作为数学学科中的重要组成部分,对于提高学生的数学素养和培养逻辑思维能力具有至关重要的作用。
大学高等数学第一章函数是学习高等数学的第一步,是打好数学基础的关键。
本文将对大学高等数学第一章函数习题进行精讲,帮助学生更好地理解和掌握相关知识。
第一节求函数的定义域和值域在函数的相关概念中,定义域和值域是非常重要的内容。
定义域指的是函数在哪些实数上有定义,而值域则是函数所能取到的所有值的集合。
在求函数的定义域和值域时,需要根据函数的具体特点来进行分析。
例题1:对于函数f(x) = √(x + 1),求函数的定义域和值域。
解析:首先,要使函数有意义,要求x + 1 ≥ 0,即x ≥ -1。
所以函数的定义域为 [-1, +∞)。
然后,考虑函数的值域,由于x + 1 ≥ 0,所以函数的平方根√(x + 1) ≥ 0,即函数的值域为[0, +∞)。
例题2:对于函数 g(x) = 1 / (x - 3),求函数的定义域和值域。
解析:首先,要使函数有意义,要求 x - 3 ≠ 0,即x ≠ 3。
所以函数的定义域为 (-∞, 3) ∪ (3, +∞)。
然后,考虑函数的值域,由于 x - 3 ≠ 0,因此函数 g(x) 可以取到任意实数值,所以函数的值域为 (-∞, +∞)。
第二节求函数的奇偶性在函数的研究中,了解函数的奇偶性是十分重要的。
奇函数是指满足 f(-x) = -f(x) 的函数,而偶函数是指满足 f(-x) = f(x) 的函数。
通过判断函数的奇偶性,可以简化计算和图像的分析。
例题3:判断函数 f(x) = x^3 是否为奇函数。
解析:对于任意实数 x,有 f(-x) = (-x)^3 = -x^3。
而 f(x) = x^3。
由于 f(-x) = -f(x),所以函数 f(x) = x^3 是一个奇函数。
例题4:判断函数 g(x) = x^2 + 3 是否为偶函数。
《高等数学一》第一章-函数--课后习题(含答案解析)
第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。
.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。
高等数学课后习题答案--第一章 函数与极限
第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a ax a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}nx 有界, 又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。
从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n 5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。
高等数学习题[附答案解析与解析]
第一章 函数与极限§1 函数必作习题P16-18 4 (5) (6) (8),6,8,9,11,16,17必交习题一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从出站经过T 时间后,又以等减速度a 2进站,直至停止。
(1) 写出火车速度v 与时间t 的函数关系式;(2) 作出函数)(t v v =的图形。
二、 证明函数12+=x x y 在),(+∞-∞内是有界的。
三、判断下列函数的奇偶性: (1)x x x f 1sin)(2= ;(2)1212)(+-=x x x f ;(3))1ln()(2++=x x x f 。
四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。
§2 初等函数必作习题P31-33 1,8,9,10,16,17必交习题一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:(1))(x e f ;(2))(ln x f ;(3))(arcsin x f ;(4))(cos x f 。
二、(1)设)1ln()(2x x x f +=,求)(x e f -;(2)设23)1(2+-=+x x x f ,求)(x f ;(3)设xx f -=11)(,求)]([x f f ,})(1{x f f 。
)1,0(≠≠x x三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。
四、设⎩⎨⎧>+≤-=0,20,2)(x x x x x f ,⎩⎨⎧>-≤=0,0,)(2x x x x x g ,求)]([x g f 。
§3 数列的极限必作习题P42 3 (3) (4),4,5,6必交习题一、 写出下列数列的前五项 (1)3sin 31n n x n =;(2)n n n n x n ++++++=22212111 ;(3)nx n x n n n)1(1211122-=+++=-, 。
