【真题】2018年江苏省无锡市宜兴市丁蜀学区中考数学一模试卷及参考答案PDF

合集下载

江苏省无锡市宜兴市丁蜀学区2017-2018学年八年级(上)调研数学试卷(10月份)(解析版)

江苏省无锡市宜兴市丁蜀学区2017-2018学年八年级(上)调研数学试卷(10月份)(解析版)

绝密★启用前江苏省无锡市宜兴市丁蜀学区2017-2018学年八年级(上)调研数学试卷(10月份)(解析版)试卷副标题考试范围:xxx ;考试时间:90分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2006•广安)关于x 的一元二次方程kx 2+2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k >1C .k≠0D .k >﹣1且k≠02、一元二次方程x 2 -8x-1 =0配方后可变形为() A .(x-4)2 =17 B .(x+4)2=15 C .(x+4)2=17 D .(x -4)2 =153、如图,无法保证△ADE 与△ABC 相似的条件是( )A .∠1=∠CB .∠A=∠C C .∠2=∠BD .4、若,则的值为()A .1B .C .D .5、有两个一元二次方程:M :N :,其中,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C .如果5是方程M 的一个根,那么是方程N 的一个根;D .如果方程M 和方程N 有一个相同的根,那么这个根必是6、如图,小正方形的边长均为1,则各图中的三角形(阴影部分)的与△ABC 相似的是( )7、(株洲中考)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A. B. C. D.8、已知三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长是( )A .14B .12C .12或14D .以上都不对9、若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2 B.﹣2 C.3 D.﹣310、已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或2第II 卷(非选择题)二、填空题(题型注释)11、如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于 .12、如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O ,则_________.13、已知方程的一个根是1,则它的另一个根是 ,m 的值是 .14、如图,等腰直角三角形ABC 的顶点A ,C 在x 轴上,∠ACB=90°,AC=BC=,反比例函数()的图象分别与AB ,BC 交于点D ,E .连接DE ,当△BDE ∽△BCA时,点E 的坐标为______________.15、已知线段AB="20," 点C 是线段上的黄金分割点(AC >BC),则长是 (精确到0.01) .16、若两个相似三角形的周长比为2:3,则它们的面积比是______.17、若代数式的值等于0,则x =________.18、如果=k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____.三、解答题(题型注释)19、已知关于x 的一元二次方程:x 2﹣(m ﹣3)x ﹣m=0. (1)试判断原方程根的情况;(2)若抛物线y=x 2﹣(m ﹣3)x ﹣m 与x 轴交于A (x 1,0),B (x 2,0)两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. (友情提示:AB=|x 2﹣x 1|)20、小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?21、如图,直线AB 分别与两坐标轴交于点A (4,0).B (0,8),点C 的坐标为(2,0).(1)求直线AB 的解析式; (2)在线段AB 上有一动点P.①过点P 分别作x,y 轴的垂线,垂足分别为点E,F,若矩形OEPF 的面积为6,求点P 的坐标.②连结CP,是否存在点P,使与相似,若存在,求出点P的坐标,若不存在,请说明理由.22、【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=,=.(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN (即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)23、如图,△ABC 中,CD 是边AB 上的高,且.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.24、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?25、2013年,东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5 265元. (1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)26、如图,在△ABC 中,AB =AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD =∠B. (1)求证:AC·CD =CP·BP ;(2)若AB =10,BC =12,当PD ∥AB 时,求BP 的长.27、解方程: (1)2(x+1)2=8;(2)x 2+2x+1=8(配方法); (3)2x 2﹣3x ﹣1="0" (公式法);(4)64(3y﹣2)2=9(2y﹣3)2(5)(x﹣1)2﹣4(x﹣1)+4=0.28、如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA、OB(OA<0B)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,求∠ABC的度数.参考答案1、D2、A3、B.4、D5、D6、B7、C8、B9、A10、C11、1:2.12、213、3,﹣4.14、15、12.3616、4:917、218、319、(1)原方程有两个不等实数根;(2)AB有最小值,即AB==2.20、20件21、(1);(2)①点P(1,6)或(3,2);②存在,点P的坐标为(2,4)或点P(,).22、(1)3、2;(2)证明见解析;(3)作图见解析.23、(1)证明见解析;(2)∠ACB=90°.24、所围矩形猪舍的长为10m、宽为8m.25、(1)平均每年下调的百分率为10%.(2)张强的愿望能实现.26、(1)证明见解析;(2)BP=.27、(1)x1=1,x2=﹣3;(2),;(3),;(4),;(4)x1=x2=3.28、∠ABC=45°.【解析】1、试题分析:方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后可以求出k的取值范围.解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.考点:根的判别式.2、试题分析:首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方. -8x=1-8x+=1+=17.考点:配方法3、试题分析:由图得:∠A=∠A,∴当∠B=∠2 或∠C=∠1或AE:AB=AD:AC时,△ABC与△ADE相似;也可AE:AD=AC:AB.B选项中∠A和∠C不是成比例的两边的夹角.故选B.考点:相似三角形的判定.4、试题分析:已知根据比例的性质可得,故答案选D.考点:比例的性质.5、试题分析:A、∵M有两个不相等的实数根∴△>0即而此时N的判别式△=,故它也有两个不相等的实数根;B、M的两根符号相同:即,而N的两根之积=>0也大于0,故N的两个根也是同号的。

2018年初三数学下阶段检测试卷(宜兴丁蜀区带答案)

2018年初三数学下阶段检测试卷(宜兴丁蜀区带答案)

2018年初三数学下阶段检测试卷(宜兴丁蜀区带答案)丁蜀学区2017-2018学年度第二学期第一次模拟测试初三数学全卷满分130分,考试时间120分钟出卷:��东中学初三数学备课组审核:��东中学初三数学备课组一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.�5的倒数是()A. B.±5 C.5 D.� 2.函数y= 中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2 3.分式22-x可变形为()A.22+x B.-22+x C.2x-2 D.-2x-2 4.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是() A.平均数 B.方差 C.中位数 D.众数 5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为() A.6 B.-6 C.12 D.-12 6.下列图形中,是轴对称图形但不是中心称图形的是() A.等边三角形 B.平行四边形C.矩形 D.圆 7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是() A.∠1=∠3 B.∠2+∠3=180° C.∠2+∠4<180° D.∠3+∠5=180° (第7题)(第8题) 8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是() A.35° B.140° C.70° D.70°或140° 9.如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()10.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB 上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE 于Q,则DP∶DQ等于() A.3∶4 B.∶ C.∶ D.∶ 二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡相应的位置) 11.分解因式:2x2-4x= . 12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元. 13.一次函数y=2x-6的图像与x轴的交点坐标为. 14.命题“全等三角形的面积相等”的逆命题是命题.(填“真”或“假”) 15.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD的长等于.(第15题)(第16题) 16.如图,□ ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于. 17.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.(第17题)(第18题) 18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1) ; (2)(x+1)2-(x+2)(x-2).20.(8分)(1)解方程: = .(2)解不等式组:21.(本题满分6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE,求证:MD=ME. 22.(本题满分8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达() A.从不 B.很少 C.有时 D.常常 E.总是答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”的圆心角为.(精确到度) 23.(本题满分8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).24.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC (1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.25.(本题满分8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?26.(本题满分10分)如图,直线x=-4与x轴交于E,一开口向上的抛物线过原点O交线段OE于A,交直线x=-4于B.过B且平行于x轴的直线与抛物线交于C,直线OC交直线AB于D,且AD:BD =1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式. 27.(本题满分10分)如图1,菱形ABCD中,∠A=600.点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出. (1)求点Q运动的速度; (2)求图2中线段FG的函数关系式; (3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由. 28.(本题满分10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB 交OA于点M.(1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:1OM -1ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求S1S2的取值范围.2017-2018学年度第二学期阶段性测试初三数学答案一、选择题 1 23 4 5 6 7 8 9 10 D A D B A A D B D D二、填空题 11 12 13 14 15 16 17 18 2x(x-2) 8. 2×109(3,0)假 8 4 5三、解答题 19.解:(1)原式=3�4+1=0;(2)原式=x2+2x+1�x2+4=2x+5. 20.(1)由题意可得:5(x+2)=3(2x�1),解得:x=13,检验:当x=13时,(x+2)≠0,2x�1≠0,故x=13是原方程的解;(2)解①得:x>�1,解②得:x≤6,故不等式组的解集为:�1<x≤6.21. 证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴M D=ME.22.(1)3200 (2)略(3)151°23.(1)共有9种等可能的结果,其中符合要求的结果有3种,∴P (第2次传球后球回到甲手里)= = .(2) 24.(1);(2)① A ,BC 如图1所示②∵OD= ,OP= ,OC=OA+AC=3,OA=2,∴ .故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.25.解:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得解之得答:每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a个,则篮球购买(50-a)个,根据题意得:120a+100(50-a)≤5500,整理得:20a≤500,解得:a≤25,答:最多可购买25个足球.26.27. 28.解:(1)过P作PE⊥OA于E,∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形,∴PM=OQ=1,∠PME=∠AOB=60°,∴PE=PM•sin60°= ,ME= ,∴CE=OC�OM�ME= ,∴tan∠PCE= = ,∴∠PCE=30°,∴∠CPM=90°,又∵PM∥OB,∴∠CNO=∠CPM=90°,则CN⊥OB;(2)① �的值不发生变化,理由如下:设OM=x,ON=y,∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y�x,∵PQ∥OA,∴∠NQP=∠O,又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴ = ,即 = ,∴6y�6x=xy.两边都除以6xy,得�= ,即�= .②过P作PE⊥OA 于E,过N作NF⊥OA于F,则S1=OM•PE,S2= OC•NF,∴ = .∵PM∥OB,∴∠PMC=∠O,又∵∠PCM=∠NCO,∴△CPM∽△CNO,∴ = = ,∴= =�(x�3)2+ ,∵0<x<6,则根据二次函数的图象可知,0<≤ .。

中考数学一模试卷附答案解析 (11)

中考数学一模试卷附答案解析 (11)

