[推荐学习]2018九年级数学下册 期中检测卷 (新版)新人教版

合集下载

2018届九年级下数学期中检测试卷含答案(1)

2018届九年级下数学期中检测试卷含答案(1)

期中检测卷分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列函数中,y 是x 的反比例函数的是( )A .y =x -1B .y =8x2C .y =-2x -1 D.yx=22.若△ABC ∽△DEF ,相似比为3∶2,则对应高的比为( )A .3∶2B .3∶5C .9∶4D .4∶9 3.如图,点A 是反比例函数y =k x(x >0)图象上一点,AB 垂直于x 轴,垂足为点B ,AC 垂直于y 轴,垂足为点C .若矩形ABOC 的面积为5,则k 的值为( )A .5B .2.5 C. 5 D .10第3题图第5题图第7题图4.反比例函数y =-3x的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定5.如图,在△ABC 中,DE ∥BC ,AD DB =12,DE =4,则BC 的长是( )A .8B .10C .11D .126.在某一时刻,测得一根高为1.2m 的木棍的影长为2m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .15m B.1253m C .60m D .24m 7.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第8题图第9题图第12题图9.如图,双曲线y =k x与直线y =-12x 交于A ,B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2)C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12 10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A .1个B .2个C .3个D .4个11.函数y =ax与y =-ax 2+a (a ≠0)在同一直角坐标系中的大致图象可能是( )12.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .213.如图,在△ABC 中,点E ,F 分别在边AB ,AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( ) A .4 B .6 C .8 D .12第13题图第14题图第16题图14.如图,已知函数y =k x和函数y =12x +1的图象交于A ,B 两点,点A 的坐标为(2,2),以下结论:①反比例函数的图象一定过点(-1,-4);②当x >2时,12x +1>kx;③点B 的坐标是(-4,-1);④S △OCD =1,其中正确结论的个数是( )A .1个B .2个C .3个D .4个15.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )16.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D .若点C ,D 都在双曲线y =k x(k >0,x >0)上,则k 的值为( )A .253B .183C .93D .9二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.反比例函数y =k -1x的图象经过点(2,3),则k =________.18.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.第18题图 第19题图19.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A 3B 3C 3的面积为________,△A n B n C n 的面积为________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,直线l 经过点A (0,-1),且与双曲线y =mx 交于点B (2,1).(1)求双曲线及直线l 的解析式;(2)已知P (a -1,a )在双曲线上,求P 点的坐标.21.(9分)如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).22.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.(1)求证:△ADE∽△BEC;(2)若AD=1,DE=3,BC=2,求AB的长.23.(9分)嘉琪同学家的饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示).根据图中提供的信息,解答下列问题:(1)写出饮水机水温的下降过程中y与x的函数关系式;(2)求图中t的值;(3)若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点回到家中,回到家时,他能喝到不低于50℃的水吗?24.(10分)如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm.动点M 从点B 出发,在BA 边上以3cm/s 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以2cm/s 的速度向点B 运动,运动时间为t s(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.25.(11分)如图,已知直线y =ax +b 与双曲线y =k x(x >0)交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于P (x 0,0),与y 轴交于点C .(1)若A ,B 两点的坐标分别为(1,3),(3,y 2),求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB =BP ,求A ,B 两点的坐标.26.(12分)在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF ⊥A B.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图③,若四边形ABCD为矩形,BC=mAB,其他条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图③中画出草图,并求出AE′与DF′的数量关系.参考答案与解析1.C 2.A 3.A 4.A 5.D 6.A 7.B8.B 9.A 10.C 11.D 12.A 13.B 14.D 15.D解析:∵DH 垂直平分AC ,AC =4,∴DC =DA =y ,CH =2.∵CD ∥AB ,∴∠DCA =∠BAC .又∵∠DHC =∠B =90°,∴△DCH ∽△CAB ,∴CD AC=CH AB,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,∴图象是D. 16.C解析:过点A 作AE ⊥OB 于点E .∵△OAB 是边长为10的正三角形,∴点A 的坐标为(10,0),点B 的坐标为(5,53),点E 的坐标为⎝⎛⎭⎫52,532.∵CD ⊥OB ,AE ⊥OB ,∴CD ∥AE ,∴BD BE =BCBA.设BD BE=BC BA=n (0<n <1),∴点D 的坐标为⎝⎛⎭⎫10-5n 2,103-53n 2,点C 的坐标为(5+5n ,53-53n ).∵点C ,D 均在反比例函数y =kx图象上,∴⎩⎪⎨⎪⎧k =10-5n 2×103-53n 2,k =(5+5n )×(53-53n ),解得⎩⎪⎨⎪⎧n =45,k =9 3.17.7 18.9 19.16414n解析:∵点A 1,B 1,C 1分别是△ABC 的边BC ,AC ,AB 的中点,∴A 1B 1,A 1C 1,B 1C 1是△AB C 的中位线,∴△A 1B 1C 1∽△ABC ,且相似比为12.同理可知△A 2B 2C 2∽△A 1B 1C 1,且相似比为12,∴△A 2B 2C 2∽△ABC ,且相似比为14.依此类推△A n B n C n ∽△ABC ,且相似比为12n .∵△ABC 的面积为1,∴△A 3B 3C 3的面积为⎝⎛⎭⎫1232=164,△A n B n C n的面积为⎝⎛⎭⎫12n 2=14n. 20.解:(1)将点B (2,1)的坐标代入双曲线解析式得m =2,则双曲线的解析式为y =2x.(2分)设直线l 的解析式为y =kx +b ,将点A 与点B 的坐标代入得⎩⎨⎧b =-1,2k +b =1,解得⎩⎨⎧k =1,b =-1.则直线l 的解析式为y =x -1.(4分)(2)将P (a -1,a )代入双曲线解析式得a (a -1)=2,整理得a 2-a -2=0,解得a =2或a =-1,(7分)则P 点的坐标为(1,2)或(-2,-1).(8分)21.解:(1)如图所示.(4分)(2)AA ′=CC ′=2.在Rt △OA ′C ′中,OA ′=OC ′=2,∴A ′C ′=22;同理可得AC =42.(7分)∴四边形AA ′C ′C 的周长为2+2+22+42=4+62.(9分)22.(1)证明:∵AD ∥BC ,∠ABC =90°,∴∠A =90°.∵DE ⊥CE ,∴∠DEC =90°,∴∠AED +∠BEC =90°.(3分)∵∠AED +∠ADE =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BE C .(5分)(2)解:在Rt △ADE 中,AE =DE2-AD2=2.(6分)∵△ADE ∽△BEC ,∴AD BE=AE BC ,即1BE =22,∴BE =2,∴AB =AE +BE =22.(9分) 23.解:(1)在水温下降过程中,设水温y (℃)与开机时间x (分)的函数关系式为y =mx,依据题意,得100=m 8,即m =800,故y =800x.(3分)(2)当y =20时,20=800t ,解得t =40.(6分)(3)∵60-40=20≥8,∴当x =20时,y =80020=40.∵40<50,∴他不能喝到不低于50℃的水.(9分)24.解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm.在Rt △ABC 中,BA =AC2+BC2=62+82=10(cm).当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t10=8-2t 8,解得t =2011;(3分)当△BMN ∽△BCA 时,BM BC=BN BA,∴3t 8=8-2t 10,解得t =3223.∴当△BMN 与△ABC 相似时,t 的值为2011或3223.(5分)(2)过点M 作MD ⊥CB 于点D ,则MD ∥AC ,∴△BMD ∽△BAC ,∴DMCA=BD BC=BM BA ,即DM 6=BD 8=BM 10.∵BM =3t cm ,∴DM =95t cm ,BD =125t cm ,∴CD =⎝⎛⎭⎫8-125t cm.(7分)∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD .∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴ACCD=CNDM,∴68-125t =2t 95t,解得t =1312.(10分) 25.解:(1)∵直线y =ax +b 与双曲线y =kx(x >0)交于A (1,3),∴k =1×3=3,∴双曲线的解析式为y =3x.∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1,∴点B 的坐标为(3,1).(2分)∵直线y =ax +b 经过A ,B 两点,∴⎩⎨⎧a +b =3,3a +b =1,解得⎩⎨⎧a =-1,b =4,∴直线的解析式为y =-x +4.令y =0,则x =4,∴点P 的坐标为(4,0).(4分)(2)如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,则AD ∥x 轴,∴CD OC=ADOP.由题意知DO =AE =y 1,AD =x 1,OP =6,OC =b =y 1+1,AB =BP ,∴CD =OC -O D =y 1+1-y 1=1,∴1y1+1=x16.∵AB =BP ,∴点B 的坐标为⎝⎛⎭⎫6+x12,12y1.(7分)∵A ,B 两点都是反比例函数图象上的点,∴x 1·y 1=6+x12·12y 1,解得x 1=2,代入1y1+1=x16,解得y 1=2,∴点A 的坐标为(2,2),点B 的坐标为(4,1).(11分) 26.解:(1)①DF =2AE (2分) ②DF =2AE .(3分)理由如下:∵△EBF 绕点B 逆时针旋转到图②所示的位置,∴∠ABE =∠DBF .∵BF BE=2,BD AB =2,∴BF BE =BD AB ,∴△ABE ∽△DBF ,∴DF AE =BFBE=2,即DF =2AE .(6分)(2)草图如图所示,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB2+AD2=1+m2AB .∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BDBA=1+m2.(9分)∵△EBF 绕点B 逆时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF′BE′=BDBA=1+m2,∴△ABE ′∽△DBF ′,∴DF′AE′=BDBA=1+m2,即DF ′=1+m2AE ′.(12分)。

安徽省芜湖市九年级数学下学期期中试题(扫描版) 新人教版

安徽省芜湖市九年级数学下学期期中试题(扫描版) 新人教版

安徽省芜湖市2018届九年级数学下学期期中试题2018年九年级毕业暨升学模拟考试(二)数学评分标准及参考答案一、选择题1 2 3 4 5 6 7 8 9 10B B AC C BD A D B二、填空题11.-1,0 12. 2(1+x)2=2.88 13. 有两个不相等的实数根14. 113°或92°三、(本大题共2小题,每小题8分,满分16分)15.解:………………………………………4分………………………………………8分16. 解:(1)第四个等式是:52-42-12=4 ...............................2分(2)第n个等式是:(n+1)2-n2-12=n. ................................4分证明:∵(n+1)2-n2-12=[(n+1)+n][(n+1)-n]-12=2n+1-12=2n2=n,∴第n个等式是:(n+1)2-n2-12=n. ................................8分四、(本大题共2小题,每小题8分,满分16分)17.解:(1) 将(2m,-m)分别代入一次函数的图像与反比例函数可得m=2,k=-8∴反比例函数的表达式…………………..4分(2) 当x<2m时,即x<4时,.当0<x<4时,y2<-2;当x<0时,y2>0. …………………………………8分18.解:(1)证明:连接OD…………………………1分∵AD平分∠BAC,∴∠DAE=∠DAB.∵OA=OD,∴∠ODA=∠DAO.∴∠ODA=∠DAE.∴OD∥AE.∵DE⊥AC,∴OD⊥DE.∴DE是⊙O切线.………………………………4分(2)过点O作OF⊥AC于点F. …………………5分∴AF=CF=3.∴OF=OA2-AF2=52-32=4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形.∴DE=OF=4. ……………8分五、(本大题共2小题,每小题10分,满分20分)19.解:答案不唯一.图甲..........5分图乙...........................10分20.解:由题意,得∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC=60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE………………………………………………………2分设EC=x,则DE=BE=2EC=2x,DC=EC+DE=3x,BC=BE2-EC2=3x. ………………………………………………………4分∵∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC.∴3x+60=3x,解得x=30+10 3.∴DE=2x=60+20 3,答:塔高约为(60+20 3) m. ………………………………………………………10分六、(本大题满分12分)21.解:(1)∵七年级(1)班学生总人数为:12÷25%=48(人),∴扇形统计图中D类所对应扇形的圆心角为为:360°× =105°;故填:48,105;C类人数:48﹣4﹣12﹣14=18(人),如下图所示.……………………………………………………6分(2)分别用A,B表示两名擅长书法的学生,用C,D表示两名擅长绘画的学生,画树状图得:∵共有12种等可能的结果,抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的有8种情况,∴抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率为.……12分七、(本大题满分12分)22.解:(1)由条件可得,,解之得∴……………………………………4分(2)当n=3时,由可知,要使y最大,……………………………………8分(3)把n=2,x=40带入 ,可得y=420,由题意,得化简整理可得2(m%)2-m%=0解得m%= ,或m%=0(舍去)∴m=50. ……………………………………12分八、(本大题满分14分)23.(1)过D作DH⊥BC的延长线于H点,并截取HG=AF,连接DG………………..2分∵平行四边形ABCD,可证△ABE≌△DCH.∴AE=DH=AD,BE=CH.又∵AE⊥BC,可证△ADF≌△HDG.∴AF+BE=HG+CH=CG.,∠FDA=∠GDH.∴∠G=∠AFD=∠FDH=∠FDC+∠CDH.又∵DF平分∠ADC,∠FDC=∠FDA=∠GDH,∴∠G=∠GDH +∠CDH=∠CDG.∴CD=CG即CD=AF+BE.………………………………………………………………………..7分(2)过D作DH⊥BC的延长线于H点,过D作DG⊥DF交BC的延长线于G点.…..9分可证△ADF∽△HDG,∴ .又∵HD=AE,∴ .∴ .同(1)可得,CD=CG.∴CD=CG=CH+HG=BE+ .………………………………………….14分【注:以上各题解法不唯一,只要合理均要酌情赋分】11。

2018人教版九年级数学下册期中检测试卷(含答案)

2018人教版九年级数学下册期中检测试卷(含答案)

