直线与圆的方程练习

合集下载

直线和圆方程练习题

直线和圆方程练习题

直线和圆练习题(一)1.直线2ax+(a2+1)y﹣1=0的倾斜角的取值范围是()A.[,]B.[0,]∪[,π]C.(0,]∪[,π) D.[0,]∪[,π)2.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离3.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.04.下列四条直线,倾斜角最大的是()A.y=﹣x+1 B.y=x+1 C.y=2x+1 D.x=15.直线2xcosα﹣y﹣3=0(α∈[,])的倾斜角的变化范围是()A.[,]B.[,]C.[,)D.[,]6.已知曲线﹣=1与直线y=2x+m有两个交点,则m的取值范围是()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,4)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,3)7.若两直线3x+4y+3=0与6x+my+1=0平行,则它们之间的距离为()A.B.C.D.8.曲线y=lnx+x﹣1上的点到直线2x﹣y+3=0的最短距离是()A.B. C. D.09.直线l1:3x﹣y+1=0,直线l2过点(1,0),且它的倾斜角是l1的倾斜角的2倍,则直线l2的方程为()A.y=6x+1 B.y=6(x﹣1)C.y=(x﹣1) D.y=﹣(x﹣1)10.不论k为何值,直线(2k﹣1)x﹣(k﹣2)y﹣(k+4)=0恒过的一个定点是()A.(0,0)B.(2,3)C.(3,2)D.(﹣2,3)11.若三条直线l1:4x+y=4,l2:mx+y=0,l3:2x﹣3my=4不能围成三角形,则实数m的取值最多有()A.2个B.3个C.4个D.5个12.若三条直线2x+3y+8=0,x﹣y﹣1=0和x+ky=0交于一点,则k的值为()A.﹣2 B.﹣C.2 D.13.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.14.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,则d1+d2的最小值是.15.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.16.圆C1:x2+y2=4与圆C2:x2+y2﹣4x+2y+4=0的公切线有条.17.已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长;(3)若圆C与直线2x﹣y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值。。

高中数学 第二章 直线和圆的方程 课后练习、课时练习

高中数学  第二章 直线和圆的方程 课后练习、课时练习

一、单选题1. 已知直线:与:垂直,则实数a的值为()A.0或3 B.0或-3 C.-3 D.02. 已知为圆内一定点,过点P且被圆所截得的弦最短的直线方程为()A.B.C.D.3. 点在圆上运动,则和的最大值分别为()A.6 ,B.5,C.6,D.5,4. 以点为圆心,2为半径的圆的标准方程为()A.B.C.D.5. 点在直线上,则的最小值是()A.8 B.2 C.D.166. 若直线与平行,则的值为()A.0 B.2 C.3 D.2或3二、多选题7. 设有一组圆:,(),则下列命题正确的是()A.不论如何变化,圆心始终在一条直线上B.所有圆均不经过点C.存在一条定直线始终与圆相切D.若,则圆上总存在两点到原点的距离为18. 过点作圆C:的两条切线,切点分别为A,B,则下列说法正确的是()A.B.所在直线的方程为C.四边形的外接圆方程为D.的面积为三、填空题9. 过点,且倾斜角为的直线的方程为________.10. 已知圆,直线,则圆关于直线对称的圆的标准方程为______.11. 过点作直线l:的垂线,垂足为点Q,则点Q到直线的距离的最小值为______.12. 已知两条平行直线和之间的距离等于2,则实数的值为________.四、解答题13. 已知圆,点在圆C上.过P点作两条倾斜角互补的直线,,分别交圆C于、两点.(1)求圆C的方程;(2)若点A是圆C与x轴正半轴的交点,求直线AB的方程;(3)求证:直线AB的斜率是定值,并求出这个定值.14. 已知动直线(其中且为变动参数)和圆相交于、两点,求弦的中点的轨迹方程.15. (1)求与x轴切于点(5,0)并在y轴上截取弦长为10的圆的方程.(2)已知圆C:x2+y2+2x-4y+3=0,若圆C的切线在x轴和y轴上的截距的绝对值相等,求此切线的方程.16. 设,若,,求的最小值.。

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线与圆的方程练习题

直线与圆的方程练习题

直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。

下面将以几道习题为例,来进行练习。

1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。

解析:由题目可知,直线L经过点A(3,4),斜率为2。

我们可以运用直线的点斜式来求解。

直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。

代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。

解析:圆的方程可以通过圆心和半径来确定。

我们可以利用圆的标准方程来求解。

圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。

代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。

解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。

我们可以通过消元法来求解。

将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。

首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。

直线和圆的方程精选练习题

直线和圆的方程精选练习题

直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。

5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。

6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。

12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。

直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。

圆与直线的方程练习题

圆与直线的方程练习题

圆与直线的方程练习题一、选择题1. 已知圆的方程为x^2 + y^2 = 4,则该圆的半径为()。

A. 1B. 2C. 4D. 82. 直线y = 2x + 1的斜率为()。

A. 0B. 1C. 2D. 1A. y = 3x + 2B. y = 3x 2C. x = 3D. y = 24. 若圆C的方程为(x 1)^2 + (y + 2)^2 = 16,则圆心坐标为()。

A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)5. 两条平行线的斜率分别为2和2,则这两条直线()。

A. 相交B. 平行C. 重合D. 垂直二、填空题1. 已知直线l的斜率为3,且过点(2, 1),则直线l的方程为______。

2. 圆心在原点,半径为5的圆的方程为______。

3. 若直线y = kx + b与圆x^2 + y^2 = 4相切,则k的取值范围为______。

4. 两条直线y = 2x + 3和y = 0.5x + 1的交点坐标为______。

5. 已知点A(3, 4)和B(2, 6),则线段AB的中点坐标为______。

三、解答题1. 已知圆的方程为(x 2)^2 + (y + 3)^2 = 25,求该圆的半径和圆心坐标。

2. 求过点(1, 2)和(3, 4)的直线方程。

3. 已知直线y = 3x 2和圆x^2 + y^2 = 16,求直线与圆的交点坐标。

4. 证明:若两条直线分别垂直于同一条直线,则这两条直线平行。

5. 设圆C的方程为x^2 + y^2 + Dx + Ey + F = 0,已知圆心在x轴上,半径为3,求圆C的方程。

四、应用题1. 在平面直角坐标系中,点A(1, 2)到直线y = x + 3的距离是多少?2. 一圆的圆心位于直线y = 2x + 1上,且与直线y = 2x 1相切,圆的半径为2,求该圆的方程。

3. 两条直线l1:2x + 3y + 1 = 0和l2:4x y 5 = 0相交于点P,求点P的坐标。

《直线和圆的方程》练习与答案

《直线和圆的方程》练习与答案

《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。

直线与圆方程练习题及答案

直线与圆方程练习题及答案

直线和圆的方程一、选择题1 若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD.1)2()1(22=-++y x2 在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π3 直线0=++c by ax 同时要经过第一第二 第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4 已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是( )A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y5 不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6 直线0943=--y x 与圆422=+y x 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7 已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8 过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52D .29 点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10 下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11 由点)3,1(P 引圆922=+y x 的切线的长是 ( )A .2B .19C .1D .412 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113 已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是A .03或B .03或-C .3D .3-14 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A .3-B .6-C .23-D .32 16 由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43π D .23π 17 动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x 18 参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( )A .圆心为)3,3(-,半径为9的圆B .圆心为)3,3(-,半径为3的圆C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆19 以点)1,5()3,1(-和为端点的线段的中垂线的方程是20 过点023)4,3(=+-y x 且与直线平行的直线的方程是21 直线y x y x 、在0623=+-轴上的截距分别为22 三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23 若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是三、解答题24 若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程25 求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程26 求点)2,3(-A 关于直线012:=--y x l 的对称点'A 的坐标已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程---直线和圆的方程答案一、二、19 02=--y x20 053=--y x 21 32和- 2212234<a三、24 设所求圆的方程为022=++++F Ey Dx y x ,则有⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=++=++=++8660420416024F E D F E F D F D 所以圆的方程是086622=+--+y x y x25 设),(y x M 为所求轨迹上任一点,则有2=MBMA042)1()2(222222=+-⇒=+-++∴y x x y x y x26 设),('b a A ,则有)54,513( 5451301222321232'-∴⎪⎩⎪⎨⎧=-=⇒⎪⎩⎪⎨⎧=---+⋅-=⋅-+A b a b a a b27 设圆C 的圆心为),(b a ,则6234004231)1(33322==⇒⎩⎨⎧-==⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或或 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或。