江苏省无锡市宜兴市丁蜀学区中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣2.下列各式运算中,正确的是()A.(a+b)2=a2+b2B.C.a3•a4=a12D.3.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>14.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.平行四边形B.矩形C.菱形D.正方形7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.3月无锡市商品房平均每平方价格为7500元,7500元用科学记数法表示为元.13.分解因式:a3﹣4a=.14.一元二次方程x2+x﹣2=0的两根之积是.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是度.16.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.20.(1)解方程: +=4.(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为度;(2)本次一共调查了名学生;(3)将条形统计图补充完整;(4)若该校有名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?26.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.27.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.28.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.江苏省无锡市宜兴市丁蜀学区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣【考点】倒数.【分析】乘积是1的两数互为倒数,据此进行计算即可.【解答】解:由题可得,4的倒数是.故选:C.2.下列各式运算中,正确的是()A.(a+b)2=a2+b2B.C.a3•a4=a12D.【考点】二次根式的性质与化简.【分析】根据完全平方公式,二次根式的化简、同底数幂的乘法法则,平方等概念分别判断.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、==3,正确;C、a3•a4=a12,错误;D、=,错误.故选B.3.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm【考点】圆锥的计算.【分析】圆锥的侧面积=,把相应数值代入即可求解.【解答】解:设母线长为R,由题意得:65π=,解得R=13cm.故选D.6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.平行四边形B.矩形C.菱形D.正方形【考点】中点四边形.【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:C.7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°【考点】多边形内角与外角;等边三角形的性质;多边形;等腰梯形的性质.【分析】根据四边形、等边三角形,等腰梯形的性质,结合各选项进行判断即可.【解答】解:A、四边形不具有稳定性,原说法错误,故本选项错误;B、等边三角形不是中心对称图形,说法错误,故本选项错误;C、等腰梯形的对角线不一定互相垂直,说法错误,故本选项错误;D、任意多边形的外角和是360°,说法正确,故本选项正确;故选D.8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差【考点】统计量的选择.【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选B.9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【考点】作图—基本作图.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条【考点】反比例函数的性质.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选A.二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.3月无锡市商品房平均每平方价格为7500元,7500元用科学记数法表示为7.5×103元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7500有4位,所以可以确定n=4﹣1=3.【解答】解:7500=7.5×103.故答案为:7.5×103.故答案为假.13.分解因式:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)14.一元二次方程x2+x﹣2=0的两根之积是﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系,即可求得答案.【解答】解:设一元二次方程x2+x﹣2=0的两根分别为α,β,∴αβ=﹣2.∴一元二次方程x2+x﹣2=0的两根之积是﹣2.故答案为:﹣2.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是19度.【考点】圆周角定理.【分析】先根据圆周角定理,求出∠C的度数,再根据两条直线平行,内错角相等,得∠OAC=∠C.【解答】解:∵∠AOB=38°∴∠C=38°÷2=19°∵AO∥BC∴∠OAC=∠C=19°.16.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是AC=BD(或∠CBA=∠DAB)(只填一个).【考点】全等三角形的判定.【分析】根据已知条件在三角形中位置结合三角形全等的判定方法寻找条件.已知给出了一边对应相等,由一条公共边,还缺少角或边,于是答案可得.【解答】解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【分析】过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=b,AD=OE=a,进而表示出ED及OE+BD 的长,即可表示出B坐标;由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.【解答】解:过A作AE⊥x轴,过B作BD⊥AE,∵∠OAB=90°,∴∠OAE+∠BAD=90°,∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE,在△AOE和△BAD中,,∴△AOE≌△BAD(AAS),∴AE=BD=b,OE=AD=a,∴DE=AE﹣AD=b﹣a,OE+BD=a+b,则B(a+b,b﹣a);∵A与B都在反比例图象上,得到ab=(a+b)(b﹣a),整理得:b2﹣a2=ab,即()2﹣﹣1=0,∵△=1+4=5,∴=,∵点A(a,b)为第一象限内一点,∴a>0,b>0,则=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.【考点】分式的混合运算;绝对值;算术平方根;零指数幂.【分析】按照实数的运算法则依次计算,注意负指数为正指数的倒数;任何非0数的0次幂等于1.【解答】解:(1)原式=2﹣1+2=3.(2)原式=.20.(1)解方程: +=4.(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先解每个不等式,两个不等式组的解集的公共部分就是不等式组的解集.【解答】解:(1)去分母得:x﹣5x=4(2x﹣3),解得:x=1,经检验x=1是分式方程无解;(2),∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE ≌△COF,则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【考点】列表法与树状图法.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.23.学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为54度;(2)本次一共调查了200名学生;(3)将条形统计图补充完整;(4)若该校有名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)圆心角的度数=360°×该部分所占总体的百分比;(2)0.5小时以下的有10人,所占百分比为5%,则可求得其调查总人数;(3)0.5﹣1小时人数为总人数乘以其所占百分比,1﹣1.5小时人数为总人数乘以其所占百分比;(4)用全校学生数×每天参加体育活动的时间在0.5小时以下所占百分比即可.【解答】解:(1)360°×(1﹣50%﹣30%﹣5%)=54°;(2)10÷5%=200人;(3)200×15%=30人,200×30%=60人;(4)平均每天参加体育活动的时间在0.5小时以下人数为×5%=100(人).24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【考点】解直角三角形的应用.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN 的长,由于AB=CN﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【考点】一元二次方程的应用;分式方程的应用.【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.26.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【考点】二次函数综合题.【分析】方法一:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.方法二:(1)略.(2)利用垂直公式及中点公式求出点B关于直线AC的对称点B’坐标,并得出B’与点D重合.(3)分别求出点A,C,E,D坐标,并证明直线ED与AC斜率相等.【解答】方法一:解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.方法二:(1)略.(2)设C点坐标为(t,0),B点关于直线AC的对称点为B′,∵∠ACB=90°,∴AC⊥BC,∴K AC×K BC=﹣1,∵OA=,∴A(0,),B(2,),C(t,0),∴=﹣1,∴t(t﹣2)=﹣1,∴t=1,C(1,0),∴,,∴B′x=0,B′Y=﹣,∴B关于直线AC的对称点即为点D.(3)∵A(0,),B(2,),∴,解得:x1=2(舍),x2=﹣2,∴E(﹣2,),D(0,﹣),A(0,),C(1,0),∴K ED=,K AC=,∴K ED=K AC,∴ED∥AC.27.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.【考点】圆的综合题.【分析】(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与N与圆O一定要有交点,由此可以求出m的范围.【解答】解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与或y=﹣,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣N的解析式为y=k,N的“相关矩形”为正方形,∴由定义可知:直线MN与N与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣,∴直线MN的解析式为:y=﹣≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣128.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC或PQ=AC.【考点】圆的综合题.【分析】(1)由题意可知:AC+BC=CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.【解答】解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,。

2018江苏宜兴丁蜀八年级下3月月考数学试题

2018江苏宜兴丁蜀八年级下3月月考数学试题

陶都中学2017-2018学年第二学期第一次阶段性测试初二数学一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一 项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.下面调查中,适合采用普查的是( ) A .调查全国中学生心理健康现状 B .调查你所在的班级同学的身高情况 C .调查我市食品合格情况D .调查无锡电视台《第一看点》收视率 3.下列根式中,与3是同类二次根式的是( )A .B .C .D .4.下列事件是随机事件的是( ) A .购买一张福利彩票,中特等奖B .在一个标准大气压下,加热水到100℃,沸腾C .任意三角形的内角和为180°D .在一个仅装着白球和黑球的袋中摸出红球5. 如图,ABCD 的对角线AC BD 、交于点O ,已知8AD =,12BD =,6AC =,则OBC ∆的周长为( ).A. 13B. 17C. 20D. 26(第5题) (第6题) (第7题)6. 如图,在ABCD 中,AB AD >,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,分别交AB AD 、于点E F 、;再分别以点E F 、为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( ). A. AG 平分DAB ∠ B. AD DH = C. DH BC = D. CH DH =7.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,此时点C 恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC 的度数为( )A .15°B .20°C .25°D .30°8. 如图,在Rt ABC ∆中,90BAC ∠=︒,将ABC ∆绕点A 顺时针旋转90°后得到AB C ''∆ (点B 的叶应点是点B ',点C 的对应.点是点C '),连接CC '.若32CC B ''∠=︒,则B ∠的大小是( ).(第8题) (第10题)A. 32°B. 69 °C. 77°D. 87° 9.若23x <<,那么22(2)(3)x x -+-的值为( )A .1B .25x -C .1或25x -D .1-10. 如图,将五个边长都为2 cm 的正方形按如图所示摆放,点A B C D 、、、分别是四个正方形的中心.则图中四块阴影面积的和为( ).A. 2 cm 2B. 4 cm 2C. 6 cm 2D. 8 cm 2二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.) 11.若2x - 在实数范围内有意义,则x 的取值范围是 .12.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为 . 13.82-= .263⨯= 14. 若最简二次根式3b 与22a b ++是同类二次根式,则a b -= .15. 如图,在ABCD 中,DE 平分,62ADC AD BE ∠==,,则ABCD 的周长是 .第15题图 第16题图 第17题图16如图,E. F 是ABCD 对角线BD 上的两点,请你添加一个适当的条件:_____ _,使四边形AECF是平行四边形。

江苏省无锡市丁蜀学区2018届中考数学一模试题含答案

江苏省无锡市丁蜀学区2018届中考数学一模试题含答案

江苏省无锡市丁蜀学区2018届九年级数学中考一模试卷一、单选题1.﹣5的倒数是()A. B.±5 C.5 D.﹣【答案】D【考点】有理数的倒数【解析】【解答】:﹣5的倒数是﹣,故答案为:D.【分析】根据乘积是1的两个数互为倒数可知答案。

2.函数y=中自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.x>2【答案】A【考点】分式有意义的条件【解析】【解答】由题意得,2-x≠0,∴x≠2.故答案为:A.【分析】根据分式有意义的条件:分母不能为零列出不等式,求解即可。

3.分式可变形为()A. B. C. D.【答案】D【考点】分式的基本性质【解析】【解答】分式的分子分母都乘以﹣1,得.故答案为:D.【分析】根据分式的变号法则,分子、分母、分式本身,同时改变其中任意两处的符号,分式的值不变,即可得出答案。

4.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数【答案】B【考点】平均数及其计算,中位数,方差,众数【解析】【解答】A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,从而得出其平均数,中位数,众数都要发生变化;从而得出答案。

【分析】B样本中的平均数、中位数和众数都比A样本要增加2,只要方差不变.5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为()A.6B.-6C.12D.-12【答案】A【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征【解析】【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故答案为:A.【分析】首先将A点坐标代入反比例函数的解析式,求出k的值,得出反比例函数的一般形式,再将B点的坐标代入反比例函数,即可求出m的值。

2018年江苏省无锡市宜兴市中考数学模拟试卷(4月份)(解析版)

2018年江苏省无锡市宜兴市中考数学模拟试卷(4月份)(解析版)

