02第二章误差与分析数据处理
分析化学误差和分析数据处理2
15
(三)准确度与精密度的关系
1. 准确度高,要求精密度一定高,精密度高 是准确度高的前提,但精密度好,准确度不一 定高。 2. 准确度反映了测量结果的正确性,精密度 反映了测量结果的重现性。
12
例: 两人分析同一试样中Cu的含量,其结果ω如下: 甲 0.3610 0.3612 0.3608 乙 0.3641 0.3642 0.3643 已知其含Cu的量的真实值为0.3606,试问何人结果的准 确度高? 解:
x RE % 100% 100%
甲: X =0.3610
16
四、提高分析准确度的方法
1.选择恰当的分析方法 例:测全Fe含量 K2Cr2O7法 40.20% ±0.2%×40.20% 比色法 40.20% ±2.0%×40.20% (常量组分的分析,常采用化学分析,而微量和痕量分 析常采用灵敏度较高的仪器分析方法) 2.减小测量误差 1)称量 例:天平一次的称量误差为 0.0001g,两次的称量误差为 0.0002g,RE%≤ 0.1%,计算最少称样量?
n x
100%
10
滴定分析中时, R d 一般要求<0.2﹪
3. 标准偏差(standard deviation)与相对标准偏差 (1).标准偏差S
S
( xi x)
i 1
n
2
n 1
n
di
i 1
n
2
n-1=f
自由度
n 1
当n→∞,标准偏差用б表示
( xi ) 2 μ 为无限多次测定的平均值(总体平均值) 若无系统误差存在,µ 就是真实值 i 1 n
第二章 误差和分析数据处理
课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。
分析化学:第二章_误差和分析数据处理二
化学分析
第二章 误差和分析数据处理
4
• 对于很小的数字,可用指数形式表示。例如,离 解常数Ka=0.000018,可写成Ka=1.8×10-5;很大的 数字也可采用这种表示方法。例如2500L,若为 三位有效数字,可写成2.50×103L。
• 例如,0.0121×25.64×1.0578=0.328,其中,有 效数字位数最少的0.0121相对误差最大,故计 算结果应修约为三位有效数字。
化学分析
第二章 误差和分析数据处理
11
• 3. 百分数表示 • 高含量组分(>10%),保留四位有效数字; • 中含量组分(1~10%),保留三位有效数字; • 低含量组分(<1%),保留两位有效数字。 • 4. 其他运算 • 乘方或开方,结果的有效数字位数不变,
化学分析
第二章 误差和分析数据处理
19
3.正态分布曲线规律:
• (1) x=μ时,y值最大,体现了测量值的集中趋 势。说明误差为零的测量值出现的概率最大。 大多数测量值集中在算术平均值的附近。
• (2) 曲线以x=μ这一直线为其对称轴,说明绝对 值相等的正、负误差出现的概率相等。
• (3) 当x趋于-∞或+∞时,曲线以x轴为渐近线。 即小误差出现概率大,大误差出现概率小。
化学分析
第二章 误差和分析数据处理
5
• 对pH、pM、lgc、lgK等对数值,其有效数字的
位数仅取决于小数部分数字的位数,整数部分 只说明其真数的方次。如pH=11.02,即[H+]= 9.6×10-12mol/L,其有效数字为两位而非四位。
检测技术 第二章:误差分析与数据处理
可以得到精确的测量结果,否则还可能损坏仪器、设备、元器件等。
2.理论误差 理论误差是由于测量理论本身不够完善而采用近似公式或近似值计算测量 结果时所引起的误差。例如,传感器输入输出特性为非线性但简化为线性 特性,传感器内阻大而转换电路输入阻抗不够高,或是处理时采用略去高 次项的近似经验公式,以及简化的电路模 型等都会产生理论误差。
误差,周期性系统误差和按复杂规律变化的系统误差。如图2.1所示,其中1为定值系差,2 为
线性系统误差,3为周期系统误差,4为按复杂规律变化的系统误差。 系统误差的来源包括仪表制造、安装或使用方法不正确,
测量设备的基本误差、读数方法不正确以及环境误差等。
系统误差是一种有规律的误差,故可以通过理论分析采 用修正值或补偿校正等方法来减小或消除。