选择性必修一《直线和圆的方程》基础练习题及答案详解

选择性必修一《直线和圆的方程》基础练习题及答案详解

直线和圆的方程练习题一、选择题1、若直线1:310l ax y ++=与2:2(1)10l x a y +++=互相平行,则实数a 的值是()A.-3B.2C.-3或2D.3或-22、若直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,则k =()A.-3或-1B.3或1C.-3或1D.-1或33、已知点()00,P x y 是直线:0l Ax By C ++=外一点,则方程()000Ax By C Ax By C +++++=表示()A.过点P 且与l 垂直的直线 B.过点P 且与l 平行的直线C.不过点P 且与l 垂直的直线D.不过点P 且与l 平行的直线4、点(0,1)-到直线(1)y k x =+距离的最大值为()A.1D.25、已知(1,2)M ,(4,3)N ,直线l 过点(2,1)P -且与线段MN 相交,那么直线l 的斜率k 的取值范围是()A.(,3][2,)-∞-+∞ B.11,32⎡⎤-⎢⎥⎣⎦C.[3,2]- D.11,,32⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭6、已知直线:20l kx y -+=过定点M ,点(,)P x y 在直线210x y +-=上,则MP 的值最小是()B.5D.7、若直线l 经过(2,1)A ,()21,()B m m -∈R 两点,则直线l 的倾斜角α的取值范围是()A.04απ≤≤B.2απ<<π C.42αππ≤< D.324αππ<≤8、已知圆2222240x y k x y k ++++=关于直线y x =对称,则k 的值为()A.1B.-1C.-1或1D.09、方程||1y -=所表示的曲线的长度是()A.6πB. C.+ D.612π+10、点()sin 30,cos30︒︒与圆2212x y +=的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定11、若圆2244100x y x y +---=上至少有三个不同的点到直线:0l ax by +=的距离为,则直线l 的倾斜角的取值范围是().A.,124ππ⎡⎤⎢⎥⎣⎦B.5,1212ππ⎡⎤⎢⎥⎣⎦C.,63ππ⎡⎤⎢⎥⎣⎦D.0,2π⎡⎤⎢⎥⎣⎦12、直线34120x y ++=与圆22(1)(1)9x y -++=的位置关系是()A.相交且过圆心B.相切C.相离D.相交但不过圆心二、填空题13、已知点(1,2)A -,(5,6)B ,经过线段AB 的中点M ,且在两坐标轴上的截距相等的直线方程为_________.14、若直线l 被直线1:10l x y -+=与2:30l x y -+=截得的线段长为l 的倾斜角9(00)θθ︒≤≤︒的值为__________.15、与直线3490x y ++=平行,并且和两坐标轴在第一象限所围成的三角形面积是24的直线方程为__________.16、在平面直角坐标系中,将直线l 上的点P 向下平移3个单位,再向右平移3个单位,若点P 仍在直线l 上,则直线l 的斜率是__________.17、直线10x y +-=与圆222410x y x y +-++=相交,所得的弦的长为__________.18、直线l 经过点()2,3P -,与圆22:22140C x y x y +++-=相交截得的弦长为则直线l 的方程为________.19、已知直线l 经过点(3,)P m 和点(,2)Q m -,直线l 的一个方向向量为(2,4),则直线l 的斜率为___________,实数m 的值为__________.三、多项选择题20、如图所示,下列四条直线1l ,2l ,3l ,4l 的斜率分别是1k ,2k ,3k ,4k ,倾斜角分别是1α,2α,3α,4α,则下列关系正确的是()A.2143k k k k <<<B.3214k k k k <<<C.2143αααα<<<D.3214αααα<<<四、解答题21、已知圆22:630C x y x y ++-+=上的两点P ,Q 满足:①关于直线:40l kx y -+=对称;②OP OQ ⊥(O 为坐标原点),求直线PQ 的方程.22、已知实数x ,y 满足222410x y x y ++-+=.(1)求4yx -的最大值和最小值;(2)2221x y x +-+.参考答案1、答案:A解析:因为直线1:310l ax y ++=与22(:1)10l x a y +++=互相平行,所以(1)23a a +=⨯,即260a a +-=,解得3a =-或2a =.当3a =-时,直线1:3310l x y --=与2221:0l x y -+=互相平行;当2a =时,直线1:2310l x y ++=,2:2310l x y ++=,1l 与2l 重合,不符合题意.所以3a =-.故选A.2、答案:C解析:因为直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,所以(1)(1)(23)0k k k k -+-+=,解得1k =或3k =-.故选C.3、答案:D解析: 点()00,P x y 不在直线0Ax By C ++=上,000Ax By C ∴++≠,∴直线()000Ax By C Ax By C +++++=不经过点P .又直线()000Ax By C Ax By C +++++=与直线:0l Ax By C ++=平行,故选D.4、答案:B解析:解法一:点(0,1)-到直线(1)y k x =+的距离d ==到212k k +≥,于是()22222221221121|1|k k k k k k k +=+=+++≥++=+,当且仅当1k =时取等号,即|1|k +≤,所以d =≤,故点(0,1)-到直线(1)y k x =+.故选B.解法二:由题意知,直线:(1)l y k x =+是过点(1,0)-且斜率存在的直线,记点(1,0)-为P ,点(0,1)-为Q .点(0,1)Q -到直线l 的最大距离在直线l 与直线PQ 垂直时取得,此时1k =,最大距离为PQ = B.5、答案:A 解析:如图,由图可知,过点P 且与x 轴垂直的直线斜率不存在,直线PN 绕点P 逆时针旋转到垂直于x 轴的过程中,直线的斜率始终为正,且逐渐增大,此时直线斜率的范围为PN k k ≥,直线由垂直于x 轴绕点P 逆时针旋转到PM 的过程中,斜率为负,且逐渐增大,此时直线斜率的范围是PM k k ≤.易得3(1)242PN k --==-,2(1)312PM k --==--,则3k ≤-或2k ≥.故选A.6、答案:B解析:直线:20l kx y -+=过定点(0,2)M .点(,)P x y 在直线210x y +-=上,MP ∴的最小值为点M 到直线210x y +-=的距离,min 225()5521MP ∴===+.故选B.7、答案:C解析:因为直线l 经过点()2,1A ,()21,()B m m -∈R ,所以直线l 的斜率2211112m k m --==+≥-,又0α≤<π,所以直线l 的倾斜角α的取值范围是42αππ≤<,故选C.8、答案:B解析:圆的方程可化为()2224(1)41x ky k k +++=-+.依题意得241,410,k k k ⎧-=-⎨-+>⎩解得1k =-,故选B.9、答案:B解析:因为方程2||13(2)y x -=--,所以||10y -≥,解得1y ≥或1y ≤-.将原式变形可得22(2)(||1)3x y -+-=,3所以曲线的长度为233=π.故选B.10、答案:C解析:因为2222131sin 30cos 301222⎛⎛⎫︒+︒=+=> ⎪ ⎝⎭⎝⎭,所以点在圆外.故选C.11、答案:B解析:将2244100x y x y +---=整理为222(2)(2)(32)x y -+-=,圆心坐标为(2,2),半径为32:0l ax by +=的距离为22,则圆心到直线l 的距离应小于等于2,222a b ≤+,所以2410a a b b ⎛⎫⎛⎫++≤ ⎪ ⎪⎝⎭⎝⎭,解得2323a b ⎛⎫-≤≤- ⎪⎝⎭令a k b ⎛⎫=- ⎪⎝⎭,则2323k -≤≤+,故直线l 的倾斜角的取值范围是5,1212ππ⎡⎤⎢⎥⎣⎦.12、答案:D解析:圆心坐标为(1,1)-,半径3r =,圆心到直线34120x y ++=的距离115d r ==<,又因为0d ≠,所以直线不过圆心,即直线与圆相交但不过圆心.故选D.13、答案:230x y -=或50x y +-=解析:点(1,2)A -,(5,6)B ,则线段AB 的中点M 的坐标为(3,2).当直线过原点时,方程为23y x =,即230x y -=.当直线不过原点时,设直线的方程为(0)x y k k +=≠,把中点(3,2)M 的坐标代入直线的方程可得5k =,故直线方程是50x y +-=.综上,所求的直线方程为230x y -=或50x y +-=.14、答案:75°或15°解析:画出图形,设直线l 与1l ,2l 分别交于A ,B 两点,过A 作2AC l ⊥于点C ,则AC ==AB =,所以在Rt ABC △中,1sin2AC ABC AB ∠===,因为ABC ∠为锐角,所以30ABC ∠=︒,因为直线1l 的斜率为1,所以直线1l 的倾斜角为45︒,所以直线l 的倾斜角θ为453075︒+︒=︒或453015︒-︒=︒.15、答案:34240x y +-=解析:解法一: 直线3490x y ++=,即3944y x =--的斜率为34-,∴设所求直线方程为3944y x b b ⎛⎫=-+≠- ⎪⎝⎭.令0x =,得y b =;令0y =,得43bx =.由题意知,0b >且403b >,0b ∴>,142423b b ∴⨯⨯=,解得6b =(6b =-舍去),∴所求直线的方程为364y x =-+,即34240x y +-=.解法二:设所求直线方程为340(9)x y m m ++=≠.令0x =,得4m y =-;令0y =,得3m x =-.由题意得0,40,3mm ⎧->⎪⎪⎨⎪->⎪⎩解得0m <,124243m m ⎛⎫⎛⎫∴⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭,解得24m =-(24m =舍去),∴所求直线方程为34240x y +-=.16、答案:-1解析:由题可得直线l 的斜率313y k x ∆-===-∆.17、答案:解析:因为圆222410x y x y +-++=即:()()22124x y -++=,则圆心()1,2-到直线10x y +-=的距离:d ==由弦长公式可得弦长为:==故答案为:.18、答案:512460x y --=或2x =解析:圆22:22140C x y x y +++-=,即()()221116x y +++=,圆心为()1,1C --,半径4r =,因为直线与圆相交截得的弦长为,所以圆心到直线的距离3d ==,若直线的斜率不存在,此时直线方程为2x =,满足圆心()1,1C --到直线2x =的距离为3,符合题意;若直线的斜率存在,设斜率为k ,则直线方程为()32y k x +=-,即230kx y k ---=,则3d ==,解得512k =,所以直线方程为()53212y x +=-,即512460x y --=,综上可得直线方程为512460x y --=或2x =.故答案为:512460x y --=或2x =.19、答案:2,43解析:由直线l 的一个方向向量为(2,4)得,直线l 的斜率为422=,因此(2)23m m--=-,解得43m =.故答案为2,43.20、答案:BC解析:由倾斜角的概念及题图可得390180α︒<<︒,14090αα︒<<<︒,20α=︒,所以2143αααα<<<,且30k <,410k k >>,20k =,所以3214k k k k <<<,故选BC.21、答案:1322y x =-+或1524y x =-+解析:由①知直线40kx y -+=过圆心1,32⎛⎫- ⎪⎝⎭,则2k =,直线PQ 的斜率为12PQ k =-.设直线PQ 的方程为12y x b =-+,()11,P x y ,()22,Q x y ,则P ,Q 两点的坐标是方程组221,2630y x b x y x y ⎧=-+⎪⎨⎪++-+=⎩的解,消去y 得225(4)6304x b x b b +-+-+=.由OP OQ ⊥得12120x x y y +=,即121211022x x x b x b ⎛⎫⎛⎫+-+-+= ⎪⎪⎝⎭⎝⎭,即()212125042bx x x x b -++=,将124(4)5b x x -+=-,()2124635b b x x -+=代入得32b =或54b =,所以直线PQ 的方程为1322y x =-+或1524y x =-+.22、答案:(1)最小值是2021-,最大值为0(2)最大值为2+,最小值为2-解析:将方程变形为22(1)(2)4x y ++-=,此方程表示以(1,2)-为圆心、2为半径的圆.(1)4y x -表示圆上的点(,)x y 与定点(4,0)连线的斜率,令4y k x =-,即(4)y k x =-.当直线(4)y k x =-与已知圆相切时,如图,4yx -取最值,2=,解得0k =或2021k =-.因此4y x -的最小值是2021-,最大值为0.222221(1)(0)x y x x y +-+=-+-它表示圆上的点(,)x y 与定点(1,0)的距离.定点(1,0)到已知圆的圆心的距离22(11)222d =++=,2221x y x +-+222d r +=,最小值为222d r -=-.。