期中检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列各点中,在函数y =-8x 图象上的是( )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积比为( )A .4∶3B .3∶4C .16∶9D .9∶163.已知A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定4.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对第4题图 第5题图5.如图,点A 是反比例函数y =2x (x >0)图象上任意一点,AB ⊥y 轴于B ,点C 是x 轴上的动点,则△ABC 的面积为( )A .1B .2C .4D .不能确定6.如图,双曲线y =k x 与直线y =-12x 交于A 、B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2) C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12第6题图 第7题图7.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102B.3105C.105D.3558.如图,在△ABC 中,点E 、F 分别在边AB 、AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( )A .4B .6C .8D .12第8题图 第9题图9.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .210.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(每小题3分,共24分)11.反比例函数y =kx的图象经过点M (-2,1),则k =________.12.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第12题图 第14题图 第15题图13.已知反比例函数y =m +2x 的图象在第二、四象限,则m 的取值范围是________.14.如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是________________.15.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.16.如图,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.第 16题图 第17题图 第18题图17.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,若S △DEC =3,则S △BCF =________.18.如图,点E ,F 在函数y =2x 的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE ∶BF =1∶3,则△EOF 的面积是________.三、解答题(共66分)19.(8分)在平面直角坐标系中,已知反比例函数y =kx 的图象经过点A (1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.20.(8分)如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出C 、D 的坐标.21.(8分)如图,小明同学用自制的直角三角形纸板DEF 测量树AB 的高度,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,求树AB 的高度.22.(8分)如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接P A 交⊙O 于点C ,连接BC .(1)求证:∠BAC =∠CBP ; (2)求证:PB 2=PC ·P A .23.(10分)如图,在平面直角坐标系xOy 中,反比例函数y =mx 的图象与一次函数y =k (x-2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式及B 点坐标;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.24.(12分)如图,分别位于反比例函数y =1x ,y =kx 在第一象限图象上的两点A ,B ,与原点O 在同一直线上,且OA OB =13.(1)求反比例函数y =kx的表达式;(2)过点A 作x 轴的平行线交y =kx的图象于点C ,连接BC ,求△ABC 的面积.25.(12分)正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC 于F ,过M 作MN ⊥AF ,垂足为H ,交边AB 于点N .(1)如图①,若点M 与点D 重合,求证:AF =MN ;(2)如图②,若点M 从点D 出发,以1cm/s 的速度沿DA 向点A 运动,同时点E 从点B 出发,以2cm/s 的速度沿BD 向点D 运动,运动时间为t s.①设BF =y cm ,求y 关于t 的函数表达式; ②当BN =2AN 时,连接FN ,求FN 的长.参考答案与解析1.A 2.D 3.A 4.B 5.A 6.A 7.B 8.B9.A 解析:如图,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点A 的坐标是(m ,n ),则AC =n ,OC =m .∵∠AOB =90°,∴∠AOC +∠BOD =90°.∵∠DBO +∠BOD =90°,∴∠DBO =∠AOC .∵∠BDO =∠ACO =90°,∴△BDO ∽△OCA .∴DB OC =ODAC=OB OA .∵OB =2OA ,∴BD =2m ,OD =2n .∵点A 在反比例函数y =1x 的图象上,∴mn =1.∵点B 在反比例函数y =kx 的图象上,B 点的坐标是(-2n ,2m ),∴k =-2n ·2m =-4mn =-4.故选A.10.D 解析:∵DH 垂直平分AC ,AC =4,∴DA =DC ,AH =HC =2,∴∠DAC =∠DCH .∵CD ∥AB ,∴∠DCA =∠BAC ,∴∠DAH =∠BAC .又∵∠DHA =∠B =90°,∴△DAH ∽△CAB ,∴AD AC =AH AB ,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,故选D.11.-2 12.18513.m <-214.-1<x <0或x >1 15.9 16.(-2,0) 17.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EF CF =DE BC ,S △DEF S △BCF =⎝⎛⎭⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF=13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 18.83 解析:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示.∵EP ⊥y 轴,FH ⊥y 轴,∴EP ∥FH ,∴△BPE ∽△BHF ,∴PE HF =BE BF =13,即HF =3PE .设E 点坐标为⎝⎛⎭⎫t ,2t ,则F 点的坐标为⎝⎛⎭⎫3t ,23t .∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =12×2=1,∴S △OEF =S 梯形ECDF =12⎝⎛⎭⎫23t +2t (3t -t )=83.故答案为83.19.解:(1)y =3x.(4分) (2)点B 在此反比例函数的图象上.(5分)理由:由题意可得OB =OA =12+(3)2=2.过点B 作BC ⊥x 轴,垂足为点C ,则∠AOC =60°,∠AOB =30°,∴∠BOC =30°,∴BC =1,OC =3,∴点B 的坐标为(3,1).∵1=33,∴点B 在此反比例函数的图象上.(8分)20.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(8分)21.解:易证△DEF ∽△DCB ,(3分)则DE CD =EF BC ,即0.48=0.2BC ,(6分)∴BC =4m ,∴AB=BC +AC =4+1.5=5.5(m).(7分)答:树AB 的高度为5.5m.(8分)22.证明:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.(2分)∵PB 与⊙O 相切于点B ,∴∠CBP +∠ABC =90°,∴∠BAC =∠CBP .(4分)(2)∵∠BAC =∠CBP ,∠P =∠P ,∴△PBC ∽△P AB .(6分)∴PB AP =PCBP ,∴PB 2=PC ·P A .(8分)23.解:(1)∵点A (3,2)在反比例函数y =m x 和一次函数y =k (x -2)的图象上,∴2=m3,2=k (3-2),解得m =6,k =2,∴反比例函数的解析式为y =6x ,一次函数的解析式为y =2x-4.(3分)∵点B 是一次函数与反比例函数的另一个交点,∴6x =2x -4,解得x 1=3,x 2=-1,∴B 点的坐标为(-1,-6).(5分)(2)设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为(0,-4).设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10,∴|y c +4|=5.(8分)当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为(0,1)或(0,-9).(10分)24.解:(1)作AE ,BF 分别垂直于x 轴,垂足为E ,F ,∴AE ∥BF ,∴△AOE ∽△BOF ,∴OE OF =EA FB =OA OB =13.(2分)由点A 在函数y =1x 的图象上,设A 的坐标是⎝⎛⎭⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即B 的坐标是⎝⎛⎭⎫3m ,3m .(5分)又点B 在y =kx 的图象上,∴3m =k 3m ,解得k =9,则反比例函数y =k x 的表达式是y =9x.(7分) (2)由(1)可知A ⎝⎛⎭⎫m ,1m ,B ⎝⎛⎭⎫3m ,3m ,又已知过A 作x 轴的平行线交y =9x的图象于点C ,∴C的纵坐标是1m.(9分)把y=1m代入y=9x得x=9m,∴C的坐标是⎝⎛⎭⎫9m,1m,∴AC=9m-m=8m.∴S△ABC=12×8m×⎝⎛⎭⎫3m-1m=8.(12分)25.(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(4分)(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴BFAD=BEED.∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=62cm.∵点E从点B出发,以2cm/s的速度沿BD向点D运动,运动时间为t s,∴BE=2t cm,DE=(62-2t)cm,∴y6=2t62-2t,∴y=6t6-t.(8分)②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴ANAM=BFAB.∵BN=2AN,AB=6cm,∴AN=2cm.∴26-t=6t6-t6,∴t=2,∴BF=6×26-2=3(cm).又∵BN=4cm,∴FN=32+42=5(cm).(12分)。

2018年人教版九年级数学下期中综合检测试卷有答案

2018年人教版九年级数学下期中综合检测试卷有答案

期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.已知点P-在反比例函数y=(k≠0)的图象上,则k的值是()A.-B.2C.1D.-12.关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3.(2015·成都中考)如图所示,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.如图所示,平行四边形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶75.(2015·自贡中考)若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x16.已知反比例函数y=(a≠0)的图象在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.68.(2015·浙江中考)如图所示,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.29.如图所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射到桌面后在地面上形成影子(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米210.(2015·重庆中考)如图所示,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4二、填空题(每小题4分,共24分)11.反比例函数y=(m-2)的函数值为时,自变量x的值是.12.(2015·重庆中考)已知△ABC∽△DEF,且△ABC与△DEF的面积比为4∶1,则△ABC与△DEF对应边上的高之比为.13.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC的长为.14.已知在反比例函数y=-图象的每一支上,y都随x的增大而减小,则k的取值范围是.15.反比例函数y=的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式是.16.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.三、解答题(共66分)17.(7分)反比例函数y=(k≠0)与一次函数y=mx+b(m<0)交于点A(1,2k-1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.18.(7分)如图所示,将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)向上平移4个单位长度得到△A1B1C1;(2)关于y轴对称得到△A2B2C2;(3)以点A为位似中心,将△ABC放大为原来的2倍得到△A3B3C3.19.(8分)(2015·泰安中考)如图所示,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.20.(8分)(2015·泰安中考)一次函数y=kx+b与反比例函数y=的图象相交于A(-1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)如图所示,过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)如图所示,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=18,FB=EC,求AC的长.22.(9分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售量y(单位:个)之间有如下关系:;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润.23.(9分)如图所示,在Rt△ABC中,∠ACB=90°,以AC为直径的☉O与AB边交于点D,过点D作☉O的切线,交BC于点E.(1)求证点E是边BC的中点;(2)若EC=3,BD=2求☉O的直径AC的长;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.(10分)(2015·成都中考)如图所示,一次函数y=-x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【答案与解析】1.D(解析:将点P-代入函数解析式,得k=-×2=-1.故选D.)2.D(解析:把(1,1)代入,左边≠右边,故A错误;因为k=4>0,所以图象在第一、三象限,故B错误;沿x轴对折不重合,故C 错误;两分支关于原点对称,故D正确.故选D.)3.B(解析:根据平行线分线段成比例,得=,即=,则EC=2.故选B.)4.A(解析:∵BE∶EC=2∶3,∴BE∶BC=2∶5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE∶AD=2∶5,△ADF∽△EBF,∴==.故选A.)5.D(解析:∵k=-1<0,∴反比例函数图象在第二、四象限,且在每个象限内y随x的增大而增大,∵y1<0<y2<y3,∴x1>0,x2<x3<0,即x2<x3<x1.故选D.)6.C(解析:根据反比例函数的性质可知a>0,再根据一次函数的性质知y=-ax+a的图象经过第一、二、四象限,不经过第三象限.故选C.)7.C(解析:在△ABC中,∠C=90°,AC=8,BC=6,∴AB===10,又△ADE∽△ABC,则=,=,∴AD==5.故选C.)8.C(解析:如图所示,过B点作BD⊥x轴,垂足为D,∵△OAB是等边三角形,∴OB=OA=2,∴OD=1,BD=.∴点B的坐标为(1,).∵反比例函数的图象经过点B,∴k=.故选C.)9.B(解析:设阴影部分的直径是x m,则1.2∶x=2∶3,解得x=1.8,所以地面上阴影部分的面积S=πr2=0.81π(米2).故选B.)10.D(解析:∵反比例函数的图象经过A,B两点,且A,B两点的纵坐标分别为3,1,∴点A的坐标为(1,3),点B的坐标为(3,1),过B作BE⊥AD,垂足为E,则AE=2,BE=2,根据勾股定理可得AB=2,又∵四边形ABCD为菱形,∴AD=AB=2,∴菱形ABCD的面积为AD·BE=2×2=4.故选D.)11.-9(解析:∵函数y=(m-2)是反比例函数,∴m-2≠0,且2m+1=-1,∴m=-1,∴y=-,当y=时,x=-9.故填-9.)12.2∶1(解析:∵△ABC与△DEF相似且面积比为4∶1,∴△ABC与△DEF的相似比为2∶1,∴△ABC与△DEF的对应边上的高之比为2∶1.故填2∶1.)13.6(解析:∵四边形ABCD是平行四边形,点E是AD边的中点,∴△AEF∽△CBF,∴=,=,∴FC=4,∴AC=6.故填6.)14.k>2015(解析:反比例函数y=的性质:当k>0时,图象在第一、三象限,且在每一象限内,y随x的增大而减小;当k<0时,图象在第二、四象限,且在每一象限内,y随x的增大而增大.由题意得k-2015>0,解得k>2015.)15.y=(解析:将(1,k)代入一次函数解析式y=2x+1,得k=2+1=3,把(1,3)代入y=,得k=3,则反比例函数解析式为y=.故填y=.)16.3或(解析:当△ABC∽△AQP时,=,即=,AQ=3;当△ABC∽△APQ时,=,即=,AQ=.故填3或.)17.解:(1)把A(1,2k-1)代入y=(k≠0),得1×(2k-1)=k,解得k=1,∴反比例函数的解析式为y=. (2)∵k=1,∴点A坐标为(1,1),∵=OB×1=3,∴OB=6,又m<0,∴点B的坐标为(6,0),把(1,1),(6,0)代入y=mx+b,得解得△∴一次函数解析式为y=-x+.18.解:如图所示.(1)平移后三个顶点的横坐标都不变,纵坐标都加4. (2)三个顶点的纵坐标不变,横坐标变为原来的相反数. (3)点A的坐标不变,点B的纵坐标不变,横坐标为原来横坐标加AB的长,点C的横坐标为原来横坐标加AB的长,纵坐标为原来纵坐标加BC的长.19.(1)证明:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∠APD=∠B,∴∠BAP=∠DPC,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD,∴=,∴AB·CD=CP·BP,即AC·CD=CP·BP. (2)解:∵PD∥AB,∴△PCD∽△BCA,由①得△ABP∽△PCD,∴△ABP∽△BCA,∴=,∴=,∴PB=.20.解:(1)把A(-1,4)代入反比例函数解析式y=,得m=-1×4=-4,∴反比例函数的解析式为y=-;把B(2,n)代入y=-,得2n=-4,解得n=-2,∴B点坐标为(2,-2),将A(-1,4)和B(2,-2)代入y=kx+b,得-解得∴一次函数的解析式为y=-2x+2. (2)∵BC⊥y轴,垂足为C,B(2,-2),∴C点坐标为(0,-2),设直线AC的解析式为y=px+q(p≠0),∵A(-1,4),C(0,-2),∴-解得∴直线AC的解析式为y=-6x-2,当y=0时,-6x-2=0,解得x=-,∴E点坐标为-,∵直线AB的解析式为y=-2x+2,∴直线AB与x轴交点D的坐标为(1,0),∴DE=1--=,∴△AED的面积S=××4=.21.解:(1)如图所示,连接FC,AD.∵点F是AB的中点,CD=BC,∴FC是△ADB的中位线,∴FC∥AD,FC=AD,∴△EFC∽△EDA,∴==2,∴=. (2)∵点F是AB的中点,AB=18,FB=EC,∴EC=AB=9.由(1)知=2,则=2,∴AE=18,∴AC=AE+EC=18+9=27.21.解:(1)如图所示,连接FC,AD.∵点F是AB的中点,CD=BC,∴FC是△ADB的中位线,∴FC∥AD,FC=AD,∴△EFC∽△EDA,∴==2,∴=. (2)∵点F是AB的中点,AB=18,FB=EC,∴EC=AB=9.由(1)知=2,则=2,∴AE=18,∴AC=AE+EC=18+9=27.22.解:(1)设y=,把点(3,20)代入得k=60,∴y=,其他组数据也满足此关系式,故y=,图象略. (2)∵W=(x-2)y=60-,又∵x≤10,∴当x=10时,日销售利润最大.23.(1)证明:如图所示,连接CD,OD.∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点. (2)解:∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B,∴△ABC∽△CBD,∴=,∴BC2=BD·BA.∴(2EC)2=BD·BA,即BA·2=36,∴BA=3,在Rt△ABC中,由勾股定理,得AC=-=3.(3)解:△ABC是等腰直角三角形.理由如下:∵四边形ODEC为正方形,∴∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-45°=45°,∴Rt△ABC为等腰直角三角形.24.解:(1)由已知可得a=-1+4=3,k=1×a=1×3=3,∴反比例函数的表达式为y=,联立解得或所以B(3,1). (2)如图所示,作B点关于x轴的对称点,得到B'(3,-1),连接AB'交x轴于点P',连接P'B,则有PA+PB=PA+PB'≥AB',当且仅当P点和P'点重合时取等号.易得直线AB'的解析式为y=-2x+5,令y=0,得x=,∴P',即满足条件的P的坐标为,设y=-x+4交x轴于点C,则C(4,0),∴S△PAB=S△APC-S△BPC=×PC×(y A-y B)=×(4-)×(3-1)=.。