•理论真值又称为绝对真值,是指在严格的条件下,根据一定的理论,按定义确定的数值。 例如三角形的内角和恒为180°一般情况下,理论真值是未知的。 •约定真值是指用约定的办法确定的最高基准值,就给定的目的而言它被认为充分接近于 真值,因而可以代替真值来使用。如:基准米定义为“光在真空中1/299792458s的时间 间隔内行程的长度”。测量中,修正过的算术平均值也可作为约定真值。
表等级为0.2级。
r=
0.12 100% 100% 0.12 A 100
在选仪表时,为什么应根据被测值的大小,在满足被测量数值范围的前提下,尽可能 选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二。在满足使用 要求时,满量程要有余量,一般余量三分之一,为了装拆被测工件方便。 (同一精度,量程越大,误差越大,故量程要小,但留余量)
第二章 误差分析与数据处理
三.测量误差的来源
1.方法误差 方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压时,
第二章 误差和分析数据的处理
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第二章 定量分析中的误差与数据处理
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59
第二章 误差及分析数据处理
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
分析化学第二章误差与分析数据处理
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
第二章 误差和分析数据的处理(改)
记录的数字不仅表示数量的大小,而且要正 记录的数字不仅表示数量的大小, 确地反映测量的精确程度。 确地反映测量的精确程度。
结果 绝对误差 相对误差 ±0.002% ±0.02% ±0.2% 有效数字位数 5 4 3
0.51800 ±0.00001 0.5180 0.518 ±0.0001 ±0.001
E
绝对误差与相对误差的计算
仪器的绝对误差通常是一个定值,我们可以 仪器的绝对误差通常是一个定值, 相对误差 测量值(x) 真值 真值(µ) 绝对误差 绝对误差(δ) 物品 测量值 (RE%) 用称( 取较大质量(体积)的试样, 用称(量)取较大质量(体积)的试样,使 0.0002g A 0.2175g 0.2173g 0.1% 测量的相对误差较少, 测量的相对误差较少,在实际工作中意义较 0.0002g B 1% 大。 0.0217g 0.0215g
δ A = xA − µA = 0.2175− 0.2173 = 0.0002 当测量值的绝对 误差恒定时, δB = xB − µB = 0.0217 − 0.0215 = 0.0002 误差恒定时,被
测定的量越大, 测定的量越大, 0.0002 δA RE (A) = % ×100%= ×100%= 0.1% 相对误差越小, 相对误差越小, 0.2173 µA 测定的准确性也 0.0002 δB 就越高。 就越高。 RE (B) = ×100%= % ×100%= 1%
n
i
d=
∑x −x
i =1 i
n
n
=
37.40 + 37.20 + 37.30 + 37.50 + 37.30 = 37.34 5
n
=
0.06 + 0.14 + 0.04 + 0.16 + 0.04 = 0.088 5
02 第二章 误差与分析数据的处理
1.频数分布
频数是指每组中测量值出现的次数,频数与数据 总数之比为相对频数,即概率密度。
整理上述数据,按组距0.03来分成10组,得频数分布表:
分 组
1.265% 1.295% 1.295% 1.325% 1.325% 1.355% 1.355% 1.385% 1.385% 1.415% 1.415% 1.445% 1.445% 1.475% 1.475% 1.505% 1.505% 1.535% 1.535% 1.565%