高二数学直线与圆练习题及答案

高二数学直线与圆练习题及答案

高二数学直线与圆练习题及答案一、选择题1.已知直线l的方程为2x - y = 4,点A(2, 5)在直线l上,则点A所在直线的斜率是:A. 2B. -2C. 1/2D. -1/22.已知圆O的圆心坐标为(-3, 4),半径为5,则圆O的方程是:A. (x + 3)^2 + (y - 4)^2 = 5^2B. (x - 3)^2 + (y - 4)^2 = 5^2C. (x - 3)^2 + (y + 4)^2 = 25D. (x + 3)^2 + (y + 4)^2 = 253.直线l与圆O相交于点A(1, 3)和点B(4, -2),则直线l的方程是:A. 2x + y = 5B. 2x - y = 1C. x - 2y = -5D. x + 2y = -54.已知点A(-2, 1)和点B(4, -3),则直线AB的斜率为:A. 1B. -1C. 2D. -25.已知直线l的方程为y = 2x + 3,点A(1, 6)在直线l上,则直线l与x轴的交点坐标为:A. (1, -1)B. (1, 0)C. (-1, 2)D. (0, 3)二、解答题1.已知直线l的斜率为-2,且直线l经过点A(3, -5),求直线l的方程。

解:设直线l的方程为y = kx + b,其中k为斜率,b为常数项。

已知斜率k = -2,点A(3, -5)在直线l上,代入得-5 = -2*3 + b。

解得b = 1,因此直线l的方程为y = -2x + 1。

2.已知直线l的方程为2x + 3y = 9,求直线l与x轴和y轴的交点坐标。

解:与x轴的交点坐标,直线上的点的纵坐标为0,代入直线方程得2x + 3*0 = 9,解得x = 4.5。

因此直线l与x轴的交点坐标为(4.5, 0)。

与y轴的交点坐标,直线上的点的横坐标为0,代入直线方程得2*0 + 3y = 9,解得y = 3。

因此直线l与y轴的交点坐标为(0, 3)。

3.已知圆O的圆心坐标为(2, -1),点A(4, 3)在圆O上,求圆O的方程。

直线与圆的练习题

直线与圆的练习题

直线与圆的练习题一、选择题1. 已知直线l与圆O相交于A、B两点,圆的半径为r,线段AB的长度为d,若d=r,则直线l与圆O的位置关系是?A. 相切B. 相交C. 相离D. 包含2. 直线y=kx+b与圆x^2+y^2=r^2相交,圆心到直线的距离d满足什么条件时,直线与圆相交?A. d<rB. d≤rC. d>rD. d≥r3. 圆的方程为(x-a)^2+(y-b)^2=r^2,直线的方程为Ax+By+C=0,若直线经过圆心(a,b),则A和B的关系是?A. A=BB. A=-BC. A+B=0D. A-B=0二、填空题4. 若直线2x-3y+6=0与圆x^2+y^2=9相交,求圆心到直线的距离d。