2018届人教版九年级数学下册(江西专版)检测卷:期中检测卷

2018届人教版九年级数学下册(江西专版)检测卷:期中检测卷

期中检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.点A (-2,5)在反比例函数y =kx (k ≠0)的图象上,则k 的值是( )A .10B .5C .-5D .-102.点A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 3.如图,AB ∥CD ,AD 与BC 相交于点O .若AO =2,DO =4,BO =3,则BC 的长为( ) A .6 B .9 C .12 D .15第3题图 第5题图 第6题图4.志远要在报纸上刊登广告,一块10cm ×5cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在广告费单价相同的情况下,他该付广告费( )A .540元B .1080元C .1620元D .1800元5.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102B.3105C.105D.3556.如图,P 为反比例函数y =kx (k >0)在第一象限内图象上的一点,过点P 分别作x 轴、y 轴的垂线交一次函数y =-x -4的图象于点A 、B .若∠AOB =135°,则k 的值是( )A .2B .4C .6D .8二、填空题(本大题共6小题,每小题3分,共18分)7.已知反比例函数y =m +2x 的图象在第二、四象限,则m 的取值范围是________.8.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第8题图 第9题图9.如图,直线y =ax 与双曲线y =k x (x >0)交于点A (1,2),则不等式ax >kx 的解集是________.10.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F .若S △DEC =3,则S △BCF =________.11.如图,四边形ABCD 为正方形,点A 、B 在y 轴上,点C 的坐标为(-4,1),反比例函数y =kx的图象经过点D ,则k 的值为________.第10题图 第11题图 第12题图12.如图,等边△ABC 的边长为30,点M 为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,使点A 落在直线BC 上的点D 处,且BD ∶DC =1∶4,折痕与直线AC 交于点N ,则AN 的长为________.三、(本大题共5小题,每小题6分,共30分)13.如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出点C ,D 的坐标.14.已知正比例函数y 1=ax (a ≠0)与反比例函数y 2=kx (k ≠0)的图象在第一象限内交于点A (2,1).(1)求a ,k 的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接写出y 1>y 2时x 的取值范围.15.在平面直角坐标系中,已知反比例函数y =kx 的图象经过点A (1,3).连接OA ,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.16.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =0.4m ,EF =0.2m ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB 是多少?17.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF ;(2)若DG GC =23,BE =4,求EC 的长.四、(本大题共3小题,每小题8分,共24分)18.如图,点E 是△ABC 的内心,AE 的延长线与BC 相交于点F ,与△ABC 的外接圆相交于点D .(1)求证:△BFD ∽△ABD ; (2)求证:DE =DB .19.如图,在平面直角坐标系中,A ,B 两点的纵坐标分别为7和1,直线AB 与y 轴所夹锐角为60°.(1)求线段AB 的长;(2)求经过A ,B 两点的反比例函数的解析式.20.如图,设反比例函数的解析式为y =3kx(k >0).(1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数的图象与过点M (-2,0)的直线l :y =kx +b 交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.五、(本大题共2小题,每小题9分,共18分)21.如图,在Rt △ABC 中,∠ACB =90°,CP 平分∠ACB 交边AB 于点P ,点D 在边AC 上,连接PD .(1)如果PD ∥BC ,求证:AC ·CD =AD ·BC ; (2)如果∠BPD =135°,求证:CP 2=CB ·CD .22.如图,分别位于反比例函数y =1x ,y =kx 在第一象限图象上的两点A ,B ,与原点O在同一直线上,且OA OB =13.(1)求反比例函数y =kx的表达式;(2)过点A 作x 轴的平行线交y =kx的图象于点C ,连接BC ,求△ABC 的面积.六、(本大题共12分)23.正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以2cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.参考答案与解析1.D 2.A 3.B 4.C 5.B6.D 解析:设一次函数y =-x -4交y 轴于点C .如图,作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ,设P 点坐标⎝⎛⎭⎫n ,kn .∵直线AB 的解析式为y =-x -4,PB ⊥y 轴,P A ⊥x 轴,∴∠PBA =∠P AB =45°,∴P A =PB .∵P 点坐标为⎝⎛⎭⎫n ,kn ,∴OD =CQ =n .∵当x =0时,y =-x -4=-4,∴OC =DQ =4,∴AD =AQ +DQ =n +4.GE =OE =22OC =2 2.同理得BG =2BF =2PD =2k n ,∴BE =BG +EG =2k n +2 2.∵∠AOB =135°,∴∠OBE +∠OAE =45°.∵∠DAO +∠OAE =45°,∴∠DAO =∠OBE .又∵∠BEO =∠ADO =90°,∴△BOE ∽△AOD ,∴OEOD=BE AD ,即22n =2kn +224+n,∴k =8.故选D.7.m <-2 8.1859.x >110.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EF CF =DE BC ,S △DEF S △BCF =⎝⎛⎭⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF=13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 11.1212.21或65 解析:①当点A 落在如图①所示的位置时,∵△ACB 是等边三角形,∴∠A =∠B =∠C =∠MDN =60°.∵∠MDC =∠B +∠BMD ,∠B =∠MDN ,∴∠BMD =∠NDC ,∴△BMD ∽△CDN .∴BD CN =DM DN =BM CD .∵DN =AN ,∴BD CN =DM AN =BMCD.∵BD ∶DC =1∶4,BC =30,∴DB =6,CD =24.设AN =x ,则CN =30-x ,∴630-x =DM x =BM24,∴DM=6x 30-x ,BM =14430-x .∵BM +DM =30,∴6x 30-x +14430-x=30,解得x =21,∴AN =21;②当A 落在CB 的延长线上时,如图②,与①同理可得△BMD ∽△CDN .∴BD CN =DMDN=BM CD .∵BD ∶DC =1∶4,BC =30,∴DB =10,CD =40.设AN =x ,则CN =x -30,∴10x -30=DM x =BM 40,∴DM =10x x -30,BM =400x -30.∵BM +DM =30,∴10x x -30+400x -30=30,解得x =65,∴AN =65.综上所述,AN 的长为21或65.13.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(6分)14.解:(1)将A (2,1)代入正比例函数解析式得1=2a ,∴a =12,∴y 1=12x .将A (2,1)代入反比例函数解析式得1=k 2,∴k =2,∴y 2=2x.(2分)(2)如图所示.(4分)由图象可得当y 1>y 2时,x 的取值范围是-2<x <0或x >2.(6分)15.解:点B 在此反比例函数的图象上.(1分)理由如下:易知反比例函数的解析式为y =3x.(2分)过点A 作AD ⊥x 轴,垂足为点D .∵点A 的坐标为(1,3),∴OD =1,AD =3,∴OA =OD 2+AD 2=2,∴∠OAD =30°,∴∠AOD =60°.过点B 作BC ⊥x 轴,垂足为点C .∵∠AOB =30°,∴∠BOC =∠AOD -∠AOB =30°.∵OB =OA =2,∴BC =1,∴OC =OB 2-BC 2=3,∴点B 的坐标为(3,1),∴点B 在此反比例函数的图象上.(6分) 16.解:由题意可得∠DEF =∠DCB ,∠EDF =∠CDB ,∴△DEF ∽△DCB ,(2分)∴DECD =EF BC ,即0.48=0.2BC,∴BC =4m ,∴AB =BC +AC =4+1.5=5.5(m).(5分) 答:树高AB 是5.5m.(6分)17.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴DF ∥BE .∵DF =BE ,∴四边形BEFD 是平行四边形,∴BD ∥EF .(3分)(2)解:∵DF ∥EC ,∴△DFG ∽△CEG ,∴DG CG =DF CE .∵DF =BE =4,∴CE =DF ·CG DG =4×32=6.(6分)18.(1)证明:∵点E 是△ABC 的内心,∴∠BAD =∠CAD .∵∠CAD =∠CBD ,∴∠BAD =∠CBD .(3分)又∵∠BDF =∠ADB ,∴△BFD ∽△ABD .(4分)(2)解:连接BE .∵点E 是△ABC 的内心,∴∠ABE =∠CBE .又∵∠CBD =∠BAD ,∴∠BAD +∠ABE =∠CBE +∠CBD .(6分)∵∠BAD +∠ABE =∠BED ,∠CBE +∠CBD =∠DBE ,∴∠DBE =∠BED ,∴DE =DB .(8分)19.解:(1)分别过点A ,B 作AC ⊥x 轴,BD ⊥AC ,垂足分别为点C ,D .由题意,知∠BAC =60°,AD =7-1=6,∴∠ABD =30°,∴AB =2AD =12.(4分)(2)设过A ,B 两点的反比例函数解析式为y =kx(k ≠0),A 点坐标为(m ,7).∵AD =6,AB =12,∴BD =AB 2-AD 2=63,∴B 点坐标为(m +63,1),(6分)∴⎩⎨⎧7m =k ,(m +63)·1=k ,解得k =73,∴经过A ,B 两点的反比例函数的解析式为y =73x.(8分)20.解:(1)由题意得该点交点坐标为(1,2),把(1,2)代入y =3k x ,得到3k =2,∴k =23.(3分)(2)把M (-2,0)代入y =kx +b 可得b =2k ,∴y =kx +2k .由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k 消去y 得到x 2+2x -3=0,解得x =-3或1,∴B (-3,-k ),A (1,3k ).(6分)∵△ABO 的面积为163,∴12·2·3k+12·2·k =163,解得k =43,∴直线l 的解析式为y =43x +83.(8分) 21.证明:(1)∵PD ∥BC ,∴∠PCB =∠CPD .∵CP 平分∠ACB ,∴∠PCB =∠PCA ,∴∠CPD =∠PCA ,∴PD =CD .∵PD ∥BC ,∴△APD ∽△ABC ,∴AD AC =PDBC,∴AC ·PD =AD ·BC ,∴AC ·CD =AD ·BC .(4分)(2)∵∠ACB =90°,CP 平分∠ACB ,∴∠PCB =∠PCA =45°.∵∠B +∠PCB +∠CPB =180°,∴∠B +∠CPB =180°-∠PCB =135°.(6分)∵∠BPD =135°,∴∠CPB +∠CPD =135°,∴∠B =∠CPD ,∴△PCB ∽△DCP ,∴CB CP =CP CD,∴CP 2=CB ·CD .(9分)22.解:(1)分别过点A ,B 作AE ,BF 垂直于x 轴,垂足为E ,F .易证△AOE ∽△BOF .∴OEOF =EA FB =OA OB =13.∵点A 在函数y =1x 的图象上,设点A 的坐标是⎝⎛⎭⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即点B 的坐标是⎝⎛⎭⎫3m ,3m .(3分)∵点B 在y =k x 的图象上,∴3m =k 3m ,解得k =9,∴反比例函数y =k x 的表达式是y =9x.(5分)(2)由(1)可知A ⎝⎛⎭⎫m ,1m ,B ⎝⎛⎭⎫3m ,3m .又∵已知过A 作x 轴的平行线交y =9x 的图象于点C ,∴点C 的纵坐标是1m .把y =1m 代入y =9x ,∴x =9m ,∴点C 的坐标是⎝⎛⎭⎫9m ,1m ,∴AC =9m -m =8m .(7分)∴S △ABC =12·8m ·⎝⎛⎭⎫3m -1m =8.(9分) 23.(1)证明:∵四边形ABCD 为正方形,∴AD =AB ,∠MAN =∠ABF =90°.∵MN ⊥AF ,∴∠NAH +∠ANH =90°.∵∠NMA +∠ANH =90°,∴∠NAH =∠NMA ,∴△ABF ≌△MAN ,∴AF =MN .(4分)(2)解:①∵四边形ABCD 为正方形,∴AD ∥BF ,∴∠ADE =∠FBE .∵∠AED =∠BEF ,∴△EBF ∽△EDA ,∴BF AD =BEED .∵四边形ABCD 为正方形,∴AD =DC =CB =6cm ,∴BD =62cm.∵点E 从点B 出发,以2cm/s 的速度沿向点运动,运动时间为t s.∴BE =2t cm ,DE =(62-2t )cm ,∴y 6=2t 62-2t ,∴y =6t6-t.(8分)②同(1)可得∠MAN =∠FBA =90°,∠NAH =∠NMA ,∴△ABF ∽△MAN ,∴ANAM=BF AB .∵BN =2AN ,AB =6cm ,∴AN =2cm.当运动时间为t s 时,AM =(6-t )cm.由①知BF =6t 6-t cm ,∴26-t =6t6-t 6,∴t =2,∴BF =6×26-2=3(cm).又∵BN =2AN =4cm ,∴FN =32+42=5(cm).(12分)。