因此,应该了解分析过程中误差产生的原因及其出现的 规律,以便采取相应措施,尽可能使误差减小。另一方面 需要对测试数据进行正确的统计处理,以获得最可靠的数 据信息。
2.1 定量分析中的 误差
误差与准确度
准确度(accuracy)是指分析结果(测定平均值)与真值
接近的程度,常用误差大小表示。误差小,准确度高。
两组精密度不同的测量值的正态分布曲线
正态分布规律
(1)x=μ时,y最大。即多数测量值集中在μ附近,或者说
总体平均值是最可信赖值或最佳值。 (2)x=μ时的直线为对称轴。即正负误差出现的概率相等。 (3)x→〒≦时,曲线以x轴为渐近线。即大误差出现的 概率小,出现很大误差的测定值概率趋近零。 (4) ↗, y↘ ,即测量精密度越差,测量值分布越分散, 曲线平坦。
2.正态分布
在分析化学中,测量数据一般符合正态分布规律。正态分 布是德国数学家高斯首先提出的,又称高斯曲线,下图即为正 态分布曲线N(μ,σ2),其数学表达式为
1 y f(x) e 2
(x ) 2 2 2
y表示概率密度;x表示测量值; μ是总体平均值;σ是总体标准偏差 μ决定曲线在x轴的位臵;σ决定 曲线的形状:σ小,数据的精密度好, 曲线瘦高;σ大,数据分散,曲线较扁平。
第二章 误差和分析数据处理-分析化学
第二章 误差和分析数据处理
第一节 概述
xie 分 析 化 学
产生测定误差的原因:
抽样的代表性; 测定方法的可靠性; 仪器的准确性; 测定方法的复杂性;
测定者的主观性;
操作者的熟练性
xie 分 析 化 学 一、绝对误差和相对误差
第二节 测量误差
绝对误差(absolute error)
减小测量误差
取样量大于0.2g;
滴定液消耗的体积大于20ml;
紫外吸收度在0.2~0.7之间。
xie 分 析 化 学
相对误差=δw/W<1‰
W>δw/1‰=0.0002/1‰=0.2g 相对误差=δv/V<1‰ V>δv/1‰=0.02/1‰=20 ml
增加平行测定次数
xie 分 析 化 学
2 i
n
相对标准偏差(relative standarddeviation;RSD) 或称变异系数(coefficient of variation;CV)
2 ( x x ) i n i 1
S RSD 100% x
n 1 x
100%
例题 :四次标定某溶液的浓度,结果为0.2041、
标准偏差法:
R=x+y-z
R=xy/z
2 2 2 2 SR Sx Sy Sz
Sy 2 Sx 2 SR 2 Sz 2 ( ) ( ) ( ) ( ) R x y z
五、提高分析准确度的方法
xie 分 析 化 学
选择恰当的分析方法
被测组分的含量; 被测组分共存的其它物质的干扰。
0.00022 0.00062 0.00042 0.00002 标准偏差 S 0.0004 (mol/ L) 4 1
第二章 误差和分析数据处理
2位
2位
2位
(6) 数据的第一位数大于等于 8, 有效数字可多算一 位: 9.55 4位 ; 8.2 3位
37
1.0008 0.1000 0.0382
43181 10.98%
五 位有效数字 四 位有效数字 二 位有效数字 一 位有效数字 位数模糊
1.98×10-10 三 位有效数字
54
0.05
0.0040
度)是精密度常见的别名。
一般例行分析精密度用相对平均偏差表示就
够了,但在科研中要用标准偏差或相对标准偏差
来表示。
18
3、准确度和精密度的关系
x1
x2
x3
x4
19
一般情况下,精密度高,准确度不 一定高。 精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度 好,准确度就高。 精密度高是保证准确度好的前提 精密度好不一定准确度高
答:不可以。 3、系统误差和偶然误差在起因及出现规律方面,有什 么不同? 答:系统误差是由确定原因引起的,可重复出现,偶然 误差是由不确定原因引起的,遵循一定的统计规律。
7
4、分析测定中系统误差的特点是: A、由一些原因引起的 B、重复测定会重复出现 C、增加测定次数可减小系统误差 D、系统误差无法消除
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
34