5. 已知圆的方程为(x-1)^2+(y+2)^2=25,直线方程为3x-4y+12=0,求直线与圆的交点坐标。

三、解答题6. 已知圆的半径为5,圆心在(1,1),求过点(2,3)的直线方程,使得该直线与圆相切。

7. 已知直线l1: x-2y-1=0与l2: 3x+y+2=0相交于点P,求点P的坐标,并判断点P与圆x^2+y^2=10的位置关系。

四、证明题8. 证明:如果两条直线都与一个圆相切,那么这两条直线的斜率互为相反数。

9. 已知圆的方程为x^2+y^2=25,直线l的方程为y=x+3,求证直线l 与圆相切。

五、计算题10. 已知圆的方程为(x-3)^2+(y+1)^2=9,直线l的方程为2x-y-5=0。

求直线l被圆所截的弦长。

11. 已知圆的方程为x^2+y^2=r^2,直线l的方程为Ax+By+C=0,若直线l与圆相交于A、B两点,且AB的中点为M,求M的坐标。

六、综合题12. 在平面直角坐标系中,圆C的方程为(x-3)^2+(y+2)^2=20,直线l 的方程为2x-3y-6=0。

求直线l与圆C的交点A、B的坐标,并计算AB 的长度。

13. 已知圆的方程为x^2+y^2=25,直线l的方程为y=-x+5。

高三数学高考复习:直线和圆的方程专项练习

高三数学高考复习:直线和圆的方程专项练习

高考数学复习:直线和圆的方程专项练习一.选择题1.已知直线l1:y=x+2,直线l2过点P(-2,1)且l2到l1的角为45°,则l2的方程是()A.y=x-1B.y=x+C.y=-3x+7 D .y=3x+72.a、b、c分别是△ABC中A、B、C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+ay+c=0的位置关系是( )A.平行B.重合C.垂直 D.相交但不垂直3.原点O和点P(1,1)在直线x+y-a=0的两侧,则a的取值范围是()A.a<0或a>2B.a=0或a=2C.0<a<2D.0≤a≤24.已知两条直线l1:y=x,l2:ax-y=0,其中a为实数,当这两条直线的夹角在(0,)内变动时,a的取值范围是( )A.(0,1)B.(,)C.(,1)∪(1,)D.(1,)5.点P在平面上作匀速直线运动,速度向量v=(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为|v|个单位).设开始时,P的坐标为(-10,10),则5秒后,点P的坐标为()A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10)6.直线经过原点和点(-1,-1),则它的倾斜角是( )A.45°B.135°C.45°或135° D.0°7.已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q的坐标为( )A.(a,b)B.(b,a)C.(-a,-b)D.(-b,-a)8.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为()A.(x+1)2+y2=1B.x2+y2=1C.x2+(y+1)2=1D.x2+(y-1)2=19.在直角坐标系中,满足不等式x2-y2≥0的点(x,y)的集合所对应的阴影部分是( )10.方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示圆方程,则t的取值范围是()A.-1<t<B.-1<t<C.-<t<1 D.1<t<211.集合M={(x,y)|y=,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N等于( )A.{(1,0)}B.{y|0≤y≤1}C.{1,0}D.12.如果点P(x,y)在曲线x=(θ为参数)上,则x2+y2的最大值是( )A.10B.16C.25D.100二.填空题1.若实数x、y满足①则不等式组①表示的区域面积为_________,的取值范围是_________.2.圆心为(a,b),半径为r的圆的标准方程为_________.3.从点A(-1,3)所引圆x2+y2+4x+14y+49=0的两条切线所夹的劣弧对应的圆心角的余弦是_______________.4.不论m为何实数,直线(m-1)x-y+2m+1=0恒过定点___________________.三.解答题1.一圆经过A(2,1)点和直线x-y-1=0相切,且圆心在2x-y=0上.(1)求该圆的标准方程;(2)已知点B(,1),求过B点且有最短弦长的直线l的方程.2.某工厂家具车间造A、B两类型桌子,每张桌子需木工和漆工两道工序完成,已知木工做一张A型和B型的桌子分别需要1小时和2小时,漆工油漆一张A型和B型的桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 型和B型桌子分别获得利润2千元和3千元,试问工厂每天应生产A型和B型的桌子各多少张时,才能获得利润最大?3.求与直线3x+4y+2=0平行,且与坐标轴构成的三角形的面积为24(平方单位)的直线l的方程.4.设直线l的方程是2x+By-1=0,倾斜角为α.(1)试将α表示为B的函数;(2)若<α<,试求B的取值范围;(3)若B∈(-∞,-2)∪(1,+∞),求α的取值范围.5.求通过直线l:2x+y+4=0及圆C:x2+y2+2x-4y+1=0的交点,并且有最小面积的圆的方程. 6.求直线a:2x+y-4=0关于直线l:3x+4y-1=0对称的直线b的方程.直线和圆的方程专项练习参考答案一.选择题1.解析:因=1,故k2=3.答案:D2.解析:因-·=-1,故两直线垂直.答案:C3.解析:(0+0-a)(1+1-a)<00<a<2.答案:C4.解析:已知k1=1,倾斜角α=45°,斜率k2=a,设l2的倾斜角为β,依题意0<|β-α|<,得:<β<且β≠α=45°,∴l2的斜率tan<a<tan且α≠tan45°=1,即<a<且a≠1.答案:C5.解析:经过t秒动点P的位移为t(4,-3),即经过t秒动点P(x,y)所在位置为(*)所以t=5时,P点坐标为(10,-5),应选C.答案:C6.解析:tanα=k==1,∴α=45°.选A.答案:A7.解析:N(a,-b),P(-a,-b),则Q(b,a)答案:B8.解析:由M(x,y)关于y=-x的对称点为(-y,-x),即得x2+(y+1)2=1.答案:C9.解析:x2-y2≥0(x+y)(x-y)≥0或答案:B10.解析:由D2+E2-4F>0,得7t2-6t-1<0,即-<t<1.答案:C11.解析:y=表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0). 答案:A12.解析:易知是圆(x-3)2+(y+4)2=25上的点到原点的距离.答案:D二.填空题1.解析:(1)如图,(x,y)在上图阴影区域内,则S=×1×3=.则z为区域内点与定点(1,-2)所在直线的斜率.则z∈[1,+∞)∪(-∞,-2].答案:(-∞,-2]∪[1,+∞)2.(x-a)2+(y-b)2=r23.解析:圆C:(x+2)2+(y+7)2=4,故|AC|=,∴cos=,cosα=2cos2-1=-.答案:-4.解析:(m-1)x-y+2m+1=0y-3=(m-1)(x+2),即过点(-2,3).答案:(-2,3)三.解答题1.解:(1)设圆心(a,2a),半径为r,则有r=,∴a2-2a+1=0,a=1,r=,∴圆的标准方程为(x-1)2+(y-2)2=2.(2)记圆心为M(1,2),当直线l与MB垂直时弦长最短,k MB=2,∴k l=-,∴l的方程为2x+4y-5=0.2.解:设工厂每天生产A型桌子x张、B型桌子y张,获利为z(千元).可行域为四边形ABCO内部及边界.∴即为动直线在y轴上的截距,将动直线在可行域内移动,可知:B点处直线截距最大,此时z有最大值.∴z max=2×2+3×3=13(千元).∴工厂每天应生产A型桌子2张、B型桌子3张,可获利最大,为1.3万元.3.解:设所求直线l的方程为3x+4y+m=0, ①因为直线交x轴于A(-,0),交y轴于B(0,-),故由得m=±24.代入①,得所求直线方程为3x+4y±24=0.4.解:(1)若B=0,则直线l的方程是2x-1=0,∴α=;若B≠0,则方程即为y=-x+,∴当B<0时,->0,α=arctan(-),而当B>0时,-<0,α=π+arctan(-),即α=f(B)=(2)若α=,则B=0,若α≠,则tanα<-或tanα>,即-<-(B>0)或->(B<0=,∴-2<B<0或0<B<.综上,知-2<B<.(3)若B<-2,则-<1,∴0<tanα<1,0<α<;若B>1,则->-2,∴0>tanα>-2,π-arctan2<α<π.综上,知π-arctan2<α<π或0<α<.5.解:法一:圆的方程为(x+1)2+(y-2)2=4.设直线l与圆C交于A、B两点,D为AB的中点,则直线CD的方程为x-2y+5=0,x-2y+5=0,2x+y+4=0.故D∴以D为圆心,AB为直径的圆是面积最小的圆.法二:设圆的方程是(x2+y2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2]+圆面积=πR2,而时,圆面积最小,此时圆的方程是5x2+5y2+26x-12y+37=0.法三:设A(x1,y1),B(x2,y2),则以AB为直径的圆方程可设为(x-x1)(x-x2)+(y-y1)(y-y2)=0,即x2+y2-(x1+x2)x-(y1+y2)y+x1x2+y1y2=0.然后用韦达定理求出圆的方程.6.剖析:由平面几何知识可知若直线a、b关于直线l对称,它们具有下列几何性质:(1)若a、b相交,则l是a、b交角的平分线;(2)若点A在直线a上,那么A关于直线l的对称点B 一定在直线b上,这时AB⊥l,并且AB的中点D在l上;(3)a以l为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程.解:由解得a与l的交点E(3,-2),E点也在b上.方法一:设直线b的斜率为k,又知直线a的斜率为-2,直线l的斜率为-.则=.解得k=-.代入点斜式得直线b的方程为y-(-2)=-(x-3),即2x+11y+16=0.方法二:在直线a:2x+y-4=0上找一点A(2,0),设点A关于直线l的对称点B的坐标为(x0,y0), 由解得B(,-).由两点式得直线b的方程为=,即2x+11y+16=0.方法三:设直线b上的动点P(x,y)关于l:3x+4y-1=0的对称点Q(x0,y0),则有解得x0=,y0=.Q(x0,y0)在直线a:2x+y-4=0上,则2×+-4=0,化简得2x+11y+16=0是所求直线b的方程.方法四:设直线b上的动点P(x,y),直线a上的点Q(x0,4-2x0),且P、Q两点关于直线l:3x+4y-1=0对称,则有消去x,得2x+11y+16=0或2x+y-4=0(舍).。

第2章 直线和圆的方程 章末测试(提升)(原卷版).