2018年江苏省无锡市宜兴市中考数学模拟试卷(4月份)一、选择题(本题共10小题,每小题3分,共30分)1.(3分)﹣8的相反数是()A.8B.﹣8C.D.﹣2.(3分)下列数中不属于有理数的是()A.1B.C.D.0.1133.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°4.(3分)下列运算正确的是()A.x﹣2x=x B.(xy)2=xy2C.×=D.(﹣)2=4 5.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+b C.﹣>﹣D.3a>3b6.(3分)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91B.极差是20C.中位数是91D.众数是98 7.(3分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.9.(3分)如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tan B=tan C=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=n B.x=m+n C.x>m+n D.x2=m2+n2 10.(3分)一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C 落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.2B.C.D.二、填空题(本题共8小题,每2分,共16分)11.(2分)函数y=中自变量x的取值范围是.12.(2分)因式分解:a3﹣4a=.13.(2分)反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=.14.(2分)某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为.15.(2分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为.16.(2分)如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点B′处,则sin∠B′EC的值为.17.(2分)如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P 的动直线DE交OA于D,交OB于E,那么=.18.(2分)如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.三、解答题(本题共10小题,共84分)19.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组:21.(8分)如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是正方形.22.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,图2中等级为A的扇形的圆心角等于°;(2)补全条形统计图;(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?23.(6分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)一共可以得到个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.24.(8分)在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,﹣3).(1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比是1:2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作图痕迹,不写作法)25.(8分)市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间存在着某种函数关系.(1)求后队追到前队所用的时间的值;(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标系中画出此函数的图象;(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?26.(10分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t 秒.(1)求点C运动了多少秒时,点E恰好是AB的中点?(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,请直接求出满足条件的t的取值范围.27.(10分)如图:已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线L设P为对称轴l上的点,连接P A、PC,P A=PC.(1)∠ABC的度数为°;(2)求点P坐标(用含m的代数式表示);(3)在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△P AC 相似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.28.(10分)如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.(1)点P在运动过程中,∠CPB=°;(2)当m=2时,试求矩形CEGF的面积;(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;(4)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度.2018年江苏省无锡市宜兴市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)﹣8的相反数是()A.8B.﹣8C.D.﹣【解答】解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选:A.2.(3分)下列数中不属于有理数的是()A.1B.C.D.0.113【解答】解:A、1是整数,属于有理数;B、是分数,属于有理数;C、既不是分数、也不是整数,不属于有理数;D、0.113是有限小数,即分数,属于有理数;故选:C.3.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.4.(3分)下列运算正确的是()A.x﹣2x=x B.(xy)2=xy2C.×=D.(﹣)2=4【解答】解:A、x﹣2x=﹣x,此选项错误;B、(xy)2=x2y2,此选项错误;C、×=,此选项正确;D、(﹣)2=2,此选项错误;故选:C.5.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5B.2+a<2+b C.﹣>﹣D.3a>3b【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.6.(3分)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91B.极差是20C.中位数是91D.众数是98【解答】解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A错误.故选:A.7.(3分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.9.(3分)如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tan B=tan C=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=n B.x=m+n C.x>m+n D.x2=m2+n2【解答】解:∵tan B=tan C=tan∠MAN=1,∴∠B=∠C=∠MAN=45°,∵∠CAB=90°,∴AC=AB,将△BAM绕点A顺时针旋转90°至△ACN′,点B与点C重合,点M落在N′处,连接NN′,则有AN′=AM,CN′=BM,∠1=∠3,∵∠MCN=45°,∴∠1+∠2=45°,∴∠2+∠3=45°,∴∠NAN′=∠MAN.在△MAN与△NAN′中,,∴△MAN≌△NCN′(SAS),∴MN=NN′.由旋转性质可知,∠ACN′=∠B=45°,∴∠NCN′=∠ACN′+∠ACB=90°,∴NN'2=NC2+N'C2,即x2=n2+m2,故选:D.10.(3分)一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C 落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.2B.C.D.【解答】解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.故选:D.二、填空题(本题共8小题,每2分,共16分)11.(2分)函数y=中自变量x的取值范围是x≥.【解答】解:根据题意得3x﹣2≥0,解得:x≥.故答案是:x≥.12.(2分)因式分解:a3﹣4a=a(a+2)(a﹣2).【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).13.(2分)反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=﹣2.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.14.(2分)某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为 1.05×105.【解答】解:105 000=1.05×105.故答案为:1.05×105.15.(2分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为cm.【解答】解:由图可知,OA=OB=,而AB=4,∴OA2+OB2=AB2,∴∠O=90°,OB==2;则弧AB的长为==π,设底面半径为r,则2πr=π,r=(cm).这个圆锥的底面半径为cm.故答案为:cm16.(2分)如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,连接AE,将△ABE沿AE折叠,点B落在点B′处,则sin∠B′EC的值为.【解答】解:如图所示,过B'作BC的垂线,交BC于F,交AD于G,则∠AGB'=∠B'FE =90°,由折叠可得,∠AB'E=∠B=90°,∴∠GAB'=∠FB'E,∴△AGB'∽△B'FE,∴=,由折叠可得AB'=AB=4,∵BC=6,点E为BC的中点,∴B'E=BE=3,设B'F=x,则B'G=4﹣x,∴=,即EF=(4﹣x)=3﹣x,∵Rt△EFB'中,EF2+B'F2=B'E2,∴(3﹣x)2+x2=32,解得x=,∴Rt△B'EF中,sin∠B′EC===.故答案为:.17.(2分)如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么=.【解答】解:过点P作PM⊥OD于M,PN⊥OE于N,作EH⊥OD于H,在Rt△EOH中,EH=OE×sin∠AOB=OE,∴S△DOE=×OD×EH=•OD•OE,∵OC是∠AOB的平分线,OP=4,∠AOB=60°,∴∠MOP=∠NOP=30°,PM=PN=OP=2,∴S△DOE=S△DOP+S△POE=×OD•PM+×OE•PN=OD+OE,∴•OD•OE=OD+OE,∴=,故答案为:.18.(2分)如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.三、解答题(本题共10小题,共84分)19.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).【解答】解:(1)原式=2+2﹣4×+1=2+2﹣2+1=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组:【解答】解:(1)去分母得:1﹣x+1=﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2.21.(8分)如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是正方形.【解答】证明:(1)∵BE=CF,∴BF=CE,又∵AF=DE,AB=DC,∴△ABF≌△DCE.(2)由△ABF≌△DCE得∠B=∠C,由AB∥CD得∠B+∠C=180°,得∠B=∠C=90°,四边形ABCD是正方形.22.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,图2中等级为A的扇形的圆心角等于86.4°;(2)补全条形统计图;(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),∵a=×100%=24%;∴扇形统计图中A级对应的圆心角为24%×360°=86.4°;故答案为:50、86.4;(2)C等级人数为50﹣(12+24+4)=10,补全条形图如下:(3)3000×=240(人),答:估计该校等级为D的学生有240名.23.(6分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)一共可以得到16个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.【解答】解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.故答案为16;(2)∵y=x2+mx+n,∴△=m2﹣4n.∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n<0,由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.24.(8分)在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,﹣3).(1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比是1:2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作图痕迹,不写作法)【解答】解:(1)如图所示,连接CE,交y轴于D,则DE即为所求,由E(1,0),D(0,﹣1.5),可得DE的解析式为y=x﹣,连接C'E',交y轴于D',则D'E'即为所求,由E'(﹣1,0),D'(0,1.5),可得D'E'的解析式为y=x+,∴直线DE的函数表达式为y=x﹣或y=x+;(2)如图所示,连接AD,EH,交于点G,由DE:AH=2:11,可得DG:AG=2:11,∴AG=AD=,同理可得,BF=,此时,矩形ABFG的面积为×=11.故矩形ABFG即为所求.25.(8分)市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间存在着某种函数关系.(1)求后队追到前队所用的时间的值;(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标系中画出此函数的图象;(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?【解答】解:(1)设线段AB对应的函数关系式为y1=kx+b.根据题意,得,解得.∴y1=﹣2x+4,当y=0时,﹣2x+4=0,解得x=2,故后队追到前队所用的时间的值是2h;(2)根据题意,得线段DE对应的函数关系式为y2=(12+4)(x﹣)=16x﹣8.如图所示:(3)根据题意,得线段AD对应的函数关系式为y3=k3x+b3,由题意,得,解得:.∴y3=﹣8x+4.分两种情况:①y1=2y3,即﹣2x+4=2(﹣8x+4),解得x=.②y1=2y2,即﹣2x+4=2(16x﹣8),解得x=.综上,联络员从出发到他折返后第一次与后队相遇的过程中,当x为或时,他离前队的路程与他离后队的路程相等.26.(10分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t秒.(1)求点C运动了多少秒时,点E恰好是AB的中点?(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,请直接求出满足条件的t的取值范围.【解答】解:(1)根据题意知BC=2t、BO=16、OA=12,则OC=16﹣2t,∵CE⊥AB且E为AB中点,∴CB=CA=2t,在Rt△AOC中,由OC2+OA2=AC2可得(16﹣2t)2+122=(2t)2,解得:t=6.25,即点C运动了6.25秒时,点E恰好是AB的中点;(2)如图1中,当t=4时,BC=OC=8,∵A(12,0),B(0,16),∴直线AB的解析式为y=﹣x+16,∵CE⊥AB,C(0,8),∴直线CE的解析式为y=x+8,,解得,∴E(,),∵点F在y轴上,∴DE∥y轴,∴D(,0).(3)如图2中,①当点C在y轴的正半轴上时,设以EC为直径的⊙P与x轴相切于点D,作ER⊥OA与R.根据PD=(OC+ER),可得:t=[16﹣2t+(20﹣t)×],解得t=.②当点C′在y轴的负半轴上时,设以E′C′为直径的⊙P′与x轴相切于点D′,作ER′⊥OA与K.根据P′D′=(OC′+E′K),可得:t=[2t﹣16+(t﹣20)×],解得t=,综上所述,点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,满足条件的t的取值范围为<t<.27.(10分)如图:已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线L设P为对称轴l上的点,连接P A、PC,P A=PC.(1)∠ABC的度数为45°;(2)求点P坐标(用含m的代数式表示);(3)在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△P AC 相似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.【解答】解:(1)令x=0,则y=﹣m,C点坐标为:(0,﹣m),令y=0,则x2+(1﹣m)x﹣m=0,解得:x1=﹣1,x2=m,∵0<m<1,点A在点B的左侧,∴B点坐标为:(m,0),∴OB=OC=m,∵∠BOC=90°,∴△BOC是等腰直角三角形,∠ABC=45°;故答案为:45°;(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x=,设点P坐标为:(,n),∵P A=PC,∴P A2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴P A2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴P A2+PC2=AC2,∴∠APC=90°,∴△P AC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△P AC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直,则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小.28.(10分)如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.(1)点P在运动过程中,∠CPB=45°;(2)当m=2时,试求矩形CEGF的面积;(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;(4)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度.【解答】解:(1)∵过点P的直线PQ的解析式为y=x+m,∴图象与x轴交点坐标的为:(﹣m,0),图象与y轴交点坐标的为:(0,m),∴QO=PO,∠POQ=90°,∴∠CPB=45°,故答案为:45°;(2)作OM⊥CD于M点,则CM=MD,∵∠CPB=45°,CE⊥AB,∴∠OQP=∠HCP=45°,PH=CH,由题意得:QO=2,∴OP=OQ=2,∴PM=MQ=OM=,连接OC,则CM==,∴PC=+,PH=CH=PC=,∴CE=2CH=+2,OH=PH﹣OP=﹣2=,∴S矩形CEGH=CE×OH=(+2)×=5;(3)不变,当P点在线段OA上时,由(2)得:PC2+PD2=(CM+PM)2+(DM﹣PM)2,=(CM+OM)2+(CM﹣OM)2,=2(CM2+OM2),=2OC2,=2×32,=18,当P点在线段OB上时,同理可得:PC2+PD2=18,当P点与点O重合时,显然有:PC2+PD2=18;(4)①当点P在直径AB上时如图所示,由圆的对称性可知,∠CPE=2∠CPB=90°,PE=PC,∴S△PDE=PD×PE=PD×PC=3,∴PD×PC=6,即(CM﹣PM)(CM+PM)=6,(CM﹣OM)(CM+OM)=6,∴CM2﹣OM2=6,∴CM2﹣(32﹣CM2)=6,∴CM2=,∴CD=2CM=;②当点P在线段AB的延长线上时,如图,同理有:PD×PC=6,即:(PM+DM)(PM﹣CM)=6,(OM+CM)(OM﹣CM)=6,∴OM2﹣CM2=6,∴(32﹣CM2)﹣CM2=6,∴CM2=,∴CD=2CM=,综上所述:CD为或.。

2018江苏宜兴丁蜀八年级下3月月考数学试题

2018江苏宜兴丁蜀八年级下3月月考数学试题

陶都中学2017-2018学年第二学期第一次阶段性测试初二数学一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一 项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.下面调查中,适合采用普查的是( ) A .调查全国中学生心理健康现状 B .调查你所在的班级同学的身高情况 C .调查我市食品合格情况D .调查无锡电视台《第一看点》收视率3.下列根式中,与3是同类二次根式的是( )A .B .C .D .4.下列事件是随机事件的是( ) A .购买一张福利彩票,中特等奖B .在一个标准大气压下,加热水到100℃,沸腾C .任意三角形的内角和为180°D .在一个仅装着白球和黑球的袋中摸出红球5. 如图,ABCD 的对角线AC BD 、交于点O ,已知8AD =,12BD =,6AC =,则OBC ∆的周长为( ).A. 13B. 17C. 20D. 26(第5题) (第6题) (第7题)6. 如图,在ABCD 中,AB AD >,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,分别交AB AD 、于点E F 、;再分别以点E F 、为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( ). A. AG 平分DAB ∠ B. AD DH = C. DH BC = D. CH DH =7.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,此时点C 恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC 的度数为( )A .15°B .20°C .25°D .30°8. 如图,在Rt ABC ∆中,90BAC ∠=︒,将ABC ∆绕点A 顺时针旋转90°后得到AB C ''∆ (点B 的叶应点是点B ',点C 的对应.点是点C '),连接CC '.若32CC B ''∠=︒,则B ∠的大小是( ).(第8题) (第10题)A. 32°B. 69 °C. 77°D. 87°9.若23x << )A .1B .25x -C .1或25x -D .1-10. 如图,将五个边长都为2 cm 的正方形按如图所示摆放,点A B C D 、、、分别是四个正方形的中心.则图中四块阴影面积的和为( ).A. 2 cm 2B. 4 cm 2C. 6 cm 2D. 8 cm 2二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)11在实数范围内有意义,则x 的取值范围是 .12.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为 .13..14. a b -= .15. 如图,在ABCD 中,DE 平分,62ADC AD BE ∠==,,则ABCD 的周长是 .第15题图 第16题图 第17题图16如图,E. F 是ABCD 对角线BD 上的两点,请你添加一个适当的条件:_____ _,使四边形AECF是平行四边形。

2018-2019学年第一学期宜兴市丁蜀学区初三数学期中试卷(含答案)

2018-2019学年第一学期宜兴市丁蜀学区初三数学期中试卷(含答案)

丁蜀学区2018-2019学年第一学期期中质量调研初三数学一、选择题:(本大题共10小题,每题3分,共30分)。

1.下列方程是关于x 的一元二次方程的是( )。

A.02=++c bx axB.2112=+x xC.1222-=+x x xD.)1(2)1(32+=+x x 2.用配方法解方程x 2+4x +1=0,配方后的方程是( )。

A .(x +2)2=3B .(x -2)2=3C .(x -2)2=5D .(x +2)2=53.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )。

A .a>2 B .a<2 C .a<2且a ≠1 D .a<-24.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为( )。

A.12.36cmB.13.6cmC.32.36cmD.7.64cm5.如图,下列条件不能判定△ABC 与△ADE 相似的是 ( )。

A .AE DE AC BC = B .∠B=∠ADE C .AE AC AD AB = D .∠C=∠AED 6.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.⑤同圆中等弦所对的圆周角相等.其中正确的有( )。

A.4个 B.3个 C.2个 D.1个7.已知一个点到圆上的点的最大距离是5cm ,最小距离是1cm ,则这个圆的半径是( )。

A 、3cmB 、2cmC 、3cm 或2cmD 、不能确定8.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )。

A .B .C .D .9.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比是( )。

江苏省无锡市丁蜀学区2018届中考数学一模试卷(含答案解析)

江苏省无锡市丁蜀学区2018届中考数学一模试卷(含答案解析)

江苏省无锡市丁蜀学区2018届九年级数学中考一模试卷一、单选题1.﹣5的倒数是()A. B. ±5 C. 5 D. ﹣【答案】D【考点】有理数的倒数【解析】【解答】:﹣5的倒数是﹣,故答案为:D.【分析】根据乘积是1的两个数互为倒数可知答案。

2.函数y=中自变量x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x>2【答案】A【考点】分式有意义的条件【解析】【解答】由题意得,2-x≠0,∴x≠2.故答案为:A.【分析】根据分式有意义的条件:分母不能为零列出不等式,求解即可。

3.分式可变形为()A. B. C. D.【答案】D【考点】分式的基本性质【解析】【解答】分式的分子分母都乘以﹣1,得.故答案为:D.【分析】根据分式的变号法则,分子、分母、分式本身,同时改变其中任意两处的符号,分式的值不变,即可得出答案。

4.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A. 平均数B. 方差C. 中位数D. 众数【答案】B【考点】平均数及其计算,中位数,方差,众数【解析】【解答】A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,从而得出其平均数,中位数,众数都要发生变化;从而得出答案。