【期中试卷】江西省2018届人教版九年级下数学期中检测试卷含答案

【期中试卷】江西省2018届人教版九年级下数学期中检测试卷含答案

期中检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.点A (-2,5)在反比例函数y =kx (k ≠0)的图象上,则k 的值是( )A .10B .5C .-5D .-102.点A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 3.如图,AB ∥CD ,AD 与BC 相交于点O .若AO =2,DO =4,BO =3,则BC 的长为( ) A .6 B .9 C .12 D .15第3题图 第5题图 第6题图4.志远要在报纸上刊登广告,一块10cm ×5cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在广告费单价相同的情况下,他该付广告费( )A .540元B .1080元C .1620元D .1800元5.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102B.3105C.105D.3556.如图,P 为反比例函数y =kx (k >0)在第一象限内图象上的一点,过点P 分别作x 轴、y 轴的垂线交一次函数y =-x -4的图象于点A 、B .若∠AOB =135°,则k 的值是( )A .2B .4C .6D .8二、填空题(本大题共6小题,每小题3分,共18分)7.已知反比例函数y =m +2x 的图象在第二、四象限,则m 的取值范围是________.8.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第8题图 第9题图9.如图,直线y =ax 与双曲线y =k x (x >0)交于点A (1,2),则不等式ax >kx 的解集是________.10.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F .若S △DEC =3,则S △BCF =________.11.如图,四边形ABCD 为正方形,点A 、B 在y 轴上,点C 的坐标为(-4,1),反比例函数y =kx的图象经过点D ,则k 的值为________.第10题图 第11题图 第12题图12.如图,等边△ABC 的边长为30,点M 为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,使点A 落在直线BC 上的点D 处,且BD ∶DC =1∶4,折痕与直线AC 交于点N ,则AN 的长为________.三、(本大题共5小题,每小题6分,共30分)13.如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出点C ,D 的坐标.14.已知正比例函数y 1=ax (a ≠0)与反比例函数y 2=kx (k ≠0)的图象在第一象限内交于点A (2,1).(1)求a ,k 的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接写出y 1>y 2时x 的取值范围.15.在平面直角坐标系中,已知反比例函数y =kx 的图象经过点A (1,3).连接OA ,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.16.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =0.4m ,EF =0.2m ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB 是多少?17.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF ;(2)若DG GC =23,BE =4,求EC 的长.四、(本大题共3小题,每小题8分,共24分)18.如图,点E 是△ABC 的内心,AE 的延长线与BC 相交于点F ,与△ABC 的外接圆相交于点D .(1)求证:△BFD ∽△ABD ; (2)求证:DE =DB .19.如图,在平面直角坐标系中,A ,B 两点的纵坐标分别为7和1,直线AB 与y 轴所夹锐角为60°.(1)求线段AB 的长;(2)求经过A ,B 两点的反比例函数的解析式.20.如图,设反比例函数的解析式为y =3kx(k >0).(1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数的图象与过点M (-2,0)的直线l :y =kx +b 交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.五、(本大题共2小题,每小题9分,共18分)21.如图,在Rt △ABC 中,∠ACB =90°,CP 平分∠ACB 交边AB 于点P ,点D 在边AC 上,连接PD .(1)如果PD ∥BC ,求证:AC ·CD =AD ·BC ; (2)如果∠BPD =135°,求证:CP 2=CB ·CD .22.如图,分别位于反比例函数y =1x ,y =kx 在第一象限图象上的两点A ,B ,与原点O在同一直线上,且OA OB =13.(1)求反比例函数y =kx的表达式;(2)过点A 作x 轴的平行线交y =kx的图象于点C ,连接BC ,求△ABC 的面积.六、(本大题共12分)23.正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以2cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.参考答案与解析1.D 2.A 3.B 4.C 5.B6.D 解析:设一次函数y =-x -4交y 轴于点C .如图,作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ,设P 点坐标⎝⎛⎭⎫n ,kn .∵直线AB 的解析式为y =-x -4,PB ⊥y 轴,P A ⊥x 轴,∴∠PBA =∠P AB =45°,∴P A =PB .∵P 点坐标为⎝⎛⎭⎫n ,kn ,∴OD =CQ =n .∵当x =0时,y =-x -4=-4,∴OC =DQ =4,∴AD =AQ +DQ =n +4.GE =OE =22OC =2 2.同理得BG =2BF =2PD =2k n ,∴BE =BG +EG =2k n +2 2.∵∠AOB =135°,∴∠OBE +∠OAE =45°.∵∠DAO +∠OAE =45°,∴∠DAO =∠OBE .又∵∠BEO =∠ADO =90°,∴△BOE ∽△AOD ,∴OEOD=BE AD ,即22n =2kn +224+n,∴k =8.故选D.7.m <-2 8.1859.x >110.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EF CF =DE BC ,S △DEF S △BCF =⎝⎛⎭⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF=13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 11.1212.21或65 解析:①当点A 落在如图①所示的位置时,∵△ACB 是等边三角形,∴∠A =∠B =∠C =∠MDN =60°.∵∠MDC =∠B +∠BMD ,∠B =∠MDN ,∴∠BMD =∠NDC ,∴△BMD ∽△CDN .∴BD CN =DM DN =BM CD .∵DN =AN ,∴BD CN =DM AN =BMCD.∵BD ∶DC =1∶4,BC =30,∴DB =6,CD =24.设AN =x ,则CN =30-x ,∴630-x =DM x =BM24,∴DM=6x 30-x ,BM =14430-x .∵BM +DM =30,∴6x 30-x +14430-x=30,解得x =21,∴AN =21;②当A 落在CB 的延长线上时,如图②,与①同理可得△BMD ∽△CDN .∴BD CN =DMDN=BM CD .∵BD ∶DC =1∶4,BC =30,∴DB =10,CD =40.设AN =x ,则CN =x -30,∴10x -30=DM x =BM 40,∴DM =10x x -30,BM =400x -30.∵BM +DM =30,∴10x x -30+400x -30=30,解得x =65,∴AN =65.综上所述,AN 的长为21或65.13.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(6分)14.解:(1)将A (2,1)代入正比例函数解析式得1=2a ,∴a =12,∴y 1=12x .将A (2,1)代入反比例函数解析式得1=k 2,∴k =2,∴y 2=2x.(2分)(2)如图所示.(4分)由图象可得当y 1>y 2时,x 的取值范围是-2<x <0或x >2.(6分)15.解:点B 在此反比例函数的图象上.(1分)理由如下:易知反比例函数的解析式为y =3x.(2分)过点A 作AD ⊥x 轴,垂足为点D .∵点A 的坐标为(1,3),∴OD =1,AD =3,∴OA =OD 2+AD 2=2,∴∠OAD =30°,∴∠AOD =60°.过点B 作BC ⊥x 轴,垂足为点C .∵∠AOB =30°,∴∠BOC =∠AOD -∠AOB =30°.∵OB =OA =2,∴BC =1,∴OC =OB 2-BC 2=3,∴点B 的坐标为(3,1),∴点B 在此反比例函数的图象上.(6分) 16.解:由题意可得∠DEF =∠DCB ,∠EDF =∠CDB ,∴△DEF ∽△DCB ,(2分)∴DECD =EF BC ,即0.48=0.2BC,∴BC =4m ,∴AB =BC +AC =4+1.5=5.5(m).(5分) 答:树高AB 是5.5m.(6分)17.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴DF ∥BE .∵DF =BE ,∴四边形BEFD 是平行四边形,∴BD ∥EF .(3分)(2)解:∵DF ∥EC ,∴△DFG ∽△CEG ,∴DG CG =DF CE .∵DF =BE =4,∴CE =DF ·CG DG =4×32=6.(6分)18.(1)证明:∵点E 是△ABC 的内心,∴∠BAD =∠CAD .∵∠CAD =∠CBD ,∴∠BAD =∠CBD .(3分)又∵∠BDF =∠ADB ,∴△BFD ∽△ABD .(4分)(2)解:连接BE .∵点E 是△ABC 的内心,∴∠ABE =∠CBE .又∵∠CBD =∠BAD ,∴∠BAD +∠ABE =∠CBE +∠CBD .(6分)∵∠BAD +∠ABE =∠BED ,∠CBE +∠CBD =∠DBE ,∴∠DBE =∠BED ,∴DE =DB .(8分)19.解:(1)分别过点A ,B 作AC ⊥x 轴,BD ⊥AC ,垂足分别为点C ,D .由题意,知∠BAC =60°,AD =7-1=6,∴∠ABD =30°,∴AB =2AD =12.(4分)(2)设过A ,B 两点的反比例函数解析式为y =kx(k ≠0),A 点坐标为(m ,7).∵AD =6,AB =12,∴BD =AB 2-AD 2=63,∴B 点坐标为(m +63,1),(6分)∴⎩⎨⎧7m =k ,(m +63)·1=k ,解得k =73,∴经过A ,B 两点的反比例函数的解析式为y =73x.(8分)20.解:(1)由题意得该点交点坐标为(1,2),把(1,2)代入y =3k x ,得到3k =2,∴k =23.(3分)(2)把M (-2,0)代入y =kx +b 可得b =2k ,∴y =kx +2k .由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k 消去y 得到x 2+2x -3=0,解得x =-3或1,∴B (-3,-k ),A (1,3k ).(6分)∵△ABO 的面积为163,∴12·2·3k+12·2·k =163,解得k =43,∴直线l 的解析式为y =43x +83.(8分) 21.证明:(1)∵PD ∥BC ,∴∠PCB =∠CPD .∵CP 平分∠ACB ,∴∠PCB =∠PCA ,∴∠CPD =∠PCA ,∴PD =CD .∵PD ∥BC ,∴△APD ∽△ABC ,∴AD AC =PDBC,∴AC ·PD =AD ·BC ,∴AC ·CD =AD ·BC .(4分)(2)∵∠ACB =90°,CP 平分∠ACB ,∴∠PCB =∠PCA =45°.∵∠B +∠PCB +∠CPB =180°,∴∠B +∠CPB =180°-∠PCB =135°.(6分)∵∠BPD =135°,∴∠CPB +∠CPD =135°,∴∠B =∠CPD ,∴△PCB ∽△DCP ,∴CB CP =CP CD,∴CP 2=CB ·CD .(9分)22.解:(1)分别过点A ,B 作AE ,BF 垂直于x 轴,垂足为E ,F .易证△AOE ∽△BOF .∴OEOF =EA FB =OA OB =13.∵点A 在函数y =1x 的图象上,设点A 的坐标是⎝⎛⎭⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即点B 的坐标是⎝⎛⎭⎫3m ,3m .(3分)∵点B 在y =k x 的图象上,∴3m =k 3m ,解得k =9,∴反比例函数y =k x 的表达式是y =9x.(5分)(2)由(1)可知A ⎝⎛⎭⎫m ,1m ,B ⎝⎛⎭⎫3m ,3m .又∵已知过A 作x 轴的平行线交y =9x 的图象于点C ,∴点C 的纵坐标是1m .把y =1m 代入y =9x ,∴x =9m ,∴点C 的坐标是⎝⎛⎭⎫9m ,1m ,∴AC =9m -m =8m .(7分)∴S △ABC =12·8m ·⎝⎛⎭⎫3m -1m =8.(9分) 23.(1)证明:∵四边形ABCD 为正方形,∴AD =AB ,∠MAN =∠ABF =90°.∵MN ⊥AF ,∴∠NAH +∠ANH =90°.∵∠NMA +∠ANH =90°,∴∠NAH =∠NMA ,∴△ABF ≌△MAN ,∴AF =MN .(4分)(2)解:①∵四边形ABCD 为正方形,∴AD ∥BF ,∴∠ADE =∠FBE .∵∠AED =∠BEF ,∴△EBF ∽△EDA ,∴BF AD =BEED .∵四边形ABCD 为正方形,∴AD =DC =CB =6cm ,∴BD =62cm.∵点E 从点B 出发,以2cm/s 的速度沿向点运动,运动时间为t s.∴BE =2t cm ,DE =(62-2t )cm ,∴y 6=2t 62-2t ,∴y =6t6-t.(8分)②同(1)可得∠MAN =∠FBA =90°,∠NAH =∠NMA ,∴△ABF ∽△MAN ,∴ANAM=BF AB .∵BN =2AN ,AB =6cm ,∴AN =2cm.当运动时间为t s 时,AM =(6-t )cm.由①知BF =6t 6-t cm ,∴26-t =6t6-t 6,∴t =2,∴BF =6×26-2=3(cm).又∵BN =2AN =4cm ,∴FN =32+42=5(cm).(12分)。

学2018届九年级下学期期中考试数学试题(附答案)

学2018届九年级下学期期中考试数学试题(附答案)

2017—2018学年第二学期初三数学期中考试试卷考试时间为120分钟.试卷满分130分一、选择题(本大题共10小题,每题3分,共计30分.) 1.-3的相反数是( ) A .3 B .-3C .13D .-132.函数yx 的取值范围是( )A .2x ≠B .2x ≥C .2x ≤D .2x >3.下列计算结果正确的是( ) A.277a a a += B.236a a a ?C.34a aa ? D.()22ab ab =4.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .5. 如果反比例函数1k y x-=的图象经过点(1,-2),那么k 的值是( ) A .-2B .-1C .2D .16.对于一组统计数据3,3,6,5,3.下列说法错误的是( )A .众数是3B .平均数是4C .中位数是6D .方差是1.6 7. 如图所示,所给的三视图表示的几何体是( )A .圆锥B .四棱锥C .三棱锥D .三棱柱8. 如图,O ⊙中,弦AB ,CD 相交于点P ,∠A=42°,∠APD=77°,则∠B 的大小是( ) A. 35°B. 34°C. 43°D.44°9.如图,在R t △ABC 中,∠ABC=90°,AB=3,BC=4,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥AC 交AC 于点F ,则EF 的长为( ) A .52 B .154 C . 103 D .53第8题图 第9题图 第10题图 10.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离不可能是( )A .0.5B .0.6C .0.7D .0.8 二、填空题(本大题共8小题,每题2分,共计16分.) 11.分解因式:ab ﹣a 2= .12.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 .13. 命题“全等三角形的面积相等”的逆命题是 命题.(填入“真”或“假”) 14.已知圆锥的底半径为3cm ,母线长为6cm ,则圆锥的侧面积是 cm 2.15.如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为 .16. 如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .17. 如图,半径为6cm 的⊙O 中,C 、D 为直径AB 的三等分点,点E 、F 分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连接AE 、BF ,则图中两个阴影部分的面积为 m 2.第15题图 第16题图 第17题图18. 已知四边形ABCD 中A (-2,1+m )、B (-2,2+m )、C (0,2+m )、D (0,1+m ),有一抛物线2(1)y x =+与该四边形ABCD 的边(包括四个顶点)恰好有3个交点,则m 的值是 .三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.) 19.计算与化简(本题共有2小题,每小题4分,共8分)(1101()20172--; (2)2()(2)x y x y x +--.20.(本题共有2小题,每小题4分,共8分)(1)解不等式组: ⎪⎩⎪⎨⎧-≥-->+1312112x x x ; (2)解方程:x 2+3x ﹣2=0 .21.(本题满分8分)如图,已知:△ABC 中,AB=AC ,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且BD=CE .求证:MD=ME .22.(本题满分8分)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?23.(本小题满分8分) 某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.24. (本小题满分6分)如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM=3,MN=4,则BN 的长为 ; (2)已知点C 是线段AB 上的一定点,其位置如图2所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,不写画法,保留作图痕迹,画出一种情形即可)图1 图225.(本小题满分8分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.DFCEBAOBA理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使A B C ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由;运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,其面积的最小值为 .26.(本小题满分10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有,A B 两种型号的健身器可供选择.(1)劲松公司2015年每套A 型健身器的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6 万元,求每套A 型健身器年平均下降率n ;图1 图2(2)2017年市政府经过招标,决定年内采购并安装劲松公司,A B 两种型号的健身器材共80套,采购专项费总计不超过112万元,采购合同规定:每套A 型健身器售价为1.6万元,每套B 型健身器售价为()1.51n - 万元. ①A 型健身器最多可购买多少套?②安装完成后,若每套A 型和B 型健身器一年的养护费分别是购买价的005 和0015 .市政府计划支出10 万元进行养护.27. (本小题满分10分) 如图,已知抛物线y =12x 2+的直线y=−x+b 交抛物线于另一点C (-5,6),点D C 不重合),作DE ∥AC ,交该抛物线于点E , (1)求m,n,b 的值; (2)求tan ∠ACB ;(3)探究在点D 运动过程中,是否存在∠不存在,请说明理由.28. (本小题满分10分) 如图1,在△ABC 中,∠A=30°,点P 从点A 出发以2cm /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.C 1C 2初三数学答案一、选择题(本大题共10题,每小题3分,共计30分)1、A2、B3、C4、B5、B6、C7、C8、A9、D 10、A二、填空题(本大题共8小题,每小题2分,共计16分)11、a(b-a) 12、5.7×10713、假14、18π15、2:316、7 17、18、-1三、解答题(本大题共10小题,共计84分.)19.(本题满分8分)(1) =2+2-1=3(化简3分各1分+1分) (2)=2x2+y2(公式2分+去括号1分+1分)20. (本题满分8分)(1) 由(1)得x>-1 (1分) 由(2)得x≤2(3分)∴-1<x≤2 (4分)(2)∵b2﹣4ac=32﹣4×1×(﹣2)=17(2分),∴x x==4分)21.(本题满分8分)⑴证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,(2分)∵M是BC的中点,∴BM=CM,(4分)在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),(7分)∴MD=ME.(8分)22.(本小题满分8分)⑴60 (2分)72 (4分)⑵B 9人 D 12人图中一个空1分(6分)⑶360(8分)23. (本小题满分8分)解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2分)(2)画树状图得:(4分)∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,(7分)∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.(8分)24. (本小题满分6分)(1)2分 5(2)尺规作图过点C作AB的垂线(4分)作DF的中垂线(6分)25. (本小题满分8分)2分5分6分8分(326. (本小题满分10分)解:2.5(1-n)2=1.6(1分)解得:n 1=0.2=20%, n 2=1.8(不合题意,舍去). (2分) 答:每套A 型健身器材年平均下降率n 为20%; (3分) (2)①设A 型健身器材可购买m 套,则B 型健身器材可购买(80﹣m )套, (4分) 依题意得:1.6m+1.5×(1﹣20%)×(80﹣m )≤112, (5分) 整理,得1.6m+96﹣1.2m ≤1.2,解得m ≤40, (6分) 即A 型健身器材最多可购买40套; (7分) ②设总的养护费用是y 元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m ),(8分) ∴y=﹣0.1m+14.4.∵﹣0.1<0, ∴y 随m 的增大而减小,∴m=40时,y 最小.∵m=40时,y 最小值=﹣01×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要27. (本小题满分10分)解:(1)∵直线y=−x+b 经过点C(−5,6) ∴b =1 (1分) ∵B 在x 轴上,且在直线y=−x+b 上 ∴B(1,0) ∵抛物线y =12x 2+mx +n 过B(1,0)、C(−5,6)∴ m=1,n=−32………………………3分(2)作CF ⊥x 轴于F ,作AG ⊥BC 于G ∴F(−5,0)∵抛物线y =12x 2+mx +n 与x 轴交于A 、B∴A(−3,0) B(1,0)∴CF=BF=6,AF=2,AB=4∴∠CBF=45°∴BG=AG=2 2 ∴CG=4 2∴tan ∠ACB=12………………………6分(3) ∵DE ∥AC ∴∠BDE=∠BCA ∵∠DEA=45° ∠DBA=45° ∴∠BAE=∠BDE=∠BCA ………………………8分 ∴tan ∠BAE=12设E (t,12 t 2+t −32 ) ∴tan ∠BAE =−12 t 2−t +32 t+3 =12∴t=0 ∴E(0,− 32 ) ∴AE= 32 5 ………………………10分28. (本小题满分10分)(1)a=1 (2分)(2)如图2,作PD ⊥AB 于D ,由图象可知,PB =5×2﹣2x =10﹣2x ,PD =PB •sin B =(10﹣2x )•sin B ,∴y =12×AQ ×PD =12x ×(10﹣2x )•sin B , ∵当x =4时,y =43,∴12×4×(10﹣2×4)•sin B =43, 解得,sin B =13,( 4分) ∴y =12x ×(10﹣2x )×13,即21533y x x =-+ ; (6分,酌情给分) (3)22115233x x x =-+,解得,x 1=0,x 2=2,(7分) 由图象可知,当x =2时,212y x =有最大值,最大值是12×22=2,21533x x -+=2解得x 1=3,x 2=2,(9分)∴当2<x <3时,点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积.(10分,酌情给分)。