高等数学习题及解答 (1)
普通班高数作业(上)第一章 函数1、试判断下列每对函数是否是相同的函数,并说明理由: (2))sin(arcsin x y =与x y =; (4)x y =与2x y =;(6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。
解:判断两个函数的定义域和对应法则是否相同。
(2))sin(arcsin x y =定义域不同,因此两个函数不同; (4)x x y ==2,两个函数相同;(6))arctan(tan x y =定义域不同,因此两个函数不同;(8))(x f y =与)(y f x =定义域和对应法则都相同,因此两个函数相同。
2、求下列函数的定义域,并用区间表示:(2)xx x y -+=2; (3)x y x -+=1ln arcsin 21; (7)xey xln 111-+=。
解:(2))0,2[-∈x ;(3)]1,0()0,1[22--⋃-∈e e x ; (7)),(),0(+∞⋃∈e e x 。
3、设⎪⎩⎪⎨⎧<-≥-=0,10,1)(22x x x x x f ,求)()(x f x f -+。
解:按0>x ,0=x ,0<x 时,分别计算得,⎩⎨⎧=-≠=-+0200)()(x x x f x f 。
4、讨论下列函数的单调性(指出其单增区间和单减区间): (2)24x x y -=; (4)x x y -=。
解:(2)22)2(44--=-=x x x y 单增区间为]2,0[,单减区间为]4,2[。
(4)⎩⎨⎧≥<-=-=002x x x x x y ,定义域为实数集,单减区间为),(+∞-∞。
5、讨论下列函数的奇偶性:(2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=;(6)x x f ln cos )(=; (7)⎩⎨⎧≥+<-=0,10,1)(x x x x x f 。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
高等数学课后习题答案--第一章
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
高等数学习题详解-第1章 函数
习题1-11. 求下列函数的定义域: (1) 21x y x =- ; (2) 2112++-=x xy ;(3) y = (4) lg(2)y x =-+.解:⑴ 要使式子有意义,x 必须满足210x -≠,由此解得1x ≠±,因此函数的定义域是(,1)(1,1)(1,)-∞--+∞ 。
⑵ 要使式子有意义,x 必须满足210,20 ,x x ⎧-≠⎨+≥⎩ 即1,2 ,x x ≠±⎧⎨≥-⎩ 因此函数的定义域是[2,1)(1,1)(1,---+∞ 。
⑶ 要使式子有意义,x 必须满足2sin 0,160 ,x x ≥⎧⎨-≥⎩即2(21),4 4 ,k x k x ππ≤≤+⎧⎨-≤≤⎩因此函数的定义域是[4,][0,]ππ-- 。
⑷ 要使式子有意义,x 必须满足220,320 ,x x x ->⎧⎨+-≥⎩即2,1 3 ,x x <⎧⎨-≤≤⎩因此函数的定义域是[1,2)-2. 判断下列各组函数是否相同? (1) 2142x y x -=-,22y x =+;(2) 21lg y x =,22lg y x =,(3) ()sin 21y x =+,()sin 21u t =+; (4) ()1f x =, ()22sec tan g x x x =-. 解:(1) 因为1y 的定义域是(,2)(2,)-∞+∞ ,但是2y 的定义域是R ,两个函数的定义域不同,所以两个函数不同。
(2) 因为1y 的定义域是(,0)(0,)-∞+∞ ,但是2y 的定义域是(0,)+∞,两个函数的定义域不同,所以两个函数不同。
(3) 两个函数的定义域相同,对应法则也相同,所以两个函数相同。
(4) 因为()f x 的定义域是R ,但是()g x 的定义域是,2x x k x R ππ⎧⎫≠+∈⎨⎬⎩⎭,两个函数的定义域不同,所以两个函数不同。
3. 若()232f x x x =-+,求()1f ,()1f x -.解:()10f =,()221(1)3(1)256f x x x x x -=---+=-+4. 若()2132f x x x +=-+,求()f x , ()1f x -.解:令1x t +=.则1x t =-,从而()()()22131256f t t t t t =---+=-+,所以()256f x x x =-+,()21(1)5(1)6f x x x -=---+ 2712x x =-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
5.