【分析】B样本中的平均数、中位数和众数都比A样本要增加2,只要方差不变.5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为()A. 6B. -6C. 12D. -12【答案】A【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征【解析】【解答】解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故答案为:A.【分析】首先将A点坐标代入反比例函数的解析式,求出k的值,得出反比例函数的一般形式,再将B点的坐标代入反比例函数,即可求出m的值。

江苏省无锡市天一实验学校2018届数学中考一模试卷及参考答案

江苏省无锡市天一实验学校2018届数学中考一模试卷及参考答案

(1) 求该抛物线的解析式; (2) 如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA ,ED,PD,求四边形EAPD面积的最大值; (3) 如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与 直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
A . 矩形ABCD的周长 B . 矩形②的周长 C . AB的长 D . BC的长 9. 如图,将一块等腰Rt△ABC的直角顶点C放在⊙O上,绕点C旋转三角形,使边AC经过圆心O,某一时刻,斜边AB 在⊙O上截得的线段DE=2cm,且BC=7cm,则OC的长为( )
A . 3cm B . cm C . cm D . 2 cm
16. 在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直 线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2 的周长为a+c+5b,则翻折11次后,所得图形的周长为________.(结果用含有a,b,c的式子表示)
庭大约有多少户?
(3) 从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽 取出的2个家庭来自不同范围的概率.
22. 如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1) 求证:BC为⊙O的切线; (2) 若AB=4,AD=1,求线段CE的长. 23. 随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型 快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的

江苏省无锡市2018届数学中考模拟试卷-有参考答案

江苏省无锡市2018届数学中考模拟试卷-有参考答案

江苏省无锡市2018届数学中考模拟试卷一、选择题1.的倒数是()A. 2B.C.D.【答案】C【考点】有理数的倒数【解析】【解答】解:-2的倒数是-故答案为:C【分析】求一个数的倒数就是用1除以这个数。

2.式子在实数范围内有意义,则x的取值范围是()A. >1B. ≥1C. <1D. ≤1【答案】B【考点】二次根式有意义的条件【解析】【解答】解:根据题意得x-1≥0解之:x≥1故答案为:B【分析】要使二次根式有意义,则被开方数是非负数,列不等式,求解即可。

3.下列运算正确的是()A. a2·a3﹦a6B. a3+ a3﹦a6C. |-a2|﹦a2D. (-a2)3﹦a6【答案】C【考点】绝对值及有理数的绝对值,同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】解:A、a2·a3﹦a5,故A不符合题意;B、a3+ a3﹦2a3,故B不符合题意;C、|-a2|﹦a2,故C符合题意;D、(-a2)3﹦-a6,故D不符合题意;故答案为:C【分析】根据同底数幂相乘,底数不变指数相加,可对A作出判断;利用合并同类项的法则,可对B作出判断;根据绝对值的意义,可对C作出判断;利用幂的乘方的法则,可对D作出判断;即可得出答案。

4.一元二次方程x2+5x+7=0解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】C【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b2-4ac=25-28=-3<0∴此方程没有实数根。

故答案为:C【分析】先求出b2-4ac的值,再根据其值可判断方程根的情况。

5.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1B. 1C. -1D. 0【答案】C【考点】二次函数的定义,二次函数图象上点的坐标特征【解析】【解答】解:∵二次函数y=(a-1)x2+3x+a2-1的图象经过原点∴a2-1=0且a-1≠0解之:a=±1,a≠1∴a=-1故答案为:C【分析】根据二次函数的定义及二次函数的图像经过原点,得出a2-1=0且a-1≠0,即可求出a的值。

江苏省无锡市丁蜀学区2018届九年级数学中考一模试卷及答案解析

江苏省无锡市丁蜀学区2018届九年级数学中考一模试卷及答案解析

江苏省无锡市丁蜀学区2018届九年级数学中考一模试卷一、单选题1.﹣5的倒数是( )A. 15 B. ±5 C. 5 D. ﹣ 15 2.函数y = x2−x 中自变量x 的取值范围是( )A. x≠2B. x≥2C. x≤2D. x >2 3.分式 22−x 可变形为( )A. 22+x B. −22+x C. 2x−2 D. −2x−24.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A. 平均数B. 方差C. 中位数D. 众数 5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m 的值为( ) A. 6 B. -6 C. 12 D. -12 6.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 矩形D. 圆 7.如图,AB ∥CD ,则根据图中标注的角,下列关系中成立的是( )A. ∠1=∠3B. ∠2+∠3=180°C. ∠2+∠4<180°D. ∠3+∠5=180° 8.如图,A ,B ,C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是( )A. 35°B. 140°C. 70°D. 70°或140°9.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面积比等于( )A. 12B. 14C. 18D. 11610.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于()A. 3∶4B. √13∶2√5C. √13∶2√6D. 2√3∶√13二、填空题11.分解因式:2x2-4x=________.12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为________元.13.一次函数y=2x-6的图像与x轴的交点坐标为________.14.命题“全等三角形的面积相等”的逆命题是________命题.(填“真”或“假”)15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.16.如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.17.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于________.三、解答题19.计算:(1)√9−(−2)2+(−0.1)0;(2)(x+1)2-(x+2)(x-2).20.解答题(1)解方程:52x−1=3x+2.(2)解不等式组:{2x+3>1①x−2≤12(x+2)②21.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达,A从不 B很少C有时D常常E总是答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有________名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”的圆心角为________.(精确到度)23.综合题(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).24.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于________;(2)请在图中按下列要求逐一操作,并回答问题:①以点________为圆心,以线段________的长为半径画弧,与射线BA交于点D,使线段OD的长等于√6;②连OD,在OD上画出点P,使OP的长等于2√6,请写出画法,并说明理由________.325.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?26.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.27.如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.28.如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:1OM −1ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求S1S2的取值范围.答案解析部分一、<b >单选题</b>1.【答案】D【考点】有理数的倒数2.【答案】A【考点】分式有意义的条件3.【答案】D【考点】分式的基本性质4.【答案】B【考点】平均数及其计算,中位数,方差,众数5.【答案】A【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征6.【答案】A【考点】轴对称图形7.【答案】D【考点】平行线的性质8.【答案】B【考点】圆周角定理9.【答案】D【考点】相似三角形的判定与性质10.【答案】D【考点】三角形的面积,平行四边形的性质二、<b >填空题</b>11.【答案】2x(x-2)【考点】提公因式法因式分解12.【答案】8.2×109【考点】科学记数法—表示绝对值较大的数13.【答案】(3,0)【考点】直线与坐标轴相交问题14.【答案】假【考点】命题与定理15.【答案】8【考点】直角三角形斜边上的中线,勾股定理16.【答案】4 √3【考点】平行四边形的性质,锐角三角函数的定义17.【答案】5【考点】点的坐标,平行线的性质,全等三角形的判定与性质,平行四边形的性质18.【答案】3【考点】解直角三角形三、<b >解答题</b>19.【答案】(1)解:原式=3﹣4+1=0(2)解:原式=x2+2x+1﹣x2+4=2x+5【考点】算术平方根,完全平方公式及运用,平方差公式及应用,有理数的加减混合运算,合并同类项法则及应用20.【答案】(1)解:由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解。