精品解析:2018人教版九年级数学下册练习:期中检测卷(解析版)

精品解析:2018人教版九年级数学下册练习:期中检测卷(解析版)

期中检测卷一、选择题(每小题3分,共30分)1. 下列各点中,在函数y=-8x图象上的是( ) A. (﹣2,4) B. (2,4)C. (﹣2,﹣4)D. (8,1)【答案】A 【解析】 【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上 【详解】解:-2×4=-8 故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.2. 已知△ABC ∽△A′B′C′且12AB A B ''=,则S △ABC ∶S △A′B′C′为( ) A .1∶2B. 2∶1C. 1∶4D. 4∶1【答案】C 【解析】试题解析:∵△ABC ∽△A′B′C′,12AB A B ''=, ∴214ABC A B C S AB S A B '''==''(),故选C .点睛:运用相似三角形的性质进行计算时,注意:相似三角形的面积比等于相似比的平方. 3. 点A (-1,1y ),B (-2,2y )在反比例函数2y x=的图象上,则1y ,2y 的大小关系是( ) A. 1y >2y B. 1y =2yC. 1y <2yD. 不能确定【答案】C 【解析】 【分析】【详解】试题分析:对于反比例函数y=kx,当k >0时,在每一个象限内,y 随x 的增大而减小,根据题意可得:-1>-2,则12y y <. 故选:C .考点:反比例函数的性质.4. 如图,下列条件不能判定△ADB ∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD.AD ABAB BC=【答案】D 【解析】 【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A 、∵∠ABD=∠ACB ,∠A=∠A , ∴△ABC ∽△ADB ,故此选项不合题意; B 、∵∠ADB=∠ABC ,∠A=∠A , ∴△ABC ∽△ADB ,故此选项不合题意; C 、∵AB 2=AD•AC , ∴AC ABAB AD=,∠A=∠A ,△ABC ∽△ADB ,故此选项不合题意; D 、AD AB =ABBC不能判定△ADB ∽△ABC ,故此选项符合题意. 故选D .【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.5. 如图,在ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且//DE BC ,//EF AB ,若2AD BD =,则CFCB的值为( )A. 1 2B. 1 3C.14D. 2 3【答案】B 【解析】 【分析】根据平行线分线段成比例定理即可解题. 【详解】解:∵//DE BC , 2AD BD =, ∴23AD AE AB AC ==,即1,3CE AC = ∵//EF AB , ∴1,3CF CE CB AC == 故选B.【点睛】本题考查了平行线分线段成比例定理,属于简单题,熟悉定理内容,找到平行线是解题关键. 6. 如图,已知点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n),则m ,n 满足的关系式为( )A. n =-2mB. n =-2mC. n =-4mD. n =-4m【答案】B 【解析】试题分析:首先根据点C 的坐标为(m ,n ),分别求出点A 为(2n ,n ),点B 的坐标为(-2n,-n ),根据图像知B 、C 的横坐标相同,可得-2n=m. 故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.7. 如图,△ABE和△CDE是以点E(1,0)为位似中心的位似图形,已知点A(3,4),C(2,2),D(3,1),则点D的对应点B的坐标是( )A. (4,2)B. (4,1)C. (5,2)D. (5,1)【答案】C【解析】【分析】【详解】解:设点B的坐标为(x,y),∵△ABE和△CDE是以点E为位似中心的位似图形,∴3323121x,1421020y,解得x=5,y=2,所以,点B的坐标为(5,2).故选:C.8. 如图,反比例函数6yx=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为()A. 8B. 10C. 12D. 24【答案】C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A(-1,6),点B(-3,2),应用待定系数法求得直线AB 的解析式为y=2x+8,直线AB与x轴的交点C(-4,0),所以OC=4,点A 到x轴的距离为6,所以△AOC的面积为1462⨯⨯=12.故选C.考点:待定系数法求一次函数解析式;坐标与图形.9. 如图,在正方形ABCD中,点E为AB边的中点,点G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF =90°,则GF的长为( )A. 3B. 4C. 5D. 6【答案】A【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,∴AE AG BF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴2,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3.故选A.10. 如图,AOB 是直角三角形,90AOB ∠=,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数ky x=的图象上,则k 的值为( )A. 2B. -2C. 4D. -4【答案】D 【解析】 【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~,得到:2BD OD OBOC AC OA===,然后用待定系数法即可. 【详解】过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A 的坐标是(),m n ,则AC n =,OC m =,90AOB ∠=︒,∴90AOC BOD ∠+∠=︒,90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,90BDO ACO ∠=∠=︒, ∴BDO OCA ~, ∴BD OD OBOC AC OA ==, 2OB OA =,∴2BD m=,2OD n=,因为点A在反比例函数1yx=的图象上,则1mn=,点B在反比例函数kyx=的图象上,B点的坐标是()2,2n m-,∴2244k n m mn=-⋅=-=-.故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.二、填空题(每小题3分,共24分)11. 若函数1myx-=的图象在同一象限内,y随x的增大而增大,则m的值可以是_______ .(写出一个即可)【答案】2.【解析】【分析】由反比例函数的性质列出不等式,解出m的范围,然后在这个范围内写出一个则可.【详解】解:根据题意,m﹣1>0,解得m>1∴m=2(答案不唯一).故答案是2.【点睛】本题考查反比例函数的性质.12. 如图,在平面直角坐标系中,正方形OABC的顶点O为坐标原点,点B(0,6),反比例函数y=kx的图象过点C,则k的值为____.【答案】9【解析】【分析】过点C 作CD ⊥y 轴于点D ,由正方形的性质可得点C (3,3),将点C 坐标代入反比例函数y=kx中,即可求解.【详解】解:过点C 作CD ⊥y 轴于点D ,∵正方形OABC 的顶点O 为坐标原点,点B (0,6), BD=CD=12OB=3, ∴C (3,3). ∵反比例函数y=kx的图象过点C , ∴k=3×3=9. 故答案为:9.【点睛】本题考查了正方形的性质和反比例函数的解析式,正确求解点C 的坐标是解题的关键.13. 如图,在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若ADE ∆与ABC ∆的周长之比为2:3,4=AD ,则DB =_____.【答案】2. 【解析】试题分析:因为DE ∥BC ,所以△ADE ∽△ABC ,因为相似三角形的周长之比等于相似比,所以AD:AB=2:3,因为AD=4,所以AB=6,所以DB=AB-AD=6-4=2.故答案为2. 考点:相似三角形的判定与性质.14. 如图,在Rt △ABC 中,AB=BC ,∠B=90°,2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积是____.【答案】25 【解析】 【分析】由已知可得到△AFE ∽△ABC ,根据相似三角形的边对应成比例即可求得EF 的长,进而根据正方形的面积公式即可求得.【详解】解:∵在Rt △ABC 中,AB 2+BC 2=AC 2, ∵AB=BC ,AC=102. ∴2AB 2=200, ∴AB=BC=10, 设EF=x ,则AF=10-x ∵EF ∥BC , ∴△AFE ∽△ABC ∴=EF AFBC AB ,即101010x x -=, 得x=EF=5∴此正方形的面积为5×5=25. 故答案为:25.【点睛】本题主要考查了正方形基本性质和比例线段的运用.解题的关键是准确的找到相似三角形并根据其相似比列方程求解.15. 甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为_____米.【答案】9 【解析】如图,设路灯甲的高为x米,由题意和图可得:1.5530 x=,解得9x=,∴路灯甲的高为9米.16. 正比例函数1y mx=(m>0)的图象与反比例函数2kyx=(0k≠)的图象交于点A(n,4)和点B,AM⊥y 轴,垂足为M,若△ABM的面积为8,则满足12y y>的实数x的取值范围是.【答案】-2<x<0或x>2【解析】【分析】【详解】根据题意可得:AM=n,又1882AMBS n∆=⨯=,所以n=2,所以点A的坐标是(2,4),根据双曲线的对称性可知点B的坐标是(-2,-4),所以当-2<x<0或x>2时,12y y>.故答案是:-2<x<0或x>217. 如图,反比例函数y=kx(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD∶OD=1∶2,则k的值为______.【答案】8【解析】【分析】【详解】试题分析:如答图,过D点作x轴的垂线交x轴于H点,∵△ODH的面积=△OBC的面积=11k k22=,△OAC的面积为5,∴△OBA的面积=15k2+.∵AD:OD=1:2,∴OD:OA=2:3.∵DH∥AB,∴△ODH∽△OAB. ∴2ODHOABS2S3∆∆⎛⎫= ⎪⎝⎭,即1k42195k2=+.解得:k=8.考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定和性质.18. 如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n+1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015= .【答案】2.【解析】试题解析::∵a 1=-1,∴B 1的坐标是(-1,1),∴A 2的坐标是(2,1),即a 2=2,∵a 2=2,∴B 2的坐标是(2,-12), ∴A 3的坐标是(12,-12), 即a 3=12, ∵a 3=12, ∴B 3的坐标是(12,-2), ∴A 4的坐标是(-1,-2),即a 4=-1,∵a4=-1,∴B4的坐标是(-1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是-1、2、12,∵2015÷3=671…2,∴a2015是第672个循环的第2个数,∴a2015=2.故答案为2.点睛:(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(共66分)19. 如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到△A1B1C1;(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.【详解】(1)如图:△A1B1C1即为所求;(2)如图:△A2B2C2即为所求.20. 如图,已知反比例函数y=kx的图象经过点A(-1,3).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕点O逆时针旋转30°后得到线段OB,求出点B的坐标,并判断点B是否在此反比例函数的图象上.【答案】(1)y=-3x;(2)点B(-3,1)在反比例函数y=-3x的图象上.【解析】试题分析:1)由于反比例函数y=kx的图象经过点A,运用待定系数法即可求出此反比例函数的解析式;(2)过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D,由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B 是否在此反比例函数的图象上.试题解析:(1)y=-3x;(2)过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D. 在Rt△AOC中,AC=,OC=1,∴OA ==2,可求∠AOC =60°,∵将线段OA 绕O 点逆时针旋转30°得到线段OB ,∴∠AOB =30°,OB =OA =2, ∴∠BOD =30°. 在Rt △BOD 中,BD =OB =1,由勾股定理得OD =, ∴B 点坐标为(-,1), 将x =-代入y =-中,得y =1, ∴点B(-,1)在反比例函数y =-的图象上21. 如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB=∠AEC.求证:(1)BD 是⊙O 的切线;(2)CE 2=EH·EA.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由圆周角定理和已知条件证出∠ODB=∠ABC ,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD 是⊙O 的切线;(2)连接AC ,由垂径定理得出BE CE =,即可得出∠CAE=∠ECB ,再由公共角∠CEA=∠HEC ,证明△CEH ∽△AEC ,得出对应边成比例CE EH EA CE=,即可得出结论.试题解析:(1)∵∠ODB =∠AEC ,∠AEC =∠ABC ,∴∠ODB =∠ABC ,∵OF ⊥BC ,∴∠BFD =90°, ∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°,即∠OBD =90°, ∴BD ⊥OB ,∴BD 是⊙O 的切线.(2)连接AC,∵OF⊥BC,∴=,∴∠ECB=∠CAE,又∵∠HEC=∠CEA,∴△CEH∽△AEC,∴=,∴CE2=EH·EA.22. 如图,已知点A,P在反比例函数y=kx(k<0)的图象上,点B,Q在直线y=x-3的图象上,点B的纵坐标为-1,AB⊥x轴,且S△OAB=4,若P,Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求m nn m+的值.【答案】(1)点A的坐标为(2,-5), k=-10;(2)-29 10.【解析】试题分析:(1)由点B在直线y=x-3的图象上,点B的纵坐标为﹣1,可求出B(2,﹣1).由AB⊥x 轴可设点A的坐标为(2,t),利用S△OAB=4可求出t=﹣5,得到点A的坐标为(2,﹣5);将点A的坐标代入y=kx,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q(﹣m,n),由点P(m,n)在反比例函数y=10x-的图象上,点Q在直线y=x-3的图象上,得出mn=﹣10,m+n=﹣3,再将m nn m+变形为2()2m n mnmn+-,代入计算即可.试题解析:(1)∵点B在直线y=x-3的图象上,点B的纵坐标为-1,∴当y=-1时,x-3=-1,解得x=2,∴B(2,-1).设点A的坐标为(2,t),则t<-1,AB=-1-t.∵S△OAB=4,∴(-1-t)×2=4,解得t=-5,∴点A的坐标为(2,-5).∵点A在反比例函数y=(k<0)的图象上,∴-5=,解得k=-10.(2)∵P,Q两点关于y轴对称,点P的坐标为(m,n),∴Q(-m,n),∵点P在反比例函数y=-的图象上,点Q在直线y=x-3的图象上,∴n=-,n=-m-3,∴mn=-10,m+n=-3,∴+====-23. 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)第30分钟注意力更集中;(2)老师能在学生注意力达到所需的状态下讲解完成这道题目.【解析】【分析】(1)先用代定系数法分别求出AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断.(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【详解】解:(1)由题意得y 1=2x +20(0≤x≤10),y 2=1000x (x≥25), 当x 1=5时,y 1=30,当x 2=30时,y 2=1003, ∴y 1<y 2,∴第30分钟注意力更集中(2)令y 1=36,∴36=2x +20,∴x =8,令y 2=36,∴36=1000x ,∴x =100036≈27.8, ∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下讲解完成这道题目点睛:本题主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.24. 如图,在矩形ABCD 中,点E 为CD 的中点,点H 为BE 上的一点,EH BH =3,连接CH 并延长交AB 于点G ,连接GE 并延长交AD 的延长线于点F .(1)求证:=EC EH BG BH; (2)若∠CGF =90°时,求AB BC的值.【答案】(1)证明见解析;(2)32【解析】试题分析:(1)根据相似三角形判定的方法,判断出△CEH ∽△GBH ,即可推得结论;(2)作EM ⊥AB 于M ,则EM =BC =AD ,AM =DE ,设DE =CE =3a ,则AB =CD =6a ,由(1)得:EC EH BG BH =3,得出BG =13CE =a ,AG =5a ,证明△DEF ∽△GEC ,由相似三角形的性质得出EG •EF =DE •EC ,由平行线证出EF EG =32,得出EF =32EG ,求出EG 6a ,在Rt △EMG 中,GM =2a ,由勾股定理求出BC =EM 2a ,即可得出结果.试题解析:解:(1)∵四边形ABCD 是矩形,∴CD ∥AB ,AD =BC ,AB =CD ,AD ∥BC ,∴△CEH ∽△GBH ,∴EC EH BG BH =. (2)作EM ⊥AB 于M ,如图所示: 则EM =BC =AD ,AM =DE ,∵E 为CD 的中点,∴DE =CE ,设DE =CE =3a ,则AB =CD =6a ,由(1)得:EC EH BG BH ==3,∴BG =13CE =a ,∴AG =5a ,∵∠EDF =90°=∠CGF ,∠DEF =∠GEC ,∴△DEF ∽△GEC ,∴DE EF EG EC =,∴EG •EF =DE •EC ,∵CD ∥AB ,∴EF DE FG AG ==35,∴EF EG =32,∴EF =32EG ,∴EG •32EG =3a •3a ,解得:EG =6a ,在Rt △EMG 中,GM =2a ,∴EM =22EG GM -=2a ,∴BC =2a ,∴AB BC=62a a =32.25. 如图,在平面直角坐标系xOy 中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C.抛物线y =ax 2+bx +c 的对称轴是直线x =-32,且经过A ,C 两点,与x 轴的另一交点为点B. (1)①直接写出点B 的坐标;②求抛物线的解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A ,M ,N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)①点B 的坐标为(1,0);②y =-12x 2-32x +2;(2)存在点M 1(0,2),M 2(-3,2),M 3(2,-3),M 4(5,-18),使得以点A ,M ,N 为顶点的三角形与△ABC 相似.【解析】【试题分析】(1)①先求的直线y=12x+2与x 轴、y 轴交点的坐标,然后利用抛物线的对称性可求得点B 的坐标;②设抛物线的解析式为y=y=a (x+4)(x ﹣1),然后将点C 的坐标代入即可求得a 的值;(3)证明△ABC ∽△ACO ∽△CBO ,然后分以下几种情况分类讨论即可:①当M 点与C 点重合,即M (0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;③当点M在第四象限时,解题时,需要注意相似三角形的对应关系.试题解析:(1)①对于直线y=x+2,当x=0时,y=2;当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于直线x=-对称,∴点B的坐标为(1,0);②∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a,∴a=-,∴y=-x2-x+2(2)在Rt△AOC中,易知△ABC∽△ACO∽△CBO,如图,①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M(n,-n2-n+2),则N(n,0),∴MN=n2+n-2,AN=n+4,当=时,MN=AN,即n2+n-2=(n+4),整理得n2+2n-8=0,解得n1=-4(舍),n2=2,∴M(2,-3);当=时,MN=2AN,即n2+n-2=2(n+4),整理得n2-n-20=0解得n1=-4(舍),n2=5,∴M(5,-18).综上所述,存在点M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A,M,N为顶点的三角形与△ABC相似.点睛:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,二次函数与相似三角形的综合应用,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。