有效数字的位数与计算相对误差有关
0.5180g
相对误差=± 0.0001/ 0.5180 ×100%=±0.02%
0.518g
相对误差=± 0.001/0.518 ×100%=±0.2%
35
判断有效数字的位数:
第二章
第二章误差和数据处理
第二节 有效数字及其运算法则
一、有效数字 二、数字的修约规则 三、有效数字的运算规则
一、有效数字 (significant figure)
定义:是指在分析工作中实际上能测量到的数字, 有效数字位数包括所有准确数字和一位欠准数字。
解:R= 4.10 0.0050 / 1.97 =0.0104 R/R=-0.02/4.10+0.0001/0.00500–(-0.04)/1.97
=0.035 = 3.5% R =R 0.035 = 0.035 0.0104 = 0.00036 = R - R = 0.0104 - 0.00036 =0.01004
系统误差的来源
•方法误差:方法不恰当或不完善 •仪器误差:仪器不准或未校正 •试剂误差:试剂不纯 •操作误差:个人操作问题
(主观误差)
系统误差的表现方式
•恒量误差:多次测定中系统误差的 绝对值保持不变 •比例误差:系统误差的绝对值随样 品量的增大而成比例增大,相对值不 变。
偶然误差
又称随机误差或不可定误差,是由某些偶 然因素引起的误差。
偶然误差特点
a.方向不确定(误差时正时负) b.大小不确定(误差时大时小) c.符合统计规律
绝对值相等的正负误差出现概率基本相等 小误差出现的概率大,大误差出现的概率小
d.可增加平行测定次数消除
过失误差
在正常情况下不会发生过失误差,是仪器失灵、 试剂被污染、试样的意外损失等原因造成的。 一旦察觉到过失误差的发生,应停止正在进行 的步骤,重新开始实验。
•平均偏差:各个偏差绝对值的平均值。
《分析化学》第二章 误差和分析数据的处理
例:3600 → 3.6×103 两位 → 3.60×103 三位
(2)在分析化学计算中遇到倍数、π、e等常数 时,视为无限多位有效数字。
(3)对数数值的有效数字位数由该数尾数部分决定
[H+]= 6.3×10-12 [mol/L] → pH = 11.20
由国际权威机构国际计量大会定义的单位、数值, 如 时间、长度、原子量、物质的量等
如:基准米 1m=1 650 763.73 λ
(λ:氪-86的能级跃迁在真空中的辐射波长)
(3)相对真值:
由某一行业或领域内的权威机构严格按 标准方法获得的测量值。
如卫生部药品检定所派发的标准参考物质, 其证书上所表明的含量 (4)标准参考物质
②积、商的极值相对误差等于各测量值相对误差的 绝对值之和。
R=xy/z
R X Y Z RXYZ
标定NaOH溶液,称取KHP0.2000g,溶解, 用NaOH溶液滴定,消耗20.00ml。计算结果的 极值相对误差。
W W1 W2 W W1 W2 0.0001 0.0001 0.0002g
(4)首位为8或9的数字,有效数字可多计一位。
92.5可以认为是4位有效数
◇分析天平: 12.8228g(6) , 0.2348g(4) , ◇台秤: 4.0g(2), 30.2g(3) ☆50ml滴定管: 26.32mL(4), 3.97mL(3) ☆容量瓶: 50.00mL(4), 250.0mL (4) ☆移液管: 25.00mL(4); ☆10ml量筒: 4.5mL(2)
RE ±0.8% ±0.4% ±0.009%
(三)乘方、开方 结果的有效数字位数不变
第二章 误差及数据处理
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。
第二章 误差与分析
上式右端可按泰勒级数展开:
整理上式得:
这就是系统误差传递的一般公式,也可用 微分形式表示。
(1)加减运算
在加减运算中,计算结果的绝对系统误差等 于各个直接测量值的绝对系统误差的代数和。
注意: di有正负值。
2、平均偏差:单次测量偏差的绝对值的算术平均值
d d1 d2 n
dn di n
n
Xi X
i1 n
3、相对平均偏差:平均偏差与测量平均值的比值
n Xi X
相对平均偏差 d 100%= i1
n
x
x