无锡市宜兴市丁蜀学区2017-2018学年八年级上调研数学试卷含解析

无锡市宜兴市丁蜀学区2017-2018学年八年级上调研数学试卷含解析

2017-2018学年江苏省无锡市宜兴市丁蜀学区八年级(上)调研数学试卷(10月份)一、细心选一选(本大题共10小题,每小题3分,共30分.)1.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2 B.﹣2 C.3 D.﹣32.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.如图,无法保证△ADE与△ABC相似的条件是()A.∠1=∠C B.∠A=∠C C.∠2=∠B D.4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.5.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或26.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.若=,则的值为()A.1 B.C.D.8.关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k>﹣1且k≠09.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0.其中a+c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1二、精心填一填(本大题共8小题,每小题2分,共16分.不需要解答过程)11.若两个相似三角形的周长比为2:3,则它们的面积比是.12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.13.已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.14.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC=.15.已知线段AB=10,点C是线段AB上的黄金分割点(AC>BC),则AC长是(精确到0.01).16.若代数式的值等于0,则x=.17.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=.18.如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE ∽△BCA时,点E的坐标为.三、解答题(本大题共10题,共84分)19.解方程(1)2(x+1)2=8(2)x2+2x+1=8(配方法)(3)2x2﹣3x﹣1=0 (公式法)(4)64(3y﹣2)2=9(2y﹣3)2(5)(x﹣1)2﹣4(x﹣1)+4=0.20.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)21.如图,△ABC中,CD是边AB上的高,且=(1)求证:△ADC∽△CDB;(2)求∠ACB的大小.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?24.如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA、OB(OA <0B)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,求∠ABC的度数.25.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.26.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)27.如图,直线AB分别与两坐标轴交于点A(4,0),B(0,8),点C的坐标为(2,0).(1)求直线AB的解析式;(2)在线段AB上有一动点P.①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.②连结CP,是否存在点P,使△ACP与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.28.【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=,=.(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)2017-2018学年江苏省无锡市宜兴市丁蜀学区八年级(上)调研数学试卷(10月份)参考答案与试题解析一、细心选一选(本大题共10小题,每小题3分,共30分.)1.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2 B.﹣2 C.3 D.﹣3【考点】AB:根与系数的关系.【分析】根据一元二次方程的根与系数的关系x1+x2=﹣可以直接求得x1+x2的值.【解答】解:∵一元二次方程x2﹣2x﹣3=0的一次项系数是a=1,二次项系数b=2,∴由韦达定理,得x1+x2=2.故选A.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】A6:解一元二次方程﹣配方法.【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:C.3.如图,无法保证△ADE与△ABC相似的条件是()A.∠1=∠C B.∠A=∠C C.∠2=∠B D.【考点】S8:相似三角形的判定.【分析】本题中已知∠A是公共角,应用两三角形相似的判定定理,即可作出判断.【解答】解:由图得:∠A=∠A,∴当∠B=∠2或∠C=∠1或AE:AB=AD:AC时,△ABC与△ADE相似;也可AE:AD=AC:AB.B选项中∠A和∠C不是成比例的两边的夹角.故选:B.4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】S8:相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.5.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或2【考点】A9:换元法解一元二次方程.【分析】设y=a2﹣b2,原式化为关于y的一元二次方程,求出方程的解得到y的值,即为a2﹣b2的值.【解答】解:设y=a2﹣b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∴a2﹣b2=4或﹣2.故选C.6.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.7.若=,则的值为()A.1 B.C.D.【考点】S1:比例的性质.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.8.关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k>﹣1且k≠0【考点】AA:根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到k≠0且△=22﹣4k×(﹣1)>0,然后解两个不等式求出它们的公共部分即可.【解答】解:根据题意得k≠0且△=22﹣4k×(﹣1)>0,所以k>﹣1且k≠0.故选D.9.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】S9:相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0.其中a+c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【考点】AA:根的判别式.【分析】求出方程M:ax2+bx+c=0的判别式△1=b2﹣4ac,方程N:cx2+bx+a=0的判别式△2=b2﹣4ac,再根据判别式的意义、根与系数的关系以及方程的解的意义求解即可.【解答】解:A、如果方程M有两个不相等的实数根,那么△1=b2﹣4ac>0,所以△2=b2﹣4ac>0,所以方程N也有两个不相等的实数,结论正确,故本选项不符合题意;B、如果方程M有两根符号相同,那么两根之积>0,所以>0,即方程N的两根之积>0,所以方程N的两根符号也相同,结论正确,故本选项不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,所以a+b+c=0,所以是方程N的一个根,结论正确,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,整理得(a ﹣c)x2=a﹣c,当a=c时,x为任意数;当a≠c时,x=±1.结论错误,故本选项符合题意;故选D.二、精心填一填(本大题共8小题,每小题2分,共16分.不需要解答过程)11.若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【考点】S7:相似三角形的性质.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【考点】S1:比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.13.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3,m的值是﹣4.【考点】AB:根与系数的关系;A3:一元二次方程的解.【分析】利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.14.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC=1:2.【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】利用平行四边形的性质得出AD∥BC,AD=BC,进而得出△DEF∽△DCF,再利用相似三角形的判定与性质得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△DCF,∴,∵点E是边AD的中点,∴DE=AE=AD=BC,∴.故答案为:1:2.15.已知线段AB=10,点C是线段AB上的黄金分割点(AC>BC),则AC长是 6.18(精确到0.01).【考点】S3:黄金分割.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5(﹣1)≈6.18.故答案为6.18.16.若代数式的值等于0,则x=2.【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣5x+6=0,2x﹣6≠0,由x2﹣5x+6=0,得x=2或x=3,由2x﹣6≠0,得x≠3,∴x=2,故答案为2.17.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=2.【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍列式进行计算即可求解.【解答】证明:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.18.如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为(,).【考点】S9:相似三角形的判定与性质;G6:反比例函数图象上点的坐标特征.【分析】首先设点D的坐标是(m,),点E的坐标是(n,),应用待定系数法求出直线AB的解析式是多少;然后根据△BDE∽△BCA,可得∠BDE=∠BCA=90°,推得直线y=x与直线DE垂直,再根据点D、E关于直线y=x对称,推得mn=3;最后根据点D在直线AB上,求出点n的值是多少,即可判断出点E 的坐标是多少.【解答】解:如图1,∵点D、E是反比例函数y=(x>0)的图象上的点,∴设点D的坐标是(m,),点E的坐标是(n,),又∵∠BCA=90°,AC=BC=2,∴C(n,0),B(n,2),A(n﹣2,0),设直线AB的解析式是:y=ax+b,则解得∴直线AB的解析式是:y=x+2﹣n.又∵△BDE∽△BCA,∴∠BDE=∠BCA=90°,∴直线y=x与直线DE垂直,∴点D、E关于直线y=x对称,∴=,∴mn=3,或m+n=0(舍去),又∵点D在直线AB上,∴=m+2﹣n,mn=3,整理,可得2n2﹣2n﹣3=0,解得n=或n=﹣(舍去),∴点E的坐标是(,).故答案为:(,).三、解答题(本大题共10题,共84分)19.解方程(1)2(x+1)2=8(2)x2+2x+1=8(配方法)(3)2x2﹣3x﹣1=0 (公式法)(4)64(3y﹣2)2=9(2y﹣3)2(5)(x﹣1)2﹣4(x﹣1)+4=0.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法;A6:解一元二次方程﹣配方法;A7:解一元二次方程﹣公式法.【分析】(1)方程两边同除以2,然后直接开平方即可解答本题;(2)利用配方法进行解答即可;(3)利用公式法进行解答即可;(4)移项利用平方差公式进行解答即可;(5)利用完全平方公式进行解答.【解答】解:(1)2(x+1)2=8,(x+1)2=4,x+1=±2,x=﹣1±2,∴x1=1,x2=﹣3;(2)x2+2x+1=8,(x+1)2=8,,x=,∴;(3)2x2﹣3x﹣1=0,a=2,b=﹣3,c=﹣1,△=(﹣3)2﹣4×2×(﹣1)=17>0,,∴;(4)64(3y﹣2)2=9(2y﹣3)264(3y﹣2)2﹣9(2y﹣3)2=0,[8(3y﹣2)+3(2y﹣3)][8(3y﹣2)﹣3(2y﹣3)]=0,(30y﹣25)(18y﹣7)=0,解得,;(5)(x﹣1)2﹣4(x﹣1)+4=0,[(x﹣1)﹣2]2=0,(x﹣3)2=0,∴x﹣3=0,得x1=x2=3.20.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【考点】AD:一元二次方程的应用.【分析】(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出2016年的房价,进而确定出100平方米的总房款,即可做出判断.【解答】解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.21.如图,△ABC中,CD是边AB上的高,且=(1)求证:△ADC∽△CDB;(2)求∠ACB的大小.【考点】S9:相似三角形的判定与性质.【分析】(1)利用垂直的定义得到一对直角相等,再由已知边成比例,利用两边成比例且夹角相等的三角形相似即可得证;(2)利用相似三角形对应角相等及同角的余角相等即可求出所求.【解答】(1)证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∵=,∴△ADC∽△CDB;(2)解:∵△ADC∽△CDB,∴∠A=∠BCD,∠ACD=∠B,∵∠A+∠ACD=90°,∴∠ACD+∠BCD=90°,则∠ACB=90°.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【考点】AD:一元二次方程的应用.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.23.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【考点】AD:一元二次方程的应用.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.24.如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA、OB(OA <0B)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,求∠ABC的度数.【考点】AD:一元二次方程的应用.【分析】先跟及三角形ABC的面积求出AB的值,再由根与系数的关系就可以求出m的值,从而求出方程的解,就可以得出OB的值,进而得出△OBC为等腰直角三角形就可以得出结论.【解答】解:∵C(0,3),∴CO=3.∵△ABC的面积为6,∴=6,∴AB=4.∵OA、OB(OA<0B)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,∴OA+OB=4m,∴4m=4,∴m=1.∴一元二次方程为:x2﹣4x+3=0∴x1=1,x2=3.∵OA<0B,∴OA=1,OB=3.∴OB=OC,∴△OBC是等腰直角三角形,∴∠ABC=45°.答:∠ABC=45°.25.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【考点】S9:相似三角形的判定与性质.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.26.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】HA:抛物线与x轴的交点;AA:根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==227.如图,直线AB分别与两坐标轴交于点A(4,0),B(0,8),点C的坐标为(2,0).(1)求直线AB的解析式;(2)在线段AB上有一动点P.①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.②连结CP,是否存在点P,使△ACP与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)由于A(4,0)、B(0,8),利用待定系数法即可求出直线AB的解析式;(2)①可以设动点P (x,﹣2x+8),由此得到PE=x,PF=﹣2x+8,再利用矩形OEPF的面积为6即可求出点P的坐标;②存在,分两种情况:第一种由CP∥OB得△ACP∽△AOB,由此即可求出P的坐标;第二种CP⊥AB,根据已知条件可以证明APC∽△AOB,然后利用相似三角形的对应边成比例即可求出PA,再过点P作PH⊥x轴,垂足为H,由此得到PH ∥OB,进一步得到△APH∽△ABO,然后利用相似三角形的对应边成比例就可以求出点P的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,如图1:依题意,,∴,∴y=﹣2x+8;(2)①设动点P (x,﹣2x+8),则PE=x,PF=﹣2x+8,∴S▭OEPF=PE•PF=x(﹣2x+8)=6,∴x1=1,x2=3;经检验x1=1,x2=3都符合题意,∴点P(1,6)或(3,2);②存在,分两种情况第一种:CP∥OB,∴△ACP∽△AOB,而点C的坐标为(2,0),∴点P(2,4 );第二种CP⊥AB,∵∠APC=∠AOB=90°,∠PAC=∠BAO,∴△APC∽△AOB,∴,∴,∴AP=,如图2,过点P作PH⊥x轴,垂足为H,∴PH∥OB,∴△APH∽△ABO,∴,∴,∴PH=,AH=,∴OH=OA﹣AH=,∴点P(,).∴点P的坐标为(2,4)或点P(,).28.【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=3,=2.(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)【考点】SO:相似形综合题;S4:平行线分线段成比例.【分析】(1)只需利用基本事实“两条直线被一组平行线所截,所得的对应线段成比例”即可解决问题;(2)要证∠M=∠N,只需证△AMD∽△ANE,只需证==,由于DF=DM,EG=EN,BF=AM,GC=AN,只需证==,根据“两条直线被一组平行线所截,所得的对应线段成比例”即可解决问题;(3)借鉴图2,可进行以下操作:①延长BA到D,使得AD=AC,延长AB到E,使得BE=BC;②过点D画一条线段DF,使得DF=a,连接EF;③过点B作∠DBB′=∠DEF,交DF于点B′,过点A作∠DA A′=∠DEF,交DF于点A′,即可得到AA′∥BB′∥EF;④以点A′为圆心,A′D为半径画弧,以点B′为圆心,B′F为半径画弧,两弧交于点C′;⑤连接A′C′,B′C′,如图4,△A′B′C′即为所求作.【解答】解:(1)如图1,∵DE∥FG∥BC,∴,,∴==.∵AD=2,AE=1,DF=6,∴==,∴EG=3,=2.故答案分别为:3、2;(2)如图2,∵DE∥FG∥BC,∴,,∴==.∵DF=DM,EG=EN,BF=AM,GC=AN,∴==,∴△AMD∽△ANE,∴∠M=∠N;(3)步骤:①延长BA到D,使得AD=AC,延长AB到E,使得BE=BC;②过点D画一条线段DF,使得DF=a,连接EF;③过点B作∠DBB′=∠DEF,交DF于点B′,过点A作∠DAA′=∠DEF,交DF于点A′;④以点A′为圆心,A′D为半径画弧,以点B′为圆心,B′F为半径画弧,两弧交于点C′;⑤连接A′C′,B′C′,如图4,△A′B′C′即为所求作.。

江苏省无锡市宜兴市丁蜀学区2017-2018学年九年级(上)第一次段测数学试卷(解析版)

江苏省无锡市宜兴市丁蜀学区2017-2018学年九年级(上)第一次段测数学试卷(解析版)