(人教版)2018年九年级数学下册期中检测题及答案

(人教版)2018年九年级数学下册期中检测题及答案

期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列各点中,在函数y =-8x图象上的是( A )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.已知△ABC ∽△A ′B ′C ′且AB A ′B ′=12,则S △ABC ∶S △A ′B ′C ′为( C )A .1∶2B .2∶1C .1∶4D .4∶13.点A(-1,y 1),B(-2,y 2)在反比例函数y =2x的图象上,则y 1,y 2的大小关系是( C )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定4.如图,下列条件不能判定△ADB ∽△ABC 的是( D )A .∠ABD =∠ACB B .∠ADB =∠ABC C .AB 2=AD ·AC D.AD AB =AB BC,第4题图) ,第5题图) ,第6题图),第7题图)5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB.若AD =2BD ,则CFBF的值为( A )A.12B.13C.14D.236.如图,已知点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n),则m ,n 满足的关系式为( B )A .n =-2mB .n =-2mC .n =-4mD .n =-4m7.如图,△ABE 和△CDE 是以点E(1,0)为位似中心的位似图形,已知点A(3,4),C(2,2),D(3,1),则点D 的对应点B 的坐标是( C )A .(4,2)B .(4,1)C .(5,2)D .(5,1)8.如图,反比例函数y =-6x在第二象限的图象上有两点A ,B ,它们的横坐标分别为-1,-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( C )A .8B .10C .12D .24,第8题图),第9题图) ,第10题图),第12题图)9.如图,在正方形ABCD 中,点E 为AB 边的中点,点G ,F 分别为AD ,BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为( A )A .3B .4C .5D .610.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B在反比例函数y =kx的图象上,则k 的值为( A )A .-4B .4C .-2D .2二、填空题(每小题3分,共24分)11.若函数y =m -1x的图象在同一象限内,y 随x 增大而增大,则m 的值可以是__0(答案不唯一,只要满足m <1即可)__.(写出一个即可)12.如图,在平面直角坐标系中,正方形OABC 的顶点O 为坐标原点,点B(0,6),反比例函数y =kx的图象过点C ,则k 的值为__9__.13.(2016·乐山)如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB =__2__.,第13题图) ,第14题图) ,第15题图),第17题图)14.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =102,四边形BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是__25__.15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__9__米.16.正比例函数y 1=mx(m >0)的图象与反比例函数y 2=kx(k ≠0)的图象交于点A(n ,4)和点B ,AM ⊥y轴,垂足为M.若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是__-2<x <0或x >2__.17.如图,反比例函数y =kx(x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD ∶OD =1∶2,则k 的值为__8__.18.如图,已知点A 1,A 2,…,A n 均在直线y =x -1上,点B 1,B 2,…,B n 均在双曲线y =-1x上,并且满足A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n(n为正整数).若a1=-1,则a2018=__2__.三、解答题(共66分)19.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.解:(1)图略(2)图略20.(8分)如图,已知反比例函数y =kx的图象经过点A(-1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕点O 逆时针旋转30°后得到线段OB ,求出点B 的坐标,并判断点B 是否在此反比例函数的图象上.解:(1)y =-3x(2)过点A 作x 轴的垂线交x 轴于点C ,过点B 作x 轴的垂线交x 轴于点D.在Rt △AOC 中,AC =3,OC =1,∴OA =OC 2+AC 2=2,可求∠AOC =60°,∵将线段OA 绕O 点逆时针旋转30°得到线段OB ,∴∠AOB =30°,OB =OA =2,∴∠BOD =30°.在Rt △BOD 中,BD =12OB =1,由勾股定理得OD =3,∴B 点坐标为(-3,1),将x =-3代入y =-3x中,得y =1,∴点B (-3,1)在反比例函数y =-3x的图象上21.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC.求证:(1)BD 是⊙O 的切线;(2)CE 2=EH ·EA.解:(1)∵∠ODB =∠AEC ,∠AEC =∠ABC ,∴∠ODB =∠ABC ,∵OF ⊥BC ,∴∠BFD =90°,∴∠ODB +∠DBF =90°,∴∠ABC +∠DBF =90°,即∠OBD =90°,∴BD ⊥OB ,∴BD 是⊙O 的切线 (2)连接AC ,∵OF ⊥BC ,∴BE ︵=CE ︵,∴∠ECB =∠CAE ,又∵∠HEC =∠CEA ,∴△CEH ∽△AEC ,∴CE EA =EH CE,∴CE 2=EH ·EA22.(10 分)如图,已知点A ,P 在反比例函数y =kx(k <0)的图象上,点B ,Q 在直线y =x -3的图象上,点B 的纵坐标为-1,AB ⊥x 轴,且S △OAB =4,若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n).(1)求点A 的坐标和k 的值;(2)求m n +nm的值.解:(1)∵点B 在直线y =x -3的图象上,点B 的纵坐标为-1,∴当y =-1时,x -3=-1,解得x=2,∴B (2,-1).设点A 的坐标为(2,t ),则t <-1,AB =-1-t.∵S △OAB =4,∴12(-1-t )×2=4,解得t =-5,∴点A 的坐标为(2,-5).∵点A 在反比例函数y =k x (k <0)的图象上,∴-5=k2,解得k=-10 (2)∵P ,Q 两点关于y 轴对称,点P 的坐标为(m ,n ),∴Q (-m ,n ),∵点P 在反比例函数y =-10x 的图象上,点Q 在直线y =x -3的图象上,∴n =-10m ,n =-m -3,∴mn =-10,m +n =-3,∴n m +m n =m 2+n 2mn =(m +n )2-2mn mn =(-3)2-2×(-10)-10=-291023.(10分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y 随时间x(分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)由题意得y 1=2x +20(0≤x ≤10),y 2=1 000x(x ≥25),当x 1=5时,y 1=30,当x 2=30时,y 2=1003,∴y 1<y 2,∴第30分钟注意力更集中(2)令y 1=36,∴36=2x +20,∴x =8,令y 2=36,∴36=1 000x ,∴x =1 00036≈27.8,∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下讲解完成这道题目24.(10分)(2016·梧州)如图,在矩形ABCD 中,E 为CD 的中点,H 为BE 上的一点,EHBH=3,连接CH 并延长交AB 于点G ,连接GE 并延长交AD 的延长线于点F.(1)求证:EC BG =EHBH;(2)若∠CGF =90°,求ABBC的值.解:(1)∵四边形ABCD 是矩形,∴CD ∥AB ,AD =BC ,AB =CD ,可证得△CEH ∽△GBH ,∴EC BG =EHBH(2)作EM ⊥AB 于点M ,则EM =BC =AD ,AM =DE ,∵E 为CD 的中点,∴DE =CE ,设DE =CE =3a ,则AB =CD =6a.由(1)得EC BG =EH BH =3,∴BG =13CE =a ,∴AG =5a ,∵∠EDF =90°=∠CGF ,∠DEF =∠GEC ,∴△DEF ∽△GEC ,∴DE EG =EF EC ,∴EG ·EF =DE ·EC ,∵CD ∥AB ,∴△FED ∽△FGA ,∴EF FG =DE AG =35,∴EF EG =32,∴EF =32EG ,∴EG ·32EG =3a ·3a ,解得EG =6a ,在Rt △EMG 中,GM =2a ,∴EM =EG 2-GM 2=2a ,∴BC =2a ,∴AB BC =6a 2a=32 25.(12分)如图,在平面直角坐标系xOy 中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C.抛物线y =ax 2+bx +c 的对称轴是直线x =-32,且经过A ,C 两点,与x 轴的另一交点为点B.(1)①直接写出点B 的坐标;②求抛物线的解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A ,M ,N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)①对于直线y =12x +2,当x =0时,y =2;当y =0时,x =-4,∴C (0,2),A (-4,0),由抛物线的对称性可知:点A 与点B 关于直线x =-32对称,∴点B 的坐标为(1,0) ②∵抛物线y =ax 2+bx +c 过A (-4,0),B (1,0),∴可设抛物线解析式为y =a (x +4)(x -1),又∵抛物线过点C (0,2),∴2=-4a ,∴a =-12,∴y =-12x 2-32x +2(2)在Rt △AOC 中,易知△ABC ∽△ACO ∽△CBO ,如图,①当M 点与C 点重合,即M (0,2)时,△MAN ∽△BAC ;②根据抛物线的对称性,当M (-3,2)时,△MAN ∽△ABC ;③当点M 在第四象限时,设M (n ,-12n 2-32n +2),则N (n ,0),∴MN =12n 2+32n -2,AN =n +4,当MN AN =12时,MN =12AN ,即12n 2+32n -2=12(n +4),整理得n 2+2n -8=0,解得n 1=-4(舍),n 2=2,∴M (2,-3);当MN AN =21时,MN =2AN ,即12n 2+32n-2=2(n +4),整理得n 2-n -20=0解得n 1=-4(舍),n 2=5,∴M (5,-18).综上所述,存在点M 1(0,2),M 2(-3,2),M 3(2,-3),M 4(5,-18),使得以点A ,M ,N 为顶点的三角形与△ABC 相似。

2018九年级数学下册期中检测试卷带答案

2018九年级数学下册期中检测试卷带答案

16




-三


OBA
'和


-三


AC【
)是










-三












16



17



18


17









AE
]CD


八、、
E


AD



八、、

接EC交对角线BD于点F,
若SADEC
则SA
3
18.如图,点E,F在函数y=2x





线
EF



x
2,—1).(8分)21.解:易证△DEF^A DCB,(3
分)贝UDECD=EFBC,即0.48=0.2BC,(6分)二BC
=4m,二AB=BC+AC=4+1.5=5.5(m).(7分)

:

AB




5.5m
1.(8

)2
!2
-


:
(1)
/AE
3是
OO



ACE
90

(安徽版)2018届九年级下数学期中检测试卷有答案(新课标人教版)

(安徽版)2018届九年级下数学期中检测试卷有答案(新课标人教版)