100%
注意:d不计正负号,di则有正负之分。
例5 有甲、乙两组数据,其各次测定的偏差 分别为:
5、相对标准偏差(RSD):标准偏差与
测量平均值的比值称为相对标准偏差,也称 为变异系数。
6、重复性与重(再)现性:
重复性:分析人员在相同条件下,测量值 的接近程度。
重(再)现性:不同分析人员,对同一试样 测量值的的接近程度。
例6 四次标定NaOH溶液的浓度,结果为0.2041、 0.2049、0.2039和0.2043mol/L,试计算测定的平 均值、平均偏差、相对平均偏差、标准偏差和相 对标准偏差。
特点:
可定误差; 由某种确定的原因引起的; 具单向性(大小、方向即正或负一定 ) 重复测定可重复出现。不能用增加平行测 定次数(重复测定)的方法减免,可用校正值 方法进行消除。
系统误差根据其来源可分为:
(1)方法误差:由于不适当的实验设计或分析 方法本身所引起的误差。
第二章 误差和分析数据的处理
第二章误差和分析数据的处理一、内容提要本章讨论了误差的来源、性质及其减免方法,有效数字及运算规则,并简单介绍应用统计学原理处理分析数据的基本方法。
定量分析的任务是准确测定试样中组分的含量。
在分析过程中误差是客观存在的,因此作为分析工作者,不仅要测定试样中待测组分的含量,还应对测定结果作出评价,判断其准确性和可靠程度,查出产生误差的原因,并采取有效措施减少误差,使所得结果尽可能准确地反映试样中待测组分的真实含量。
定量分析误差根据其性质和来源,可分为系统误差和偶然误差两类。
系统误差是由确定原因引起,数据其恒定单向性,包括方法误差、仪器和试剂误差、操作误差。
系统误差对分析结果的作用有两种形式:恒定误差和比例误差。
系统误差可通过对照实验、回收实验、空白实验和校准仪器来检验和消除。
偶然误差是由偶然原因引起,其大小和正负都不固定,但服从统计规律,增加平行测定次数可减小偶然误差。
准确度是指测定值与真实值接近的程度,用误差来衡量,误差越小,准确度越高。
误差通常用绝对误差、相对误差表示。
精密度是指用相同方法对同一试样进行多次测定,各测定值彼此接近的程度,用偏差来衡量。
偏差越小,精密度越高,常用绝对偏差、平均偏差、相对平均偏差、标准偏差,相对标准偏差来表示。
准确度和精确度既有严格区别又相互关联,一般而言:准确度高的前提是精密度高;但精密度高不一定准确度高;精密度不高,准确度肯定不可靠;只有精密度和准确度都好的结果才最为可靠。
因此,只有防止过失误差,减小偶然误差,消除或校正系统误差,才能得到可靠的分析结果。
有效数字的位数表示了分析结果的准确度,其记录和运算须遵循响应的规则。
相关与回归是研究变量间关系的统计方法,通常用相关系数来判断二变量是否成线性关系,由回归直线方程计算试样中被测组分的浓度。
本章重点是误差的分类,准确度与精密度的关系,有效数字及其修约规则。
本章难点是相关计算。
二、习题(一)判断题()1.精密度高,准确度一定高。
考研分析化学第二章误差和分析数据处理
第二章 误差和分析数据处理何测量都不可能绝对准确,在一定条件下,测量结果只能接近于真实值,而不能达到真实值个定量分析要经过许多步骤,并不只是一次简单的测量,每步测量的误差,都影响分析结果的性,因而定量分析结果的误差更加复杂行定量分析时,必须根据对分析结果准确度的要求,合理地安排实验,避免不必要的追求高准节 测量误差是衡量一个测量值的不准确性的尺度,反映测量准确性的高低差越小,测量的准确性越高1、 绝对误差和相对误差测量之中的误差,主要有两种表示方法:绝对误差与相对误差(一)绝对误差:测量值与真值(真实值)之差称为~绝对误差是以测量值的单位为单位,可以是正值,也可以是负值,及测量值可能大于或小于测量值越接近真值,绝对误差越小;反之,越大(二)相对误差:绝对误差与真值的比值称为~相对误差反映测量误差在测量结果中所占的比例,它没有单位通常相对误差以%,%0表示如果不知道真值,但知道测量的绝对误差,则相对误差也可以测量值x为基础表示在分析工作中,用相对误差衡量分析结果,比绝对误差更常用根据相对误差的大小,还能提供正确选择分析仪器的仪器对于高含量组分测定的相对误差应当要求严些(小些)对于低含量组分测定的相对误差可以允许大些在相对误差