2017-2018学年江苏省无锡市宜兴市丁蜀学区九年级(上)第一次段测数学试卷一、选择题(本大题共10小题,每小题3分,共30分):1.(3分)下列方程为一元二次方程的是()A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.D.x2﹣2x=32.(3分)解方程2(5x﹣1)2﹣3(5x﹣1)=0最适当的方法是()A.直接开平方法B.配方法C.公式法D.因式分解法3.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1且a≠5 B.a>1且a≠5 C.a≥1 D.a≠54.(3分)若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定5.(3分)把一块长80mm、宽60mm的铁皮的4个角分别剪去一个边长相等的小正方形,做成一个底面积是1500mm2的无盖铁盒.若设小正方形的边长为x mm,下面所列的方程中,正确的是()A.(80﹣x)(60﹣x)=1500 B.(80﹣2x)(60﹣2x)=1500C.(80﹣2x)(60﹣x)=1500 D.(80﹣x)(60﹣2x)=15006.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C.D.7.(3分)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:38.(3分)在直角坐标系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D为x轴上一点,若以D、O、C为顶点的三角形与△AOB相似,这样的D点有()A.2个 B.3个 C.4个 D.5个9.(3分)若关于x的一元二次方程x2﹣2x+k+1=0有两个不相等的实数根,则一次函数y=kx+1的大致图象可能是()A.B.C.D.10.(3分)Rt△ABC中,CD是斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F.图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为()A.2类 B.3类 C.4类 D.5类二、填空(本大题共8小题,每空2分,共16分)11.(2分)方程x2﹣x=0的解是.12.(2分)已知=,则=.13.(2分)若△三边比为3:5:7,与它相似的△的最长边为21cm,则其余两边长的和为.14.(2分)若一元二次方程(1﹣3k)x2+4x﹣2=0有实数根,则k的取值范围是.15.(2分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.16.(2分)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b=.17.(2分)如图,已知点C是线段AB的黄金分割点,若AB=2cm,则AC=cm.18.(2分)如图,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是.三、精心做一做.(本大题共54分)19.(12分)用适当的方法解下列方程:(1)(x+1)2﹣9=0(2)x2﹣2x﹣3=0(3)2(x﹣1)2=3x﹣3(4)3x2+4x﹣1=0.20.(8分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,(1)证明△ABD∽△ACB;(2)求线段CD的长.21.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.(10分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.2017-2018学年江苏省无锡市宜兴市丁蜀学区九年级(上)第一次段测数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分):1.(3分)下列方程为一元二次方程的是()A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.D.x2﹣2x=3【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【解答】解:A、是二元二次方程,故不是一元二次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、是分式方程,不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.【点评】此题主要考查了一元二次方程,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.(3分)解方程2(5x﹣1)2﹣3(5x﹣1)=0最适当的方法是()A.直接开平方法B.配方法C.公式法D.因式分解法【分析】根据一元二次方程的解法即可求出答案.【解答】解:2(5x﹣1)2﹣3(5x﹣1)=0(5x﹣1)[2(5x﹣1)﹣3]=0(5x﹣1)(10x﹣5)=0故选(D)【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.3.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1且a≠5 B.a>1且a≠5 C.a≥1 D.a≠5【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【解答】解:当a=5时,原方程变形为﹣4x﹣1=0,解得x=﹣;当a≠5时,△=(﹣4)2﹣4(a﹣5)×(﹣1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.4.(3分)若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.5.(3分)把一块长80mm、宽60mm的铁皮的4个角分别剪去一个边长相等的小正方形,做成一个底面积是1500mm2的无盖铁盒.若设小正方形的边长为x mm,下面所列的方程中,正确的是()A.(80﹣x)(60﹣x)=1500 B.(80﹣2x)(60﹣2x)=1500C.(80﹣2x)(60﹣x)=1500 D.(80﹣x)(60﹣2x)=1500【分析】设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500故选:B.【点评】本题考查了由实际问题抽象出一元二次方程的知识,关键是掌握长方形与正方形的面积计算公式.6.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选D.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.7.(3分)如图,△ABC中,DE∥BC,且DE:BC=2:3,则下列结论一定正确的是()A.AD:DE=2:3 B.AD:BD=2:3 C.AD:AE=2:3 D.AD:AB=2:3【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵DE∥BC,∴=,∴AD:AB=2:3,故选:D.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,由平行线得出比例式是解题的关键.8.(3分)在直角坐标系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D为x轴上一点,若以D、O、C为顶点的三角形与△AOB相似,这样的D点有()A.2个 B.3个 C.4个 D.5个【分析】由相似三角形对应边成比例且夹角相等的三角形相似,分别从若△OCD∽△OBA与若△OCD∽△OAB去分析即可求得答案.【解答】解:如图:若△OCD∽△OBA,则需=,∴=,∴OD=,∴D与D′的坐标分别为(,0),(﹣,0),若△OCD∽△OAB,则需=,即=,∴OD=6,∴D″与D′″的坐标分别为(6,0),(﹣6,0).∴若以D、O、C为顶点的三角形与△AOB相似,这样的D点有4个.故选C.【点评】本题主要考查了相似三角形的性质,根据对应顶点的情况讨论是解题关键.9.(3分)若关于x的一元二次方程x2﹣2x+k+1=0有两个不相等的实数根,则一次函数y=kx+1的大致图象可能是()A.B.C.D.【分析】先利用判别式的意义得到△=(﹣2)2﹣4×1×(k+1)>0,解得k<0,然后根据一次函数的性质进行判断.【解答】解:根据题意得△=(﹣2)2﹣4×1×(k+1)>0,解得k<0,所以一次函数y=kx+1经过第一、二、四象限.故选D..【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.(3分)Rt△ABC中,CD是斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F.图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为()A.2类 B.3类 C.4类 D.5类【分析】根据直角三角形被斜边上的高分成的两个直角三角形与原三角形相似进行分析即可.【解答】解:根据已知及相似三角形的判定得:△ABC∽△ACD∽△CBD;∠CAE=∠DAF,∠ACE=ADF⇒△ACE∽△ADF;∠CAE=∠DAF,∠ACF=∠B⇒△ACF∽△ABE;所以是三类,故选B.【点评】本题考查了角的平分线定义和相似三角形的判定.二、填空(本大题共8小题,每空2分,共16分)11.(2分)方程x2﹣x=0的解是0或1.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣1)=0,∴x=0或x=1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.12.(2分)已知=,则=﹣.【分析】根据比例的性质,可得9a=﹣8b,根据等式的性质,可得答案.【解答】解:由比例的性质,得9a+15b=7b,即9a=﹣8b.两边都除以9b,得==﹣,故答案为:﹣.【点评】本题考查了比例的性质,利用了比例的性质,等式的性质.13.(2分)若△三边比为3:5:7,与它相似的△的最长边为21cm,则其余两边长的和为24cm.【分析】先设其余两边的长分别是x,y,再根据相似三角形的对应边的比相等解答即可.【解答】解:相似三角形的对应边的比相等,设其余两边的长分别是x,y,则x:y:21=3:5:7,解得x=9,y=15,所以其余两边长的和为9+15=24cm.故答案为:24cm.【点评】本题考查的是相似三角形的性质,掌握相似三角形对应边的比相等是解题的关键.14.(2分)若一元二次方程(1﹣3k)x2+4x﹣2=0有实数根,则k的取值范围是k≤1且k≠.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的定义以及根的判别式得到1﹣3k≠0且△>0,即42﹣4×(1﹣3k)×(﹣2)≥0,然后解两个不等式即可得到k的取值范围.【解答】解:∵一元二次方程(1﹣3k)x2+4x﹣2=0有实数根,∴1﹣3k≠0即k≠,且△≥0,即42﹣4×(1﹣3k)×(﹣2)≥0,解得k≤1,∴k的取值范围是k≤1且k≠.故答案为k≤1且k≠.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的定义.15.(2分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.16.(2分)若a,b是方程x2+x﹣2015=0的两实数根,则a2+2a+b=2014.【分析】先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b可化为a2+a+a+b=2015+a+b,然后利用根与系数的关系得到a+b=﹣1,再利用整体代入的方法计算即可.【解答】解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a2+a+a+b=2015+a+b,∵a,b是方程x2+x﹣2015=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2015+(﹣1)=2014.故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.17.(2分)如图,已知点C是线段AB的黄金分割点,若AB=2cm,则AC=﹣1cm.【分析】根据黄金比值计算即可.【解答】解:∵点C是线段AB的黄金分割点,∴AC=×AB=(﹣1)cm,故答案为:﹣1.【点评】本题考查的是黄金分割的概念,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.18.(2分)如图,直线l1∥l2,AF:FB=2:3,BC:CD=2:1,则AE:EC是2:1.【分析】由直线l1∥l2,根据平行线分线段成比例定理,即可得=,,又由BC:CD=2:1,根据比例的性质,即可求得答案.【解答】解:∵直线l1∥l2,∴=,,∵BC:CD=2:1,∴=2,∴AE:EC=2:1.故答案为:2:1.【点评】此题考查了平行线分线段成比例定理.此题比较简单,解题的关键是注意比例线段的对应关系与比例的性质.三、精心做一做.(本大题共54分)19.(12分)用适当的方法解下列方程:(1)(x+1)2﹣9=0(2)x2﹣2x﹣3=0(3)2(x﹣1)2=3x﹣3(4)3x2+4x﹣1=0.【分析】(1)用直接开平方法解一元二次方程即可;(2)用因式分解法解一元二次方程即可;(3)用因式分解法解一元二次方程即可;(4)用公式法解一元二次方程即可.【解答】解:(1)(x+1)2﹣9=0(x+1)2=9x+1=±3,x1=2,x2=﹣4;(2)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,x1=3,x2=﹣1;(3)2(x﹣1)2=3x﹣3,2(x﹣1)2﹣3(x﹣1)=0,(x﹣1)(2x﹣2﹣3)=0x﹣1=0或2x﹣5=0;x1=1,x2=;(4)3x2+4x﹣1=0,a=3,b=4,c=﹣1,△=b2﹣4ac=16+12=28>0,∴方程有两个不等的实数根,x===,x1=,x2=.【点评】本题考查了解一元二次方程,掌握解一元二次方程的方法:直接开平方法、配方法、公式法以及因式分解法是解题的关键.20.(8分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,(1)证明△ABD∽△ACB;(2)求线段CD的长.【分析】(1)根据已知角相等,再由公共角,利用两对角相等的三角形相似即可得证;(2)由相似得比例,求出所求即可.【解答】(1)证明:∵∠A=∠A,∠ABD=∠C,∴△ABD∽△ACB;(2)∵△ABD∽△ACB,∴=,即=,解得:CD=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.21.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)求出一元二次方程根的判别式,根据偶次方的非负性证明;(2)利用求根公式求出方差的根,根据题意求出正整数m的值.【解答】(1)证明:△=(m+2)2﹣4×m×2=m2﹣4m+4=(m﹣2)2≥0,则方程总有两个实数根;(2)x=,x1=m,x2=,方程的两个实数根都是整数,则正整数m的值为1或2.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.23.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.(10分)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.【分析】(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.(2)根据两个直角三角形相似得到强相似点的两种情况即可.(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.【解答】解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.(2分)∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.(2)作图如下:(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,∴BE=CE=AB.在Rt△BCE中,tan∠BCE==tan30°,∴,∴.【点评】本题考查了相似三角形的判定和性质,矩形的性质,梯形的性质以及理解相似点和强相似点的概念等,从而可得到结论.。

无锡市丁蜀学区2018届九年级数学上学期第三次阶段性测试试题

无锡市丁蜀学区2018届九年级数学上学期第三次阶段性测试试题

江苏省无锡市丁蜀学区2018届九年级数学上学期第三次阶段性测试试题一.选择题 (本大题共10小题,每题3分,共30分)1。

若方程01x 4x 2=+-的两个实数根分别为, ,则=( )A 。

-4 B.1 C.4 D.-1 2.体育课上,某班两名同学分别进行10次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的 ( )A .平均数 B.众数 C.中位数 D. 方差3。

⊙O 的半径为3 ,圆心O 到直线l 的距离为d ,若直线l与⊙O 没有公共点,则d 为( )A .d >3 B .d 〈3 C .d ≤3 D .d =34.如图,用一个半径为30cm ,面积为300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为 ( )A .5cmB 。

10cmC .20cmD .5πcm 5. 如图,A 、B 、C 分别是圆O 上的三点,∠BAC=40°,则∠OBC 的度数是 ( ) A.80° B.50° C.40° D.20° 6.如图,已知直线a ∥b ∥c ,直线m 、n与a 、b 、c 分别交于A 、C 、E 、B 、D 、F ,若AC= 4,CE=6, BD=3.则DF 等于 ( ) A .7 B .4.5 C .8 D .8.57如图是一圆柱形输水管的横截面,阴影部分为有水部(第5题)分.如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm8。

某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B. C。

D。

9。

有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A。

江苏省宜兴市2018年春中考数学第一次模拟试卷(含答案)

江苏省宜兴市2018年春中考数学第一次模拟试卷(含答案)

江苏省宜兴市2018年春中考数学第一次模拟试卷(含答案)宜兴市实验中学2017~2018学年第二学期 第一次模拟考试初三年级数学试卷 2018.3命题人:康旭刚 审核人:葛艳艳一、选择题(本大题共有10小题,每题3分,共计30分) 1.-3的绝对值是( ▲ ) A .3B .-3C .13D .-132.要使分式52-x 有意义,则x 的取值范围是( ▲ ) A .x ≠5B .x >5C .x =5D .x <53.下列计算正确的是( ▲ ) A .(a 2)3=a 5B .a 3+a 3=a 6C .a 6÷a 2=a 4D .a 3·a 4=a 124.下列各个数字中,是轴对称图形,但不是中心对称图形的是( ▲ )A .B .C .D .5.点P (a ,a-2)不在第几象限( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限6.二次函数y =-x 2+2x +n 图像的顶点坐标是(m ,1),则m -n 的值为( ▲ ) A .-1B .0C .1D .27.将抛物线y =x 2+4x +3沿y 轴向右平移3个单位,然后再向上平移5个单位后所得抛物线的顶点坐标是( ▲ )A .(5,7)B .(-1,7)C .(1,4)D .(5,4) 8.下列说法错误的是( ▲ )A .直径是圆中最长的弦B .长度相等的两条弧是等弧C .面积相等的两个圆是等圆D .半径相等的两个半圆是等弧9.对于实数a ,b ,我们定义max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b}=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数y=max{x+3,﹣x+1},则该函数的最小值是( ▲ )A .0B .2C .3D .410.在直角坐标系中,点A 3a a+34⎛⎫ ⎪⎝⎭,,B ()23-,,则线段AB 的长度的最小值为( ▲ ) A .5 B .6 C .10 D .12二、填空题(本大题共8空,每空2分,共计16分)11.把多项式4x 2-16因式分解的结果是 ▲ .12.若数据8,4,x ,2的平均数是4,则这组数据的中位数为 ▲ . 13.若圆锥的母线为5,底面半径为3,则圆锥的全面积为 ▲ .14.在半径为3cm 的⊙O 中,弦AB=,则弦AB 所对的圆心角∠AOB 的度数为 ▲ °. 15.我国第一艘航母“辽宁舰”最大排水量为67500吨,67500用科学记数法表示为 ▲ . 16.已知反比例函数0k y k x=≠() 的图像经过点A (m ,2)和点B (1,m -1),则k = ▲ . 17. 如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,AB=12,EF=9,则DF 的长是____▲____.18.已知抛物线c x x y ++=242,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,则c 的取值范围是_____▲ ____.三、解答题(本大题共10小题,共84分.) 第18题图 19.(本题8分)计算和化简⑴计算:()0-22017-60sin -27-31π +⎪⎭⎫ ⎝⎛︒⑵化简:112+-+a a a . 20.(本题8分)解方程和不等式组⑴21122x x x =--- ⑵ 322(1)4x x x x ≥-⎧⎨-<-+⎩ 21.(本题6分)如图,四边形ABCD 中,AB =AD ,∠ABC =∠ADC. ⑴ 求证:CB =CD ;⑵ 若∠BCD =90°,AO =2CO ,求tan ∠ADO .22.(本题8分)某校在经典诵读活动中,对全校学生用A 、B 、C 、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:⑴ 被调查的学生共有 ▲ 人,图乙中B 等级所占圆心角为 ▲ 度.OABCDBAD C 20 %甲 乙⑵ 补全折线统计图.⑶ 若该校共有学生800人,请你估计全校评价A 等级的学生的人数.23.(本题8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为12.⑴ 布袋里红球有多少个? ⑵ 先从布袋中摸出1个球后不.再.放回..,再摸出1个球,求两次摸到的球都是白球的概率.24.(本题8分)某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个.(1)直接写出销售量错误!未找到引用源。