第2章 直线和圆的方程 章末测试(提升)(原卷版).

第2章直线和圆的方程章末测试(提升)一、单选题(每题5分,每题只有一个选项为正确答案,8题共40分)1.(2021·河南)不论k 为何实数,直线()()()213110k x k y k --+--=恒通过一个定点,这个定点的坐标是()A.()5,2B.()2,3C.()5,9D.1,32⎛⎫- ⎪⎝⎭2.(2022·全国·专题练习)已知过定点直线40kx y k -+-=在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为()A.270x y --=B.270x y -+=C.260x y +-=D.260x y +-=3.(2022·陕西汉中)直线l :y x =被圆C :()()22313x y -+-=截得的弦长为( )A.1B.2C.3D.44.(2023·全国·专题练习)若方程3x b +=-b 的取值范围为()A.(1-+B.(11]--C.[1,1-+D.(1-5.(2023·广东)若圆()()2221:10C x y r r +-=>上存在点P ,且点P 关于直线y =x 的对称点Q 在圆()()222:211C x y -+-=上,则r 的取值范围是()A.1⎤-⎦B.-C.⎡⎣D.(]0,16.(2022·全国·高二课时练习)唐代诗人李颀的诗《古从军行》开头两句为“白日登山望烽火,黄昏饮马傍交河”,其中隐含了一个有趣的数学问题——“将军饮马”,即将军在白天观望烽火台之后黄昏时从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,已知军营所在的位置为()2,0B -,若将军从山脚下的点1,03A ⎛⎫ ⎪⎝⎭处出发,河岸线所在直线方程为23x y +=,则“将军饮马”的最短总路程为()B.5D.1637.(2022·云南)如果圆22()()8x a y a -+-=则实数a 的取值范围是()A.()3,3-B.(1,1)-C.(3,1)-D.(3,1)(1,3)--8.(2022·安徽)已知直线:320l mx y m +--=与圆22:(5)(4)25M x y -+-=交于,A B 两点,则当弦AB 最短时,圆M 与圆22:(2)9N x m y ++=的位置关系是()A.内切B.外离C.外切D.相交二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。

高二数学直线和圆的练习题及答案

高二数学直线和圆的练习题及答案

高二数学直线和圆的练习题及答案一、选择题1. 设直线l过点A(2,3)和B(4,5),则直线l的斜率k为()。

A. 1B. 2C. 3D. 42. 设直线l的斜率为-2,过点(3,4),则直线l的方程为()。

A. y = -2x + 10B. y = 2x - 6C. y = -2x -6D. y = 2x - 103. 设圆C的圆心坐标为(2,-1),半径为3,则圆C的方程为()。

A. (x - 2)^2 + (y + 1)^2 = 9B. (x - 2)^2 + (y + 1)^2 = 9^2C. (x + 2)^2 + (y - 1)^2 = 9D. (x + 2)^2 + (y - 1)^2 = 9^24. 设直线l过点A(2,3)且垂直于直线x - 2y = 4,则直线l的方程为()。

A. x + 2y = -1B. x + 2y = 4C. x - 2y = 10D. x - 2y = 05. 在平面直角坐标系xOy中,直线l1过点A(-1,2)和B(2,5),直线l2过点C(3,1)和D(5,3)。

若l1和l2平行,则直线l1和l2的方程分别为()。

A. y = x + 3, y = x - 2B. y = -3x + 5, y = -3x + 2C. y = -x + 5, y = -x + 2D. y = 3x + 5, y = 3x + 2二、填空题1. 过点A(4,5)且垂直于直线x - 2y = 4的直线方程为()。

2. 过点A(-3,2)且平行于直线y = 3x - 1的直线方程为()。

3. 设圆的圆心在直线y = x上,过点(2,3),则圆的方程为()。

4. 过点A(2,3)和B(4,5)的中点坐标为()。

5. 直线2x - y = 3与直线y = 3x + 1的交点坐标为()。

三、解答题1. 设直线l过点A(1,2)和B(3,4),求直线l的斜率。

解:直线l的斜率k可以通过斜率公式计算,斜率公式为:k = (y2 - y1) / (x2 - x1)将点A(1,2)和B(3,4)的坐标代入斜率公式得到:k = (4 - 2) / (3 - 1) = 2 / 2 = 1因此,直线l的斜率为1.2. 设直线l过点A(-2,3)且平行于直线3x - 2y = 4,求直线l的方程。