6.
设
f (0)
设
f (x) 1 x ,求 1 x
1,
f
(
x)
f (x) 1
x 1, 2 x 1, 0
1 x
f
0 ,
x
,
x 0, x2
解: f (1) 11 2 , f (0) 0 11, f (1) 11 2
f
(x
1)
(x 1) 1, 2 x 1 0
7.作出下列函数的图形:
⑵
要使式子有意义,x
[2, 1) (1,1) (1, ) 。
⑶
要使式子有意义,x
域是[4, ] [0, ] 。
⑷
要使式子有意义,x
[1, 2)
2. 判断下列各组函数是否相同?
(1)
y1
x 2 4 x2
,
y2
必须满足
必须满足
必须满足
x2;
1 x2 0,
x
2
0
,
x2;
x 1, 即 x 2 , 因此函数的定义域是
1. 求下列函数的定义域:
(1)
y
x x2 1
(3) y sin x 16 x2 ;
;
(2)
习题 1-1
y
1 1 x2
(4) y lg(2 x) 3 2x x2 .
解:⑴ 要使式子有意义,x 必须满足 x2 1 0 ,由此解得 x 1 ,因此函数的定义域是
(, 1) (1,1) (1, ) 。
(1)
(x
1)
y x 2 4 ; (2) y 1
x2
1, 0
x
f
f
x ,
(1) 1
1 x
x 1 1 x 1
,求
1
x
2
x
f(1),
;
(3)
8. 某运输公司规定货物的吨公里运价为: 在 a 公里以内,每公里 k 元, 超过部分公里
为 3 k 元. 求运价 m 和里程 s 之间的函数关系. 4
解:由题意可得
m
kaLeabharlann ks, 0 s 3 k(s
4
a, a), s
a
9.火车站收取行李费的规定如下:当行李不超过 50 千克时,按基本运费计算.如从上海 到某地每千克以 0.15 元计算基本运费,当超过 50 千克时,超重部分按每千克 0.25 元收费. 试求上海到该地的行李费 y(元)与重量 x(千克)之间的函数关系式,并画出函数的图像.
解:(1) 因为 y1 的定义域是 (, 2) (2, ) ,但是 y2 的定义域是 R ,两个函数的定义域
不同,所以两个函数不同。
(2) 因为 y1 的定义域是 (, 0) (0, ) ,但是 y2 的定义域是 (0, ) ,两个函数的
定义域不同,所以两个函数不同。 (3) 两个函数的定义域相同,对应法则也相同,所以两个函数相同。
(4)
因为
f
(x)
的定义域是
数的定义域不同,所以两个函数不同。
3. 若 f x x2 3x 2 ,求 f 1 , f x 1 .
解: f 1 0 , f x 1 (x 1)2 3(x 1) 2 x2 5x 6
R
,但是
g(x)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
的定义域是
x
x
4
x3
x
,
因此函数的定义
因此函数的定义域是
,
k
2
,
x
R
,两个函
4. 若 f x 1 x2 3x 2 ,求 f x , f x 1 . 解:令 x 1 t .则 x t 1,从而 f t t 12 3t 1 2 t2 5t 6 ,
所以 f x x2 5x 6 , f x 1 (x 1)2 5(x 1) 6 x2 7x 12 。
解:由题意可得
y
0.15
0.15x, 0 x 50, 50 0.25(x 50),
习题 1-2 1. 指出下列函数中哪些是奇函数,哪些是偶函数,哪些是非奇非偶函数?
(1) f x x3 cos x ;
(2) y ex ex ; 2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
sin x 0, 2k x (2k 1) ,
16
2 x 0,
3
2
x
x2
x2
0
0
即
,
4
x 2,
, 即 1
(2) y1 lg x2 , y2 2lg x ,
(3) y sin 2x 1, u sin 2t 1 ; (4) f x 1 , g x sec2 x tan2 x .