2018年无锡市中考模拟测试数学试卷含答案

2018年无锡市中考模拟测试数学试卷含答案

21l b a C B A 2018年无锡市中考模拟测试数学试卷含答案2018.3注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-5的相反数是 ( )A .51B .±5C .5D .-51 2.函数y =x 24-中自变量x 的取值范围是 ( )A .x >2B .x ≥2C .x ≤2D .x ≠23.化简xx x -+-1112的结果是 ( ) A .x +1 B .x +11 C .x -1 D .1-x x 4.左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是 ( )5.如图,直线a ∥b ,直线与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为 ( )A .115°B .65°C .35°D .25°6. 小红随机调查了50名九年级同学某次知识问卷的得分情况,结果如下表:问卷得分(单位:分) 65 70 75 80 85人数(单位:人)1 15 15 16 3 则这50名同学问卷得分的众数..和中位数...分别是 ( ) A .16,75 B .80,75 C .75,80 D .16,157.若点A (3,-4)、B (-2,m )在同一个反比例函数的图像上,则m 的值为 ( )A .6B .-6C .12D .-12l 正面A. B. C. D. (第4题)(第5题)8.某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则 ( )A . ①反映了建议(Ⅰ),③反映了建议(Ⅱ)B .②反映了建议(Ⅰ),④反映了建议(Ⅱ)C . ①反映了建议(Ⅱ),③反映了建议(Ⅰ)D .②反映了建议(Ⅱ),④反映了建议(Ⅰ)9. 完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是 ( )A . 6(m -n )B . 3(m +n )C . 4nD . 4m10.如图,在边长为6的正方形ABCD 中,点E 、F 、G 分别在边AB 、AD 、CD 上,EG 与BF 交于点I ,AE =2,BF=EG ,DG >AE ,则DI 的最小值等于( )A .5+3B .213-2C .210-65D .22+3 二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的.......位置..) 11.分解因式:a 2-4= .12.某公司开发一个新的项目,总投入约11500000000元,11500000000用科学记数法表示为.13. 请写一个随机事件: .14. 若1=+y x ,5=-y x ,则=xy .15.若正多边形的一个外角是45°,则该正多边形的边数是 .16.已知扇形的圆心角为90º,半径为6cm ,则用该扇形围成的圆锥的侧面积为 cm.17.如图,△ABC 中,点D 是AC 中点,点E 在BC 上且EC =3BE ,BD 、AE 交于点F ,如果△BEF的面积为2,则△ABC 的面积为 .18.面积为40的△ABC 中,AC =BC =10,∠ACB >90°,半径为1.5的⊙O 与AC 、BC 都相切,则OC 的长为 .y x =-△ △ △ △ G A F B C D E I m n (第10题)(第9题) A B C O F E DC B A (第18题)(第17题)三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:20180-tan30°+(﹣13)-1 ; (2)化简: (x -y )2-x (x -y )20.(本题满分8分)(1)解方程:0432=-+x x ; (2)解不等式组:⎩⎪⎨⎪⎧2x +7≤x +10,x +23>2-x .21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC .求证:AD =BE .22.(本题满分6分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学.A CB D E23.(本题满分8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯...........的概率是 .24.(本题满分8分)如图,以矩形ABCD 的边CD 为直径作⊙O ,交对角线BD 于点E ,点F 是BC 的中点,连接EF .(1)试判断EF 与⊙O 的位置关系,并说明理由.(2)若DC =2,EF P 是⊙O 上不与E 、C 重合的任意一点,则∠EPC 的度数为(直接写出答案)410242824201612人数其他私家车公交车步行自行车私家车公交车自行车 30%步行20%其他325.(本题满分8分)如图,已知点D 、E 分别在△ACD 的边AB 和AC 上,已知DE ∥BC ,DE =DB .(1)请用直尺和圆规在图中画出点D 和点E (保留作图痕迹,不要求写作法),并证明所作的线段DE 是符合题目要求的;(2)若AB =7,BC =3,请求出DE 的长.26.(本题满分10分)已知二次函数m amx ax y (42+=>0)的对称轴与x 轴交于点B ,与直线l :x y 21-=交于点C ,点A 是该二次函数图像与直线l 在第二象限的交点,点D 是抛物线的顶点,已知AC ∶CO =1∶2,∠DOB =45°,△ACD 的面积为2.(1) 求抛物线的函数关系式;(2) 若点P 为抛物线对称轴上的一个点,且∠POC =45°,求点P 坐标.27.(本题满分10分)某品牌T 恤专营批发店的T 恤衫在进价基础上加价m %销售,每月销售额9万元,该店每月固定支出1.7万元,进货时还需付进价5%的其它费用.(1)为保证每月有1万元的利润,m 的最小值是多少?(月利润=总销售额-总进价-固定支出-其它费用)(2)经市场调研发现,售价每降低1%,销售量将提高6%,该店决定自下月起降价以促进销售,已知每件T 恤原销售价为60元,问:在m 取(1)中的最小值且所进T 恤当月能够全部销售完的情况下,销售价调整为多少时能获得最大利润,最大利润是多少?A B C28.(本题满分10分)已知:矩形ABCD 中,AB =4,BC =3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上.(1) 如图1,当EP ⊥BC 时,求CN 的长;(2) 如图2,当EP △AC 时,求AM 的长;(3) 请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.数学答案 2018.03一、选择题(每题3分,共24分)1.C2.C3.A4.A5.D6.B7.A8.C9.D 10.B二、填空题(每题2分,共16分)11. (a +2)(a -2); 12. 1.15⨯1010; 13. 略; 14. -6; 15. 8;16. π9; 17. 40; 18.453. 三、解答题(10小题题,共84分)19.(1)原式=-2-3……(4分); (2)原式=y 2-xy ……(4分)20. (1)341-=x ,12=x ; ……(4分); (2)1<x ≤3 …………(4分) 21. 证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°. ………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分) ∴△EAB ≌△DCA , ………(6分)∴AD =BE . ………(8分)22. 解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,△抽取学生的总数为24÷30%=80(人). ………………(2分)(2)被抽到的学生中,步行的人数为80×20%=16人, ………………(3分)直方图略(画对直方图得一分). ……………………(4分)(备用图) (图1) A B C D N P M E (图2) A B C D N P M E A B C D(3)被抽到的学生中,乘公交车的人数为80—(24+16+10+4)=26,△全校所有学生中乘坐公交车上学的人数约为2680×2400=780人……(6分) 23.(1)正确列出表格(或者正确画出树状图); …………(4分)P (在第二个路口第一次遇到红灯)=92; ……(6分) (2)P (每个路口都没有遇到红灯......)=n )32(…………(8分) 24. 解:解:(1)EF 与⊙O 相切……………………………………………………… …(1分);证明过程略 ……………………………………………………… (5分);(2)60°或120°(注:只对一个得1分,两个都对得3分)…………… …(8分)25. (1) ①作∠CBA 的平分线交AC 于点E ………(2分)②作BE 的垂直平分线交AB 于点D (注:点D 的作法较多,比如作∠BED =∠CBE 也可,只要正确都给分) ………(4分) ③证得DE ∥BC ,DE =DB ………(6分)(2) DE =2.1 ………(8分)26. 解:(1)对称轴:直线 x =-2m ,AC :CO =1:2,则顶点D (-2m ,2m ),C (-2m ,m ),CD =m ,A (-3m ,m 23), ∴ 12m ·m =2,解得:m =2 …………(3分) ∴ D (-4,4)解得a =41-…………(4分) ∴x x y 2412--= …………(5分) (注:本题中若学生分a >0和a <0两种情况讨论并由对称性说明a >0是不存在的,可以酌情加1分)(2) P 1(-4,43分,得到两个给5分)27. 解:(1) 设销售量为a ⎩⎨⎧=+--9%)1(1057.19m ax ax )………(3分) 解得:m ≥50 (2)原销售量为:609=0.15万件,即1500件,设每件T 恤降价x 元销售, 则销售量为1500(1+660⨯x )件,设该月产生的利润为W 元, 根据题意,得:W =(60-40×1.05)×1500×(1+6×60x )-17000…(8分) =-150x 2+16800x -458000=12400)4(1502+--x所以,当x =4 即售价为60-4=56元时,W 最大值=12400元…………(10分)答:略28. 解:(1)△△AME 沿直线MN 翻折,点A 落在点P 处,△△AME △△PME . △△AEM =△PEM ,AE =PE .△ABCD 是矩形,△AB ⊥BC .△EP △BC ,△AB // EP .△△AME =△PEM . △△AEM =△AME . △AM =AE . ---(1分) △ABCD 是矩形,△AB // DC . △AM AE CN CE=. △CN =CE .------(2分) 设CN = CE =x .△ABCD 是矩形,AB =4,BC =3,△AC =5. △PE = AE =5- x .△EP △BC ,△4sin 5EP ACB CE =∠=. △545x x -=. --(3分) △259x =,即259CN =. ------------------(4分) (2)△△AME 沿直线MN 翻折,点A 落在点P 处,△△AME △△PME . △AE =PE ,AM =PM .△EP △AC ,△4tan 3EP ACB CE =∠=. △43AE CE =. △AC =5,△207AE =,157CE =.△207PE =. ----(6分)△EP △AC ,△257PC ===. △254377PB PC BC =-=-=. -------------(7分) 在Rt△PMB 中,△222PM PB MB =+,AM =PM .△2224()(4)7AM AM =+-. △10049AM =. ----------(8分)(3)05CP ≤≤,当CP 最大时MN .--------------(10分)。

(汇总3份试卷)2018年宜兴市某知名实验中学中考统考数学试题

(汇总3份试卷)2018年宜兴市某知名实验中学中考统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是( )A =B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =【答案】C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .2.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,6 【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6, 故选A .【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 3.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°【答案】C 【解析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个【答案】B 【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线B .它的图象在第一、三象限C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上【答案】C 【解析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答. 【详解】A .反比例函数2y x =的图像是双曲线,正确; B .k=2>0,图象位于一、三象限,正确;C .在每一象限内,y 的值随x 的增大而减小,错误;D .∵ab=ba ,∴若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上,故正确.故选C .【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2). 故答案选D.考点:位似变换.8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒【答案】C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.10.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.14【答案】C【解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.二、填空题(本题包括8个小题)11.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.【答案】10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=2268+=10,故PB+PE的最小值是10.故答案为10.12.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.【答案】1.【解析】设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x-的图象上,∴当y=b,x=-4b ,即A点坐标为(-4b,b),又∵点B在反比例函数y=2x的图象上,∴当y=b,x=2b ,即B点坐标为(2b,b),∴AB=2b -(-4b)=6b,∴S△ABC=12•AB•OP=12•6b•b=1.13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.14.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCED的面积四边形的面积=_____.【答案】1 8【解析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,AD1=DB2,∴AD1=AB3,由平行条件易证△ADE~△ABC, ∴S△ADE:S△ABC=1:9,∴ADE S ADEBCED S ABC S ADE的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC 的长为半径作CD交OB于点D,若OA=2,则阴影部分的面积为.【答案】3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯⨯()=323 432ππ-+=3 12π+.16.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.【答案】26 3【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积. 【详解】解:四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BCDAC ACB ∠∠∴=,折叠ACB ACE ∠∠∴=,DAC ACE ∠∠∴=AF CF ∴=在Rt CDF 中,222CF CD DF =+,22AF 16(6AF)∴=+-, 13AF 3∴= AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=. 故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键.17.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.43 【解析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=433.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.18.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.【答案】6【解析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,∴P是两个圆的交点,当⊙O与⊙M外切时,AB最小,∵⊙M 的半径为2,圆心M (3,4),∴PM =5,∴OA =3,∴AB =6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB 最小是解题的关键.三、解答题(本题包括8个小题)19.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .【答案】证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.20.如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求AD DB 的值.【答案】(1)10;(2)35AD BD =. 【解析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1, 在Rt △AEC 中,根据勾股定理得:AC=2231+=10;(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =, ∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.21.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②【答案】(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.22.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.【答案】(1)14(2)316【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=41 164=;(2)P(两次取得小球的标号的和等于4)=3 16.考点:概率的计算.23.在平面直角坐标系中,一次函数34y x b=-+的图象与反比例函数kyx=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C 沿y 轴向下平移4个单位长度至点F ,连接AF 、BF ,求△ABF 的面积.根据图象,直接写出不等式34k x b x-+>的解集. 【答案】(1)y =﹣34x+32,y =-6x ;(2)12;(3) x <﹣2或0<x <4. 【解析】(1)将点A 坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B 坐标,即可求△ABF 的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y =﹣34x+b 的图象与反比例函数y = k x (k≠0)图象交于A (﹣3,2)、B 两点, ∴3=﹣34×(﹣2)+b ,k =﹣2×3=﹣6 ∴b =32,k =﹣6 ∴一次函数解析式y =﹣3342x +,反比例函数解析式y =6x -. (2)根据题意得:33426y x y x ⎧+⎪⎪⎨-⎪⎪⎩=﹣= , 解得:211242,332x x y y ⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩, ∴S △ABF =12×4×(4+2)=12 (3)由图象可得:x <﹣2或0<x <4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.24.如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分面积为43 3π【解析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:3分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积. 【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:3易求S△AOC=1233S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为433π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25.先化简代数式222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,再从12x -≤≤范围内选取一个合适的整数作为x 的值代入求值。