直线与圆的方程的应用练习题含答案

直线与圆的方程的应用练习题含答案

直线与圆的方程的应用练习题(1)1. 已知圆C :(x −1)2+y 2=25,则过点P(2, −1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.10√31 B.10√23 C.9√21 D.9√112. 直线y =kx +1与圆(x −2)2+(y −1)2=4相交于P ,Q 两点.若|PQ|≥2√2,则k 的取值范围是( ) A.[−34,0]B.[−√33,√33] C.[−1, 1] D.[−√3,√3]3. 若圆x 2+y 2−4x +2y +1=0关于直线ax −2by −1=0(a, b ∈R)对称,则ab 的取值范围是( ) A.(−∞,14] B.(−∞,116]C.(−14,0]D.[116,+∞)4. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是________.5. 已知直线y =2x +1与圆x 2+y 2+ax +2y +1=0交于A ,B 两点,直线mx +y +2=0垂直平分弦AB ,则|AB |=________.6. 已知直线kx −y −k =0与曲线y =ln (x −1)有公共点,则实数k 的最大值为________.7. 已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为2√7;③圆心在直线x −3y =0上.求圆C 的方程.8. 已知圆M :(x −1)2+(y −1)2=4,直线l 过点P(2, 3)且与圆M 交于A ,B 两点,且|AB|=2√3,求直线l 的方程.9. 已知圆C 经过点A(0, 0),B(7, 7),圆心在直线上.(1)求圆C 的标准方程;(2)若直线l 与圆C 相切且与x ,y 轴截距相等,求直线l 的方程.10. 已知圆C:x 2+y 2+2x −4y +3=0.(1)若圆C 的切线在x 轴、y 轴上的截距相等,求切线的方程;(2)从圆C 外一点P(x 1, y 1)向圆引一条切线,切点为M ,O 为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P 的坐标.11. 已知圆C:x 2+(y −1)2=5,直线l:mx −y +1−m =0,且直线l 与圆C 交于A 、B 两点.(1)若|AB|=√17,求直线l 的倾斜角;(2)若点P(1, 1),满足2AP →=PB →,求直线l 的方程.12. 在平面直角坐标系xOy 中,圆C 的方程为(x −4)2+y 2=4,且圆C 与x 轴交于M ,N 两点,设直线l 的方程为y =kx(k >0).(1)当直线l 与圆C 相切时,求直线l 的方程;(2)已知直线l 与圆C 相交于A ,B 两点. ①若AB ≤4√1717,求实数k 的取值范围; ②直线AM 与直线BN 相交于点P ,直线AM ,直线BN ,直线OP 的斜率分别为k 1,k 2,k 3,是否存在常数a ,使得k 1+k 2=ak 3恒成立?若存在,求出a 的值;若不存在,说明理由.参考答案与试题解析直线与圆的方程的应用练习题(1)一、选择题(本题共计 3 小题,每题 5 分,共计15分)1.【答案】B【考点】直线与圆的位置关系【解析】根据题意,AC为经过点P的圆的直径,而BD是与AC垂直的弦.因此算出PM的长,利用垂直于弦的直径的性质算出BD长,根据四边形的面积公式即可算出四边形ABCD的面积.【解答】解:∵圆的方程为:(x−1)2+y2=25,∴圆心坐标为M(1, 0),半径r=5.∵P(2, −1)是该圆内一点,∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.∵|PM|=√2,∴由垂径定理,得|BD|=2√25−2=2√23.因此,四边形ABCD的面积是S=12|AC|⋅|BD|=12×10×2√23=10√23.故选B.2.【答案】C【考点】直线与圆的位置关系直线和圆的方程的应用【解析】由已知可得圆心(2, 1)到直线y=kx+1的距离d≤√2,结合点到直线距离公式,可得答案.【解答】解:若|PQ|≥2√2,则圆心(2, 1)到直线y=kx+1的距离为:d≤(2√22)=√2,即√1+k2≤√2,解得k∈[−1, 1].故选C.3.【答案】 B【考点】关于点、直线对称的圆的方程 【解析】由题意知,圆心在直线上,得到a +b =12,若a ,b 都是正数,利用基本不等式求得0<ab ≤116,若当a ,b 中一个是正数另一个是负数或0时,ab ≤0.【解答】解:∵ 圆x 2+y 2−4x +2y +1=0关于直线ax −2by −1=0(a, b ∈R)对称, ∴ 圆心(2, −1)在直线ax −2by −1=0上,∴ 2a +2b −1=0,a +b =12,若a ,b 都是正数,由基本不等式得 12≥2√ab >0, ∴ 0<ab ≤116.当a ,b 中一个是正数另一个是负数或0时,ab ≤0,故 ab ≤116, 故选B .二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 4.【答案】(x −2)2+(y −2)2=2 【考点】圆的标准方程与一般方程的转化 直线和圆的方程的应用 点到直线的距离公式【解析】由题意可知先求圆心坐标,再求圆心到直线的距离,求出最小的圆的半径,圆心坐标,可得圆的方程. 【解答】解:曲线化为(x −6)2+(y −6)2=18, 其圆心到直线x +y −2=0的距离为d =|6+6−2|√2=5√2.所求的最小圆的圆心在直线y =x 上, 其到直线的距离为√2,圆心坐标为(2, 2). 标准方程为(x −2)2+(y −2)2=2. 故答案为:(x −2)2+(y −2)2=2.5. 【答案】8√55【考点】直线与圆相交的性质 直线和圆的方程的应用 【解析】首先利用垂直,得m =12,再利用圆心,确定a =4,结合直线与圆相交的性质,即可求出弦长. 【解答】解:由题意可得直线y =2x +1与直线mx +y +2=0垂直, 所以 2(−m )=−1,所以m =12,因为圆心(−a2,−1)在直线mx +y +2=0上, 所以12(−a2)−1+2=0,所以a =4,所以圆x 2+y 2+ax +2y +1=0的方程可化为 (x +2)2+(y +1)2=4,所以圆心为(−2,−1),半径为2, 圆心到直线y =2x +1的距离为d =√5=√5,所以弦AB 的长为|AB|=2√22−(√5)2=8√55.故答案为:8√55. 6.【答案】1【考点】利用导数研究曲线上某点切线方程 直线与圆的位置关系 曲线与方程 导数求函数的最值 点到直线的距离公式【解析】 1【解答】 1三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 ) 7.【答案】解设所求的圆C 与y 轴相切,又与直线y =x 交于AB , ∵ 圆心C 在直线x −3y =0上,∴ 圆心C(3a, a),又圆=√2|a|.与y轴相切,∴R=3|a|.又圆心C到直线y−x=0的距离|CD|=|3a−a|√2在Rt△CBD中,R2−|CD|2=(√7)2,∴9a2−2a2=7.a2=1,a=±1,3a=±3.∴圆心的坐标C分别为(3, 1)和(−3, −1),故所求圆的方程为(x−3)2+(y−1)2=9或(x+3)2+(y+1)2=9.【考点】圆的标准方程【解析】设所求的圆C与y轴相切,又与直线y=x交于AB,由题设知圆心C(3a, a),R=3|a|,再由点到直线的距离公式和勾股定理能够求出a的值,从而得到圆C的方程.【解答】解设所求的圆C与y轴相切,又与直线y=x交于AB,∵圆心C在直线x−3y=0上,∴圆心C(3a, a),又圆=√2|a|.与y轴相切,∴R=3|a|.又圆心C到直线y−x=0的距离|CD|=|3a−a|√2在Rt△CBD中,R2−|CD|2=(√7)2,∴9a2−2a2=7.a2=1,a=±1,3a=±3.∴圆心的坐标C分别为(3, 1)和(−3, −1),故所求圆的方程为(x−3)2+(y−1)2=9或(x+3)2+(y+1)2=9.8.【答案】解:圆心坐标为M(1, 1),半径R=2,∵|AB|=2√3,∴圆心到直线的距离d=√R2−(AB)2=√4−(√3)2=√4−3=1,2若过P的直线的斜率k不存在,则直线方程为x=2,此时圆心到直线的距离d=2−1=1≠R,则不满足条件.若斜率k存在,则线方程为y−3=k(x−2),即kx−y+3−2k=0则由√1+k2=√1+k2=2得|k−2|=2√1+k2,平方得3k2+4k=0,解得k=0或k=−43,则对应的直线方程为y=3或4x+3y−17=0.【考点】直线与圆相交的性质【解析】根据直线和圆相交的性质,结合弦长公式即可得到结论.【解答】解:圆心坐标为M(1, 1),半径R=2,∵|AB|=2√3,∴圆心到直线的距离d=√R2−(AB2)2=√4−(√3)2=√4−3=1,若过P的直线的斜率k不存在,则直线方程为x=2,此时圆心到直线的距离d=2−1=1≠R,则不满足条件.若斜率k存在,则线方程为y−3=k(x−2),即kx−y+3−2k=0则由√1+k2=√1+k2=2得|k−2|=2√1+k2,平方得3k2+4k=0,解得k=0或k=−43,则对应的直线方程为y=3或4x+3y−17=0.9.【答案】根据题意,设圆C的圆心为(a, b),半径为r,则其标准方程为(x−a)2+(y−b)2=r2,圆C经过点A(0, 0),B(7, 7),圆心在直线上,则有,解可得,则圆C的标准方程为(x−3)2+(y−4)2=25,若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①,直线l经过原点,设直线l的方程为y=kx,则有=5,解可得:k=-,此时直线l的方程为y=-x;②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,解可得m =7+5或7−5,此时直线l的方程为x+y+5−7=0或x+y−5−7=0;综合可得:直线l的方程为y=-x或x+y+5−7=0或x+y−5−7=0.【考点】直线和圆的方程的应用【解析】(1)根据题意,设圆C的圆心为(a, b),半径为r,结合圆的标准方程的形式可得,解可得a、b、r的值,代入圆的标准方程中即可得答案;(2)根据题意,①,直线l经过原点,设直线l的方程为y=kx,则有=5,②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,分别求出直线l的方程,综合2种情况即可得答案.【解答】根据题意,设圆C的圆心为(a, b),半径为r,则其标准方程为(x−a)2+(y−b)2=r2,圆C经过点A(0, 0),B(7, 7),圆心在直线上,则有,解可得,则圆C的标准方程为(x−3)2+(y−4)2=25,若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①,直线l经过原点,设直线l的方程为y=kx,则有=5,解可得:k=-,此时直线l的方程为y=-x;②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,解可得m =7+5或7−5,此时直线l的方程为x+y+5−7=0或x+y−5−7=0;综合可得:直线l的方程为y=-x或x+y+5−7=0或x+y−5−7=0.10.【答案】由方程x2+y2+2x−4y+3=0知(x+1)2+(y−2)2=2,所以圆心为(−1, 2),半径为√2.当切线过原点时,设切线方程为y=kx,则√k2+1=√2,所以k=2±√6,即切线方程为y=(2±√6)x.当切线不过原点时,设切线方程为x+y=a,则√2=√2,所以a=−1或a=3,即切线方程为x+y+1=0或x+y−3=0.综上知,切线方程为y=(2±√6)x或x+y+1=0或x+y−3=0;因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1−2)2,即2x1−4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x−4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(−310, 35 ).【考点】直线和圆的方程的应用【解析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.【解答】由方程x2+y2+2x−4y+3=0知(x+1)2+(y−2)2=2,所以圆心为(−1, 2),半径为√2.当切线过原点时,设切线方程为y=kx,则√k2+1=√2,所以k=2±√6,即切线方程为y=(2±√6)x.当切线不过原点时,设切线方程为x+y=a,则√2=√2,所以a=−1或a=3,即切线方程为x+y+1=0或x+y−3=0.综上知,切线方程为y=(2±√6)x或x+y+1=0或x+y−3=0;因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1−2)2,即2x1−4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO 垂直于直线2x −4y +3=0时,即直线PO 的方程为2x +y =0时,|PM|最小, 此时P 点即为两直线的交点,得P 点坐标(−310, 35). 11. 【答案】解:(1)由于半径r =√5,|AB|=√17,∴ 弦心距d =√32, 再由点到直线的距离公式可得d =√m 2+1=√32, 解得m =±√3.故直线的斜率等于±√3,故直线的倾斜角等于π3或2π3. (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得 2(1−x 1, −mx 1+m )=(x 2−1, mx 2−m ),∴ 2−2x 1=x 2−1,即2x 1+x 2=3. ①再把直线方程 y −1=m(x −1)代入圆C:x 2+(y −1)2=5,化简可得 (1+m 2)x 2−2m 2x +m 2−5=0,由根与系数的关系可得x 1+x 2=2m 21+m 2②.由①②解得x 1=3+m 21+m 2,故点A 的坐标为(3+m 21+m 2, 1+2m+m 21+m 2).把点A 的坐标代入圆C 的方程可得m 2=1,故m =±1,故直线L 的方程为x −y =0,或x +y −2=0.【考点】直线和圆的方程的应用 【解析】(1)求出弦心距、利用点到直线的距离公式可得直线的斜率,即可求直线l 的倾斜角; (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得2x 1+x 2=3. ①再把直线方程 y −1=m(x −1)代入圆C ,化简可得x 1+x 2=2m 21+m 2②,由①②解得点A 的坐标,把点A 的坐标代入圆C 的方程求得m 的值,从而求得直线L 的方程. 【解答】解:(1)由于半径r =√5,|AB|=√17,∴ 弦心距d =√32, 再由点到直线的距离公式可得d =√m 2+1=√32, 解得m =±√3.故直线的斜率等于±√3,故直线的倾斜角等于π3或2π3. (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得 2(1−x 1, −mx 1+m )=(x 2−1, mx 2−m ),∴ 2−2x 1=x 2−1,即2x 1+x 2=3. ① 再把直线方程 y −1=m(x −1)代入圆C:x 2+(y −1)2=5,化简可得 (1+m 2)x 2−2m 2x +m 2−5=0,由根与系数的关系可得x 1+x 2=2m 21+m 2②. 由①②解得x 1=3+m 21+m 2,故点A 的坐标为(3+m 21+m 2, 1+2m+m 21+m 2).把点A 的坐标代入圆C 的方程可得m 2=1,故m =±1, 故直线L 的方程为x −y =0,或x +y −2=0. 12.【答案】解:(1)由题意k >0,圆心C 为(4,0),半径r =2∴ 当直线l 与圆C 相切时,直线的斜率k =√33 ∴ 直线l:y =√33x . (2)①由题意得解得8√1717≤d <2,由(1)知d =√1+k 2, ∴ 8√1717≤√k 2+1<2解得2√1313≤k <√33②l AM :y =k 1(x −2)与圆C:(x −4)2+y 2=4联立得(x −4)2+k 12(x −2)2=4[(k 12+1)x −(2k 12+6)](x −2)=0即A (2k 12+61+k 12,4k 11+k 12)同理得BN ,y 2=k 2(x −6)即B (2+6k 221+k 22,−4k 21+k 22)∵ k OA =k OB∴ 4k 12k 12+6=−4k22+6k 22 解得k 2=−13k 1,k 1=−3k 2设P (x 0,y 0),则{y 0=k 1(x 0−2)y 0=k 2(x 0−6) 即P (2k 1−6k 2k 1−k 2,−4k 1k 2k 1−k 2), k 3=−4k 1k 22k 1−6k 2 k 1+k 2=2k 3∴ 存在常数a =2,使得k 1+k 2=2k 3恒成立.【考点】直线和圆的方程的应用 直线与圆的位置关系【解析】此题暂无解析【解答】解:(1)由题意k >0, 圆心C 为(4,0),半径r =2 ∴ 当直线l 与圆C 相切时, 直线的斜率k =√33 ∴ 直线l:y =√33x . (2)①由题意得 解得8√1717≤d <2,由(1)知d =√1+k 2, ∴ 8√1717≤√k 2+1<2解得2√1313≤k <√33②l AM :y =k 1(x −2) 与圆C:(x −4)2+y 2=4联立得(x −4)2+k 12(x −2)2=4[(k 12+1)x −(2k 12+6)](x −2)=0即A (2k 12+61+k 12,4k11+k 12) 同理得BN ,y 2=k 2(x −6) 即B (2+6k 221+k 22,−4k21+k 22) ∵ k OA =k OB∴ 4k 12k 12+6=−4k22+6k 22 解得k 2=−13k 1,k 1=−3k 2 设P (x 0,y 0),则{y 0=k 1(x 0−2)y 0=k 2(x 0−6) 即P (2k 1−6k 2k 1−k 2,−4k 1k 2k 1−k 2), k 3=−4k 1k 22k 1−6k 2 k 1+k 2=2k 3∴ 存在常数a =2,使得k 1+k 2=2k 3恒成立.。