要求固定时,测定高含量组分可选用灵敏度较低的仪器,而对低含量组分灵敏度较高的仪器二、真值与标准参考物质可知的真值,有三类:理论真值、约定真值、相对真值:三角形内角和为180度:国际单位及我国的法定计量单位是约定真值各元素的原子量物质的理论含量:常用标准参考物质的证书上所给出的含量作为相对真值标准参考物质:1必须是经工人的权威机构鉴定,并给予证书的2必须具有很好的均匀性与稳定性3其含量测量的准确度至少要高于实际测量的3倍约定真值与相对真值是分析化学工作中最常用的真值除理论真值外,其它真值都是由实验测得,都带有一定的误差三、系统误差和偶然误差按误差的性质分:系统误差和偶然误差(一)系统误差:是由某种确定的原因引起的,一般它有固定的方向(正或负)和大小,重复测定时重复出现根据系统误差的来源分为:方法误差、仪器(或试剂)误差、操作误差方法误差:是由于不适当的试验设计或所选择的分析方法不恰当所引起的,通常方法误差影响的存在,使测定结果要么总是偏高;要么总是偏低,误差的方向固定仪器或试剂误差:是由仪器未经校准或试剂不合格所引起的:是由于分析工作者的操作不符合要求造成的在一个测定过程中这三种误差都可能存在:如果在多次测定中系统误差的绝对值保持不变,但相对值随被测组分含量的增大而:如果系统误差的绝对值随样品量的增大而成比例增大,相对值不变,则称为~也有时,系统误差的绝对值虽然随样品量的增大而增大,但不成比例系统误差是以固定的方向和大小出现,并具有重复性。
分析化学第二章 误差及分析数据的处理
性质 影响 消除或减 小的方法
重现性、单向性 、可测 服从概率统计规律、
性
准确度 校正
不可测性
精密度 增加测定的次数
六、提高分析结果准确度的Байду номын сангаас法
1. 选择恰当的分析方法 2. 减小测量误差
与经典方法进行比较 校准仪器 4. 消除测量中的系统误差 空白试验 对照试验 回收试验
3. 减小偶然误差
1.选择合适的分析方法
系统误差 产生的原因
a.方法误差——选择的方法不够完善
例:重量分析中沉淀的溶解损失;
滴定分析中指示剂选择不当。 b.仪器误差——仪器本身的缺陷 例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格; 试剂纯度不够(含待测组份或干扰离子)。 d.操作误差——操作人员主观因素造成 例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准
d
i 1
n
i
n
0.11% 0.14% 0.16% 0.04% 0.09% 0.11% 5
相对平均偏差
d 0.11% d r 100% 100% 0.29% x 37.34%
标准偏差
2 ( x i x ) i 1 n
s
n 1
(0.11%) 2 (0.14%) 2 (0.16%) 2 (0.04%) 2 (0.09%) 2 0.13% 5 1
回收率越接近100%,方法准确度越高
方法误差 仪器误差 系统误差 试剂误差 操作误差
选择适当的分析方法 校正仪器 空白实验 对照实验
误差
分析测试中,一般对同一试样平行 偶然误差 测定 3~4 次,精密度符合要求即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.1025应该保留.
x 0.1017
~ x = 0.1015 √
18
2.4 测定方法的选择与 测定准确度的提高
1.选择合适的分析方法:根据待测组分的 含量、性质、试样的组成及对准确度的 要求; 2.减小测量误差:取样量、滴定剂体积等; 3.平行测定4-6次,使平均值更接近真值; 4.消除系统误差: (1) 显著性检验确定有无系统误差存在; (2) 找出原因, 对症解决。 19
∴[H+]= 9.5×10-6 mol/L
29
2.5.5 报告结果: 与方法精度一致,
由误差最大的一步确定
如 称样0.0320g, 则w(NaCl)=99%; 称样0. 3200g, 则w(NaCl)=99.2%; 光度法测w(Fe), 误差约5%, 则 w(Fe) = 0.064% 要求称样准至三位有效数字即可。 合理安排操作程序,实验既准又快!