江苏省宜兴中学2018-2019学年九年级中考数学模拟考试试卷含答案

江苏省宜兴中学2018-2019学年九年级中考数学模拟考试试卷含答案

2 -a3 -a注意事项:数学试题卷 (考试分值 150 分考试时间 120 分钟) 本试题分选择题、填空题和解答题三部分,共 24 小题。

1.答题前,考生务必用 0.5 毫米黑色墨水签字笔将自己的所在初中毕业学校、姓名、准考证号、报考高中学校填写在答题卡的相应位置上,并用 2B 铅笔规范涂好准考证号码。

2.答选择题必须用 2B 铅笔将答题卡上对应题目的正确选项涂黑。

如需改动,用橡皮擦干净后再选涂其他答案,答案不能答在试题卷上。

3.答非选择题必须用 0.5 毫米黑色墨水签字笔作答,答案写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改 液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试题卷和答题卡一并交回。

5.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共 8 小题,每题 4 分,共计 32 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确选项前的字母代号涂在答题卡相应位置.)1.下列计算中正确的是 ( ▲ )A . |1 - 2| = 1 -B . (2a - 3b ) (-2a - 3b ) = 4a 2 - 9b 2C = -aD . -(-a )4 ÷ a 2 = a 2 2. 已知 a ,b 是一元二次方程 x 2 + 2x - 9 = 0 的两个根,那么a 2 + a - b 的值为( ▲ )A . 11B . 7C . 0D . -76x + 3 3.若 x 取整数,则使分式2x -1 的值为整数的 x 值有( ▲ ) A . 3 个 B . 4 个C . 6 个D . 8 个 4.自行车前后轮胎的使用寿命不同,某种品牌的同样的新轮胎,前轮胎使用寿命为 12000 千米,后轮胎使用寿命为 8000 千米.为了使同时购买的前后轮胎同时报废,且使用时间尽可能的长,一般应在行驶 a 千米时前后轮胎互换,请问 a 的值为( ▲ )A .6000B .5600C .5200D .48005.如图,已知矩形 ABCD 的对角线 AC 、BD 相交于点 O ,过 O 点作 OE ⊥AC ,交 AB 于 E , 若 BC =4,△AOE 的面积是 5,则下列说法错误的是( ▲ )A .AE =5B .∠BOE =∠BCEC .CE ⊥OBD .sin ∠BOE =0.66.如图,a ∥b ∥c ∥d ∥e ,且相邻两条直线之间的距离相等,△ABC 的顶点 A 、B 、C 分别在 a 、c 、e 上,AB 交 b 于点 D ,BC 交 d 于点 E ,AC 交 b 与点 F ,若△DEF 的面积是 1,则 △ABC 的面积是( ▲ )A .3.5B .4C .4.5D .57.如图,在扇形 A OB 中,∠AOB =90°,点 C 为 O A 的中点,CE ⊥OA 交于点 E ,以点C 为圆心,OA 的长为直径作半圆交 CE 于点D .若 OA =4,则图中阴影部分的面积为( ▲ )O E (第 5 题) (2 + x )2 3 O B A A y A 3 B O A 1 x A 28.如图,点 A ,B ,C 均在坐标轴上,AO =BO =CO =1,过 A ,O ,C 作⊙D ,E 是⊙D 上任意一点, 连结 CE , BE ,则CE 2 + BE 2 的最大值是( ▲ )A . 4B . 5C . 6D . 4 +DCA B (第 7 题) 二、填空题(本大题共 8 小题,每题 4 分,共计 32 分.请把9.若 x <﹣3,化简 1- = ▲10.已知 a 是 64 的立方根, 2b - 3 是 a 的平方根,则11 a - 4b 的算术平方根为 ▲ 4有且只有四个整数解,则实数 a 的取值范围是 ▲ 12.函数 y 1 = x 2 + bx + c 与函数 y =k x- 9 的图象交于点 A (2,5)和点 B (3,要使 y 1 < y 2 ,则 x 的取值范围是 ▲ 13.如图,⊙O 的半径为4,A 、C 两点在⊙O 上,点B 在⊙O 内,tan ∠ACB = 4 ,AB ⊥AC , 3 若 OB ⊥OC ,那么 OB 的长为 ▲ 14.如图,正方形 ABCD 的边长为 6,点 E 是 AD 的中点,连接 BE 、CE ,CE 与 BD 相交于点 H ,连接 AH ,交 BE 于点 G ,则 GH 的长为 ▲ . 15. 如图,矩形 ABCD 的两个顶点 A 、B 分别在 x 、y 轴上,顶点 C 、D 位于第二象限,且 OA =3,OB =2,对角线 AC 、BD 交于点G ,若双曲线 y = k (x < 0)经过 C 、G ,,则 k = ▲ x 16.如图,在平面直角坐标系中点 A (C(第 13 题) (第 14 题) (第 15 题) (第 16 题) 2(第 8 题)A D FB E (第 6 题)C a b c d e 2 y C BD G A O x三、解答题(本大题共10小题,共 86 分,.作答,解答时应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省无锡市宜兴市丁蜀学区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣5的倒数是()A.B.±5 C.5 D.﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)分式可变形为()A. B.﹣C. D.﹣4.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数5.(3分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m 的值为()A.6 B.﹣6 C.12 D.﹣126.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.圆7.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.(3分)如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°9.(3分)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.B.C.D.10.(3分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡相应的位置)11.(2分)分解因式:2x2﹣4x=.12.(2分)去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元.13.(2分)一次函数y=2x﹣6的图象与x轴的交点坐标为.14.(2分)命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)15.(2分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.16.(2分)如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于.17.(2分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)﹣(﹣2)2+(﹣0.1)0;(2)(x+1)2﹣(x+2)(x﹣2).20.(8分)(1)解方程:=.(2)解不等式组:21.(6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.(8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”的圆心角为.(精确到度)23.(8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).24.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.25.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?26.(10分)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.27.(10分)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.28.(10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O 的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB 交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.2018年江苏省无锡市宜兴市丁蜀学区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣5的倒数是()A.B.±5 C.5 D.﹣【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选:D.2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选:A.3.(3分)分式可变形为()A. B.﹣C. D.﹣【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.4.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数【解答】解:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.5.(3分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m 的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.圆【解答】解:A、只是轴对称图形,不是中心对称图形,符合题意;B、只是中心对称图形,不合题意;C、D既是轴对称图形又是中心对称图形,不合题意.故选:A.7.(3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.(3分)如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°【解答】解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选:B.9.(3分)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.B.C.D.【解答】解:∵梯形ABCD中,AD∥BC,∴△AOD∽△COB,∵AD=1,BC=4,即AD:BC=1:4,∴△AOD与△BOC的面积比等于:1:16.故选:D.10.(3分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2C.:2D.2:【解答】解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,=S△DFA=S平行四边形ABCD,∵根据三角形的面积和平行四边形的面积得:S△DEC即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=2:.故选:D.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡相应的位置)11.(2分)分解因式:2x2﹣4x=2x(x﹣2).【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).12.(2分)去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为8.2×109元.【解答】解:将8 200 000 000 用科学记数法表示为8.2×109.故答案为:8.2×109.13.(2分)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).【解答】解:令y=0得:2x﹣6=0,解得:x=3.则函数与x轴的交点坐标是(3,0).故答案是:(3,0).14.(2分)命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.15.(2分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.16.(2分)如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于4.【解答】解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.17.(2分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【解答】解:方法一:平移CD到C′D′交AB于O′,如右图所示,则∠B O′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.方法二:连接AM、NL,在△CAH中,AC=AH,则AM⊥CH,同理,在△MNH中,NM=NH,则NL⊥MH,∴∠AMO=∠NLO=90°,∵∠AOM=∠NOL,∴△AOM∽△NOL,∴,设图中每个小正方形的边长为a,则AM=2a,NL=a,∴=2,∴,∴,∵NL=LM,∴,∴tan∠BOD=tan∠NOL==3,故答案为:3.方法三:连接AE、EF,如右图所示,则AE∥CD,∴∠FAE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△FAE是直角三角形,∠FEA=90°,∴tan∠FAE=,即tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)﹣(﹣2)2+(﹣0.1)0;(2)(x+1)2﹣(x+2)(x﹣2).【解答】解:(1)原式=3﹣4+1=0;(2)原式=x2+2x+1﹣x2+4=2x+5.20.(8分)(1)解方程:=.(2)解不等式组:【解答】解:(1)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解;(2)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6.21.(6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.【解答】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.22.(8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达EA.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”的圆心角为151°.(精确到度)【解答】解:(1)96÷3%=3200,故答案为:3200;(2)“有时”的人数=3200﹣96﹣320﹣736﹣1344=704;如图所示:(3)“总是”所占的百分比=×100%=42%,∴“总是”对应的圆心角=360°×42%≈151°.故答案为:151°.23.(8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【解答】解:(1)画树状图:共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)==.(2)第三步传的结果是n3,传给甲的结果是n(n﹣1),第三次传球后球回到甲手里的概率是=,故答案为:.24.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD 的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴,∴AP∥CD.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.25.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?【解答】解:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得:,解得:,则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a个,则篮球购买(50﹣a)个,根据题意得:120a+100(50﹣a)≤5500,整理得:20a≤500,解得:a≤25,则最多可购买25个足球.26.(10分)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.【解答】解:(1)如图,过点D作DF⊥x轴于点F.由题意,可知OF=AF,则2AF+AE=4①.∵DF∥BE,∴△ADF∽△ABE,∴==,即AE=2AF②,①与②联立,解得AE=2,AF=1,∴点A的坐标为(﹣2,0);(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y=ax2+bx.∵抛物线过原点(0,0)和A点(﹣2,0),∴对称轴为直线x==﹣1,∵B、C两点关于直线x=﹣1对称,B点横坐标为﹣4,∴C点横坐标为2,∴BC=2﹣(﹣4)=6.∵抛物线开口向上,∴∠OAB>90°,OB>AB=OC,∴当△OBC是等腰三角形时,分两种情况讨论:①当OB=BC时,设B(﹣4,y1),则16+=36,解得y1=±2(负值舍去).将A(﹣2,0),B(﹣4,2)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x;②当OC=BC时,设C(2,y2),则4+=36,解得y2=±4(负值舍去).将A(﹣2,0),C(2,4)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x.综上可知,若△OBC是等腰三角形,此抛物线的函数关系式为y=x2+x或y=x2+x.27.(10分)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.【解答】解:(1)由题意,可知题图2中点E表示点P运动至点B时的情形,所用时间为3s,则菱形的边长AB=2×3=6cm.此时如答图1所示:AQ边上的高h=AB•sin60°=6×=cm,S=S△APQ=AQ•h=AQ×=,解得AQ=3cm,∴点Q的运动速度为:3÷3=1cm/s.(2)由题意,可知题图2中FG段表示点P在线段CD上运动时的情形.如答图2所示:点Q运动至点D所需时间为:6÷1=6s,点P运动至点C所需时间为12÷2=6s,至终点D所需时间为18÷2=9s.因此在FG段内,点Q运动至点D停止运动,点P在线段CD上继续运动,且时间t的取值范围为:6≤t≤9.过点P作PE⊥AD交AD的延长线于点E,则PE=PD•sin60°=(18﹣2t)×=t+.S=S△APQ=AD•PE=×6×(t+)=t+,∴FG段的函数表达式为:S=t+(6≤t≤9).(3)菱形ABCD的面积为:6×6×sin60°=.当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示.此时△APQ的面积S=AQ•AP•sin60°=t•2t×=t2,根据题意,得t2=×,解得t=s(舍去负值);当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示.此时,有S=S菱形ABCD,即(2t﹣6+t)×6×=×,梯形ABPQ解得t=s.∴存在t=和t=,使PQ将菱形ABCD的面积恰好分成1:5的两部分.28.(10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O 的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB 交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.【解答】解:(1)过P作PE⊥OA于E,∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形,∴PM=OQ=1,∠PME=∠AOB=60°,∴PE=PM•sin60°=,ME=,∴CE=OC﹣OM﹣ME=,∴tan∠PCE==,∴∠PCE=30°,∴∠CPM=90°,又∵PM∥OB,∴∠CNO=∠CPM=90°,则CN⊥OB;(2)①﹣的值不发生变化,理由如下:设OM=x,ON=y,∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y﹣x,∵PQ∥OA,∴∠NQP=∠O,又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴=,即=,∴6y﹣6x=xy.两边都除以6xy,得﹣=,即﹣=.②过P作PE⊥OA于E,过N作NF⊥OA于F,则S1=OM•PE,S2=OC•NF,∴=.∵PM∥OB,∴∠PMC=∠O,又∵∠PCM=∠NCO,∴△CPM∽△CNO,∴==,∴==﹣(x﹣3)2+,∵0<x<6,则根据二次函数的图象可知,0<≤.。

相关文档
最新文档