期中检测卷时间:1.2. A3. A、选择题(本大题共10小题,每小题4分,满分40分)已知反比例函数的图象过点 M — 1, 2),则此反比例函数的表达式为( ) 2 2 1 1 y = — B . y = C . y = — D . y =x x 2x1 — k反比例函数y =——图象的每条曲线上xk > 1 B . k > 0 C . k v 1 D . k v 0 已知△ ABC^^ DEF 且周长之比为 1 : 2x y 都随x 增大而增大,则k 的取值范围是( 9,则厶ABC 与△ DEF 的高的比为(4. k如图,位于第二象限的点 E 在反比例函数y =-的图象上,点F 在x 轴的负半轴上, X 则k 的值是(标原点,若FOL EF, △ EOF 勺面积等于2,5.如图,在矩形 ABCDK E 、F 分别是AD AB 边上的点,连接 CE DF,它们相交于点 长CE 交BA 的延长线于点H,则图中的相似三角形共有 ( )A 6. 5对B . 4对C . 3对D . 2对 k 1如图,双曲线 y = -与直线y = — 2x 交于A, B 两点,点A 的坐标为(一2, m ),则点 X 2 0是坐B 的坐标是((2 , — 1) B . (1 , — 2) C. 1 2,- 1D. -1,2 )120分钟 满分:150分 题号 -一- -二二 三四 五 六七八总分得分k点B 在反比例函数y =的图象上,贝U k 的值为(XC . — 2D . 2△ EBC 的面积为(第8题图第9题图第10题图9.如图,正厶ABC 的边长为4,点P 为BC 边上的任意一点(不与点B , C 重合),且/ APD= 60°, PD 交AB 于点D.设BP= x , BD= y ,则y 关于x 的函数图象大致是( )7.如图,△ AOB 是直角三角形,/AOB= 90°,OB= 2OA 点A 在反比例函数y =1的图象上.若x8.如图,在△ ABC 中,点E , F 分别在边ABAC 上,EF// BC A F = £,△ CEF 的面积为 2,则A二、填空题(本大题共4小题,每小题5分,满分20分) 311. 反比例函数 ________________________________________________________ y =—-的图象上有 P i (x i , - 2) , F 2(X 2,— 3)两点,贝U x i ____________________________________________________________________ X 2(填X“〉” “V” 或“=”).12. 《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣计算题: “今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何? ”歌谣 的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺, 同时立一根一尺五寸的 小标杆,它的影子长五寸(提示:丈和尺是古代的长度单位, 1丈=10尺,1尺=10寸),可以求出 竹竿的长为 _________ 尺.2 k13. 如图,已知点A, B 分别在反比例函数 y 1= —-和y 2 =-的图象上,若点A 是线段OB 的中点,X X则k 的值为14.如图,在平面直角坐标系中,已知点 A (4 , 0)和点B (0 , 3),点C 是AB 的中点,点P 在折线AOBh ,直线CP a^ AOB 所得的三角形与厶 AOB 相似,那么点P 的坐标是 ________________________ .三、(本大题共2小题,每小题8分,满分16分)15. 如图,直线I 1//I 2//I 3,直线 AC 依次交丨1,丨2,丨3于 代B , C 三点,直线 DF 依次交丨1,AB 4l 2, I 3于 D, E, F 三点,若 A C = 7,DE= 2,求 EF 的长.m — 516. ------------------------------------ 已知反比例函数 y = (m 为常数,且 5)的图象与一次函数 y = — x + 1图象的一个交X点的纵坐标是3,求m 的值.四、(本大题共2小题,每小题8分,满分16分)17. 如图,已知 A — 4, 2) , B ( — 2, 6) , qo , 4)是直角坐标系中的三点.-IOD10.如图,在Rt △ ABC 中,/ C = 90°, P 是BC 边上不同于 B, C 的一动点,过点 垂足为Q 连接AP 若AC= 3, BC= 4,则厶AQP 的面积的最大值是( )25 25 75A. 4B. 8 C - 32P 作 PQL AB75 16 -I o 1 2 3 4 -< I 2 3 4 x第13题图(1) 把厶ABC向右平移4个单位再向下平移1个单位,得到△ ABG,画出平移后的图形,并写出点A 的对应点A的坐标;(2) 以原点O为位似中心,将△ ABC缩小为原来的一半,得到△ A2B2C2,请在所给的坐标系中作出所有满足条件的图形.8•如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE= 40cm EF= 20cm,测得边DF离地面的高度AC= 1.5m,CD= 8m求树AB的高度.A五、(本大题共2小题,每小题10分,满分20分)^219.如图,直线y = k1X+ 1与双曲线y =—相交于P(1,m,Q —2,—1)两点.X(1) 求m的值;(2) 若A(X1,y",A(X2,y,A(X3,y s)为双曲线上三点,且X1<X2<0<X3,请直接说明y1,y2,y3的大小关系;k?(3) 观察图象,请直接写出不等式k1x+ 1>—的解集.X20•如图,AD是△ ABC勺中线,点E在AC上,BE交AD于点F.某数学兴趣小组在研究这个图六、(本题满分12分)21 •如图,在平面直角坐标系xOy中,反比例函数y = X的图象与一次函数y = k(x —2)的图象X交点为A(3 , 2), B(x, y) •(1) 求反比例函数与一次函数的解析式及点B的坐标;(2) 若C是y轴上的点,且满足厶ABC的面积为10,求点C的坐标.七、(本题满分12分)k 22•如图,矩形OABC勺顶点A C分别在x轴和y轴上,点B的坐标为(2 ,3),双曲线y = x(x>0)z\.的图象经过BC上的点D与AB交于点E,连接DE若E是AB的中点.(1) 求点D的坐标;(2) 点F是OC边上一点,若△DEB相似,求点F的坐标.八、(本题满分14分)23.如图①,在△ ABC 中,点0是AC 上一点,过点 0的直线与 AB 交于点M 与BC 的延长线交 于点N 【问题引入】AM 1CN⑴若点0是AC 的中点,BM= 3,过点A 作MN 的平行线交BN 的延长线于点 G,求B N 勺值;【探索研究】⑵ 若点0是AC 上任意一点(不与A, C 重合),求证:【拓展应用】AFCP 分别交BC, AC AB 于点D, E , F .若B F参考答案与解析1. B2.A3.B4.B5.B6.A7.A8.B9.C 解析:•/△ ABC 是正三角形,•••/B =Z C T 60° .•••/ AP*60°, A / APD-Z C 又APB=Z BPDH Z APD-Z C +Z CAP :丄 BPD-Z CAPBP DA CAP • BP : AC= BD : PC T •正△ ABCAM BN COMB' NC OA T 1;⑶ 如图②,点P 是厶ABC 内任意一点,射线 AP, BP,GCE 勺值. 1 BD 1 , 3, CD T 2, 求 C A1 2 1 2的边长为 4, BP = x , BD = y ,: x : 4= y : (4 — x ),•: y =— 4X + x = — 4(x — 2) + 1.观察各选项, 只有C 中的图象符合,故选 C.10.C 解析:C = 90°, AC T 3, BC = 4,•: AB= 5.设 BP= x (0 v x v 4) . T PQ L AB :•/ PQB //PQ BQ BP PQ BQ x 3 4=/C T 90 .又T/ B=ZPBQ°A ABC •: AC = BC T BA 即 ~3 =才=5,•: PQ = 5X , BCT^x ,411 3 f 4、6 2 3 6 f 25 Y 75 r•: AQ = AB- BQ = 5—5x , •: SAPC T2PQ' AQ =弄屮 x j 5 —5x=—2屮 + 2x =—25x— & + 32,:当 x = 8时,△ APQ 的面积最大,最大值是 32*故选C.11. > 12.4513.— 8 解析:过点 A 作AC 丄x 轴,垂足为 C,过点B 作BD 丄x 轴,垂足为 D,贝U AC// BDOA OC AC OA 1 OC AC 1 一 •:△ OA QA OBD •: O £ O = B D T 点 A 是线段 OB 的中点,•:?,•: O D" BD = 2 设点 A 的坐标2为(a , b ),则点B 的坐标为(2 a , 2b ) .T 点A 在反比例函数 y 1 = — -的图象上,•: ab = — 2. T 点Bxk在反比例函数 y 2=-的图象上,•: k = 2a ・2 b = 4ab =— 8.x解析:当PC// OA 时,△ BP3A BOA 由点C 是AB 的中点,可得P 为OB 的中点,此时点 P 的坐标为 0, 3 .当PC// OB 时,△ AC PA ABO 由点C 是AB 的中点, 可得P为OA 的中点,此时点 P 的坐标为(2 , 0).当PC 丄AB 时,如图,T/CAP=/ OAB / AC TAC APA0=A B T 点A 的坐标为(4 , 0),点B 的坐标为(0 , 3),•: OA14. 0,-或(2 , 0)或(8, 0)/ AO T 90°,:仏 AP3A ABOAP• Al -5, :. 01 OA5- -425 7 AP= 4-芦 8 8,此时点P=DR DE= 3.5 — 2 = 1.5.(8 AB DE 八 AB 4 4 2 ” 中 八AC T DF (3 分八 AC T 7,DE= 2, :• 7= DF 解得 DB 3.5 , (6 分)•: EF 分)m — 516. 解:将y = 3代入y = — x + 1中,得x = — 2, (2分):•反比例函数 y = ——的图象与一次X m — 5 m — 5 函数y = — x + 1的图象的交点坐标为(一2, 3) . (4分)将(一2, 3)代入y = - 中,得3=------ , X — 2 解得m =— 1.(8分)17. 解:(1) △ ABC 如图所示,点 A 的坐标为(0 , 1) . (4分)2// I ,(5 分)二 BC= 4m AB= BCF AC= 4 + 1.5 = 5.5(m) . (7 分)答:树 AB 的高度是5.5m.(8分)k 219.解:(1) T 双曲线y =—经过点Q — 2, - 1) ,••• k 2= — 2X ( — 1) = 2 ,•••双曲线的解析式为X2 2 2y = x .(2 分)又•••点 P (1 , m 在双曲线 y = -上,•• n = ~= 2.(4 分) X X 12 (2) 由 A(X 1, y 1) , A a (X 2, y 2) , A(X 3, y 为双曲线 y = -上的二点,且 X 1 <X 2<0<X 3,根据反比例X函数的性质可得y 2<y 1<y 3.(7分)k 2(3) 由图象可知不等式 k 1X + 1>—的解集为—2<X <0或X >1.(10分)XAF 1 AE 120.解:猜想:当AD = n T7时,A C = 2n +7.(2分)理由如下:过点 D 作DG/ BE 交AC 于点G,八 n ,AE AF 1 AE 1(3 分)则AG = AD =• EG"n ,AEG = nAE : AD 是厶 ABC 的中线,DG / BE • EG = CG •- AC =AE 1八(2n + 1)AE •- A C= 2n + 汽。