(完整版)直线与圆练习题(带答案解析)

(完整版)直线与圆练习题(带答案解析)

..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。

高二数学圆与直线的典型练习题

高二数学圆与直线的典型练习题

高二数学圆与直线的典型练习题1. 已知直线L:2x + y – 5 = 0与圆C:x^2 + y^2 – 6x – 2y – 7 = 0,求它们的交点坐标。

解析:将直线L的方程代入圆C的方程,得到:(2x + y – 5)^2 + (x^2 + y^2 – 6x – 2y – 7) = 0化简得:5x^2 + 5xy – 15x + y^2 – 12y + 11 = 0再配方得:(x + y)^2 + 5(x + y) – (3x + 4y + 6) = 0设:m = x + y,n = 3x + 4y + 6代入上式:m^2 + 5m – n = 0此为一元二次方程,求解可得m和n的值得到x和y的值后,即可求得交点坐标。

2. 已知圆C1的圆心为A(3, –4),与直线L:3x – 4y + 5 = 0相切于点P,直线L的斜率为2,求直线AP的方程。

解析:直线L与圆C1相切于点P,说明PA⊥L,即斜率乘积为-1,即直线AP的斜率为-1/2。

已知点A(3, –4)和斜率-1/2,可得直线AP的方程为:y + 4 = (-1/2)(x – 3)3. 已知圆C的方程为x^2 + y^2 + 4x – 6y – 12 = 0,求该圆的圆心坐标及半径长度。

解析:将方程变换为标准形式,得到:(x + 2)^2 + (y – 3)^2 = 25圆心坐标为(-2, 3),半径长度为5。

4. 已知圆C的方程为(x – 2)^2 + (y + 3)^2 = 16,直线L的方程为2x – 3y + 5 = 0,求直线L与圆C的交点坐标。

解析:将直线L的方程代入圆C的方程,得到:(x – 2)^2 + (y + 3)^2 = 16化简得:4x^2 – 12xy + 4y^2 – 8x + 12y + 4 = 0再配方得:(2x – 3y + 2)^2 + 3(x – y + 2) – 16 = 0设:m = 2x – 3y + 2,n = x – y + 2代入上式:m^2 + 3n – 16 = 0此为一元二次方程,求解可得m和n的值得到x和y的值后,即可求得交点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 直线与圆的方程§7.1直线的方程1、下面命题中正确的是( )(A )经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示.(B )经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示 (C )不经过原点的直线都可以用方程1=+bya x 表示 (D )经过点A(0,b)的直线都可以用方程y=kx+b 表示2、如果AC 〈0且BC 〈0,那么直线Ax+By+C=0不通过( )(A)、第一象限 (B)、第二象限 (C)、第三象限 (D)、第四象限3、过点P (1,1)作直线L 与两坐标轴相交所得三角形面积为10,直线L 有( )(A )、一条 (B )、两条 (C )、三条 (D )、四条4、直线2x-y-4=0绕它与x 轴的交点逆时针旋转450,所得的直线方程是_______5、直线L 过点A (0,-1),且点B (-2,1)到L 的距离是点)2,1(C 到L 的距离的两倍,则直线L 的方程是_______6、已知ϕ是直线L 的倾斜角,且sin ϕ+cos ϕ=51,则直线L 的斜率为__________. 7、直线L 在两坐标轴上的截距之和为12,又直线L 经过点(-3,4),则直线L 的方程为_________8、当a+b+c=0时,直线ax+by+c=0必过定点_______ 9、过点P (1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.10、已知两点A (-1,-5),B (3,-2),直线L 的倾斜角是直线AB 的倾斜角的一半,求直线L 的斜率.11、已知圆C :(x-2)2+(y-1)2=1,求过A (3,4)的圆C 的切线方程. 12、求函数θθcos 31sin +-=y 的值域.答案: 1:B; 2:B ; 3:D; 4:y=-3x+6; 5x-y-1=0; 6:-34; 7:3x+9y-27=0或16x-4y+64=0 ;8: (1,1) 9:解:设所L 的方程为:)0,0(1>>=+b a bya x ∵直线L 经过点P (1,4) ∴141=+ba ∴942545))(41(=⋅+≥++=++=+ab b a a b b a b a b a b a当 且仅当=ba 4a b即a=3,b=6时a+b 有最小値为9,此时所求直线方程为2x+y-6=0。