24
2.5.2 有效数字运算中的修约规则
四舍六入五成双
例如, 要修约为四位有效数字时: 尾数≤4时舍, 0.52664 ------- 0.5266 尾数≥6时入, 0.36266 ------- 0.3627 尾数=5时, 若后面数为0, 舍5成双: 10.2350----10.24, 250.650----250.6 若5后面还有不是0的任何数皆入: 18.0850001----18.09
0.84
0.73
0.64
0.59
0.54
0.51
0.49
置信度: 把握性, 可信程度, 统计概率
17
例2.8 测定某溶液c,得结果: 0.1014, 0.1012, 0.1016, 0.1025, 问: 0.1025是否应弃去?(置信度为90%)
0.1025 0.1016 Q计算 0.69 Q0.90 (4) 0.76 0.1025 0.1012
31
0.1000 25.00 0.1000 24.10 100.1/ 2
3
0.2351 10 0.0191599 ? 0.0192
p44 例2.9
28
2.5.4 复杂运算(对数、乘方、开方等)
例pH=5.02, [H+]=?
pH=5.01 [H+]=9.7724×10-6 pH=5.02 [H+]=9.5499×10-6 pH=5.03 [H+]=9.3325×10-6
20
1995年国际五项原子量的修订
( 大学化学10(5)60,1995)
元素 硼 碳 铕
铈 铂
符号 B C Eu
Ce Pt
1993年表 10.811(5) 12.011(1) 151.965(9)
140.115(4) 159.08(3)
1995年表 10.811(7) 12.0107(8) 151.964(1)
14
质量控制图
警戒线 警告线
15
2.3.3 异常值的检验—Q检验法
Q计算
x离群 x邻近 xmax xmin
16
若Q计 Q表 , 则离群值应弃去.
Q值表
测量次 数n
(p43)
7
0.51
3
0.94
4
0.76
5
0.64
6
0.56
8
0.47
9
0.44
10
0.41
Q0.90
Q0.95
0.97
2.5 有效数字
包括全部可靠数字及一位不确定数字在内
m ◆分析天平(称至0.1mg):12.8218g(6) , 0.2338g(4) , 0.0500g(3) ◇千分之一天平(称至0.001g): 0.234g(3) ◇1%天平(称至0.01g): 4.03g(3), 0.23g(2) ◇台秤(称至0.1g): 4.0g(2), 0.2g(1) V ★滴定管(量至0.01mL):26.32mL(4), 3.97mL(3) ★容量瓶:100.0mL(4),250.0mL (4) ★移液管:25.00mL(4); ☆ 量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
1.极差(全距) R= xmax-xmin
相对极差 RR (R / x ) ×100%
2.偏差
绝对偏差 di = xi- x 相对偏差 Rdi = (di / x ) ×100%
平均偏差: d d i / n
d 相对平均偏差:Rd 100% x
12
例: 测w(Fe)/%, 50.04 ( x =50.07)
8
2. 随机误差(random error)
偶然误差,服从统计规律
(不存在系统误差的情况下,测定次数越多其 平均值越接近真值。一般平行测定4-6次)
3. 过失(mistake)
由粗心大意引起,可以避免的
重做!
例:指示剂的选择
9
2.3 有限数据的统计处理
总体 抽样 样本 统计方法 样本容量n: 样本所含的个体数.