【江西版】2018届人教版九年级下数学期中检测试卷含答案

【江西版】2018届人教版九年级下数学期中检测试卷含答案

【江西版】2018届人教版九年级下数学期中检测试卷含答案时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.点A (-2,5)在反比例函数y =kx (k ≠0)的图象上,则k 的值是( )A .10B .5C .-5D .-102.点A (1,y 1)、B (3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 3.如图,AB ∥CD ,AD 与BC 相交于点O .若AO =2,DO =4,BO =3,则BC 的长为( ) A .6 B .9 C .12 D .15第3题图 第5题图 第6题图4.志远要在报纸上刊登广告,一块10cm ×5cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在广告费单价相同的情况下,他该付广告费( )A .540元B .1080元C .1620元D .1800元5.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102B.3105C.105D.3556.如图,P 为反比例函数y =kx (k >0)在第一象限内图象上的一点,过点P 分别作x 轴、y 轴的垂线交一次函数y =-x -4的图象于点A 、B .若∠AOB =135°,则k 的值是( )A .2B .4C .6D .8二、填空题(本大题共6小题,每小题3分,共18分)7.已知反比例函数y =m +2x 的图象在第二、四象限,则m 的取值范围是________.8.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第8题图 第9题图9.如图,直线y =ax 与双曲线y =k x (x >0)交于点A (1,2),则不等式ax >kx 的解集是________.10.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F .若S △DEC =3,则S △BCF =________.11.如图,四边形ABCD 为正方形,点A 、B 在y 轴上,点C 的坐标为(-4,1),反比例函数y =kx的图象经过点D ,则k 的值为________.第10题图 第11题图 第12题图12.如图,等边△ABC 的边长为30,点M 为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,使点A 落在直线BC 上的点D 处,且BD ∶DC =1∶4,折痕与直线AC 交于点N ,则AN 的长为________.三、(本大题共5小题,每小题6分,共30分)13.如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出点C ,D 的坐标.14.已知正比例函数y 1=ax (a ≠0)与反比例函数y 2=kx (k ≠0)的图象在第一象限内交于点A (2,1).(1)求a ,k 的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接写出y 1>y 2时x 的取值范围.15.在平面直角坐标系中,已知反比例函数y =kx 的图象经过点A (1,3).连接OA ,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.16.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =0.4m ,EF =0.2m ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB 是多少?17.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF ;(2)若DG GC =23,BE =4,求EC 的长.四、(本大题共3小题,每小题8分,共24分)18.如图,点E 是△ABC 的内心,AE 的延长线与BC 相交于点F ,与△ABC 的外接圆相交于点D .(1)求证:△BFD ∽△ABD ; (2)求证:DE =DB .19.如图,在平面直角坐标系中,A ,B 两点的纵坐标分别为7和1,直线AB 与y 轴所夹锐角为60°.(1)求线段AB 的长;(2)求经过A ,B 两点的反比例函数的解析式.20.如图,设反比例函数的解析式为y =3kx(k >0).(1)若该反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数的图象与过点M (-2,0)的直线l :y =kx +b 交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.五、(本大题共2小题,每小题9分,共18分)21.如图,在Rt △ABC 中,∠ACB =90°,CP 平分∠ACB 交边AB 于点P ,点D 在边AC 上,连接PD .(1)如果PD ∥BC ,求证:AC ·CD =AD ·BC ; (2)如果∠BPD =135°,求证:CP 2=CB ·CD .22.如图,分别位于反比例函数y =1x ,y =kx 在第一象限图象上的两点A ,B ,与原点O在同一直线上,且OA OB =13.(1)求反比例函数y =kx的表达式;(2)过点A 作x 轴的平行线交y =kx的图象于点C ,连接BC ,求△ABC 的面积.六、(本大题共12分)23.正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以2cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.参考答案与解析1.D 2.A 3.B 4.C 5.B6.D 解析:设一次函数y =-x -4交y 轴于点C .如图,作BF ⊥x 轴,OE ⊥AB ,CQ ⊥AP ,设P 点坐标⎝⎛⎭⎫n ,kn .∵直线AB 的解析式为y =-x-4,PB ⊥y 轴,P A ⊥x 轴,∴∠PBA =∠P AB =45°,∴P A =PB .∵P 点坐标为⎝⎛⎭⎫n ,kn ,∴OD =CQ =n .∵当x =0时,y =-x -4=-4,∴OC =DQ =4,∴AD =AQ +DQ =n +4.GE =OE =22OC =2 2.同理得BG =2BF =2PD =2k n ,∴BE =BG +EG =2k n +2 2.∵∠AOB =135°,∴∠OBE +∠OAE =45°.∵∠DAO +∠OAE =45°,∴∠DAO =∠OBE .又∵∠BEO =∠ADO =90°,∴△BOE ∽△AOD ,∴OEOD=BE AD ,即22n =2kn +224+n,∴k =8.故选D.7.m <-2 8.1859.x >110.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EF CF =DE BC ,S △DEF S △BCF =⎝⎛⎭⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF=13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 11.1212.21或65 解析:①当点A 落在如图①所示的位置时,∵△ACB 是等边三角形,∴∠A =∠B =∠C =∠MDN =60°.∵∠MDC =∠B +∠BMD ,∠B =∠MDN ,∴∠BMD =∠NDC ,∴△BMD ∽△CDN .∴BD CN =DM DN =BM CD .∵DN =AN ,∴BD CN =DM AN =BMCD.∵BD ∶DC =1∶4,BC =30,∴DB =6,CD =24.设AN =x ,则CN =30-x ,∴630-x =DM x =BM24,∴DM=6x 30-x ,BM =14430-x .∵BM +DM =30,∴6x 30-x +14430-x=30,解得x =21,∴AN =21;②当A 落在CB 的延长线上时,如图②,与①同理可得△BMD ∽△CDN .∴BD CN =DMDN=BM CD .∵BD ∶DC =1∶4,BC =30,∴DB =10,CD =40.设AN =x ,则CN =x -30,∴10x -30=DM x =BM 40,∴DM =10x x -30,BM =400x -30.∵BM +DM =30,∴10x x -30+400x -30=30,解得x =65,∴AN =65.综上所述,AN 的长为21或65.13.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(6分)14.解:(1)将A (2,1)代入正比例函数解析式得1=2a ,∴a =12,∴y 1=12x .将A (2,1)代入反比例函数解析式得1=k 2,∴k =2,∴y 2=2x.(2分)(2)如图所示.(4分)由图象可得当y 1>y 2时,x 的取值范围是-2<x <0或x >2.(6分)15.解:点B 在此反比例函数的图象上.(1分)理由如下:易知反比例函数的解析式为y =3x.(2分)过点A 作AD ⊥x 轴,垂足为点D .∵点A 的坐标为(1,3),∴OD =1,AD =3,∴OA =OD 2+AD 2=2,∴∠OAD =30°,∴∠AOD =60°.过点B 作BC ⊥x 轴,垂足为点C .∵∠AOB =30°,∴∠BOC =∠AOD -∠AOB =30°.∵OB =OA =2,∴BC =1,∴OC =OB 2-BC 2=3,∴点B 的坐标为(3,1),∴点B 在此反比例函数的图象上.(6分) 16.解:由题意可得∠DEF =∠DCB ,∠EDF =∠CDB ,∴△DEF ∽△DCB ,(2分)∴DECD =EF BC ,即0.48=0.2BC,∴BC =4m ,∴AB =BC +AC =4+1.5=5.5(m).(5分) 答:树高AB 是5.5m.(6分)17.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴DF ∥BE .∵DF =BE ,∴四边形BEFD 是平行四边形,∴BD ∥EF .(3分)(2)解:∵DF ∥EC ,∴△DFG ∽△CEG ,∴DG CG =DF CE .∵DF =BE =4,∴CE =DF ·CG DG =4×32=6.(6分)18.(1)证明:∵点E 是△ABC 的内心,∴∠BAD =∠CAD .∵∠CAD =∠CBD ,∴∠BAD =∠CBD .(3分)又∵∠BDF =∠ADB ,∴△BFD ∽△ABD .(4分)(2)解:连接BE .∵点E 是△ABC 的内心,∴∠ABE =∠CBE .又∵∠CBD =∠BAD ,∴∠BAD +∠ABE =∠CBE +∠CBD .(6分)∵∠BAD +∠ABE =∠BED ,∠CBE +∠CBD =∠DBE ,∴∠DBE =∠BED ,∴DE =DB .(8分)19.解:(1)分别过点A ,B 作AC ⊥x 轴,BD ⊥AC ,垂足分别为点C ,D .由题意,知∠BAC =60°,AD =7-1=6,∴∠ABD =30°,∴AB =2AD =12.(4分)(2)设过A ,B 两点的反比例函数解析式为y =kx (k ≠0),A 点坐标为(m ,7).∵AD =6,AB =12,∴BD =AB 2-AD 2=63,∴B 点坐标为(m +63,1),(6分)∴⎩⎨⎧7m =k ,(m +63)·1=k ,解得k =73,∴经过A ,B 两点的反比例函数的解析式为y =73x.(8分)20.解:(1)由题意得该点交点坐标为(1,2),把(1,2)代入y =3k x ,得到3k =2,∴k =23.(3分)(2)把M (-2,0)代入y =kx +b 可得b =2k ,∴y =kx +2k .由⎩⎪⎨⎪⎧y =3k x ,y =kx +2k 消去y 得到x 2+2x -3=0,解得x =-3或1,∴B (-3,-k ),A (1,3k ).(6分)∵△ABO 的面积为163,∴12·2·3k+12·2·k =163,解得k =43,∴直线l 的解析式为y =43x +83.(8分) 21.证明:(1)∵PD ∥BC ,∴∠PCB =∠CPD .∵CP 平分∠ACB ,∴∠PCB =∠PCA ,∴∠CPD =∠PCA ,∴PD =CD .∵PD ∥BC ,∴△APD ∽△ABC ,∴AD AC =PDBC,∴AC ·PD =AD ·BC ,∴AC ·CD =AD ·BC .(4分)(2)∵∠ACB =90°,CP 平分∠ACB ,∴∠PCB =∠PCA =45°.∵∠B +∠PCB +∠CPB =180°,∴∠B +∠CPB =180°-∠PCB =135°.(6分)∵∠BPD =135°,∴∠CPB +∠CPD =135°,∴∠B =∠CPD ,∴△PCB ∽△DCP ,∴CB CP =CP CD,∴CP 2=CB ·CD .(9分)22.解:(1)分别过点A ,B 作AE ,BF 垂直于x 轴,垂足为E ,F .易证△AOE ∽△BOF .∴OEOF =EA FB =OA OB =13.∵点A 在函数y =1x 的图象上,设点A 的坐标是⎝⎛⎭⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即点B 的坐标是⎝⎛⎭⎫3m ,3m .(3分)∵点B 在y =k x 的图象上,∴3m =k 3m ,解得k =9,∴反比例函数y =k x 的表达式是y =9x.(5分)(2)由(1)可知A ⎝⎛⎭⎫m ,1m ,B ⎝⎛⎭⎫3m ,3m .又∵已知过A 作x 轴的平行线交y =9x 的图象于点C ,∴点C 的纵坐标是1m .把y =1m 代入y =9x ,∴x =9m ,∴点C 的坐标是⎝⎛⎭⎫9m ,1m ,∴AC =9m -m =8m .(7分)∴S △ABC =12·8m ·⎝⎛⎭⎫3m -1m =8.(9分) 23.(1)证明:∵四边形ABCD 为正方形,∴AD =AB ,∠MAN =∠ABF =90°.∵MN ⊥AF ,∴∠NAH +∠ANH =90°.∵∠NMA +∠ANH =90°,∴∠NAH =∠NMA ,∴△ABF ≌△MAN ,∴AF =MN .(4分)(2)解:①∵四边形ABCD 为正方形,∴AD ∥BF ,∴∠ADE =∠FBE .∵∠AED =∠BEF ,∴△EBF ∽△EDA ,∴BF AD =BEED .∵四边形ABCD 为正方形,∴AD =DC =CB =6cm ,∴BD =62cm.∵点E 从点B 出发,以2cm/s 的速度沿向点运动,运动时间为t s.∴BE =2t cm ,DE =(62-2t )cm ,∴y 6=2t 62-2t ,∴y =6t6-t.(8分)②同(1)可得∠MAN =∠FBA =90°,∠NAH =∠NMA ,∴△ABF ∽△MAN ,∴ANAM=BF AB .∵BN =2AN ,AB =6cm ,∴AN =2cm.当运动时间为t s 时,AM =(6-t )cm.由①知BF =6t 6-t cm ,∴26-t =6t6-t 6,∴t =2,∴BF =6×26-2=3(cm).又∵BN =2AN =4cm ,∴FN =32+42=5(cm).(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中检测卷分一、选择题(每小题3分,共30分)1.下列各点中,在函数y =-8x图象上的是( )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积比为( )A .4∶3 B.3∶4 C.16∶9 D.9∶163.已知A (1,y 1)、B (3,y 2)是反比例函数y =9x图象上的两点,则y 1、y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定4.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对第4题图 第5题图5.如图,点A 是反比例函数y =2x(x >0)图象上任意一点,AB ⊥y 轴于B ,点C 是x 轴上的动点,则△ABC 的面积为( )A .1B .2C .4D .不能确定6.如图,双曲线y =k x 与直线y =-12x 交于A 、B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2) C.⎝ ⎛⎭⎪⎫12,-1 D.⎝⎛⎭⎪⎫-1,12第6题图 第7题图7.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.3102 B.3105 C.105 D.3558.如图,在△ABC 中,点E 、F 分别在边AB 、AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( )A .4B .6C .8D .12第8题图 第9题图9.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =k x的图象上,则k 的值为( )A .-4B .4C .-2D .210.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(每小题3分,共24分)11.反比例函数y =k x的图象经过点M (-2,1),则k =________.12.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为________.第12题图 第14题图 第15题图13.已知反比例函数y =m +2x的图象在第二、四象限,则m 的取值范围是________. 14.如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是________________.15.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.16.如图,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.第 16题图 第17题图 第18题图17.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,若S △DEC =3,则S △BCF =________.18.如图,点E ,F 在函数y =2x的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE ∶BF =1∶3,则△EOF 的面积是________.三、解答题(共66分)19.(8分)在平面直角坐标系中,已知反比例函数y =k x的图象经过点A (1,3). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.20.(8分)如图,在平面直角坐标系中,A (6,0),B (6,3),画出△ABO 的所有以原点O 为位似中心的△CDO ,且△CDO 与△ABO 的相似比为13,并写出C 、D 的坐标.21.(8分)如图,小明同学用自制的直角三角形纸板DEF 测量树AB 的高度,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,求树AB 的高度.22.(8分)如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C ,连接BC .(1)求证:∠BAC =∠CBP ;(2)求证:PB 2=PC ·PA .23.(10分)如图,在平面直角坐标系xOy 中,反比例函数y =m x的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式及B 点坐标;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.24.(12分)如图,分别位于反比例函数y =1x ,y =kx在第一象限图象上的两点A ,B ,与原点O 在同一直线上,且OA OB =13.(1)求反比例函数y =k x的表达式;(2)过点A 作x 轴的平行线交y =k x的图象于点C ,连接BC ,求△ABC 的面积.25.(12分)正方形ABCD 的边长为6cm ,点E ,M 分别是线段BD ,AD 上的动点,连接AE 并延长,交边BC 于F ,过M 作MN ⊥AF ,垂足为H ,交边AB 于点N .(1)如图①,若点M 与点D 重合,求证:AF =MN ;(2)如图②,若点M 从点D 出发,以1cm/s 的速度沿DA 向点A 运动,同时点E 从点B 出发,以2cm/s 的速度沿BD 向点D 运动,运动时间为t s.①设BF =y cm ,求y 关于t 的函数表达式; ②当BN =2AN 时,连接FN ,求FN 的长.参考答案与解析1.A 2.D 3.A 4.B 5.A 6.A 7.B 8.B9.A 解析:如图,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点A 的坐标是(m ,n ),则AC =n ,OC =m .∵∠AOB =90°,∴∠AOC +∠BOD =90°.∵∠DBO +∠BOD =90°,∴∠DBO =∠AOC .∵∠BDO =∠ACO =90°,∴△BDO ∽△OCA .∴DB OC =OD AC =OBOA.∵OB =2OA ,∴BD =2m ,OD =2n .∵点A 在反比例函数y =1x 的图象上,∴mn =1.∵点B 在反比例函数y =k x的图象上,B 点的坐标是(-2n ,2m ),∴k =-2n ·2m =-4mn =-4.故选A.10.D 解析:∵DH 垂直平分AC ,AC =4,∴DA =DC ,AH =HC =2,∴∠DAC =∠DCH .∵CD ∥AB ,∴∠DCA =∠BAC ,∴∠DAH =∠BAC .又∵∠DHA =∠B =90°,∴△DAH ∽△CAB ,∴AD AC =AH AB ,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,故选D.11.-2 12.18513.m <-214.-1<x <0或x >1 15.9 16.(-2,0)17.4 解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEF ∽△BCF ,∴EFCF=DE BC ,S △DEF S △BCF =⎝ ⎛⎭⎪⎫DE BC 2.∵E 是边AD 的中点,∴DE =12AD =12BC ,∴EF CF =DE BC =12,∴S △DEF =13S △DEC =1,S △DEF S △BCF =14,∴S △BCF =4. 18.83解析:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示.∵EP ⊥y 轴,FH ⊥y 轴,∴EP ∥FH ,∴△BPE ∽△BHF ,∴PE HF =BE BF =13,即HF =3PE .设E点坐标为⎝ ⎛⎭⎪⎫t ,2t ,则F 点的坐标为⎝ ⎛⎭⎪⎫3t ,23t .∵S △OEF +S △OFD =S △OEC +S梯形ECDF ,而S △OFD =S △OEC =12×2=1,∴S △OEF =S 梯形ECDF =12⎝ ⎛⎭⎪⎫23t +2t (3t -t )=83.故答案为83.19.解:(1)y =3x.(4分)(2)点B 在此反比例函数的图象上.(5分)理由:由题意可得OB =OA =12+(3)2=2.过点B 作BC ⊥x 轴,垂足为点C ,则∠AOC =60°,∠AOB =30°,∴∠BOC =30°,∴BC =1,OC =3,∴点B 的坐标为(3,1).∵1=33,∴点B 在此反比例函数的图象上.(8分)20.解:如图所示,(4分)C 点的坐标为(2,0)或(-2,0),D 点的坐标为(2,1)或(-2,-1).(8分)21.解:易证△DEF ∽△DCB ,(3分)则DE CD =EF BC ,即0.48=0.2BC ,(6分)∴BC =4m ,∴AB =BC +AC =4+1.5=5.5(m).(7分)答:树AB 的高度为5.5m.(8分) 22.证明:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.(2分)∵PB 与⊙O 相切于点B ,∴∠CBP +∠ABC =90°,∴∠BAC =∠CBP .(4分)(2)∵∠BAC =∠CBP ,∠P =∠P ,∴△PBC ∽△PAB .(6分)∴PB AP =PC BP,∴PB 2=PC ·PA .(8分)23.解:(1)∵点A (3,2)在反比例函数y =m x 和一次函数y =k (x -2)的图象上,∴2=m3,2=k (3-2),解得m =6,k =2,∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -4.(3分)∵点B 是一次函数与反比例函数的另一个交点,∴6x=2x -4,解得x 1=3,x 2=-1,∴B 点的坐标为(-1,-6).(5分)(2)设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为(0,-4).设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10,∴|y c +4|=5.(8分)当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C点的坐标为(0,1)或(0,-9).(10分)24.解:(1)作AE ,BF 分别垂直于x 轴,垂足为E ,F ,∴AE ∥BF ,∴△AOE ∽△BOF ,∴OE OF =EA FB =OA OB =13.(2分)由点A 在函数y =1x 的图象上,设A 的坐标是⎝ ⎛⎭⎪⎫m ,1m ,∴OE OF =m OF =13,EA FB =1m FB =13,∴OF =3m ,BF =3m ,即B 的坐标是⎝⎛⎭⎪⎫3m ,3m .(5分)又点B 在y =k x 的图象上,∴3m =k 3m ,解得k =9,则反比例函数y =k x 的表达式是y =9x.(7分)(2)由(1)可知A ⎝ ⎛⎭⎪⎫m ,1m ,B ⎝ ⎛⎭⎪⎫3m ,3m ,又已知过A 作x 轴的平行线交y =9x的图象于点C ,∴C 的纵坐标是1m .(9分)把y =1m 代入y =9x得x =9m ,∴C 的坐标是⎝ ⎛⎭⎪⎫9m ,1m ,∴AC =9m -m =8m .∴S △ABC =12×8m ×⎝ ⎛⎭⎪⎫3m -1m =8.(12分)25.(1)证明:∵四边形ABCD 为正方形,∴AD =AB ,∠DAN =∠FBA =90°.∵MN ⊥AF ,∴∠NAH +∠ANH =90°.∵∠NDA +∠ANH =90°,∴∠NAH =∠NDA ,∴△ABF ≌△MAN ,∴AF =MN .(4分)(2)解:①∵四边形ABCD 为正方形,∴AD ∥BF ,∴∠ADE =∠FBE .∵∠AED =∠BEF ,∴△EBF ∽△EDA ,∴BF AD =BEED.∵四边形ABCD 为正方形,∴AD =DC =CB =6cm ,∴BD =62cm.∵点E 从点B 出发,以2cm/s 的速度沿BD 向点D 运动,运动时间为t s ,∴BE =2t cm ,DE=(62-2t )cm ,∴y 6=2t 62-2t ,∴y =6t6-t.(8分)②∵四边形ABCD 为正方形,∴∠MAN =∠FBA =90°.∵MN ⊥AF ,∴∠NAH +∠ANH =90°.∵∠NMA +∠ANH =90°,∴∠NAH =∠NMA .∴△ABF ∽△MAN ,∴AN AM =BF AB.∵BN =2AN ,AB =6cm ,∴AN =2cm.∴26-t =6t6-t 6,∴t =2,∴BF =6×26-2=3(cm).又∵BN =4cm ,∴FN =32+42=5(cm).(12分)。

相关文档
最新文档