10.解:设直线L 的倾斜角为α,则直线AB 的倾斜角为2α。

∴k AB =tan2α=.431352=++- 又tan243tan 1tan 22=-=ααα31tan =∴α 或3tan -=α00≤2α<1800,∴00≤α<90∴0tan ≥α∴=αtan 31∴直线的斜率为31 11.解:设过A (3,4)的直线y-4=k(x-3),即kx-y+4-3k=0由,1134122=+-+-k kk 得k=34∴切线方程为)3(344-=-x y ,即4x-3y=0 但过A (3,4)向圆可作两条切线,一条从斜率不存在的直线中去找,一条切线为x=312.解:θθcos 31sin +-可以看成两点A()sin ,cos θθ,B(-3,1) 连线的斜率,B 为定点,A 为动点,动点A如图,只需求直出直线l 1的斜率k 1即可不难求出k 1=-43,又k 2=o ∴由图可知,定点B 与动点A 连 线的斜率K 的范围为,⎥⎦⎤⎢⎣⎡-0,43 , 故原函数的值域为⎥⎦⎤⎢⎣⎡-0,43。

§7.2 直线与直线的位置关系1、已知集合M={(x,y)∣x+y=2},N={(x,y)∣x -y=4},那么集合M∩N 为( )1xA. {3,-1} BCD{(3,-1)}2、已知点M(a,b),若点N 与M 关于x 轴对称,点P 与N 关于y 轴对称,点P 与点Q 关于直线x+y=0对称,则点Q 的坐标为( )A. (a,b)B. (b,a)C. (-a,-b)D.(-b,-a)3、已知直线2x+2y-2=0和mx-y+1=0的夹角为4π,那么m 的值为( ) A. -31或-3 B.31 或3 C. -31或3 D.31或-34、已知两直线l 1:y=x ,l 2:ax-y=0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值为( ) A. (0,1) B. (33,3) C.( 33,1) (1,3) D.(1,3) 5、已知直线ax+3y+1=0与直线x+(a-2)y+a=0,当a= 时,两直线平行,当a= 时,两直线重合;当a ∈ 时,两直线相交.6、已知曲线C :y=x 2,则它关于x-y-2=0对称的曲线方程是 7、直线ax+4y-2=0与2x-5y+c=0垂直于点(1,m),则a= c= m= 8、已知P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角20(παα<<),所得的直线方程为l 1:3x-y-4=0,若继续绕P 点逆时针方向转απ-2,则得直线l 2的方程为x+2y+1=0,求直线l 的方程.9、已知正方形ABCD 的相对顶点A(0,-1)和C(2,5),求顶点B 和D 的坐标。

10、已知椭圆C 的直角坐标方程为13422=+y x ,试确定m 的取值范围,使得对于直线y=4x+m ,椭圆C 上有不同的两点关于该直线对称。

1、D2、B3、C.4、C 5. 3,-1,{a 3≠a 且R a a ∈-≠,1}6.x=y 2+4y+6 7、10,-12,-28、解:P 点的坐标为直线3x-y-4=0与 x+2y+1=0的交点,即(1,-1)所求的直线与l 2垂直,故斜率k=2,所以l 的方程为y+1=2(x-1),即:2x-y-3=0 9、解:AC 中点P(1,2),因为k AC =3,所以K BD =-31,直线BD 的方程y-2=-31(x-1),即x+3y-7=0,直线AC 的方程为3x-y-1=0,又∴=,102AC B 和D 的坐标满足方程组⎪⎩⎪⎨⎧=-+=--073101013y x y x ,解之得{41==x y 或{23-==x y 即B 、D 的坐标分别为(4,1)及(-2,3)。

10、解:椭圆C 有不同的两点关于直线l:y=4x+m 对称,其充要条件是直线l 1:y=41-x+n 与椭圆C 有两个不同的交点P,Q ,且P.Q 的中点在l 上。

由⎩⎨⎧=++-=12434122y x n x y ⇒13x 2-8nx+16n 2-48=0x 1≠x 2所以∆=64n 2-52(16n 2-48)>0, 所以 213213<<-n 又131222)(412,1342212121=++=+=+nx x y y n x x ,PQ 中点在l 上,所以1313213132,134,13161312<<-∴-=∴+=m n m m n n§7.3线性规划1、已知)34,21(),1,1(),0,0(321P P P ,则在不等式0132≤+-y x 表示的平面区域内的点是( )A 、21,P PB 、2PC 、32,P PD 、3P2、不等式0654>--y x 表示的平面区域在直线0654=--y x 的( )A 、右上方B 、右下方C 、左上方D 、左下方3、如图中阴影部分表示的平面区域可用二元一次不等式组表示成( )A 、⎩⎨⎧≥+->-+02201y x y x B 、⎩⎨⎧≤+-<-+02201y x y xC 、⎩⎨⎧>+-≥-+02201y x y xD 、⎩⎨⎧≥+-<-+02201y x y x4、已知x , y 满足⎪⎩⎪⎨⎧≤≥+≥+-102x y x y x 则y x z 42+=的最值为( )A 、2,16min max -==z zB 、2,14min max -==z zC 、2,2min max -==z zD 、14,2min max -==z z5、下列说法正确的是( )A 、线性规划问题中的最优解是指目标函数的最大值或最小值;B 、线性规划问题中的可行解是使目标函数取得最大值或最小值的变量x 、y 的值;C 、如果线性规划问题中的可行域的边界是一条折线,那么最优解必是某一顶点的坐标;D 、线性规划问题中的最优解是指使目标函数取得最大值或最小值的变量x 、y 的实际可能的值. 6、△ABC 的三顶点为)0,1(),2,1(),4,2(C B A -,则△ABC 的内部可用二元一次不等式组表示为 。

7、已知集合}1),{(≤+=y x y x A ,{}0),(22≤-=x y y x B ,B A M =,则M 的面积等于 。

8、设x 、y 满足⎪⎩⎪⎨⎧≤≥+-≥-+2033022x y x y x ,则22y x z +=的最小值为 ,最大值为 。

9、某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘。

若软件至少买3片,磁盘至少买2盒,则不同的选购方式有多少种?10、某厂要生产甲种产品45个,乙种产品55个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2 和3 m 2,用A 种可造甲种产品3个和乙种产品5个,用B 种可造甲、乙两种产品各6个。

问A 、B 两种产品各取多少块可保证完成任务,且使总的用料(面积)最省?11、A 1,A 2两煤矿分别有煤8万吨和18万吨,需通过外运能力分别为20万吨和16万吨的B 1,B 2两车站外运,用汽车将煤运到车站,A 1的煤运到B 1,B 2的运费分别为3元/吨和5元/吨,A 2的煤运到B 1,B 2的运费分别为7元/吨和8元/吨。

问如何编制调运方案,可使总运费最少?1、C2、B3、A4、B5、D6、⎪⎩⎪⎨⎧>-+<-->+-010448832y x y x y x 7、1 8、97,549、设软件买x 片,磁盘买y 盒,则⎪⎩⎪⎨⎧∈≥≥≤+N y x y x y x ,2,35007060可行解有7个,故不同的选购方式有7种。

10、设A 种取x 块,B 种取y 块,总用料为z m 2⎪⎩⎪⎨⎧∈≥+≥+N y x y x y x ,55654563 y x z 32+=可行域如图,最优解为A (5,5),x =5,y=5时,25min =Z ,即A 、B 两种各取5块时可保证完成任务,且总的用料(面积)最省为25m 2。

11、设A 1运到B 1x 万吨,A 2运到B 1y 万吨,总运费为z 万元,则A 1运到B 2()x -8万吨,A 2运到B 2()y -18万吨,y x y x y y x x z ,,2184)18(87)8(53--=-++-+=满足⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤-+-≤+180801618820y x y x y x 可行域如图,当12,8==y x 时,156min =z , 即A 1的8万吨煤全运到B 1,A 2运12万吨运到B 1,剩余6万吨运到B 2,这时总运费最少为156万元。

相关文档
最新文档