1.0%
3
例:测定含铁样品中w(Fe), 比较结果的准确度。
A.铁矿中, T=62.38%, x = 62.32%
Ea = x -T= - 0.06%
B. Li2CO3试样中, T=0.042%, x =0.044%
Ea = x -T=0.002%
Ea A. Er 100%=-0.06/62.38= - 0.1% T Ea B. Er 100%=0.002/0.042=5% T
50.10
50.07
di Rdi
- 0.03 -0.06%
0.03 0.06 % 0.02
0.00 0.00
平均偏差 d
相对平均偏差Rd 0.04%
13
3. 标准差
样本标准差:s
n1 (n-1)为自由度, 用f 表示
( x x)
i
2
?
相对标准差 (变异系数)
CV=(s / x )×100%,
第二章
误差与分析数据处理
1
2.1 有关误差的一些基本概念
2.1.1 准确度和精密度 1. 准确度 测定结果与“真值”接近的程度.
绝对误差 Ea = x -T
相对误差 Er =
Ea 100% T
2
例: 滴定的体积误差
V
20.00 mL
Ea
0.02 mL
Er
0.1%
2.00 mL
0.02 mL
30
第二章 小 结
2.1 误差的基本概念: 准确度(T 、Ea、Er)与精 密度、 误差与偏差、 系统误差与随机误差;
2.3 有限数据的统计处理: x 、 ~ x 、R、 RR、 di、Rdi 、d 、Rd 、s 、CV; 异常值的检验(Q检验法); 2.4 测定方法的选择和测定准确度的提高 2.5 有效数字:定义、修约规则、运算规则 、 报告结果。
140.116(1) 159.08(1)
修 订 理 由 新数据+天然丰度起伏进行评估 天然丰度起伏进行评估 新的标准测量
新的标准测量 新数据
21
铕,铈采用高富集同位素配制混合样
品,以标定质谱测量,从而达到相对精度
优于十万分之一.
“铕和铈的国际原子量新标准”获1997
年国家自然科学二等奖.
北京大学化学学院张青莲教授
23
4. 数据的第一位数大于等于8的,可多计一 位有效数字,如 9.45×104, 95.2%, 8.65 5. 对数与指数的有效数字位数按尾数计, 如 10-2.34 ; pH=11.02, 则[H+]=9.5×10-12 6. 误差只需保留1~2位; 7. 化学平衡计算中,结果一般为两位有效 数字(由于K值一般为两位有效数字); 8. 常量分析法一般为4位有效数字 (Er≈0.1%),微量分析为2位。
10
观测
数据
2.3.1 数据的集中趋势 1. 平均值 2. 中位数
例:测得c(NaOH)为
~
x
1 x xi n i 1
n
0.1012, 0.1016, 0.1014, 0.1025 (mol· L-1)
x = 0.1017
~
x 0. 1015
11
2.3.2 数据分散程度(精密度)的表示
22
2.5.1 几项规定
1. 数字前0不计,数字后计入 : 0.02450 2. 数字后的0含义不清楚时, 最好用指 数形式表示 : 1000 ( 1.0×103 , 1.00×103 ,1.000 ×103 ) 3. 自然数可看成具有无限多位数(如倍 数关系、分数关系);常数亦可看 成具有无限多位数,如 , e
25
2.5.3 运算规则 加减法:结果的绝对误差应不小于各项中绝对 误差最大的数. (与小数点后位数最少的数一致)
50.1 1.46 + 0.5812 52.1412 52.1 ±0.1 ±0.01 ±0.001 50.1 1.5 + 0.6 52.2
26
乘除法:结果的相对误差应与各因数中
相对误差最大的数相适应
4
2.精密度
平行测定的结果互相靠近的程度,
用偏差表示。
偏差即各次测定值与平均值之差。
5
3. 准确度与精密度的关系 (p22):
x1
x2
x3
x4
6
结 论
1.精密度好是准确度好的前提; 2.精密度好不一定准确度高(系统误差)。
7
2.1.2误差产生的原因及减免办法
1.系统误差(systematic error) 具单向性、重现性,为可测误差 方法: 溶解损失、终点误差-用其他方法校正 仪器: 刻度不准、砝码磨损-校准(绝对、相对) 操作: 颜色观察 试剂: 不纯-空白实验 对照实验:标准方法、标准样品、标准加入